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Abstract

We discuss the construction and approximation of solutions to a nonlinear McKean–Vlasov equation
driven by a singular self-excitatory interaction of the mean-field type. Such an equation is intended to de-
scribe an infinite population of neurons which interact with one another. Each time a proportion of neurons
‘spike’, the whole network instantaneously receives an excitatory kick. The instantaneous nature of the
excitation makes the system singular and prevents the application of standard results from the literature.
Making use of the Skorohod M1 topology, we prove that, for the right notion of a ‘physical’ solution, the
nonlinear equation can be approximated either by a finite particle system or by a delayed equation. As a
by-product, we obtain the existence of ‘synchronized’ solutions, for which a macroscopic proportion of
neurons may spike at the same time.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Recently several rigorous studies [3–5,7] have been concerned with a mean-field equation
modeling the behavior of a very large (infinite) network of interacting spiking neurons proposed
in [14] (see also [1,8,10,12] and references therein for other types of mean-field models mo-
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tivated by neuroscience). As a nonlinear SDE in one-dimension the equation for the electrical
potential X t across any typical neuron in the network at time t takes the form

X t = X0 +

 t

0
b(Xs)ds + αE(Mt ) + Wt − Mt , t > 0, (1.1)

where X0 < 1 almost surely, (Wt )t>0 is a standard Brownian motion and b is a Lipschitz func-
tion of linear growth. Here α is a parameter in (0, 1) and the process M = (Mt )t>0 counts the
number of times that X = (X t )t>0 reaches 1 before time t , so that it is integer-valued (see Sec-
tion 2 for a precise description). The idea is that when X reaches the threshold 1, M instantly
increases by 1 so that X is reset to a value below the threshold, and we say that the neuron has
spiked. Throughout the article we will write e(t) := E(Mt ).

Eq. (1.1) is in fact nontrivial, since the form of the nonlinearity is not regular enough for the
application of the standard McKean–Vlasov theory [13,17]. Indeed, the problem is that, on the
infinitesimal level, the mean-field term in (1.1) reads as e′(t) = [d/dt]E(Mt ), which is by no
means regular with respect to the law of X t . In [7], it is proven that e′(t) = −(1/2)∂y p(t, 1),
where p(t, y)dy = P(X t ∈ dy) is the marginal density of X t , which shows how singular the
dependence of e′(t) upon the law of X t is. As such, most of the previous work studying this
equation has been focused on the existence of a solution and its properties, bringing to light
some nontrivial mechanisms.

The main point is that, for some choices of parameters (α too big for fixed X0 concentrated
close to the boundary), any solution to (1.1) must exhibit what has been described as a ‘blow-up’
in finite time. More precisely this means that e′(t) (which is the mean-firing rate of the network at
time t) must become infinite for some finite t . This was done in [3] by means of a PDE method.
Interpreting (1.1) as a description of an infinite network of neurons, a blow-up is thus a time at
which a proportion of all the neurons in the network spike at exactly the same time, which we
refer to as a synchronization. Despite the interest in this phenomena, up until now it has been
unclear how to continue a solution after a blow-up. On the other hand, in [7] it was shown by
probabilistic arguments that for other choices of parameters (α small enough for fixed X0 = x0),
(1.1) has a unique solution for all time which does not exhibit the blow-up phenomenon. These
two complementary results are made precise in Theorems 2.3 and 2.4.

The aim of the present work is to provide further insight into this nonlinear equation by pro-
viding two ways of approximating (and moreover constructing) a solution. The first is via the
natural particle system associated to (1.1), which describes the behavior of the finite network of
neurons. In fact, the introduction of (1.1) in [14] is inspired from this finite dimensional system:
it is there asserted that, when the size of the network becomes infinite, neurons become inde-
pendent and evolve according to (1.1). However, the proof of this fact (which is a propagation
of chaos result) is not given. The first of our main objectives is to fill this gap and to rigorously
show that any weak limit of the particle system must be a solution to (1.1) (see Theorem 4.4). In
particular, we show that the particle system converges to the solution of (1.1) whenever unique-
ness holds, in which case propagation of chaos holds as well. Again, due to the irregularity and
nature of the particle system, this result is in fact more difficult than it might appear. The second
objective is to recover a similar result when approximating the self-interaction in (1.1) by de-
layed self-interactions (see Theorem 4.6). The motivation for considering the delayed equation
(which is still nonlinear) is that it never exhibits a blow-up phenomenon, even with α close to 1,
making it easier to handle (see Proposition 3.5).

