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Shift-coupling means pasting together the paths of two processes modulo a random shift. This concept 
can be related to the invariant a-field in a similar way as ordinary coupling is related to the tail c-field. 

We give an expository account of this relationship, implicit in work of Berbee and Greven. In developing 

these relations we introduce the concept of coupling with respect to a sub-c-field. 
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1. Introduction 

The word ‘coupling’ can be used in a wide sense to mean any argument which 

studies stochastic processes by constructing versions of the processes on a common 

probability space. In a narrower sense, ‘the coupling method’ has been used to 

mean the technique of proving asymptotics of particular Markov processes by 

constructing versions with different initial distributions whose sample paths ulti- 

mately coincide. Such a construction is called a ‘successful coupling’. Here are two 

fundamental results in this area. See Section 2 for definitions relevant to this paper. 

Theorem 1. Let P be a Markov kernel on a Polish space E. Let X = (X,; 0 G n < 00) 

and X’ = (XL; 0 s n < 00) be Markov chains with transition kernel Pand initial distribu- 

tions u and t_~‘. The following are equivalent. 

(9 
(ii) 

(iii) 

(iv) 

(v) 

(vi) 

X has trivial tail u-field, for each p. 

X is mixing, for each t_~. 

There exists a successful coupling of X and X’, for each pair t_~, t_~‘. 

[[pup” -/_&‘P”(( + 0 as n + a, for each pair p, t.~‘. 

((P(8,X~~)-P(0,X’~~)~)+Oasn~~,foreachpair~,~’. 

All bounded space-time harmonic functions are constant. 0 
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Theorem 1 is a qualitative result: each property either holds or does not hold. 

Here is a related quantitative result. 

Theorem 2. Let 2 = (2, : 0 s n < W) and Z’ = (Zk: 0 c n < co) be arbitrary stochastic 

processes taking values in a Polish space E. 

(i) If T is the coupling epoch in any coupling of (Z, Z’), then 

~IP(B,ZE.)-P(B,Z’E.)II~~P(T>~), O~n<co. 

(ii) There exists a coupling whose coupling epoch T satis$es 

IIP(~,ZE.)-P(~,Z’E.)I(=~P(T>~), O<n<oo. 0 (1) 

A coupling satisfying (1) is called a maximal coupling. Assertion (i) is the easy 

coupling inequality: see (8) for a variation. Note that in Theorem 2 the processes 

are not required to be Markov. In one sense this is spurious generality, since for 

general Z the process (B,Z: 0 s n < ~0) is Markov. 

The circle of ideas surrounding Theorems 1 and 2 was well known to experts by 

the end of the 1970s. The recent book of Lindvall (1992) gives a detailed account 

of these results (his Theorem 21.12 and equation (14.1)) and their history and 

applications, which we shall not repeat here, except for occasional remarks. The 

purpose of this paper is to give an exposition of a parallel set of ideas, which are 

essentially known but seem not well-known even to experts, and which are not 

covered in Lindvall (1992). These concern the analogous results when the tail a-field 

is replaced by the invariant u-field 4 and the notion of ‘successful coupling’ is 

replaced by ‘successful shift-coupling,’ in which a random time-shift is allowed (see 

Section 2 for precise definition). It turns out there is the following simple analog 

of the highlights of Theorem 1, but no entirely satisfying analog of Theorem 2 is 

known. 

Theorem 3. Under the assumptions of Theorem 1, the following are equivalent. 

(i) X has trivial invariant u-field, for each t.~. 

(iii) There exists a successful shift-coupling of X and X’, for each pair t..~, t.~.‘. 

(vi) All bounded harmonic functions are constant. 

As discussed below, Theorem 3 is essentially known, but hard to find explicitly 

stated in the literature, apart from the equivalence of (i) and (vi) which is routine 

(see, e.g., Lindvall, 1992, Theorem 21.8). To our knowledge, shift-coupling of general 

processes was first discussed by Berbee (1979, Theorems 4.3.3 and 4.4.9). Berbee 

shows that in the setting of Theorem 2, the existence of a successful shift-coupling 

is equivalent to the following analog of (v) of Theorem 1, 

II 
n-1 n--l 

6’ x P(0,ZE.)-n-’ 1 P(0,Z’E.) +O as n+W. 
i=o i=O II 

(2) 
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Berbee was primarily interested in studying mixing conditions for non-Markovian 

processes, and did not point out the connection with invariant u-fields in the Markov 

case, or seek to establish any analog of maximal coupling. 

