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Abstract

Relative stability results for weakly dependent and strongly mixing strictly stationary sequences are
established. As a consequence, some infinite memory models, including ARCH(1) processes, are relatively
stable.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction and result

Let {ξk}k∈Z be a strictly stationary random sequence defined on a probability space (Ω ,F , P),
taking values on the real line R. Write cn for a sequence of real numbers and Sn =

n
k=1 ξk . We

shall denote the indicator set of A by IA, the almost sure convergence by →a.s., the convergence
in probability by →P , the weak convergence by →w, an ∼ bn means an/bn → 1 as n → ∞ and
an = o(bn), an = O(bn) means an/bn → 0 as n → ∞ and limn→∞ an/bn < ∞, respectively.

We call {ξk}k∈N relatively stable if c−1
n Sn →P 1. Relative stability for Bernoulli trials was

established in [1]. By the Birkhoff Ergodic Theorem (cf. [6, Chapter 2]), if E[ξ0] = 1 and
{ξk}k∈Z is ergodic, then {ξk}k∈N is almost surely relatively stable with cn = n.

In this paper, we focus on the more subtle case when the first moment does not exist. It is
well-known (cf. [25, pp. 312–316]) that relative stability of non-negative strongly mixing (to
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be defined) strictly stationary sequences is linked to the notion of slow variation in the limit.
Namely, it has been proved (cf. [42, Theorem 1]) that c−1

n Sn →P 1 if and only if

lim
n→∞

E[c−1
n Sn ∧ xn] = 1, xn = o(rn), rn → ∞ as n → ∞,

where rn is a real sequence. This condition is not easy to use directly. However under some
technical assumption it can be replaced by the uniform integrability of normalized sums of
truncated ξk (as it has been shown in [42]). In particular for uniformly strong mixing sequence (to
be defined) the latter can be verified via Proposition 2. Thus we get ([42, Theorem 3]): {ξk}k∈N
is relatively stable if and only if

E[ξ0 I[ξ0≤λx]]

E[ξ0 I[ξ0≤x]]
→ 1 as x → ∞, for all (some) λ > 0

(i.e. E[ξ0 I[ξ0≤x]] is a slowly varying function). For independent and identically distributed (i.i.d.)
random variables this is the famous Khinchine–Feller stability result established in [28] (see
also [19, p. 236]).

The aim of this paper is to establish criteria for relative stability for a wide class of non-
negative strictly stationary sequences with the first moment slowly divergent (i.e. E[ξ0 I[ξ0≤x]]

is a slowly varying function and E[ξ0] = ∞). In order to state the main result the following
notation is required Uq(x) = E[|ξ0|

q I[|ξ0|≤x]],

b2
n = sup{x > 0; nU2(x) ≥ x2

}, an = an(δ) =


bδnU2(bn)

U2+δ(bn)

 2
δ

, (1.1)

where x, q, δ > 0. For a strictly stationary random sequence {Xk}k∈Z and j,m, qn ∈ N define

Bt ({Xk}, bn, qn,m) = |Cov[exp{i tb−1
n Smqn }, exp{i tb−1

n (Sqn(2+m) − Sqn(1+m))}]|,

Sk =
k

i=1 X i . The advantage of this dependence condition is that there is no uniformity both in
indices and classes of functions or sets. This should benefit in calculations for particular strictly
stationary stochastic models.

Let {rk}k∈Z be an i.i.d. sequence of Rademacher random variables, i.e. such that P[rk = 1] =

P[rk = −1] = 1/2, independent of ξk (sharing the same probability space). Our first result
provides very general criterion for relative stability of nonnegative strictly stationary sequences.

Theorem 1. Suppose {ξk}k∈Z is a strictly stationary sequence such that U2(x) is a slowly varying
function, E[ξ2

0 ] = ∞, and for a fixed δ > 0

lim
n→∞

n

an
Bt ({rkξk}, bn, ⌊an⌋,m) = 0, t ∈ R,m ∈ N. (1.2)

Then {ξ2
k }k∈N is relatively stable with normalizing cn = b2

n .

Since this paper deals with distributions for which U2(∞) = ∞, where U2(x) varies slowly,
usually an also varies slowly (see examples). Therefore in order to satisfy condition (1.2) the
term n

an
has to be compensated by an appropriate decrease of Bt . One route to attain the latter

goes through the weak dependence introduced by Doukhan and Louhichi (cf. [14,11]). Set

Lip(h) = sup
(x1,...,xn)≠(y1,...,yn)∈Rn

|h(x1, . . . , xn)− h(y1, . . . , yn)|

|x1 − y1| + · · · + |xn − yn|
.
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A random sequence Xk is (ε,Ψ)-weakly dependent if there exist a function Ψ : N2
× R2

→

(0,∞) and a sequence ε(q) = εq({Xk}) → 0 as q → ∞, satisfying

|Cov(g1(Xν1 , . . . , Xνl ), g2(Xνl+1 , . . . , Xνm ))| ≤ Ψ(l,m,Lip(g1),Lip(g2)) · εq({Xk}),

where 1 ≤ ν1 < · · · < νl < νl + q = νl+1 < νl+2 < · · · < νm, l, νl ∈ N and functions
g1 : Rl

→ R, g2 : Rm−l
→ R are bounded by 1. If we set Ψ(u, v, f, g) = uLip(g) or

Ψ(u, v, f, g) = uLip( f ) · vLip(g), then we deal with θ or κ-weak dependence, respectively.
An alternative route is strong mixing conditions (cf. [6]). For n ∈ N set

α(n) = αn({ξk}) = sup{|P(B ∩ A)− P(A)P(B)|; A ∈ F 0
−∞, B ∈ F ∞

n },

ρ(n) = ρn({ξk}) = sup{|Corr(F,G)|; F ∈ L2
real(F 0

−∞),G ∈ L2
real(F ∞

n )},

ϕ(n) = ϕn({ξk}) = sup{|P(B | A)− P(B)|; A ∈ F 0
−∞, B ∈ F ∞

n },

where F m
k = σ({ξi ; k ≤ i ≤ m}). It is well known that 2α(n) ≤ ϕ(n) and ρ(n) ≤ 2

√
ϕ(n)

(cf. [6, Proposition 3.11 on p. 76]). We say that {ξk}k∈Z is strongly mixing if α(n) = o(1),
ϕ-mixing or uniformly (strong) mixing if ϕ(n) = o(1), and ρ-mixing if ρ(n) = o(1).

