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Abstract

Quasi-stationary distributions have been used in biology to describe the steady state behaviour of
Markovian population models which, while eventually certain to become extinct, nevertheless maintain
an apparent stochastic equilibrium for long periods. However, they have substantial drawbacks; a Markov
process may not possess any, or may have several, and their probabilities can be very difficult to determine.
Here, we consider conditions under which an apparent stochastic equilibrium distribution can be identified
and computed, irrespective of whether a quasi-stationary distribution exists, or is unique; we call it a quasi-
equilibrium distribution. The results are applied to multi-dimensional Markov population processes.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

The following Markovian birth and death process X in continuous time can be used to model
a rather general population growth process. X (t) represents the number of individuals at time t
in a population in a fixed region of area A, and its evolution is governed by the transition rates
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qi,i+1 = iβ(i/A), qi,i−1 = iδ(i/A), i ≥ 1;

qi j = 0 otherwise,
(1.1)

where β(x) and δ(x) are the per capita rates of birth and mortality at population density
x = i/A. For instance, the stochastic version of the logistic growth model of Verhulst [23]
falls into the above framework, with β(x) = b constant in time, and with δ(x) = d + cx ,
linearly increasing in x . Verhulst [23] was the first to propose a mathematical model for the
evolution of a population that exhibits a non-zero equilibrium, something not allowed for in the
Malthusian law of exponential growth. However, if the set of states N is a communicating class
and infx>0 δ(x) > 0, the stochastic model does not have a non-zero equilibrium distribution,
even if β(0) > δ(0) and limx→∞(β(x) − δ(x)) < 0, since N is then transient, and eventual
absorption in 0 is certain. This appears to be a significant drawback for the application of the
model in practice, but closer analysis reveals that the process can nonetheless exhibit apparent
equilibrium behaviour over very long periods of time, with extinction occurring as the result of
some ‘exceptional’ event.

Darroch and Seneta [7], building on the work of Yaglom [24] in the context of branching
processes, introduced the concept of a quasi-stationary distribution, in an attempt to describe
such long term behaviour in a transient Markov chain, prior to eventual absorption. However,
for chains with countably infinite state space, Seneta and Vere-Jones [21] showed that the quasi-
stationary distribution need neither exist nor be unique. Furthermore, even when there is a unique
quasi-stationary distribution, its calculation may pose substantial problems. This apparently
makes the quasi-stationary distribution unsatisfactory for typical biological applications. In
an earlier paper [3], we were nonetheless able to give conditions under which the quasi-
stationary distribution indeed represents the apparent equilibrium of a continuous time Markov
chain X , prior to absorption. Under these conditions, which can be simply expressed in terms
of the properties of the chain, there is a unique quasi-stationary distribution, and it can be
approximated to a specified accuracy by the equilibrium distribution of a positively recurrent
‘returned process’ Xµ, which is typically much easier to compute.

Because the conditions given in [3] imply that the chain X has a unique quasi-stationary
distribution, its results shed no light on what happens in the unsatisfactory situations in which
there are many quasi-stationary distributions, or in which there are none. For instance, a model for
the evolution of a population commonly used in ecology has a per capita death rate δ(x) = d that
remains constant as x increases, and a birth rate that declines exponentially, β(x) = be−αx for
some α > 0 [16]. Although this model also gives rise to apparently stable equilibrium behaviour
for long periods of time, it follows from [22] that the process actually has infinitely many
possible quasi-stationary distributions. In such cases, there is no obvious candidate distribution
for describing its quasi-equilibrium.

In this paper, we are concerned with describing the long term behaviour of models, such as that
above, in which the quasi-stationary distribution need neither exist nor be unique. We introduce
a new set of conditions, complementary to those in [3], which are satisfied in many biologically
plausible models. Under these conditions, we show that the ‘return’ distribution can be used as
a good approximation to the distribution that is observed in quasi-equilibrium, and hence that it
provides a more robust approximation than the quasi-stationary distribution, in that the latter can
only be used in rather restricted circumstances. Furthermore, the ‘returned’ process has a proper
long term limiting distribution, which can be much easier to determine than a quasi-stationary
distribution, making it a much more practical alternative.
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Denoting the state space of X by C ∪ {0}, where 0 is the cemetery state and C is irreducible,
the returned process Xµ is also Markov. It evolves like X , except when it reaches the state 0.
Whenever it does, instead of being absorbed in 0, it is instantaneously returned to C according
to the ‘return’ probability distribution µ; hence each Xµ is a recurrent process. Under our
conditions, the returned processes for a wide class of return distributions all have very similar
equilibrium distributions, and the distribution of X (t), given any reasonable fixed initial state, is
also similar to them for long periods of time. Thus, for computational and practical purposes, the
situation is satisfactorily resolved. Any member µ of the class of ‘good’ return distributions
can be chosen, and the equilibrium distribution of Xµ then serves as a quasi-equilibrium
approximation to L(X (t)) in the appropriate range of t .