In the Markov case, constructing a successful shift-coupling is equivalent to 

constructing randomized stopping times T and T’ such that 

T<co, T’<oo, X& = X7 as. (3) 

This question was studied in detail by Greven (1987a), who obtained the following 

result. 

Theorem 4. Under the assumptions of Theorem 1, for each pair p, p’ there exist 

randomized stopping times T, T’ such that 

(9 r](.)= ; P(X,E., T>n) and v’(.)= ,f P(XLE.,T’>~) 
n=O ?I=” 

are mutually singular, 

(ii) P(T=oo)+P(T’=co)= lim n-l 
n+m II 

n-l 
c (P7’)P’ 

I=0 II 

= sup h d(p -PI): h harmonic, IhIs 1 0 

This immediately gives the implication (vi) + (iii) in Theorem 3. Since the rest of 

Theorem 3 is routine, we refer to it as ‘essentially known’. 

Theorem 4 is close to being an analog of the maximal coupling result, Theorem 

2. Greven (1987a) showed that for transient chains the measures r] and 7’ are 

unique. But in the recurrent case it is clear (see Section 7) that uniqueness cannot 

hold. Greven (1987a) gives some results for the recurrent case, and Greven (1987b) 

introduces a notion of ‘short couplings’ in the null-recurrent setting. 

Greven’s proof of Theorem 4 used constructions (‘flooding schemes’) similar to 

those used in proofs of Theorem 2. The purpose of this paper is to show that some 

results about shift-coupling can be deduced from Theorems 1 and 2 about coupling. 

In Section 3 we show that Theorem 3 can be deduced directly from Theorem 1. 

This section is intended for the non-expert reader of Lindvall (1992). The remainder 

of the paper is aimed at specialists. In Section 6 we prove that Theorem 2 leads to 

an abstract result on maximal shift-couplings (Theorem 15), weaker than Theorem 

4. As pointed out in Section 5, the structure of this argument is closely related to 

one argument using Theorem 2 to prove the existence of a successful coupling in 

Theorem 1. This approach is similar in spirit to that of Berbee (1979), who also 

used maximal couplings to show that (2) was equivalent to existence of successful 

shift-couplings. 

Terminology note. The phrase ‘shift-coupling’ is our invention, but otherwise we 

mostly follow Lindvall (1992). 
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2. Definitions 

LetZ=(Z,,Z ,,... )andZ’=(Zb,Z;,.. .) be discrete time stochastic processes on 

a Polish state space (E, ‘8). For x = (x0, x1, . . . ) E Em define the shift-maps 8,,, 0 < n < 

~0, by 6,~ = (x,,, xn+l, . . . ); define fXao by 0,x = (A, A, . . . ) where A is a fixed state 

not in E. 

A pair of processes 2 and .?I is a coupling of Z and Z’ if 2 and 2’ have the 

same distributions as Z and Z’, respectively. A random time T in (0, 1, . . . , co} is 

a coupling epoch if 

e,Z = e,2. 

A coupling with coupling epoch T is successful if P( T < ~0) = 1. Say that Z and Z’ 

admit coupling if there exists a successful coupling of Z and Z’. 

Call a coupling 2 and 2’ together with a pair of random times T and T’ a 

shift-coupling if 

e,.2 = e,..?. 

Call T and T’ shift-coupling epochs. Note that { T = a} = {T’ = co}. A shift-coupling 

is successful if P( T < 00) = 1, and Z and Z’ admit shzji-coupling if there exists a 

successful shift-coupling of Z and Z’. 

Put 

Yn = 0;“2? = the post-n a-field, 

9 = fi Y,, = the tail u-field, 
n=0 

4 = {B E %Y: 0;‘B = B} = the invariant u-field. 