In view of the above definitions (1.2) holds if one of these is satisfied

n

bn
θ⌊an⌋({ξk}) → 0,

nan

b2
n
κ⌊an⌋({ξk}) → 0,

n

an
α⌊an⌋({ξk}) → 0, as n → ∞.

There exist models that do not satisfy the strong mixing condition (cf. [6, Example 2.15, p.
58] and [15]). Nevertheless such sequences are exponentially fast θ -weakly dependent (cf. [15,
Theorem 1]) and therefore Theorem 1 applies if one can verify (1.2). This can be done (see
Example 1) for ARCH(1) processes which are interesting from the point of view of modeling the
financial time series that exhibit time-varying volatility [17]. Moreover, the non-exponential rate
in (1.2) can be attained for some strongly mixing sequences (see Example 3).

Our second result is a dependent analog of Raikov’s principle. It allows us to establish new
relative stability results.

Theorem 2. Suppose {ξk}k∈Z with E[ξ2
0 I[|ξ0|≤x]] slowly varying is strongly mixing. Then the

following statements are equivalent:

(1) L(b−1
n
n

k=1 rkξk) → N (0, 1);
(2) {b−2

n (
n

k=1 rkξk I[|ξk |≤bn ])
2
}n∈N is uniformly integrable;

(3) {b−2
n
n

k=1 ξ
2
k I[|ξk |≤bn ]}n∈N is uniformly integrable;

(4) b−2
n
n

k=1 ξ
2
k →P 1.

In applied probability theory we deal with strongly mixing ARMA and stochastic volatility
models with regularly varying noise or solutions to stochastic recurrence equations with moments
slowly divergent (cf. [13]). Thus, if we know that the structure of the solution is of the form rk |ξk |,
where {|ξk |}k∈Z is strongly mixing, then automatically we get the Central Limit Theorem (CLT)
via relative stability. In this context it is also worth noting that non-normal limit theorems for such
strongly mixing models are obtained in [2] and therefore this work completes these results. The
other advantage of Theorem 2 lies in the fact that for some dependent sequences, there are results,
which allow us to establish uniform integrability for “rademacherized” random sequences. This
is the case for the well-known Bradley’s CLT with infinite variances, where by Theorem 2
squares are relatively stable (see Example 2). Nevertheless, there exists (cf. Example 4) a strictly
stationary sequence satisfying condition (2), for which the CLT does not hold.
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The paper is organized as follows. Section 2 is of independent interest and deals with uniform
integrability. In Section 3 we provide some connections between CLT and relative stability
together with the proof of Theorem 2. Section 4 contains proof of Theorem 1 while Section 5
examples.

2. Uniform integrability

In this section some new results on uniform integrability are presented. Let Ψ be the class of
all convex functions Ψ : [0,∞) → [0,∞),Ψ(0) = 0, such that t−1Ψ(t) → ∞ as t → ∞ and
satisfying the ∆2 condition for all t , i.e.

Ψ(2t) ≤ cΨ(t), t ≥ 0, for some c > 0. (2.3)

The following is a stronger version of the de la Vallée Poussin criterion for the uniform
integrability (cf. [27, Lemma 5], [33, Theorem 22]).

Lemma 1. A class of random variables {Zs} is uniformly integrable if and only if sups E[Ψ
(|Zs |)] < ∞, for some Ψ ∈ Ψ .

Proof of Lemma 1. Sufficiency. Let M = sups E[Ψ(|Zs |)] and tε be such that t−1Ψ(t) >
ε−1 M for t ≥ tε. Thus for t ≥ tε we have

{|Zs | > t} ⊆


|Zs | < Ψ(|Zs |)

ε

M


and

sup
s

E[|Zs |I[|Zs |>t]] ≤ sup
s

E[Ψ(|Zs |)I[|Zs |>t]]
ε

M
≤ ε.

Necessity. Let {uk}k∈N be a sequence of numbers such that 0 = u0 < u1 < u2 < · · · < uk < · · · ,
where 2uk ≤ uk+1 and

sup
s

E[|Zs |I[|Zs |>uk ]] ≤ 2−2k, k ≥ 1.

Define

ψ(x) =

∞
k=0

2k I[uk ,uk+1)(x), Ψ(t) =

 t

0
ψ(x)dx .

It follows from the definition of ψ that Ψ is continuous, non-decreasing and Ψ(0) = 0.
Moreover, if 0 ≤ t1 < t2 then

Ψ


t1 + t2
2


=

 t1

0
ψ(x) dx +

 t1+t2
2

t1
ψ(x) dx

=

 t1

0
ψ(x) dx +

1
2

 t1+t2
2

t1
ψ(x) dx +

1
2

 t2

t1+t2
2

ψ


x −

t2 − t1
2


dx

≤

 t1

0
ψ(x) dx +

1
2

 t1+t2
2

t1
ψ(x) dx +

1
2

 t2

t1+t2
2

ψ(x) dx

=
1
2
(Ψ(t1)+ Ψ(t2)).
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Hence Ψ is convex in the sense of Jensen and by the continuity it is convex in the usual way
(cf. [22, pp. 71–72]). Furthermore, ψ(t) → ∞ as t → ∞ so t−1Ψ(t) → ∞ as t → ∞. By the
choice of uk for k > 0

2k I[uk ,uk+1)(2x) ≤ 2k I
[

1
2 uk ,

1
2 uk+1)

(x) ≤ 2k I[uk−1,uk )(x)+ 2k I[uk ,uk+1)(x),

so for x ≥ u1 it yields ψ(2x) ≤ 3ψ(x). It is easy to see that ψ(2x) ≤ 3ψ(x) for 0 < 2x < u1.
On the other hand if 0 < x < u1 ≤ 2x < u2 then ψ(2x) ≤ 3ψ(x) (from 0 < x < u1 and
2x ≥ u2 it follows x ≥ u1). Therefore ψ(2x) ≤ 3ψ(x), x ≥ 0. Whence

Ψ(2t) = 2
 t

0
ψ(2x)dx ≤ 6Ψ(t), t ≥ 0

and Ψ satisfies (2.3). Consequently,

E[Ψ(|Zs |)] =


∞

0
ψ(x)P[|Zs | > x] dx =

∞
k=0

 uk+1

uk

ψ(x)P[|Zs | > x] dx

≤

∞
k=0

2k
 uk+1

uk

P[|Zs | > x] dx ≤

∞
k=0

2k E[|Zs |I[|Zs |>uk ]]

≤

∞
k=1

1
2k + E |Zs | = 1 + E |Zs |.