The main results, Theorems 2.3 and 2.4, are proved in Section 2. In Section 3, as an illustra-
tion, we discuss the application of the theorems to birth and death processes. These processes
have been widely studied, because of their relatively simple structure, and allow our results to
be easily interpreted. Our theorems are however equally applicable to processes with more com-
plicated structure, and we illustrate their application to Markov population processes in several
dimensions in Section 4. There are many different multi-dimensional evanescent population pro-
cesses that are density dependent and satisfy the local irreducibility and persistence conditions
used there. These include models of chemical processes [11], competition [2,17], epidemics and
rumours [5], metapopulations [19], networks [20,13], viral replication and growth [1,6] and ge-
netics [15]. Theorem 4.1 complements the usual Gaussian approximation for these models, by
showing that the equilibrium distribution π̃

δs
N of an ‘accelerated return process’ is a very good

approximation in total variation to the law of the process, at any time in a range bounded below
by a suitable power of N and above by a quantity growing exponentially with N .

2. The return approximation

Assume that X is a stable, conservative and non-explosive pure jump Markov process on a
countable state space, consisting of a single transient class C together with a cemetery state 0.
For any probability distribution µ on C , define the modified process Xµ with state space C to
have exactly the same behaviour as X while in C , but, on reaching 0, to be instantly returned to
C according to the distribution µ. Thus, if Q denotes the infinitesimal matrix associated with X ,
and Qµ that belonging to Xµ, we have

qµ
i j = qi j + qi0µ j for i, j ∈ C. (2.1)

In this section, under a rather simple set of conditions, we show that the stationary distribution
πµ of Xµ is little influenced by the choice of µ, for µ in a large class M of distributions. We
give a bound, uniform for all µ, ν ∈ M, on the total variation distance

dTV(πν, πµ) := sup
A∈C

|πν
{A} − πµ

{A}| =
1
2


k∈C

|πν(k) − πµ(k)|

between πν and πµ, that is expressed in terms of hitting probabilities and mean hitting times for
the process X . The bound is such that it can be expected to be small in circumstances in which
the process X typically spends a long time in C in apparent equilibrium, before being absorbed
in 0 as a result of an ‘exceptional’ event.

Define

τA := inf{t > 0: X (t) ∈ A, X (s) ∉ A for some s < t}, (2.2)
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with the infimum over the empty set being taken to be ∞, noting that τA > 0 a.s. even when
X (0) ∈ A. Our basic conditions can then be expressed as follows.

Condition B. There exists s ∈ C such that, defining

pk := Pk[Xτ{s,0}
= s]; Tk := Ek[τ{s,0}],

we have

(i) inf
k∈C

pk = p > 0 ;

(ii) Tk < ∞ for all k ∈ C.

Here, Pk and Ek refer to the distribution of X conditional on X (0) = k.
Condition B(i) can be expected to be satisfied in reasonable generality, and is the same

as Condition A(i) in [3]. Condition B(ii) substantially relaxes Condition A(ii) in [3], which
stipulated that Tk ≤ T < ∞, uniformly for all k ∈ C . If X is typically to spend a long time in
apparent equilibrium before being absorbed in 0, it will be necessary for 1 − ps , the probability
that an excursion from s lands in 0, to be small.

We first note that

Ts =


k∈C

Tsk < ∞,

where

Tsk :=


∞

0
Ps[{τ{s,0} > t} ∩ {X (t) = k}] dt

is the expected amount of time spent in k before first returning to {s, 0}, starting in s. Hence, for
any ζ > 0, we can pick Cζ ⊂ C such that

k∉Cζ

Tsk ≤ ζ(1 − ps)Ts; (2.3)

we do so in such a way that s ∈ Cζ , and that T +

ζ := supk∈Cζ
Tk is as small as possible. We

then define the process Xζ to be the same as X , except that any excursions outside Cζ take zero
time to complete. This process Xζ now satisfies Condition A of [3], so that the results of [3]
can be applied to it. Finally, we extend the results for Xζ to the process X . To accomplish this
programme, we need some preparatory results.

Lemma 2.1. Define µ(T ) :=


k∈C µ(k)Tk . Then, under Condition B,

(i) µ(T ) ≤ Eµτ
µ
{s} ≤ µ(T )/p ;

(ii) Ekτ
µ
{s} ≤ Tk + (1 − pk)µ(T )/p, k ∈ C;

(iii) Esτ
µ
{s} < ∞ if and only if µ(T ) < ∞,

where τ
µ
A is defined similarly to τA, but with the process Xµ in place of X, and Eµ denotes

expectation under the initial distribution µ.

Proof. The proof is based on the equation

τ
µ
{s} = τ

µ
{s,0}

+ τ
µ,1
{s} , (2.4)
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in which τ
µ,1
{s} is the time that elapses after τ

µ
{s,0}

until Xµ first reaches s, zero if Xµ(τ{s,0}) = s.
Taking expectations with respect to Pµ, this yields

Eµτ
µ
{s} =


k∈C

µ(k){Tk + (1 − pk)Eµτ
µ,1
{s} },

from which it follows that

µ(T ) ≤ Eµτ
µ
{s} ≤ µ(T ) + (1 − p)Eµτ

µ
{s}

and Part (i) is proved. Part (ii) follows by taking expectations in (2.4) with respect to Pk , which
also gives

Ekτ
µ
{s} ≥ (1 − pk)Eµτ

µ
{s} ≥ (1 − pk)µ(T ).

Part (iii) follows from these considerations, taking k = s. �

We now define

M M := {µ ∈ P M(C): µ(T ) ≤ MTs},

for any M > 0. The next lemma bounds the equilibrium probability that Xµ
∉ Cζ , for any

µ ∈ M M .