In both cases, the strategy relies on two ingredients. First, we show that there exists a notion
of ‘physical’ solutions to Eq. (1.1) for which spikes occur physically, in a ‘sequential’ way. The
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interesting feature of ‘physical’ solutions is that we allow the function (e(t))t>0 to be discon-
tinuous, but characterize the size of any jumps in a precise way. Second, we show that there is
a particularly suitable topology on the space of ‘continus à droite avec limites à gauche’ paths
(càdlàg paths in acronym) for handling both approximations. The point is indeed to prove that the
approximating families are tight for the so-called M1 Skorohod topology on the space of càdlàg
paths, which is much less popular than the J1 topology, but which turns out to be very convenient
for handling non-decreasing càdlàg processes such as the counting process (Mt )t>0.

As a significant by-product, the paper shows the existence of ‘physical’ solutions to (1.1) for
which the function (e(t))t>0 may be discontinuous, but where we explicitly specify the size of
any jump. This is a completely new fact in the literature, and is of real importance in neuro-
science, as the size of the discontinuity of the function e indicates the proportion of neurons that
synchronize at any time. The notion of ‘physical’ solutions together with the existence result
thus permits the continuation of the solution after the synchronization and, therefore, allows the
circumvention of the blow-up phenomenon experienced in [3,7]. In particular, this gives a rig-
orous framework for investigating the long time behavior of synchronization events, which is a
fundamental question in neuroscience. This also raises the question of uniqueness of ‘physical’
solutions that experience a synchronization. We feel that it must be true, but the question is left
open. We refrain from addressing this problem in the paper as it would require additional mate-
rials, including a careful discussion about the shape of the solution after some synchronization
has occurred. We plan to go back to this question in a future work.

We would finally like to remark that variations of the model we present here could well be
of interest in other contexts. In particular in a financial setting, a similar system has indeed been
used to model the default rate of a large portfolio [11,16] where a default occurs when a particle
reaches a threshold. Our model is however more delicate than the one considered there, since
the interactions we consider are more singular and produce the blow-up phenomenon that is not
present in their setting.

The organization of the paper is as follows. In Section 2, we discuss the notion of ‘physical’
solutions to (1.1). The approximating systems are introduced in Section 3, in which we prove
that both the associated particle system and the delayed equation are solvable. The main results
are exposed in Section 4, where we also give a rough presentation of the M1 topology. Proofs are
given in Section 5.

2. The nonlinear equation: background

The central nonlinear equation considered in this article is Eq. (1.1) where X0 < 1 almost
surely, α ∈ (0, 1) and (Wt )t>0 is a standard Brownian motion, defined on some probability space
(Ω , A, P) with respect to a filtration (Ft )t>0 satisfying the usual conditions. The number of
spikes of the equation until time t (inclusive) is given by

Mt :=


k>1

1[0,t](τk), (2.1)

where the sequence of stopping times (τk)k>0 is defined by τ0 = 0 and

τk = inf

t > τk−1 : X t− + α1e(t) > 1


, k > 1. (2.2)

We have here used the notation e(t) := E(Mt ), t > 0, and, for a given càdlàg function
f : [0, ∞) → R, 1 f (t) := f (t) − f (t−), t > 0, which will be fixed throughout the article. The
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pair (2.1)–(2.2) is highly coupled as the definition of (Mt )t>0 relies on its own expectation. This
asks for a careful description of the notion of a solution.

2.1. The right notion of a solution

As noted above, the process M = (Mt )t>0 is intended to count the number of times X =

(X t )t>0 spikes before time t . At any time t such that X t− > 1 −α1e(t), the process M registers
a new spike (pay attention that the presence of the ‘−’ in the condition X t− > 1 − α1e(t)
is crucial for ensuring the càdlàg property of the process). In the case when the mapping e is
continuous at point t , the particle spikes if and only if X t− = 1. It is then reset to 0 exactly after
the spike, that is X t = 0. Whenever e jumps at time t , the jump 1e(t) must be of positive size
so that, because of the self-interaction, X may spike even if X t− < 1. Immediately after a spike
occurs, i.e. when X t− > 1 − α1e(t), X t is equal to X t− − 1 + α1e(t) and may be strictly
positive: it is as if, at time t , the particle is first reset to 0 and then given a kick of magnitude
α1e(t)−(1−X t−). Actually, such a description requires some precaution as the kick could force
the particle to cross the barrier again at the same time t . This might happen if the kick α1e(t) is
greater than or equal to 1. Anyhow, such a phenomenon is expected to be ‘non-physical’: under
the condition α < 1, it does not make any sense to allow the system to spike twice (or more) at
the same time. The argument for this is discussed at length below when making the connection
with the finite particle system. In short, it says that physical spikes occur sequentially.