For a sub-a-field ti of 8” let P(Z E . )& denote the restriction of P(Z E . ) to ti. 

Say Z is &-trivial if P(Z E .)& is a O-l-measure. 

For a bounded signed measure v write IIv[I = supA v(A) - infA v(A) = (mass of 

v+) + (mass of v ) for the total variation norm. 

3. First proof of Theorem 3 

Suppose (iii) holds. Let h : E + [w be bounded harmonic. Then h(X,) is a bounded 

martingale, for any initial distribution. Consider the shift-coupling of (iii), and apply 

the a.s. convergence theorem for martingales: 

I h dp’= Eh(Xb) = E lim h(Xk) = E lim h(X,) = h dp, 
n m 

because the limits are a.s. equal by existence of a successful shift-coupling. This 

equality holds for all p’ and p, and hence h is constant. 
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As observed before, the equivalence of (i) and (vi) is routine. We will now prove 

that (i) implies (iii), by using the implication (i) implies (iii) of Theorem 1. 

Define a new kernel by 

R =$P+;I, (4) 

where I is the identity kernel. Each step of an R-chain may be marked in the 

obvious way as a P-step or an I-step, and deleting the Z-steps from an R-chain 

yields a P-chain. Now suppose we are given a successful coupling of R-chains with 

initial distributions p and pcL). It is clear that, by deleting the l-steps of each chain, 

we get a successful shift-coupling of P-chains with initial distributions /J and p’. 

Thus by the implication (i) implies (iii) of Theorem 1, it is enough to prove: 

Lemma 5. Let X and Z be Markov chains with initial distribution p and transition 

kernels P and R related by (4). If X has trivial invariant u-field, then Z has trivial 

tail u-field. 

Proof. Let (&) be independent with P([, = 1) = P( & = 0) = i. Let J(n) = CT=, &. For 

fixed k it is clear (by recurrence of simple symmetric random walk) that we can 

successfully couple versions of (J(n), n 20) and (k+J(n), nz0). For XE E” write 

x”J = (XJ(&=O. Fix x, and fix some A in the tail u-field on E”. Using the coupling 

above, 

P(xoJ E A) = P(( e,(x))oJ E A). 

But the event {xoJ E A} is in the exchangeable p-field of (&), so has probability 0 

or 1 by the Hewitt-Savage law. Taking the union over k, 

P(xoJ E A) = P((x, J) E B) = 0 or 1, (5) 

where 

B = {(x,j): &(x)oj E A for some k}, 

and j denotes a sequence (j(n)),,,. Now let X be the Markov chain, independent 

of J. For deterministic j the set {x: (x, j) E B} is invariant, and so by hypothesis 

P((X,j)EB)=O or 1. (6) 

Using Fubini’s theorem, (5) and (6) imply 

P((X, J) E B) = 0 or 1. 

But now Z = XoJ is a chain with transition kernel R. For the tail event A, 

P(ZEA)=P(X~JEA) 

= P((X, J) E B) (by (5), conditioning on X =x) 

=0 or 1, 

and the lemma is established. 0 



‘F’38 54I3,g=34I3g 

J! luana 8u!ldno3-p ue 3 lualza UB 11~3 ‘,g LI! pau!sluoD s! p aw!s i%.qdnoq8 ue 

SI %gdno~ Lur! l~ql pue Ougdno~-_g UI? s! l! g! 8ugdnoD E s! ,z pue 2 ]eq] aloN I ” 

‘*‘(.3,Z)~=“‘(.3,$d pue “‘(.3Z)~=y3~)d 

J! ,z pue z 30 %dnovf ue ,z pu=~ z IIW ‘,2 JO pw-wns B aq F- ia? 
.ldacmoD Zuqdno:, Mau e ampowy am sty1 Lpawal OJ ‘,z pue z 103 1uaAa Bugdno:, 

I? ApmssacJau IOU s! {u SL} ‘pmq laylo aql uo ‘,z”Q pue 2”~ 103 1uaAa kIdno 

E s! {u SL} uayl 00 > u P 0 pm qDoda %ugdnog e s! 1 3! ‘AI.IE~I~ ‘3 uo ,z = z 

leyl qans ,z pue z 8ugdno~ e s! alay 3~ ,z pm z ~03 w~~a 3cqdno~ e 3 11~3 
I ” 