Lemma 2.2. Under Condition B, for any µ ∈ M M , we have

πµ(Cc
ζ ) ≤ (1 − ps){ζ + M/p} =: ε(ζ, M).

Proof. By a standard renewal argument,

πµ(A)Esτ
µ
{s} =


k∈A

Es


∞

0
I [τµ

{s} > t] I [X (t) = k] dt


≤


k∈A

Tsk + (1 − ps)Eµτ
µ
{s}.

It thus follows from (2.3), (2.4) and Lemma 2.1(i) that

πµ(Cc
ζ )Ts ≤ πµ(Cc

ζ )Esτ
µ
{s} ≤ (1 − ps)(ζ Ts + µ(T )/p),

and the lemma follows. �

In what follows, we assume that M ≥ 1, ensuring that the distribution δs that puts probability
1 on the state s itself belongs to M M .

We now return to the pure jump Markov process Xζ , which has the same jump chain as X ,
and the same jump rates qk for all k ∈ Cζ , but with qk = ∞ for k ∉ Cζ . We also define its
returned processes Xµ

ζ in the same way as for X , but with the new jump rates. We then define

T (ζ )
s :=


k∈Cζ

Tsk ≥ Ts{1 − ζ(1 − ps)}, (2.5)

the mean time for Xζ to return to the set {0, s}, starting from s, the last inequality following
from (2.3).



A.D. Barbour, P.K. Pollett / Stochastic Processes and their Applications 122 (2012) 3740–3756 3745

Theorem 2.3. Suppose that Condition B holds, and that M ≥ 1. Then, for any µ ∈ M M ,

dTV(πµ, π δs ) ≤ 2(1 − ps)


T +

ζ

pTs
+ ζ +

M

p


.

Proof. We begin by considering the process Xµ
ζ for any µ ∈ M M , noting that, for any k ∈ Cζ ,

its equilibrium distribution π
µ
ζ satisfies

π
µ
ζ (k) = πµ(k)/πµ(Cζ ). (2.6)

Now the process Xζ satisfies Condition A of [3], and hence, from (2.13) of [3],

dTV(π
µ
ζ , π

δs
ζ ) ≤ 2(T +

ζ /p)

k∈Cζ

π
δs
ζ (k)qk0. (2.7)

Then, by a renewal argument, letting Nk(t) denote the number of visits of X δs to k in [0, t], we
have 

k∈C

π δs (k)qk0 = lim
t→∞

t−1 N0(t)

= lim
t→∞

{t−1 Ns(t)} lim
t→∞

{N0(t)/Ns(t)} = T −1
s (1 − ps). (2.8)

It now follows from (2.6)–(2.8) that

dTV(π
µ
ζ , π

δs
ζ ) ≤ 2(T +

ζ /p)T −1
s (1 − ps)/π

δs (Cζ ).

Hence

dTV(πµ, π δs ) =
1
2


k∈Cζ

|π
µ
ζ (k)πµ(Cζ ) − π

δs
ζ (k)π δs (Cζ )| +

1
2


k∉Cζ

|πµ(k) − π δs (k)|

≤ π δs (Cζ )dTV(π
µ
ζ , π

δs
ζ ) +

1
2
|π δs (Cζ ) − πµ(Cζ )|

+
1
2
(πµ(Cc

ζ ) + π δs (Cc
ζ ))

≤ 2(T +

ζ /p)T −1
s (1 − ps) + 2ε(ζ, M),

this last from Lemma 2.2; as before, δs ∈ M M , because M ≥ 1. �

Remark. Of course, for the theorem to imply that πµ and π δs are close, one needs (1 − ps)

to be very small, which has already been noted as a necessary condition for long time stability.

One also needs
T +

ζ

pTs
+ ζ +

M
p not to be too large. The smaller ζ is chosen, the larger is the value

of T +

ζ , so that, in specific models, there is an optimum choice of ζ , limiting the accuracy of
approximation that can be demonstrated by this method.

We now turn our attention to the distribution of X (t) for fixed values of t , starting from any
particular state in Cζ , and compare it to π δs . We begin by taking the initial state of X to be s,
and remark later that this restriction makes little difference, provided that s is hit at least once.
To state the theorem, we define

rζ := Ps[X does not leave Cζ or hit 0 before returning to s].
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Since limζ→0 rζ = ps , the quantity 1−rζ can be made as close as desired to 1− ps by decreasing
ζ , but at the cost of increasing T +

ζ at the same time. A crude bound for 1 − rζ in terms of 1 − ps
comes from observing that

k∉Cζ

Tsk ≥ (1 − rζ )/q(ζ ),

where q(ζ )
:= supk∈Jζ

qk and

Jζ := {k ∉ Cζ : qk j > 0 for some j ∈ Cζ };

from (2.3), this gives

(1 − rζ ) ≤ ζq(ζ )Ts(1 − ps).

Theorem 2.4. Suppose that Condition B holds, and let Bζ := T +

ζ qs/p. If ε(ζ, 1) ≤ 1/2, then

there is a universal constant D such that, for all t ≥ 16T +

ζ /p,

dTV(Ls(X (t)), π δs ) ≤ (1 − rζ )(2t/Ts + ζ + 1/p) + DBζ


T +

ζ

pt
+ (2/e)pt/16T +

ζ

=: ηζ (t).