Since {Zs} is uniformly integrable sups E |Zs | < ∞. Thus we have sups E[Ψ(|Zs |)] < ∞, for
some Ψ ∈ Ψ . This is the desired conclusion. �

The next result is on triangular arrays of random variables {ξnk, 1 ≤ k ≤ kn, n ≥ 1}. Set
Snk =

k
i=1 riξni , Sn = Snkn and U 2

n =
kn

k=1 ξ
2
nk .

Proposition 1. {S2
n}n∈N is uniformly integrable if and only if {U 2

n }n∈N is uniformly integrable.

Proof of Proposition 1. Assume {S2
n} is uniformly integrable. Thus by Lemma 1 we see that for

some Ψ ∈ Ψ supn E[Ψ(S2
n)] < ∞. Let Φ(t) = Ψ(t2). Since Ψ is convex and non-decreasing,

for 0 ≤ t1 < t2,

Φ


t1 + t2
2


= Ψ


t1 + t2

2

2


≤ Ψ


t2
1 + t2

2

2



≤
1
2
(Ψ(t2

1 )+ Ψ(t2
2 )) =

1
2
(Φ(t1)+ Φ(t2)),

that is, Φ is convex. It follows that Φ : [0,∞) → [0,∞),Φ(0) = 0,Φ is non-decreasing,
continuous and by

Φ(2t) =
Ψ(4t2)

Ψ(2t2)

Ψ(2t2)

Ψ(t2)
Ψ(t2) ≤ c2Φ(t), t > 0,

it also satisfies (2.3). Therefore the Burkholder–Davis–Gundy inequality (cf. [9, Theorem 1,
p. 425]) yields that for some 0 < A < B < ∞

A sup
n

E

Ψ(U 2

n )


= A sup
n

E [Φ(Un)] ≤ sup
n

E


Φ( max

1≤k≤kn
|Snk |)


≤ B sup

n
E[Ψ(U 2

n )]. (2.4)
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Now observe that for 1 ≤ k ≤ kn the conditional distributions

(r1ξn1, . . . , rnξnkn ) and (r1ξn1, . . . ,−rkξnk, . . . ,−rnξnkn )

given ξn1, . . . , ξnkn are the same (i.e. sign independent). Thus, by a variant of Lévy’s inequality
(cf. [23, (6.25.1), p. 473])

P


max

1≤k≤kn
|Snk | > t | ξn1, ξn2, . . . , ξnkn


≤ 2P[|Snkn | > t | ξn1, ξn2, . . . , ξnkn ],

t ≥ 0,

and E[Φ(X)] =


∞

0 φ(t)P[|X | > t]dt (e.g. [23, Eq. (4.2.8)]), we obtain

sup
n

E


Φ( max

1≤k≤kn
|Snk |)


= sup

n
E


E


Φ


max
1≤k≤kn

|Snk |


| ξn1, ξn2, . . . , ξnkn


= sup

n
E


∞

0
φ(t)P


max

1≤k≤kn
|Snk | > t | ξn1, ξn2, . . . , ξnkn


dt


≤ sup

n
E


∞

0
φ(t) · 2P[|Sn| > t | ξn1, ξn2, . . . , ξnkn ]dt


= sup

n
E

2E


Φ(|Sn|) | ξn1, ξn2, . . . , ξnkn


= sup

n
2E[Φ(|Sn|)]

= 2 sup
n

E[Ψ(S2
n)] < ∞, (2.5)

where Φ(x) =
 x

0 φ(t)dt (cf. [44, Theorem 4.141, p. 69]). Combining (2.4) with (2.5) yields

A sup
n

E[Ψ(U 2
n )] ≤ 2 sup

n
E[Ψ(S2

n)] < ∞.

Consequently, by Lemma 1 the sequence {U 2
n } is uniformly integrable. For the converse

statement use the upper bound in (2.4). �

The next result together with Lemma 1 is very useful for obtaining the uniform integrability
(see Example 2(b)) and is a generalization of Proposition 6.8 on p. 156 in [29] and Proposition
11 in [43]. For non-stationary random sequence {Xk}k∈N set

Zn = sup
1≤k≤n

 n
k=1

Xk

 , Mn = max
1≤k≤n

|Xk |,

ϕn = sup
k∈N

sup{|P(B | A)− P(B)|; P(A) > 0, A ∈ F k
1 , B ∈ F ∞

n+k},

where F m
k is the σ -field generated by Xk, Xk+1, . . . , Xm,m ∈ N.

Proposition 2. Suppose Φ : [0,∞) → [0,∞) is an increasing function such that Φ(0) = 0 and
condition (2.3) holds. Let n > m ≥ 1, τ ∈ (0, 1) and

tτ = inf{t > 0;ϕm + P[Zn > t] ≤ c−2τ }.
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If E[Φ(Zn)] < ∞, then

E[Φ(Zn)] ≤
c2

1 − τ
(E[Φ(mMn)] + Φ(tτ )). (2.6)

Proof of Proposition 2. Fix τ ∈ (0, 1) and take t > tτ . By Proposition 9 in [43] for any positive
s, t, u,

P[ Zn > s + 2t + u] ≤ P[mMn > u] + (ϕm + P[Zn > t])P[ Zn > s], n > m ≥ 1.

Therefore,

E[Φ(Zn)] = E


Φ


4
Zn

4


≤ c2 E


Φ


Zn

4


= c2


∞

0
P[Zn > 4x]Φ(dx) = c2

 t

0
+


∞

t


P[Zn > 4x]Φ(dx)

≤ c2

Φ(t)+


∞

t
(P[mMn > x] + (ϕm + P[Zn > x])P[Zn > x])Φ(dx)


≤ c2


Φ(t)+ E[Φ(mMn)] + (ϕm + P[Zn > t])


∞

t
P[Zn > x]Φ(dx)


≤ c2(Φ(t)+ E[Φ(mMn)])+ τ E[Φ(Zn)].

Since the above inequality holds for arbitrary t > tτ , we have thus proved (2.6). �

3. Central limit theorems and relative stability

The relative stability is closely related to central limit theorems. In particular, Raikov
[35, Theorem 1] proved that for a centered i.i.d. sequence {ξk}k∈N the CLT holds if and only if
{ξ2

k }k∈N is relatively stable (see also [21, Theorem 4, p. 143]). This was generalized to martingale
differences, when normalization is made by variances and the weak invariance principle (WIP)
replaces the CLT (cf. e.g. [30, Corollary 6]). A similar result for arbitrary dependent triangular
arrays, originated for trigonometrical series by Salem and Zygmund [39, p. 334], has been
established by McLeish [32, Theorem 2.1].