.suo!pas 

luanbasqns aql II! s%!ldno~-l3ys 103 uar\@ aq II!M luawn8.m IaIIeled E ]eyl SF lu!od ayl 

lnq ‘pale~gdwo:, waas /(mu qDr?oldde syl ly8!s 1s.y 1~ ~luawn8.m syl 01 qmoIddr? 

lmllsqt! ue lno las MOU aM ‘(5. ura.IoaqL) 8uqdno3 ~eur!xeur I? 30 amals!xa ayl %I!StI 

icq s! 1 ruaJoay1 u! s%ugdnoD [n3ssamns 30 ama]sixa aAold 01 skew paAas 30 au0 

‘(s uo!pag ‘7661) snoplv aas saall wopuw 30 lxaluo3 aql u! 

uo!lezpalm.mq~ s!ql30 uogmgddg ue lad +ugdno~-13ys MO[[~? I.py~ asoql se s,fi 

amallxa aql 30 uopez!lalw.wy3 c)ysg!qeqold I? sa@ E waloayL ‘8uglas syl UI 

2 103 ~!A!JI s! play-o IU~?~~EAU~ aqi g! pm 

SUO!l3UtlJ 3~UOKU.IEq PapUtlOq ]UL’]SUOD-UOU OU SEq =d JJ! ,TJ U! aUIa.llXa S! J.f, (U) 

tLl3o 

sluawa[a aum~xa ayl JaAo a.mlx!m p~~%lu! ue se paluasaldal aq UBD ,y 3 1~ yXa (!) 

shs ICloayl pmpuel~ 

‘(S)fi/(S ‘J)o(I)fi = (I ‘S)“d 

Lq (0 < (S)U :s} uo xgeru u0ysue.1~ aoynpy t! auyap ue3 aM jy 3 fi .Iod 

./Cldrua-uou s! ,y asoddns J I~ZZ 103 (1 ‘s)~(s)u ‘3 = (~)a s! leql ‘lur?y~u!-0 an 

yyq~ 2 uo 1~ suoyIqyls!p IClg!qeqold 30 las aql aq ,g ia7 ~a[qwIno3 aq 01 amnsse 

sn la1 ill!3gdur!s ~03 qwqM ‘CJ uo x!.~leur (~gseq~ols iC~pessa9au lou lnq) aA!ld?au 

-uou e aq 0 lay ‘E uraloaqL 30 uoye3qdde Iylualod 30 ea.w LIE! s! aJaH -yrauraa 



D.J. Aldous, H. 7’horisson / Shift-coupling 

Proposition 7. If T is a coupling epoch then {T < CO} is a T-coupling event. 

Proof. Since 9 is contained in each F” we have by Lemma 6 that 

{ZEB, TS~}={~'EB,TG~} for BET, 

and thus sending n -, cc renders 

(20, T<oo}={~'~B,T<co}, BEF, 

as required. q 

Note that we cannot expect a ‘coupling with coupling epoch T' to be a ‘coupling 

with coupling event {T<oo}' since this would imply ~/P(ZE.)-PP(Z’E.)IIG 

2P( T = 03) while it is even possible that (( P( 2 E . ) - P(Z’ E . ) (( = 2 and P( T = 00) = 0. 

The usual coupling inequality extends easily to an d-coupling inequality as follows. 

If C is an d-coupling event then P(i E ., C),, = P(_?E ., C),, and thus (with Cc 

the complement of C) 

lIP(ZE .).&--PP(Z’E .)&II = IIP(iE ., C=),,-@E ., CC).rPllr 

which yields 

(7) 

~JP(zE~),,-P(z’E~).~)~~2P(c’). (8) 

Call an d-coupling event C maximal if the inequality in (8) is an identity. 

Lemma 8. An &-coupling event C is maximal if P(.?! E ., Cc),d and P(.? E ., Cc),& 

are mutually singular. 