Remark. Hence, informally, if (1 − rζ )B2
ζ T +

ζ /(pTs) ≪ 1 and (1 − rζ ) ≪ 1, the distribution

Ls(X (t)) is close to π δs for all times t such that

B2
ζ T +

ζ /p ≪ t ≪ Ts/(1 − rζ );

note that Bζ ≥ 1, so that then t ≫ T +

ζ /p also.

Proof. The argument is based on coupling two copies X (1)
ζ and X (2)

ζ of the return process X δs
ζ ,

with X (1)
ζ in equilibrium and with X (2)

ζ starting in s, by the method used in [3], Theorem 2.5.

The coupling is achieved by forcing X (1)
ζ to follow the same sequence of states as X (2)

ζ after the
first time that it hits s, and to have identical residence times in all states other than s; the careful
matching of the exponentially distributed residence times of the two processes in s is all that is
used to achieve the coupling. Now the argument leading to (2.18) of [3] shows that X (1)

ζ and X (2)
ζ

can be jointly defined in such a way that, if t ≥ 16T +

ζ /p, the event ∆ζ t that they have coupled
by t is such that

P[∆c
ζ t ] ≤ 4cG Bζ


T +

ζ

pt
+ (2/e)pt/16T +

ζ ,

for a universal constant cG , not depending on ζ . Now, because X (1)
ζ is in equilibrium,

P[X (1)
ζ hits {0} ∪ Cc

ζ before t] ≤ t

k∈Cζ

π
δs
ζ (k)


l∈{0}∪Cc

ζ

qkl ,

and the double sum is bounded by (1−rζ )/T (ζ )
s , as in the argument leading to (2.8). If X (1)

ζ does

not hit {0} ∪ Cc
ζ before t , and if ∆ζ t holds, then X (2)

ζ also avoids {0} ∪ Cc
ζ up to time t , in which
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case it is indistinguishable from an X -process, starting in s. It thus follows that

dTV(π
δs
ζ , Ls(X (t))) ≤ (1 − rζ )(t/T (ζ )

s ) + DBζ


T +

ζ

pt
+ (2/e)pt/16T +

ζ , (2.9)

with D := 4cG . To complete the proof, it now merely remains to note that dTV(π
δs
ζ , π δs ) =

π δs (Cc
ζ ), and to use Lemma 2.2; note that (1 − ps) ≥ (1 − rζ ), and that T (ζ )

s ≥ Ts/2, from (2.5),
if ε(ζ, 1) ≤ 1/2. �

Remark. Denoting by Aζ the event that X hits s before {0}∪Cc
ζ , the same argument can be used

to show that dTV(Lk(X (t) | Aζ ), Ls(X (t))) is at most ηζ (t) for any k ∈ Cζ , under the conditions
of Theorem 2.4. Hence, conditional on the event that X hits s before reaching {0} ∪ Cc

ζ , the

distribution of X (t) starting from any k ∈ Cζ is also close to π δs for all times t such that

B2
ζ T +

ζ /p ≪ t ≪ Ts/(1 − rζ ),

provided that (1 − rζ )B2
ζ T +

ζ /(pTs) ≪ 1. Thus the return distribution π δs is then indeed an
appropriate long time approximation to the distribution of X in C , for times t ≪ Ts/(1 − rζ ),
and π δs can be replaced by πµ for any µ such that µ(T ) < ∞, with extra error at most that given
by the bound in Theorem 2.3, with µ(T )/Ts for M .

The emphasis until now has been on approximating L(X (t)) by π δs . However, there are times
when this approximation may also not be useful. Examples of this are processes in which a set
Cζ can be found that has the properties that T (ζ )

s and T +

ζ are only moderately large and (1 − rζ )

is tiny, but for which (2.3) is not satisfied. Such is the case if there are states k ∉ Cζ such that
Tk is extremely large; for instance, if the equilibrium around s is metastable, Ts itself may be
enormously larger than T (ζ )

s . Here, nonetheless, the intermediate bound (2.9) shows that π
δs
ζ acts

as a good approximation for very long periods, even though π δs may be very different.
In practice, computing π

δs
ζ may be complicated by having to cope with the detail of the

return distribution from Cc
ζ , which should not really be relevant here. The final approximation

is therefore phrased instead in terms of the accelerated return process X δs
C ′ , for some C ′

⊂ C
containing s but not 0, which is returned to s at each time of leaving C ′. Here, the set C ′ may
reasonably be chosen to be finite, in which case computing the equilibrium distribution π̃

δs
C ′ of

the accelerated return process becomes relatively easy. We now define Tk,C ′ := Ek[τ̃
δs
{s}], where

τ̃ δs is defined as in (2.2), but with the process X δs
C ′ in place of X ; and we set T +

C ′ := supk∈C ′
Tk,C ′

and r̃C ′ := Ps[τ̃
δs
C\C ′ = τ̃

δs
{s}].

Theorem 2.5. Suppose that Condition B (ii) holds, and let BC ′ := T +

C ′qs . Then

dTV(π̃
δs
C ′ , Ls(X (t))) ≤ (1 − r̃C ′)(t/Ts,C ′) + DBC ′

T +

C ′

t
+ (2/e)t/16T +

C ′ ,

for all t ≥ 16T +

C ′ , with D the same constant as in Theorem 2.4.