In the case of strongly mixing strictly stationary sequences {ξk}k∈Z with symmetric L(Sn),
the CLT holds with normalization bn if and only if E[b−2

n S2
n ∧ x] is a slowly varying sequence

in the limit (cf. [41, Theorem 1]). As it has been shown in [26], the latter can be reduced to
the uniform integrability. This yields in particular that for strongly mixing centered and strictly
stationary sequences {ξk}k∈Z with σ 2

n = E[S2
n ] → ∞, we have L(σ−2

n Sn)→w N (0, 1), where
N (0, 1) is the standard normal distribution, if and only if {σ−2

n S2
n}n∈N is uniformly integrable (cf.

[12, Theorem 3]). While there are many examples where {σ−2
n S2

n}n∈N is not uniformly integrable
(cf. [6]) {ξ2

k }k∈N is always relatively stable by the Birkhoff Ergodic Theorem since E[ξ2
k ] < ∞.

These results and results from the previous section have some interesting consequences. In
order to present them let {Yk}k∈Z be a strictly stationary sequence and {bn}n∈N be a sequence of
positive numbers. Denote Ynk = Yk I[|Yk |≤bn ], Tnm =

m
k=1(Ynk − E[Ynk]), τ

2
nm = E[T 2

nm], Tn =

Tnn, τ
2
n = E[T 2

n ]. The following result is proved in [26].

Proposition 3. Suppose {Yk}k∈Z is a strongly mixing strictly stationary sequence such that

τ−1
n

n
k=1

Yk I[|Yk |>bn ] →P 0,



2818 Z.S. Szewczak / Stochastic Processes and their Applications 122 (2012) 2811–2829

for some bn → ∞ such that τn → ∞. Then the necessary and sufficient condition for

L

τ−1

n


n

k=1

Yk − nE[Y1 I[|Y1|≤bn ]]


→w N (0, 1)

is the uniform integrability of {τ−2
n T 2

n }n∈N.

Let {Vk}k∈Z be a non-negative strictly stationary sequence and cn be a sequence of positive
numbers. Denote Znj =

 j
k=1 Vk I[Vk≤cn ], ϑn = E[Zn] = E[Znn]. The next result is Theorem 2

in [42].

Proposition 4. Suppose {Vk}k∈Z is a non-negative strongly mixing strictly stationary sequence
such that ϑ−1

n
n

k=1 Vk I[Vk>cn ] −→P 0 for some cn → ∞. Then

ϑ−1
n

n
k=1

Vk −→P 1 as n → ∞

if and only if {ϑ−1
n Zn}n∈N is uniformly integrable.

The first consequence is Raikov’s property for strongly mixing strictly stationary sequences
stated in Theorem 2. To see this note that by Theorem 6.6 on p. 199 in [6] the sequence {rkξk}k∈Z
is strongly mixing. Therefore it suffices to apply Propositions 1, 3 and 4.

For other consequences observe that by the proofs of Theorem 3 in [26] and Theorem 2 in [42]
Propositions 3 and 4 are true under Condition B:

B(vn) = Bθ ({Xk}, vn) = max
1≤k+l≤n

|Cov[exp{iθυ−1
n Sl}, exp{iθυ−1

n Sk}]| = o(1),

Sk =
k

i=1 X i , for υn → ∞ and any θ ∈ R, k, l ∈ N, which is less restrictive than “strong
mixing” conditions (cf. [25, Proposition 5.2]). In particular the ergodicity in the Birkhoff almost
sure relative stability can be surprisingly replaced by the weaker Condition B (cf. [7, Problem
16, p. 120]).

Proposition 5. Suppose {Vk}k∈Z is a non-negative strictly stationary sequence such that
E[V1] = 1. Then n−1n

k=1 Vk →a.s. 1 if and only if Condition B with vn = n and Xk = Vk
holds.

Proof of Proposition 5. The “only if” statement is contained in Proposition 3.1, [25]. For the
“if” statement set cn = n and note that n−1n

k=1 Vk I[Vk>cn ] →P 0. Further, by the Jensen
inequality for any convex function Ψ

E


Ψ


n−1

n
k=1

Vk I[Vk≤cn ]


≤ E[Ψ(V1 I[V1≤cn ])].

Whence by Lemma 1 conditions of Proposition 4 are met and therefore {Vk}k∈N is relatively
stable with normalizing n. On the other hand by Theorem 6.21 on p. 113 in [7] n−1n

k=1 Vk
converges a.s. Thus the limit has to be 1. �

Finally, by Proposition 5 and martingale CLT we get that the ergodicity in the Billingsley–
Ibragimov CLT for strictly stationary martingale differences {Xk}k∈Z (cf. [3, Theorem 23.1,
p. 206]) can be replaced by the weaker condition Bθ ({X2

k }, n) = o(1), θ ∈ R.
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4. Proof of Theorem 1

For the proof of Theorem 1 we need two lemmas. The first one is well-known and follows
from Theorem 8.1.3 on p. 332 in [4].

Lemma 2. Suppose δ > 0. Then U2(x) varies slowly if and only if

U2+δ(x)

xδU2(x)
→ 0 as x → ∞. (4.7)

If x2 P[|ξ0| > x] varies slowly then it is possible to describe the ratio in (4.7).

Lemma 3. Suppose U2(∞) = ∞, L(x) = x2 P[|ξ0| > x] > 0, for x ≥ A, has continuous
derivative such that x L ′(x) = o(L(x)). Then L(x),U2(x) vary slowly and

xδU2(x)

U2+δ(x)
∼

δ

L(x)

 x

A

L(u)

u
du, δ > 0. (4.8)

Proof of Lemma 3. By the remark on p. 7 in [40] (the end of Section 1.2) L varies slowly since
L is positive and has continuous derivative such that x L ′(x) = o(L(x)). Thus applying the well
known formula

x p P[|ξ0| > x] + E[|ξ0|
p I[|ξ0|≤x]] = p

 x

0
y p−1 P[|ξ0| > y]dy, p > 0, (4.9)

(with p = 2) by Theorem 2 on p. 283 in [19] we obtain that U2(x) ∼ 2
 x

A
L(u)

u du and the
slow variation of U2(x). On the other hand by (4.9) with p = 2 + δ and l’Hôpital’s rule (recall
U2(∞) = ∞) and x L ′(x) = o(L(x)) we get

xδL(x)

U2+δ(x)
=

xδL(x)

−xδL(x)+ (2 + δ)
 x

A uδ−1L(u)du

∼
δxδ−1L(x)+ xδL ′(x)

−δxδ−1L(x)− xδL ′(x)+ (2 + δ)xδ−1L(x)

∼
δ + o(1)

−δ + o(1)+ (2 + δ)
∼
δ

2
.