Proof. Clearly P(i E ., Cc).d and P(~‘E 9, Cc).4 are mutually singular iff (IP(z E ., 

Cc),, - P(z’ E ., C’)&pII = 2P( Cc) which, due to (7), holds iff C is maximal. 0 

Say a coupling with coupling epoch T is F,,-maximal if the Y,,-coupling event 

{T s n} is maximal. Call the coupling ~-maximal if the Y-coupling event {T < CO} 

is maximal. 

Lemma 9. A coupling is maximal if it is F,,-maximal for all n < 00. 

Proof. With SY = Yn the left-hand sides of (1) and (8) coincide and with C = {T s n} 

so do the right-hand sides. q 

Lemma 10. A maximal coupling is ~-maximal. 

Proof. Since {T = 00) E {T > n}, Lemmas 8 and 9 imply that P(i E ., T = a),-, and 

P(k’ E ., T = CQ)~,,, are mutually singular, i.e., 

3B,~9,,: P(~E B,,T=co)=O and P(_?‘E B',,T=co)=O. 
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Put B = lim sup,,, B, and note that B E 3 and that B” = lim inf,,,, B’, to obtain 

3B~9-: P(ZEB, T=co)=O and P(.?EB~, T=co)=O, 

i.e., P(.? E ., T = 00)~ and P(.?E 0, T = w)~ are mutually singular. 0 

Remark. The converse of Lemma 10 is not true since if T is a maximal coupling 

epoch then T+ 1 is not; however T + 1 is F-maximal. 

The arguments above are self-contained. We can now invoke Theorem 2, which 

says that a maximal coupling exists, and use Lemma 10 to give: 

Proposition 11. There exists a Y-maximal coupling of Z and Z’. 0 

The last remark shows that Proposition 11 is weaker than Theorem 2, which 

asserted existence of a maximal coupling. Our main point is that an analogous result 

(Theorem 15) holds for shift-coupling, and that the qualitative results on existence 

of couplings and shift-couplings are simple consequences of this notion of maximal- 

ity. We derive these consequences below for coupling, and in the next section for 

shift-coupling. The result below is due to Goldstein (1979). 

Corollary 12. Z and Z’ admit coupling z~P(ZE .)y = P(Z’E .):?. 

Proof. If P( T < 00) = 1 then Proposition 7 and the F-coupling inequality yield 

P(Z E .).F = P(Z’E *)Y. Conversely, if P(Z E .)x = P(Z’E *).T then Proposition 11 

yields the existence of a successful coupling. 0 

This in turn easily implies the existence of successful couplings in Theorem 1, as 

follows. (Note it is routine that (iii) implies (i).) 

Corollary 13. Under the assumptions of Theorem 1, if 

(i) X has trivial tail u-field, for each p then 

(iii) there exists a successful coupling of X and X’, for each pair t.~, p’. 

Proof. By (i), P(X E .)- and P(X’E .)9 are both O-l measures, and so is any 

mixture of them. It follows that P( X E * )x = P(X’ E . ),-. Apply Corollary 12. 0 

5. Shift-coupling 

As in the last section, let Z and Z’ be arbitrary processes. The analog of Proposition 

7 is: 
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Proposition 14. If T is a shift-coupling epoch then {T < ~0) is an $-coupling event. 

Proof. With B E 9 we have (2 E B} = { f3,,2 E B} which yields the second identity in 

{.&B, T<oo}= fi {&II, T=n) 
n=O 

= fi {f&B, T= n} 
I?=0 

={&E B, T<oo} 

={0& B, T’<oo} 

+..={iW, T’<oo} 

={& B, T<oo}. 0 

Call a shift-coupling 9-maximal if the 9-coupling event {T < ~0) is maximal. Our 

main abstract result is the following analog of Proposition 11. 

Theorem 15. There exists an 9-maximal shift-coupling of Z and Z’. 

The proof occupies the next section. The point is that this notion of maximality 

for shift-coupling is enough to prove the qualitative results below. These are the 

analogs of Corollaries 12 and 13, and have identical proofs. 