Proof. The argument runs exactly as in the proof of (2.9), but with the process X δs
C ′ instead of

X δs
ζ . Since this process has no absorbing state 0, p can be replaced by 1 in the bound. �
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Theorem 2.5 is very much in line with the main message of the paper. The difference between
Condition A of [3] and Condition B of this paper largely concerns properties of the process
starting from states that it rarely ever reaches, and such differences should not prevent effective
approximation of the distribution of the process, at least for long periods of time. The essential
difference between the situation in which Condition A is satisfied and that in which it is not
is that, when it is not satisfied, the approximating distribution need not be a quasi-stationary
distribution of the process, or even one of its return distributions, but instead a return distribution
associated with the process restricted to a truncated state space. We consider an example of this
in Section 4.

3. Birth and death processes

Let X be a birth and death process with birth rates b j ≥ 0, 1 ≤ j < ∞, with b0 = 0, and with
strictly positive death rates d j , j ≥ 0. Define α1 = 1 and

α j =
b1 · · · b j−1

d2 · · · d j
, j ≥ 1;

then set

Sm
r :=

m
l=r

1
αldl

.

In order to use the theorems of the previous section, we need to find expressions for
the quantities p, ps, Tsk, Ts, T +

ζ and rζ that appear there. These can be derived using hitting
probabilities, which can be simply expressed using the α j and the Sm

r . First, for any j < m < l,
we have

Pm[X hits l before j] = Sm
j+1/Sl

j+1. (3.1)

A first consequence is that

1 − ps =
ds

bs + ds


1 −

Ss−1
1

Ss
1


=

1
αs(bs + ds)Ss

1
; (3.2)

p = p1 =
1

d1Ss
1
. (3.3)

Next, if i ∉ {0, s}, write uki := Pk[τ{i} < τ{s,0}], k ≠ i , and ui i = 1: then we have

uki =


0 if k < s < i or i < s < k;

1 if s < i ≤ k;

Sk
s+1/Si

s+1 if s < k ≤ i;
Sk

1/Si
1 if 0 < k ≤ i < s;

Ss
k+1/Ss

i+1 if 0 < i ≤ k < s,

(3.4)

from which it follows that, for such i ,

1 − Pi [τ{i} < τ{s,0}] =


1

αi (bi + di )


1

Ss
i+1

+
1

Si
1


if 0 < i < s;

1

αi (bi + di )Si
s+1

if i > s.
(3.5)
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Also, for i ∉ {s, 0} and k ≠ s, we have

Tki :=


∞

0
Pk[{τ{s,0} > t} ∩ {X (t) = i}] dt

=
uki

bi + di

1
1 − Pi [τ{i} < τ{s,0}]

, (3.6)

with Tks = Tk0 = 0, and then Tss = 1/(bs + ds) and

Tsi =


ds Ts−1,i

bs + ds
if 0 < i < s;

bs Ts+1,i

bs + ds
if i > s.

(3.7)

These in turn give

Tk =


i≥1

Tki =


1
Ss

1

s−1
i=1

αi Si∧k
1 Ss

(i∨k)+1 if 0 < k < s;
i≥s+1

αi Si∧k
s+1 if k > s,

(3.8)

and

Ts = (bs Ts+1 + ds Ts−1 + 1)/(bs + ds) =
1

αs(bs + ds)


i≥1

αi Si∧s
1 /Ss

1. (3.9)

Now, choosing any value of s > 0, the formulae (3.7), (3.2) and (3.9) can be used for any ζ to
determine a suitable set Cζ := {1, 2, . . . , aζ } so that (2.3) is satisfied, and (3.8) enables both T +

ζ

and µ(T ) to be determined. Furthermore, it follows from (3.5) with aζ for s and with s for i that

1 − rζ =
1

αs(bs + ds)


1

S
aζ

s+1

+
1
Ss

1


. (3.10)

Thus, and from (3.3), all the ingredients for the bounds in Theorems 2.3 and 2.4 are available,
recalling also, for the calculation of Bζ , that qs = bs + ds .

For example, take the birth and death process given in (1.1) with A large, δ(x) = d constant,
and with β(·) given by the Ricker choice β(x) = be−αx ; thus b j = jbe−α j/A and d j = jd. If
b > d, the deterministic equilibrium, in which the birth and death rates are equal, is given by
x =

1
α

log(b/d) =: c > 0, suggesting the choice of s := s(A) := ⌊Ac⌋. This gives

α j ∼ j−1(b/d) j e−α j ( j+1)/2A
; αs ≍ s−1(b/d)s/2

;

α j/{sαs} ≍ j−1e−α j/2Ae−α( j−s)2/2A
; (3.11)

note that αs is exponentially large in A. Thus, immediately, Ss
1 ≥ 1/d , and Sa

s+1 ≥ 1/d if
a > 2(s(A) + 1). Hence 1 − ps = O{(b/d)−s/2

} from (3.2), and 1 − rζ = O{(b/d)−s/2
} also if

aζ ≥ 2(s(A)+1), from (3.10). Furthermore, Ss
1 is uniformly bounded in A, so that p is uniformly

bounded below, by (3.3).
To choose the set Cζ := {1, 2, . . . , aζ }, note that, from (3.4)–(3.7) and (3.11),

Tsi ≤
αi

αs(bs + ds)
= O


i−1e−α(i−s)2/2A


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for all i , and

Ts ≥
1

αs(bs + ds)


i≥s

αi ≍ A−1/2.