Hence

xδU2(x)L(x)

U2+δ(x)
∼
δ

2
U2(x) ∼ δ

 x

A

L(u)

u
du.

This proves Lemma 3. �

Proof of Theorem 1. Assume U2(x) is a slowly varying function and U2(∞) = ∞. It is well
known that {bn}n∈N satisfies the asymptotic equation b2

n ∼ nU2(bn) and b2
n is a slowly varying

sequence with index 1 (cf. [19, Chapter IX, Section 8]). Moreover, by Theorem 2 on p. 283 in [19]
we have x2 P[|ξ0| > x] = o(U2(x)), therefore by (4.9) with p = 2 we get U2(bn) ∼ E[ξ2

0 ∧bn].
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Thus for every ϵ > 0

lim
n→∞

P

 n
k=1

rkξk I[|rkξk |>bn ]

 > ϵbn


≤ lim

n→∞
n P[|ξ0| > bn]

= lim
n→∞

b2
n P[|ξ0| > bn]

U2(bn)

nU2(bn)

b2
n

= 0 (4.10)

and analogously

lim
n→∞

P

 n
k=1

ξ2
k I

[ξ2
k>b2

n ]

 > ϵb2
n


= 0. (4.11)

Set Yk = rkξk and adopt the notations from the previous section for Ynk = Yk I[|Yk |≤bn ] −

E[Yk I[|Yk |≤bn ]], Tnm =
m

k=1 Ynk, Tn = Tnn, τ
2
nm = E[T 2

nm], τ 2
n = E[T 2

n ].
Let j, kn, n, pn, qn ∈ N be such that kn(pn + qn) ≤ n and (kn + 1)(pn + qn) > n. Using

the Markov–Bernstein blocking technique we partition {Ynk}1≤k≤n in kn big and small blocks of
sizes pn and qn , respectively by setting

Xnj =

j pn+( j−1)qn
i=( j−1)(pn+qn)+1

Yni , X ′

nj =

j (pn+qn)
i= j pn+( j−1)qn+1

Yni ,

X ′′
n =

n
i=kn(pn+qn)+1

Yni .

Since U2(∞) = ∞ thus without loss of generality we can assume that P[ξ0 ≤ x]− P[ξ0 ≤ −x]

has positive continuous density ψ (replacing the sequence ξk by ξk + ζk , where {ζk}k∈Z is i.i.d.
with L(ζ1) = N (0, 1), if necessary). Because U2(x) varies slowly thus by Lemma 2 for every
δ > 0

lim
n→∞

U2+δ(bn)

bδnU2(bn)
= 0, δ > 0. (4.12)

By l’Hôpital’s rule

lim
x→∞

U
1+

δ
2

2 (x)

U2+δ(x)
= lim

x→∞

 x
0 u2ψ(u)du

1+
δ
2 x

0 u2+δψ(u)du
=


1 +

δ

2


lim

x→∞

U
δ
2

2 (x)

xδ
.

So it yields

lim
n→∞

U
1+

δ
2

2 (bn)

U2+δ(bn)
= 0, (4.13)

by the slow variation of U2(x). Similarly,

lim
x→∞

U 2
2+

δ
2
(x)

U2+δ(x)U2(x)
= lim

x→∞

2U2+
δ
2
(x)x2+

δ
2ψ(x)

U2+δ(x)x2ψ(x)+ U2(x)x2+δψ(x)
= lim

x→∞

2
U

2+
δ
2
(x)

x
δ
2 U2(x)

U2+δ(x)
xδU2(x)

+ 1
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and therefore by (4.12)

lim
n→∞

U 2
2+

δ
2
(bn)

U2+δ(bn)U2(bn)
= 0. (4.14)

In view of (4.13) and (4.14) and the arguments used in the proof of Lemma 1 in [26] there exist
mn ∈ N such that mn → ∞ and

m
δ
2
n

U
1+

δ
2

2 (bn)

U2+δ(bn)
→ 0, m

δ
2
n

U 2
2+

δ
2
(bn)

U2+δ(bn)U2(bn)
→ 0,

n

an
Bt ({rkξk}, bn, ⌊an⌋,mn) → 0,

(4.15)

as n → ∞, where an and bn are defined by (1.1). Put qn = ⌊an⌋ and pn = mnqn . By (4.15)

kn =


n

pn


≥

1
mn

 U2+δ(bn)

U
1+

δ
2

2 (bn)

 2
δ

− 1 → ∞ as n → ∞.

Moreover (cf. [24, p. 318])

lim
n→∞

E ei tb−1
n
kn

j=1 Xnj


− (E[ei tb−1

n Xn1 ])kn


≤ lim

n→∞

kn

ν=2

E ei tb−1
n
ν

j=1 Xnj


− E

ei tb−1

n
ν−1

j=1 Xnj


· E

ei tb−1

n Xnν


≤ lim
n→∞

(kn − 1)Bt ({rkξk}, bn, ⌊an⌋,mn) = 0.

Thus by the proof of Theorem 17.2.1 in [24] (cf. [6, Corollary 1.12, p. 31]), Theorem 6.6 in [6]
and hypothesis, we have

lim
n→∞

E ei tb−1
n
kn

j=1 Xnj


−


E

ei tb−1

n Xn1
kn

 ≤ lim
n→∞

kn Bt ({rkξk}, bn, ⌊an⌋,mn)

= 0.

Further, by Chebyshev’s inequality

P[|X ′′
n | > ϵτn] ≤

τ 2
n−kn(pn+qn)

ϵ2τ 2
n

.