Corollary 16. Z and Z’ admit shift-coupling iflP(Z E .)$ = P(Z’E .)9. 0 

Corollary 17. Under the assumptions of Theorem 1, if 

(i) X has trivial invariant a-jield, for each p then 

(iii) there exists a successful shift-coupling of X and X’, for each pair t_~, p’. 0 

(Again, it is routine that (iii) implies (i).) 

So Theorem 15 leads to a third proof of the basic result on existence of successful 

shift-couplings (the others being Greven’s Theorem 4 and our Section 3 proof). 

Remarks on inhomogeneous chains. The proofs of Corollaries 13 and 17 are 

unchanged for inhomogeneous chains (note that the argument in Section 3 does 

not seem to extend so easily). However, a simple example shows that a small change 

in the ‘routine’ converses is required. 

Example. Consider a Markov chain X on E = (0, 1) such that X0 has an arbitrary 

distribution, X, takes the values 0 and 1 with equal probabilities and X,, =X, for 

n 2 2. Then T = 1 is a coupling epoch but .Y is not trivial. Also T’ = T = 1 are 

shift-coupling epochs while 4 is not trivial, because the event {X is absorbed in 1) 

is invariant and has probability i for all initial distributions. 
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The example indicates that to get the precise relationship between a-fields and 

couplings in the inhomogeneous case, we want to consider couplings of processes 

started at arbitrary times. 

Corollary 18. Let (P,,; 0 s n < ~0) be a sequence of Markov kernels on a Polish space 

E. LetX=(X,; n,<n<W) andX’=(Xk; n’ 0 G n < 00) be Markov chains with transi- 

tion kernels P,, and initial distributions t.~ and t_~‘. The following are equivalent. 

(i) X has trivial invariant a-field, for each n, and + 

(iii) There exists a successful shift-coupling of X and X’, for each n,, p, rth, p”‘. 0 

Replacing ‘invariant’ by ‘tail’ and ‘shift-coupling’ by ‘coupling’ gives the 

inhomogeneous version of Corollary 13. 

6. Proof of Theorem 15 

The proof of Theorem 15 given below relies on the existence of maximal couplings 

(Theorem 2). We shall recursively maximal-couple 2 and 2’ shifted relative to each 

other in all possible ways. Having constructed a candidate in this way we check in 

Lemma 19 that it is well-defined, show in Lemma 20 that it is a shift-coupling and 

finally in Lemma 21 establish $-maximality. 

Letn,,n,,... be an enumeration of the integers and n, = 00. Write n+ = max{O, n} 

and n = max{O, -n}. For x = (x,, x1,. . .) E E” denote 

Ax=(A,xO,xI,. ..), A,x=x and A,x=AA,_,x, 1~ n<oo. 

Recursively, define triples 

(Z(k), Z’(k), T(k)), 1~ ksoo, 

which are independent as k varies, and a random variable K in the following three 

steps: 

Step 1. Let Z(l), Z’( 1) and T( 1) be such that A,;Z( 1) and A,;Z’(l) is a maximal 

coupling of A,;Z and A,;Z’ with coupling epoch T( 1) + n:. 

Step 2. For 2 s k < ~0, let Z(k), Z’(k) and T(k) be such that A,;Z(k) and 

A,; Z’( k) is a maximal coupling of processes with the distributions 

P(A,:Z(k-l)E.IT(k-l)=a) (9) 

and 

P(A,,;Z’(k-l)+-(k-l)=a), (10) 

respectively, (if P( T( k - 1) = ~0) = 0 pick the conditional distributions in some 

arbitrary way) with coupling epoch T(k) + n:. 

Step 3. Put 

K = inf{ 1 G k < M: T(k) < 00) (interpreting inf 0 = CO), 



D.J. Aldous, H. 771orisson / Shift-coupling 11 

and let Z(a) and Z’(a) have distributions 

P(Z(cc)E.)=(P(ZE.)-P(Z(K)E.,K<oo))/P(K=co) 

and 

(11) 

P(z’(m)E*)=(P(Z’E~)-P(Z(K)E.,K<co))/P(K=co), (12) 

respectively, (if P( K = CO) = 0 pick the distributions in some arbitrary way) and put 

T(co) = cc. 