Hence, from (2.3), the choice aζ = ⌈2(s + 1)⌉ corresponds to a value of ζ ≤ 1. For the
corresponding value of T +

ζ , it is necessary to bound the expressions for Tk , which is in detail

tedious; however, it is not difficult to deduce that Tk = O(log A∨ log k), so that T +

ζ = O(log A).

From Theorem 2.4, it now follows that Ls(X (t)) is close to π δs for all times t such that

A2(log A)3
≪ t ≪ A−1/2eAαc2/2.

Furthermore, µ(T ) = O(log A) for all return distributions concentrated on sets of the form
{1, 2, . . . , Am

} for any fixed exponent m, and Theorem 2.3 thus shows that the corresponding
equilibrium distributions πµ are all exponentially close to π δs as A → ∞—indeed, µ would
have to have extraordinarily long tails for anything else to be the case. Hence the fact that this
process has infinitely many quasi-stationary distributions should not be interpreted as showing
any kind of practical instability, at least for large A: there is an effective long time stable
distribution, and it is extremely close to π δs .

Rather similar analyses could be undertaken for a variety of other well-known models. An
analogue of the Beverton and Holt [4] model would have β(x) = b/(1 + x/m) for b > d and
m > 0, that of Hassell [8] would have β(x) = b/(1 + x/m)c, and that of Maynard-Smith and
Slatkin [12] would have β(x) = b/(1 + (x/m)c). The qualitative conclusions would be entirely
similar.

4. Markov population processes

In this section, we consider Markov population processes X N := (X N (t), t ≥ 0), N ≥ 1,
taking values in Zd

+, for some d ≥ 1. In many applications, the components represent the
numbers of individuals of a particular type or species, with a total of d types possible. The
process evolves as a Markov process with state-dependent transitions

X → X + J at rate NαJ (N−1 X), X ∈ Zd
+, J ∈ J , (4.1)

where J ⊂ Zd is a fixed finite set, and we define J∗ := max j∈J |J |. Density dependence is
reflected in the fact that the arguments of the functions αJ are counts normalised by the ‘typical
size’ N . The functions αJ : Z+ → R+ are assumed to be twice continuously differentiable on
Rd

+, and to be such as to ensure that X N is locally irreducible; that is, the number of steps
required to get from any state X ≠ 0 to any of its lattice neighbours X + e( j), 1 ≤ j ≤ d , with
positive probability, is uniformly bounded.

Such processes satisfy a law of large numbers [9], expressed in terms of the system of deter-
ministic equations

dξ

dt
=


J∈J

JαJ (ξ) =: F(ξ), ξ ∈ Rd
; (4.2)

here, ξ(t) approximates xN (t) := N−1 X N (t), and the quantity F represents the infinitesimal
average drift of the components of the random process. We now suppose that F(c) = 0 for
some c ∈ Rd with c j > 0, 1 ≤ j ≤ d, and that all the eigenvalues of the matrix of derivatives
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DF(c) =: A have negative real parts. In this case, c is a locally stable equilibrium of the deter-
ministic system (4.2), and, if X N is started with N−1 X N (0) close to c, the law of large numbers
implies that xN (t) remains close to c, in the sense that

sup
0≤t≤T

|xN (t) − c| →d 0, (4.3)

for any finite T > 0. The central limit theorem in [10] also shows that

N 1/2(xN (·) − c) ⇒ x in D[0, T ], (4.4)

for any T > 0, where x is a Gaussian process whose stationary distribution has zero mean and
covariance matrix Σ satisfying

AΣ + Σ AT
+ σ 2(c) = 0, (4.5)

where σ 2(x) :=


J∈J J J T αJ (x). Here, we complement this approximation, by using
Theorem 2.5 to show that the distribution of X N (t) is close in total variation, for time periods that
become extremely long as N increases, to the equilibrium distribution π̃

δs
N of a truncated processX N , which is returned to a specified state s := sN near Nc whenever it leaves a neighbourhood

C ′(N ) of Nc. Of course, this distribution, appropriately centred and normalised, converges to
MV Nd(0,Σ ) as N → ∞.

In order to prove such a result, we need to define the neighbourhood C ′(N ), and to show
that the quantities (1 − r̃C ′(N )), 1/TC ′(N ) and T +

C ′(N )
appearing in Theorem 2.5 can be suitably

bounded. The inequality

1/TC ′(N ) ≤ qsN = N

J∈J

αJ (N−1sN ) (4.6)

is immediate. For the remaining bounds, we use Lyapunov–Foster–Tweedie methods [14]. We
write y := N 1/2(x − c) and r2

y := yT V y, where the positive definite symmetric matrix V is
to be chosen later, and we first consider the process yN (·) := N 1/2(xN (·) − c) stopped when
|ryN (t)| ≥ c0 N 1/2, for c0 also to be chosen later. Then, for y such that |ry | < c0 N 1/2, the
generator A of the Markov process acting on a real function g(y) takes the form

(Ag)(y) =


J∈J

NαJ (c + N−1/2 y){g(y + N−1/2 J ) − g(y)}. (4.7)

Using Taylor’s expansion on g, for |r | < c0 N 1/2, we have(Ag)(y) −


J∈J

NαJ (c + N−1/2 y)