The fact that the jumps of the process (Mt )t>0 cannot exceed 1 provides some insight into
the sequence of spiking times (τk)k>1. First, given a solution satisfying P(1Mt 6 1) = 1
for all t > 0, the sequence (τk)k>1 must be (strictly) increasing: there is no way for two
spiking times to coincide if labeled by different indices. Moreover, the sequence (τk)k>1 cannot
accumulate in finite time, as otherwise it would contradict the càdlàg nature of (X t )t>0. Indeed,
if τ∞ := limk→+∞ τk < +∞, then Xτ∞− is equal to both limk→+∞ Xτk− and limk→+∞ Xτk ,
which gives a contradiction since Xτk = Xτk− − 1 + α1e(τk) < Xτk− − 1 + α.

It also gives some insight into the jumps of the function e, summarized in the following
proposition.

Proposition 2.1. Assume that the pair (X t , Mt )t>0 of càdlàg processes is such that

(1) (Mt )t>0 has integrable marginal distributions;
(2) for all t > 0, P(1Mt 6 1) = 1;
(3) P-almost surely, (1.1), (2.1) and (2.2) hold true.

Then, for any time t > 0, the jump 1e(t) satisfies

1e(t) = P

X t− + α1e(t) > 1


. (2.3)

Proof. Given some time t > 0, a necessary and sufficient condition for registering a spike (that is
to have Mt − Mt− = 1), is X t− + α1e(t) > 1. Therefore, the probability of observing a spike is
P(X t− + α1e(t) > 1), which proves that 1e(t) = P(1Mt = 1) = P(X t− + α1e(t) > 1). �

Unfortunately, Eq. (2.3) is not sufficient to characterize the size of the jumps. Indeed one can
guess simple examples of distributions for the law of X t− such that the equation (in η)

η = P

X t− + αη > 1


(2.4)

has several solutions. For instance, if X t− has a uniform distribution on [1 − α, 1], then the
equation is satisfied for every η ∈ [0, 1]. In order to determine which solution to (2.4)
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characterizes the size of the jump, we refer again to what a physical solution to (1.1) must be. In
(2.4), αη is intended to stand for the magnitude of the kick felt by the particle. The idea behind
this is that we consider all the ω ∈ Ω for which the kick is large enough to make the particle
cross the barrier. To put it differently there must be enough mass near 1 in the distribution of X t−
to ‘absorb’ the particle from 1 −αη to 1. Implicitly, this requires that there is no gap in the mass.
If, for some η′ < η, the probability P(X t−+αη′ > 1) is (strictly) less than η′, then the kick is not
strong enough to absorb the particle when at distance αη′ from 1. This suggests that, physically,
the magnitude of the kick must be given as the largest magnitude for which ‘absorption’ can
occur. Therefore, a reasonable characterization for 1e(t) is

1e(t) = sup

η > 0 : ∀η′ 6 η, P


X t− + αη′ > 1


> η′


= inf


η > 0 : P


X t− + αη > 1


< η


.

At this stage of the paper, we will keep this characterization as a necessary condition for a ‘phys-
ical’ solution to (1.1). Again, we will justify this choice in a more detailed way below. With this
in mind, we thus make the following precise definition.

Definition 2.2. We call a (physical) solution to (1.1) a pair (X t , Mt )t>0 of càdlàg adapted
processes such that

(1) (Mt )t>0 has integrable marginal distributions;
(2) for all t > 0, P(1Mt 6 1) = 1;
(3) P-almost surely, (1.1), (2.1) and (2.2) hold true;
(4) the discontinuity points of the function e : [0, +∞) ∋ t → E(Mt ) satisfy

1e(t) = inf

η > 0 : P


X t− + αη > 1


< η


.

We underline that a physical solution satisfies (2.3), but that we need (4) to characterize the
size of the jump 1e(t) (and hence avoid non-physical phenomena as discussed in the above
examples—see also the paragraph 3.1.1 ‘Non-physical solutions’). A sufficient condition for a
physical solution is given in Proposition 2.7.

2.2. Standing assumptions and related literature

We will make the following two assumptions throughout the article.