Having thus defined (Z(k), Z’(k), T(k)), 1 s k s 00, and K let 

i=Z(K), .+=Z’(K), T=T(K) and T’=T+n, 

be our candidate for an 9-maximal shift-coupling. 

Lemma 19. The candidate is well-defined. 

Proof. We must show that the distributions in (11, 12) are well-defined, i.e., that 

and 

In order 

P(ZE.)SP(Z(K)E., K<co) 

P(Z’E.)~P(Z’(K)E., K<m). 

to establish (13, 14), note that (9) implies 

P(Z(k)E.)=P(Z(k-l)E.IT(k-l)=co) 

(13) 

(14) 

and thus the second identity in 

P(Z(~)E.,K>~)=P(Z(~)E*IT(~)=~)P(K>~) 

= P(Z(n + 1) E .)P(K > n) 

=P(Z(ntl)~.,K>n), 

which yields inductively 

P(ZE.)=P(Z(~)E.,K=~)+P(Z(~)E.,K>~) 

. = i P(Z(k) ~.,K=k)fP(Z(n)e.,K>n). (15) 
k=l 

Thus P(Z E e) 2 P(Z(K) E ., K G n) and sending n + cc yields (13). Similarly (10) 

yields (14). Hence our candidate is well-defined. 0 

Lemma 20. 7’he candidate is a shift-coupling. 

Proof. Note that K is defined in terms of T(k), 0 c k < 00 and thus is independent 

of both Z(a) and Z’(a). Hence (11) yields 

P(z(a)~.,K=co)=P(Z(co)~.)-P(Z(K)E.,K<~), 
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which implies that Z(K) has the same distribution as Z. Similarly (12) implies that 

Z’(K) has the same distribution as Z’. Moreover, 

&~jZ(k) = &~+nkZ’(k), 1 G k < a, 

which yields 0,Z = 0,.Z. Hence our candidate is a shift-coupling. q 

Lemma 21. The candidate is 9-maximal. 

Proof. Note that 0,,;Z( k) and 6,:Z’( k) with coupling epoch T(k) - ni is a maximal 

coupling. Due to Lemma 10 and Lemma 8, this means that P(Z(k) E 0_,, *, T(k) = 

~0):~ and P(Z’( k) E I%,,: *, T(k) = a~),~ are mutually singular; here 0_, = 0,’ for 

n > 0. Since, for ---CO < n < 00, 0, is one-to-one as a set map from 9 to 3 and since 

8,-K,+ = Kn, this implies that 

P(Z(k)E., T(k)=oo),T and P(Z’(k)E&,;, T(k)=co), 

are mutually singular. 

From P(Z E . ) = P(Z E . ) and (15) we obtain the identity in 

P(.&, T=co)sP(Z(K)E.,K>k) 

=P(Z(k)E.,K>k) 

<P(Z(k)g., T(k)=co), 

(16) 

and similarly we have P(~‘E . , T = ~0) s P(Z’( k) E . , T(k) = CO). Combining this 

and (16) shows that P(i E ., T = CO),~ and P(.? E 0-,,I., T = ~0)~~ are mutually 

singular. Since n,, n,, . . . is an enumeration of the integers this means that 

V-oo<n<a ~B,,E~I: 

P(~EB,, T=co)=O and P(~‘E&BC,, T=co)=O. 

Put B = U-m<n<ai B, and note that B” G B’, for -a < n < ~0. Thus 

3B~3 V-a<n<co: 

P(~E B, T=co)=O and P(.?‘E&B’, T=a)=O. (17) 

Putting A = /-Loocncoo 0,B we have A E 9, A c B and A’= U_m<n,, 0,B’. Thus 

3A~4: P(~EA, T=co)=O and P(~‘EA~, T=co)=O, 

i.e., our candidate is 9-maximal and the proof of Theorem 15 is complete. 0 

Remark. Let us show how Theorem 15 can be deduced from Greven’s result, 

Theorem 4, in the non-Markovian form of Corollary 22 below. That corollary implies 

there exists C E 8” such that for all k 2 0 and ---CO < n =S k we have 

P(.$! E e_,C, T = CO) = 0 and P(.? E B,,KkCc, T = 00) = 0. 