Since τ 2
n ∼ b2

n , we conclude that τ−1
n X ′′

n →P 0. Similarly τ−1
n
kn

j=1 X ′

nj →P 0 so that

L(τ−1
n Tn),L(τ−1

n
kn

j=1 Xnj ) and L∗kn (τ−1
n Xn1) (i.e. the distribution of the sum kn independent

copies of τ−1
n Xn1) are the same in the limit. Therefore by the Normal Convergence Criterion

[31, p. 295]

L

τ−1

n


n

k=1

Xnk


→w N (0, 1)

if and only if for every ε > 0

kn
E[X2

n1 I[|Xn1|≥ετn ]]

τ 2
n

→ 0 as n → ∞. (4.16)
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By Khinchine’s [44, p. 124] and Minkowski’s inequalities and (4.9) with p = (2 +
δ
2 ) we obtain

E |Xn1|
2+

δ
2 = E


pn

i=1

riξi I[|ξi |<bn ]


2+

δ
2

≤ B E




pn
i=1

ξ2
i I[|ξi |<bn ]

 2+
δ
2

2


≤ B


pn

i=1

E
4

4+δ


|ξi |

2+
δ
2 I[|ξi |<bn ]

1+
δ
4

= Bp
1+

δ
4

n U2+
δ
2
(bn), for some B > 0.

This, the inequality x2
≤ |x |

2+
δ
2 for |x | ≥ 1, (4.9) and (4.15) yield

lim
n→∞

kn
E[X2

n1 I[|Xn1|≥ετn ]]

τ 2
n

≤ lim
n→∞

nE |Xn1|
2+

δ
2

pnε
δ
2 τ

2+
δ
2

n

≤ lim
n→∞

Bp
δ
4
n U2+

δ
2
(bn)

ε
δ
2 b

δ
2
n U2(bn)

≤ lim
n→∞

B(mnan)
δ
4 U2+

δ
2
(bn)

ε
δ
2 b

δ
2
n U2(bn)

≤ lim
n→∞

Bε−
δ
2 m

δ
4
n U2+

δ
2
(bn)

U2+δ(bn)U2(bn)
= 0.

Thus (4.16) holds so that L(τ−1
n Tn) is asymptotically N (0, 1). Further by τ 2

n ∼ b2
n , L(b−1

n Tn) is
asymptotically N (0, 1) too. Now observe that for 1 ≤ k ≤ n the conditional distributions

(Y1, . . . , Yn) and (Y1, . . . ,−Yk, . . . ,−Yn)

given ξ1, . . . , ξn are the same. Thus, by the arguments used for (2.5) we obtain

P


max

1≤k≤n

 k
i=1

Yi

bn

 > t


≤ 2P

 n
i=1

Yi

bn

 > t


. (4.17)

Since b2
n is 1-regularly varying for any 0 ≤ s < t ≤ 1

b⌊nt⌋−⌊ns⌋ ∼ bn ·
√

t − s as n −→ ∞,

by the Convergence of Types Theorem

L


S⌊nt⌋ − S⌊ns⌋

bn


−→w N (0, t − s) = W(t)− W(s),

where W is the Wiener process, Sn =
n

k=1 Yk . By (1.2), for mn = o(bn),mn → ∞, the
Cramér–Wold device [3, Theorem 7.7, p. 49]

L


S⌊ns⌋−mn

bn
,

S⌊nt⌋ − S⌊ns⌋

bn


→w(W(s),W(t)− W(s)),

and by (1.2) the limiting random variables are independent. Further, by the choice of mn

L


S⌊ns⌋

bn
,

S⌊nt⌋ − S⌊ns⌋

bn


→w(W(s),W(t)− W(s)),
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and we get the convergence of finite dimensional distributions. In view of [3, Theorems 15.5
and 19.1], this yields the Weak Invariance Principle if we prove the tightness of {b−1

n S[nt]}n∈N,
i.e.:

lim
δ↓0

lim
n→∞

P


sup

|t−s|<δ
b−1

n |S⌊nt⌋ − S⌊ns⌋| > ϵ


= 0, (4.18)

for any ϵ > 0. To this end let s ≤ t , 0 < δ < 1 and take partition of (0, 1] at the points kδ, k ∈ N.
Then either kδ ≤ s ≤ t ≤ (k + 1)δ and

|S⌊nt⌋ − S⌊ns⌋| > ϵbn


⊆


|S⌊nt⌋ − S⌊nkδ⌋| >

ϵ

2
bn


∪


|S⌊ns⌋ − S⌊nkδ⌋| >

ϵ

2
bn


,

or kδ ≤ s ≤ (k + 1)δ ≤ t ≤ (k + 2)δ and {|S⌊nt⌋ − S⌊ns⌋| > ϵbn} is contained in
|S⌊ns⌋ − S⌊nkδ⌋| >

ϵ

3
bn


∪


|S⌊nt⌋ − S⌊n(k+1)δ⌋| >

ϵ

3
bn


∪


|S⌊n(k+1)δ⌋ − S⌊nkδ⌋| >

ϵ

3
bn


.

Consequently,

P


sup

|t−s|<δ
|S⌊nt⌋ − S⌊ns⌋| > ϵbn



≤ P

⌊
1
δ
⌋

k=0


sup

⌊nkδ⌋≤r≤⌊n(k+1)δ⌋
|Sr − S⌊nkδ⌋| >

ϵ

3
bn


≤

1
δ

P


max

j≤⌊nδ⌋+1
|S j | >

ϵ

3
bn


. (4.19)

Now, the regular variation of bn yields that for sufficiently large n we have by (4.17)

1
δ

P


max

j≤⌊nδ⌋+1
|S j | >

ϵ

3
bn


≤

2
δ

P

|S⌊nδ⌋+1| >

ϵ

3
bn


→

2
δ

P


|N | >

ϵ

3
√
δ


,

as n → ∞.

The latter convergence holds by (4.10) and L(b−1
n Tn)→w N (0, 1). On the other hand 2

δ
P[|N | >

ϵ

3
√
δ
] tends to 0 as δ ↓ 0 thus by (4.19) we get (4.18). By the choice of bn we see that

lim
n→∞

P


sup

0≤t≤1
|Tn⌊nt⌋ − S⌊nt⌋| > ϵbn


≤ lim

n→∞
n P[|ξ0| > bn] = 0,

thus we infer that (4.18) holds for {Tn⌊nt⌋}n∈N, too. Therefore

L(b−1
n Tn⌊nt⌋)→w W(t),

in D(0, 1], and by Lemma 3 in [37] (see also Lemma 2 in [20] and [38]) we obtain that

b−2
n

⌊nt⌋
i=1

Y 2
ni →P t, t ∈ (0, 1].