N−1/2 J T Dg(y) +

1
2

N−1 D2g(y)[J (2)
]


≤ N−1/2η3(y; g), (4.8)

where

η3(y; g) :=


J∈J

α∗0
J J 3

∗ sup
|u|≤N−1/2 J∗

∥D3g(y + u)∥,
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and α∗0
J := supx :(x−c)T V (x−c)≤c2

0
αJ (x). Similarly, expanding αJ , we obtainN 1/2


J∈J

αJ (c + N−1/2 y)J T Dg(y) − yT AT Dg(y)

 ≤ N−1/2η1(y; g), (4.9)

where we have used the facts that


J∈J JαJ (c) = F(c) = 0 and that


J∈J DαJ (c)J T
= AT ,

and where

η1(y; g) := ∥Dg(y)∥J∗


J∈J

α∗2
J |y|

2,

and α∗2
J := supx :(x−c)T V (x−c)≤c2

0
∥D2αJ (x)∥; and then

J∈J
{αJ (c + N−1/2 y) − αJ (c)}D2g(y)[J, J ]

 ≤ N−1/2η2(y; g), (4.10)

with

η2(y; g) := ∥D2g(y)∥J 2
∗


J∈J

α∗1
J |y|,

and α∗1
J := supx :(x−c)T V (x−c)≤c2

0
∥DαJ (x)∥. Thus, if one ignores the error terms, the generator

acts on g as that of a multivariate Ornstein–Uhlenbeck process,

(Ag)(y) ≈ yT AT Dg(y) +
1
2

tr {σ(c)D2g(y)σ (c)}, (4.11)

with drift matrix A and infinitesimal covariance matrix σ 2(c).
We now consider the generator acting on functions g of the form g(y) = Fε(ry), where

Fε(r) :=
 r
ε

f (t) dt , and the function f is non-negative. This gives

Dg(y) = f (ry)r
−1
y V y; D2g(y) = r−1

y f (ry)V + { f ′(ry) − r−1
y f (ry)}r

−2
y V y(V y)T .

Thus the first term in the approximation (4.11) to A yields

yT AT Dg(y) = f (ry)r
−1
y yT AT V y =

1
2

f (ry)r
−1
y yT

{AT V + V A}y.

In order to choose functions g such that g(yN (t)) is a super-martingale, we would like this
expression to be negative, which will be the case if V is chosen in such a way that the symmetric
matrix (AT V + V A) is negative definite. One way of doing so here is to take V := Σ−1, where
Σ is as in (4.5), in which case

AT V + V A = Σ−1
{Σ AT

+ AΣ }Σ−1
= −Σ−1σ 2(c)Σ−1

is immediately negative definite. The remaining term in (4.11) then gives

1
2

tr {σ(c)D2g(y)σ (c)}

=
1
2

r−1
y f (ry)tr {σ(c)V σ(c)} +

1
2
{ f ′(ry) − r−1

y f (ry)}r
−2
y tr {σ(c)V y(V y)T σ(c)}

=
1
2

r−1
y f (ry)tr {σ̃ 2

} +
1
2
{ f ′(ry) − r−1

y f (ry)}R(y),
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where σ̃ 2
:= Σ−1/2σ 2(c)Σ−1/2 is positive definite, and

R(y) :=
(Σ−1/2 y)T σ̃ 2Σ−1/2 y

yT Σ−1 y

is bounded between its smallest and largest eigenvalues γ and Γ .
We begin by taking f (r) := r−meβr2

, for m and β to be chosen suitably. Then (4.11) gives
the main part of (Ag)(y) as

1
2

eβr2
y r−m+1

y


−r−2

y yT Σ−1/2σ̃ 2Σ−1/2 y + r−2
y tr {σ̃ 2

} + {2β − r−2
y (m + 1)}R(y)


≤ −

1
2

eβr2
y r−m+1

y


(γ − 2β) + r−2

y ((m + 1)γ − tr {σ̃ 2
})


=: −G(ry),

say. We now choose β and m such that 2β < γ and (m + 1)γ > tr {σ̃ 2
}.

For the remainders, we note first, for η3, that there exist constants c−, c+ and K such that

sup
|u|≤N−1/2 J∗

∥D3g(y + u)∥ ≤ K∥D3g(y)∥ for c−N−1/2
≤ ∥y∥ ≤ c+N 1/2,

and that ∥D3g(y)∥ ≤ C3r−m−2
y exp(βr2

y ){1 + r4
y } for some C3. Thus, for all values of y such

that N−1/2c3 ≤ ry ≤ c′

3 N 1/2, for suitable c3, c′

3, where we also choose c′

3 ≤ c0, it follows
that η3(y; g) ≤ G(ry)/6. Similar considerations for η1(y; g) and η2(y; g) show that, possibly
increasing c3 and decreasing c′

3, the inequality

η1(y; g) + η2(y; g) + η3(y; g) ≤
1
2

G(ry)

holds for all y ∈ B(N−1/2c3, N 1/2c′

3), where

B(ρ, R) := {y: ρ ≤ ry ≤ R}.

Hence, for such y, we always have

(Ag)(y) ≤ −
1
2

G(ry) < 0.

Thus the quantity Fε(yN (t ∧ τ̂ρ,R)) is a non-negative super-martingale, for any N−1/2c3 ≤ ρ <

R ≤ N 1/2c′

3 and any 0 < ε ≤ ρ, where

τ̂ρ,R := inf
t≥0

{yN (t) ∉ B(ρ, R)}.