Then B = lim sup,,, KkC satisfies B E 3 and B’= lim infk,, B_&‘, establishing 

(17). Continue from there to obtain Theorem 15. 



D.J. Aldous, H. Thorisson / Shift-coupling 

7. Remarks on maximality 

13 

Although Greven (1987a) stated Theorem 4 for Markov chains, it can of course be 

applied to non-Markov processes 2 by considering the Markov chain (B,,Z; 0 c n < 

OO), giving the following corollary. 

Corollary 22. Let Z = (2, : 0 G n < 00) and 2’ = (2:: 0 s n < 00) be arbitrary stochastic 

processes taking values in a Polish space E. Then there exists a shift-coupling such that 

C P(0,j~.,T>n) and 1 P@,Z”E ., T’> n) 
OGIl<W OSlI<W 

are mutually singular. q (18) 

In Section 6 we noted that the maximality property (18) implies our $-maximality. 

Indeed it is a stronger property, since if shift-coupling epochs (T, T’) satisfy (18) 

then typically (T-C 1, T’+ 1) will not satisfy (18) but will still be 3-maximal. Loosely, 

9-maximality is only ‘maximality at infinity’. 

To understand (18), note that a coupling is maximal iff P( 0,,2 E ., T> n) and 

P( 0,z’ E . , T’> n) are mutually singular for all n 2 0. So (18) may seem a natural 

extension of the latter property to shift-coupling. But a simple example convinces 

one that (18) is not strong enough to qualify as an intuitively correct notion of 

maximal shift-coupling. For the remainder of this section we concentrate on Markov 

chains, so (18) reduces to (i) of Theorem 4, that is 

n(a)= ; P(X,E., T>n) and n’(.)= f P(XI,E., T’>n) 
?I=0 II=0 

are mutually singular. (19) 

Example. Let X be an irreducible recurrent Markov chain starting in a fixed state 

x. Let X’ be the same Markov chain starting at some state y # x. Then (T,, 0) are 

shift-coupling epochs, where T, is the first hitting time of X on y. And so are (0, T:) 

and even (TF’, 0), where T:” is the rth hitting time of X on y. Each of these 

shift-couplings satisfies the ‘maximality’ property (19). But by considering the latter 

example, we see that (19) is not even strong enough to preclude the existence of 

stochastically smaller shift-coupling epochs. 

We remarked earlier that Greven (1987a) proved a uniqueness property for (19) 

in the transient case, and Greven (1987b) discussed the existence of shift-couplings 

with nice tail behavior for T and T’ in the null-recurrent case. See also Harison 

and Smirnov (1990). These papers give examples and discussion somewhat similar 

to ours here, but don’t focus on the finite-state case. As illustrated in the example 

above, in seeking the intuitively correct notion of maximality it is the finite irreducible 

case which seems the hardest to understand! 

A natural hope is that one could consider a quantity such as 

max( T, T’), T+ T’, or min( T, T’), 



14 D.J. Aldous, H. Thorisson / Shift-coupling 

and prove that there exist shift-coupling epochs for which this quantity is stochasti- 

tally smaller than the same quantity for all other shift-coupling epochs. The previous 

example shows that ‘min’ is unsatisfactory. The next example shows that with ‘max’ 

or ‘sum’ there may be no stochastically smallest shift-coupling. 

Example. Consider the chain which cycles deterministically through 5 states i, + i2 + 

i3+i4+i5-+i,.... Let p be uniform on {i,, i2} and let p’ be uniform on {iz, i3}. 

Plainly there is a successful shift-coupling with epochs (1,0) and another with 

epochs (2&O), where I is uniform on (0, l}. But there is none with epochs (S, 0) 

such that S is stochastically smaller than min(l,21). 

On a more technical note, one might expect the construction in Section 6 to give 

a shift-coupling with some optimality property suggested by the construction itself. 

Suppose we take the enumeration in Section 6 to be 0, -1, 1, -2,2, . . . . Then we 

might expect our shift-coupling to be maximal in the sense of minimizing T subject 

to minimizing the absolute shift IT- T’I. But the example above shows this is 

incorrect. 
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