By this and (4.11) the sequence {ξ2
k }k∈N is relatively stable with cn = b2

n . This completes the
proof of Theorem 1. �



2824 Z.S. Szewczak / Stochastic Processes and their Applications 122 (2012) 2811–2829

5. Examples

In this section we shall give some applications of Theorems 1 and 2 and discuss the rate in
(1.2). For this, suppose L(x) is as in Lemma 3. Then, substituting bn in (4.8)

an =


bδnU2(bn)

U2+δ(bn)

 2
δ

∼


δ

L(bn)

 bn

A

L(u)

u
du

 2
δ

,

where b2
n ∼ nU2(bn). In view of this and l’Hôpital’s rule

for L(x) = (ln x)1+β , β > −2,

b2
n ∼ 2n


1
2 ln n

2+β

2 + β
, an ∼


δ

2(2 + β)
ln n

 2
δ

, (5.20)

since
 x

A
(ln u)1+β

u du ∼
(ln x)2+β

2+β
and for L(x) =

1
ln x

b2
n ∼ 2n ln ln n, an ∼


δ

2
(ln n)(ln ln n)

 2
δ

, (5.21)

since
 x

A
1

u ln u du ∼ ln ln x .
The following example demonstrates the method for obtaining relative stability and the CLT

for ARCH(1) processes. This method should apply to other time series models (e.g. GARCH).

Example 1. Consider a class of ARCH(1) processes: {ξk}k∈N∪{0} is recursively defined by

ξk = ζk


1 + ξ2

k−1, k ≥ 1,

where {ζk}k∈N are i.i.d. and E |ζ1|
p < 1, p ≥ 1. If ζ1 has standard normal distribution,

independent of ξ0, where L(ξ2
0 ) = L(


∞

k=1
k
ν=1 ζ

2
ν ), then {ξk}k∈N∪{0} is exponentially θ -

weakly dependent (cf. [11, Section 2.3]) hence θn ≤ Kϱn, K > 0, ϱ < 1. In fact ξk is
exponentially fast strongly mixing if L(ζ1) is absolutely continuous (cf. [13, Proposition 6,
p. 107], [10, Lemma A.2, p. 2077]). Furthermore, the marginal of {ξk}k∈N∪{0} satisfies

x2 P[|ξ0| > x] ∼ C, C = (2 − ln 2 − γ )−1
≈ 1.37054424−,

where γ is Euler’s constant (cf. [16, Theorem 8.4.12, p. 467]).
For this model condition (1.2) is satisfied with δ = 1 and an =

1
4 ln2 n. Now, by Theorem 2

on p. 283 in [19] U2(x) varies slowly and U2(∞) = ∞. Moreover, our case is related to (5.20)
with β = −1 so b2

n ∼ Cn ln n, an =
1
4 ln2 n. Therefore

n

bn
θ⌊an⌋ ≤

K n
√

Cn ln n
ϱ⌊

ln2 n
4 ⌋

≤ K e− ln ϱe
1
2 (ln n−ln C−ln ln n)+(ln ϱ)(ln2 n)

= K e− ln ϱe(ln ϱ)(ln
2 n)(1+o(1))

= o(1).

Thus {ξ2
k }k∈N is relatively stable with cn = Cn ln n. Because the solution is of the form rk |ξk |

consequently by Theorem 2 we get the CLT for {ξk}k∈N with normalization bn =
√

Cn ln n.
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In the previous example we applied relative stability to get the CLT. Theorem 2 allows us to
obtain some new relative stability results if we know that the CLT for {rkξk}k∈N holds.

Example 2. (a) Suppose


∞

k=1 ρ(2
k) < ∞, ρ(1) < 1 and E[ξ2

0 I[|ξ0|≤x]] is slowly varying. Thus
by Theorem 6.6 on p. 199 in [6] and Theorem 1 in [5] we have L(b−1

n
n

k=1 rkξk)→w N (0, 1).
So that by Theorem 2 we get b−2

n
n

k=1 ξ
2
k →P 1 in this case.

(b) Suppose {ξk}k∈Z is ϕ-mixing and E[ξ2
0 I[|ξ0|≤x]] is slowly varying. Then by inequality

(3.8) on p. 298 in [34] {b−2
n max1≤k≤n ξ

2
k I[|ξk |≤bn ]}n∈N is uniformly integrable. Now, by

Theorem 6.6 on p. 199 in [6], Proposition 2, Lemma 1, Lévy’s and Chebyshev’s inequalities
{b−2

n (
n

k=1 rkξk I[|ξk |≤bn ])
2
}n∈N is uniformly integrable, too. Thus {ξ2

k }k∈N is relatively stable as
it has been proved in [42].

(c) Suppose E[ξ2
0 I[|ξ0|≤x]] is slowly varying. The Rosenthal inequality (cf. [6, Theorem 11.23,

p. 380; Theorem 6.6 on p. 199]) holds if limn ρ
∗
n ({ξk}) < 1 (see definition on p. 170 in vol. I, [6]),

i.e.

E

b−4
n


n

k=1

rkξk I[|ξk |≤bn ]

4
 ≤ C


n

b4
n

E

ξ4

0 I[|ξ0|≤bn ]


+


n

b2
n

E[ξ2
0 I[|ξ0|≤bn ]]

2

.

Thus by the definition of {bn}n∈N and Lemma 2 (with δ = 2) {b−2
n (

n
k=1 rkξk I[|ξk |≤bn ])

2
}n∈N is

uniformly integrable. Therefore if {ξk}k∈Z is also α-mixing then {ξ2
k }n∈N is relatively stable (cf.

Theorem 11.25 on p. 387 in [6]).

In the following examples the rate in Bt conditions is discussed. For this we require some results
which are of independent interest. They describe the asymptotic of tail probability for the sum
of two independent random variables with heavy tailed component and are related to Proposition
on p. 278 in [19] (see also [16, Lemma 1.3.1, p. 37]) and Problem 27 on p. 288 in [19].

Proposition 6. Suppose X, Y are independent random variables such that x p P[X > x] varies
slowly at infinity for some p > 0. Then for any u ∈ (0, 1]

P[X + Y > x; X > ux] ∼ P[X > x] as x → ∞. (5.22)

Proof of Proposition 6. Let δ ∈ (0, 1). For x > 0

P[X + Y > x; X > ux] = P[X > ux] − P[X + Y ≤ x; X > ux]

≤ P[X > ux] − P[X ≤ (1 − δ)x; Y < δx; X > ux]

= P[X > ux] − P[Y < δx; X > ux]

+ P[X > (1 − δ)x; Y < δx; X > ux]

= P[X > ux] · P[Y ≥ δx] + P[X > (1 − δ)x] · P[Y < δx]

if u < (1 − δ) < 1, and

P[X + Y > x; X > ux] ≥ P[X > (1 + δ)x; Y > −δx; X > ux]

= P[X > (1 + δ)x; Y > −δx]

= P[X > (1 + δ)x] · P[Y > −δx]
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if u ≤ 1. Consequently

lim
x→∞

P[X + Y > x; X > ux]

P[X > x]
≤ lim

x→∞


P[X > ux]

P[X > x]
· P[Y ≥ δx]

+
P[X > (1 − δ)x]

P[X > x]
· P[Y < δx]


=

1
(1 − δ)p

and

lim
x→∞

P[X + Y > x; X > ux]

P[X > x]
≥

P[X > (1 + δ)x]

P[X > x]
· P[Y > −δx] =

1
(1 + δ)p .