Defining p(ρ, R; r) := P[yN (τ̂ρ,R) ∈ B(0, ρ) | ryN (0) = r ], it thus follows easily from the
optional stopping theorem that

1 − p(ρ, R; r) ≤ Fρ(r)/Fρ(R) ≤
4β Rm+1

(m − 1)ρm−1 eβ(r2
−R2), (4.12)

for ρ, R such that N−1/2c3 ≤ ρ < R ≤ N 1/2c′

3 and 2β R(R − ρ) ≥ 1, with the last condition
ensuring that a simple lower bound for Fρ(R) is valid. So take

C ′(N ) := {X : N−1/2(X − Nc) ∈ B(0, N 1/2c′

3)}, (4.13)
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and let sN ∈ Zd
+ be the closest lattice point to Nc. Any path of yN starting in B(0, N−1/2c3)

has positive probability of hitting N−1/2(sN − Nc) by taking the most direct path from
yN (0) to N−1/2(sN − Nc), and this probability is uniformly bounded away from 0, by the
local irreducibility assumption on X N , and because the number of possible values of yN (·) in
B(0, N−1/2c3) is uniformly bounded as N varies. Hence

P[τ{sN } < τ̂0,2N−1/2c3
| yN (0) ∈ B(0, N−1/2c3)] > δ (4.14)

for some δ > 0. If the complementary event occurs, then B(0, N−1/2c3) is hit again by yN before
it leaves B(0, N 1/2c′

3) with probability at least

1 − K N m e−(c′

3)
2βN ,

for some K , in view of (4.12). It thus follows that

1 − r̃C ′(N ) ≤ δ−1 K N m e−(c′

3)
2βN

= O(e−β ′ N ), (4.15)

for any 0 < β ′ < (c′

3)
2β.

In order to control the mean time to hitting s for the process X N , we take f (r) := r−m
+ θr ,

for m large enough and θ small enough positive. Then (Ag)(y) once again has two principal
negative contributions, the first, bounded above by −

1
2γ θr2

y , coming from the drift term, and

the second, bounded above by −
1
2 mr−(m+1)

y , from the variance term. The former dominates all
positive terms for ry ≥ r0, for some fixed r0, and the second then dominates for the smaller
values of ry , if m is chosen large enough; the quantities ηl(y; g), 1 ≤ l ≤ 3, are treated as
before, and the upper and lower bounds for ry can be left unchanged. Hence, in the same range
of y, we always have

(Ag)(y) ≤ −δ′ < 0,

for some δ′ > 0. Applying the optional stopping theorem then yields

δ′E{τ̂ρ,R | ryN (0) = r} ≤ Fρ(r) ≤
ρ−m+1

m − 1
+

1
2
θr2,

if m > 1, uniformly in ρ, R such that N−1/2c3 ≤ ρ < R ≤ N 1/2c′

3. Take the extreme values for
ρ and R. Then since, for this R, the process X N is returned directly to sN if yN (τ̂ρ,R) ∉ B(0, R),
and since the mean time to either hitting N−1/2(sN − Nc) or leaving B(0, 2N−1/2c3), starting
within B(0, N−1/2c3), is uniformly bounded by some c1 < ∞, a regenerative argument much as
above shows thatT +

C ′(N )
≤ c0{N (m−1)/2

+ N } + c1 + (1 − δ)T +

C ′(N )
,

for δ as in (4.14), and hence that, uniformly in N ,

T +

C ′(N )
≤ C{N (m−1)/2

+ N }, (4.16)

for some C < ∞.
Collecting the above bounds, we have enough to prove the following theorem.

Theorem 4.1. Suppose that X is a Markov population process with transition rates NαJ as
given in (4.1), and that the αJ are such as to ensure that X N is locally irreducible. Suppose also
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that F(c) = 0 for some c ∈ Rd with c j > 0, 1 ≤ j ≤ d, and that all the eigenvalues of the
matrix of derivatives DF(c) have negative real parts. Then there exist α, β1, β2 and c′

3 > 0, and
C1, C2 and C3 < ∞, depending only on the parameters of the process and not on N, such that,
for all t ,

dTV(π̃
δs
C ′(N )

, Ls(X (t))) ≤ C1t Ne−β1 N
+ C2t−1/2 N 1+3α/2

+ C3e−β2t N−α

,

where s = sN is the nearest lattice point to Nc, and C ′(N ) is as defined in (4.13).

Proof. All that is needed is to apply the estimate given in Theorem 2.5. An upper bound on
(1 − r̃C ′(N )) is given in (4.15); a bound on T +

C ′(N )
is given in (4.16); and 1/TC ′(N ) is bounded in

(4.6). For the exponent β1, any β ′ as for (4.15) can be taken; α = max{(m −1)/2, 1} as in (4.16);
and β2 can be taken to be (1 − log 2)/{32C}, for C as in (4.16). �

The lower bound given here for the time at which the quasi-equilibrium approximation
becomes accurate is very pessimistic. The main reason is that the general coupling strategy used
to prove Theorems 2.4 and 2.5 can be very inefficient in specific instances, and is so here. Better
results could be expected by using the methods to be found in Roberts and Rosenthal [18].
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