If u = 1 then

1 ≥ lim
x→∞

P[X + Y > x; X > x]

P[X > x]
≥ lim

x→∞

P[X + Y > x; X > x]

P[X > x]
≥

1
(1 + δ)p .

Letting δ → 0 yields the result. �

Corollary 1. Suppose X, Y are independent symmetric random variables such that x p P[X > x]

varies slowly at infinity and E |Y |
p+ϵ < ∞, p, ϵ > 0 or even P[|Y | > x] = o(P[|X | > x]).

Then

P[|X + Y | > x] ∼ P[|X | > x] as x → ∞.

Proof of Corollary 1. By the Markov inequality

lim
x→∞

P[|Y | > x]

P[|X | > x]
= lim

x→∞

x p+ϵP[|Y | > x]

x p+ϵP[|X | > x]
≤ lim

x→∞

E |Y |
p+ϵ

x p+ϵP[|X | > x]
= 0. (5.23)

Since for u < (1 − δ), δ ∈ (0, 1)

P[X + Y > x; X ≤ ux] ≤ P[X ≤ ux] − P[X < (1 − δ)x; Y ≤ δx; X ≤ ux]

= P[X ≤ ux] · P[Y > δx],

by Proposition 6 we obtain the desired result. Note that in view of (5.23) the condition E |Y |
p+ϵ <

∞ can be replaced by P[|Y | > x] = o(P[|X | > x]). �

Example 3. (a) (Doukhan) Let {Xk}k∈Z be a centered stationary Gaussian process. Define

ξk = exp


1
4

X2
k


.

Thus (cf. [18, Lemma 2, p. 175])

x2 P[ξ2
1 > x] ∼

1
√

2π ln x
.

Therefore

E[ξ2
1 I[ξ1≤x]] ∼

2
√

2π

 x

e

du

u
√

ln u
∼

4
√

2π

√
ln x

and E[ξ2
1 I[ξ1≤x]] is a slowly varying function. By Lemma 3

b2
n =

2n
√

ln n
√
π

, an =


δ ln n
√

2π

 2
δ

.
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Suppose that the spectral density f of Xk is such that f (x) ≥ a > 0. Therefore (cf. [13,
Section 2.1.1]) if |Cov(X0, Xk)| = O(e−c

√
k), c > 0, then by the heredity of α coefficient

αn({ξk}) ≤ αn({Xk}) ≤
1
a


k≥n

|Cov(X0, Xk)| = O(e−2
√

n).

Hence for δ =
1
2

lim
n→∞

n

an
αn(⌊an⌋) ≤ lim

n→∞
exp


−

4
π

ln2 n(1 + o(1))


= 0

and {ξ2
k }k∈N is relatively stable with cn =

2n
√

ln n
√
π

.

(b) Let {Xk}k∈Z be a strictly stationary κ-weakly dependent sequence such that L(X1) is
symmetric (cf. [15, Proposition 4]). Define

ξk = Xk + ζk,

where symmetric {ζk}k∈Z are independent of {Xk}k∈Z and i.i.d. with L(x) = x2 P[|ζ1| > x],

where L is slowly varying and L(x) → ∞ as x → ∞. If x2 P[|X1| > x] ∼ L(L(x)) then by
Corollary 1 x2 P[|ξ1| > x] is slowly varying. Thus E[ξ2

1 I[|ξ1|≤x]] is slowly varying too. By the
estimate

n

an
Bt ({rkξk}, bn, ⌊an⌋,m) ≤

nm2an t2

b2
n

κ(⌊an⌋),

if nκ(n) = O(1). Thus condition (1.2) is satisfied. Moreover for κ(n) = O( ln ln n
n ) and

x2 P[|ζ1| > x] ∼
1

ln x ((5.21) with δ = 4) thus {ξ2
k }k∈N is relatively stable with cn = 2n ln ln n.

(c) Let {Xk}k∈Z be a strictly stationary θ -weakly dependent sequence such that L(X1) is
symmetric (cf. [11, Theorem 3.3, p. 46]). Define ξk as in the previous example but with
x2 P[|ζ1| > x] slowly varying and Eζ 2

1 I[|ζ1|≤x] → ∞ as x → ∞. If P[|X1| > x] = o(P[|ζ1| >

x]) then by Corollary 1 E[ξ2
1 I[|ξ1|≤x]] is slowly varying. Suppose that x2 P[|ζ1| > x] ∼ ln3 x

((5.20) with δ =
1
2 , β = 2) and θ(n) = O(e− 4√n). Now in condition (1.2) we have the upper

bound nmt
bn
θ(⌊an⌋) = O( 1

ln2 n
) thus {ξ2

k }k∈N is relatively stable with cn = 2−5n ln4 n.

In the last example we show that there are non-strongly mixing strictly stationary sequences for
which Theorem 2 does not apply.

Example 4. Suppose {Xk}k∈Z is a non-negative i.i.d. sequence independent of a standard normal
random variable ζ and x2 P[X1 > x] is slowly varying. Set ξk = Xkζ . By Proposition 3 in [8]
(cf. [36], p. 88) x2 P[|ξ1| > x] is slowly varying and therefore E[ξ2

1 I[|ξ1|≤x]] is slowly varying,
too. Now,

L


b−1
n

n
k=1

rk Xk


→w N (0, 1)

and therefore L(b−1
n
n

k=1 rkξk) has limiting bilateral exponential distribution (cf. [19, p. 503]).
On the other hand it is easy to see that {b−2

n
n

k=1 ξ
2
k I[|ξk |≤bn ]}n∈N is uniformly integrable.
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in: P. Révész (Ed.), Limit Theorems in Probability and Statistics, in: Coll. Math. Soc. J. Bolyai, vol. 57, Pécs,
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