Assumption 1 (Globally Lipschitz Drift). The drift b : (−∞, 1] → R is Lipschitz continuous
such that |b(x) − b(y)| 6 K |x − y|, for all x, y ∈ (−∞, 1].

Assumption 2 (Initial Condition). The initial condition X0 ∈ (−∞, 1 − ε0] almost surely for
some ε0 > 0 and X0 ∈ L p(Ω) for any p > 1.

The assumption that the distribution of the initial condition has support in (−∞, 1 − ε0],
rather than in (−∞, 1), is a slight simplification. It is motivated by technical reasons that will be
specified in the core of the proofs.

As mentioned in the Introduction, the existence and uniqueness of a solution to (1.1) is a
nontrivial problem. It is addressed in [3,7], as well as [5], but in the smaller class of pairs
(X t , Mt )t>0 for which the mapping e : [0, +∞) ∋ t → E(Mt ) is continuous (which renders
the conditions (2) and (4) in Definition 2.2 useless). The following two theorems summarize the
results in [3,7] relevant for the present study.
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Theorem 2.3 ([3]). For every α ∈ (0, 1), it is possible to find an initial condition X0, such that
there is no global solution (global meaning defined on the entire interval [0, +∞)) where the
mapping e is continuously differentiable. Equivalently, it is possible to find an initial condition
X0 such that any solution to (1.1) experiences a blow-up, in the sense that e′(t) = +∞ for some
t > 0.

Theorem 2.4 ([7]). For all initial conditions X0 = x0 < 1, it is possible to find an α0(x0) ∈

(0, 1) such that, whenever α ∈ (0, α0), Eq. (1.1) possesses a unique (pathwise and thus in law)
global solution such that the mapping e is continuously differentiable.

So far existence and uniqueness within the framework of Definition 2.2 are completely
open problems. As mentioned in the Introduction, the purpose of this paper is to provide a
general compactness method for approximating solutions to (1.1), and as a by-product prove the
existence of a solution according to Definition 2.2, for which the map e may be discontinuous.
Inspired by the earlier paper [7], we will make use of the following reformulation of Eq. (1.1).

Remark 2.5 (Reformulation). It will be very convenient throughout the article to sometimes
work instead with a reformulated version of (1.1), which describes the evolution of the process
Z = (Z t )t>0, defined simply by

Z t := X t + Mt , t > 0.

It is then plain to see that Mt can be completely expressed in terms of (Zs)06s6t as

Mt =


sup
06s6t

Zs

+


= sup

06s6t
⌊(Zs)+⌋ , t > 0, (2.5)

where ⌊x⌋ and (x)+ indicate the integer part of x and max{x, 0} respectively, for any x ∈ R.
Indeed, as X t < 1 and (Ms)s>0 is non-decreasing, it is clear that Mt > ⌊(sup06s6t Zs)+⌋.
Conversely, for a given k > 1 such that τk 6 t < τk+1, Xτk > 0, so that Mτk = k 6 Zτk , which
completes the proof of the equality. The reformulated version of (1.1) is then given by

Z t = Z0 +

 t

0
b(Zs − Ms)ds + αE(Mt ) + Wt , t > 0, (2.6)

where Z0(= X0) < 1, and (Mt )t>0 is defined by (2.5). One big advantage of any solution
Z = (Z t )t>0 to (2.6) over a solution X = (X t )t>0 to (1.1) is that discontinuity points of Z are
dictated by those of the deterministic mapping e : [0, +∞) ∋ t → E(Mt ) only.

Conversely, given a solution (Z ′
t , M ′

t )t>0 to (2.6) and (2.5), we recover a (possibly non-
physical) solution to the original equation (1.1) by setting X ′

t = Z ′
t − M ′

t .

2.3. A criterion for a physical solution

The following lemma is an adaptation of [7, Proposition 3.1]. The proof is left to the reader.
It relies on Gronwall’s lemma and (2.5)–(2.6).

Lemma 2.6. Consider a pair (X t , Mt )t>0 of càdlàg adapted processes such that (1) and (3) hold
in Definition 2.2. Then it holds that E[supt∈[0,T ] |Z t |

p
] < +∞ for any p > 1, T > 0.

Next we present a useful application. The reader may skip the proof on a first reading.
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Proposition 2.7. Assume that the pair (X t , Mt )t>0 of càdlàg processes is such that (1), (2) and
(3) hold in Definition 2.2. Assume also that, at any discontinuity time t > 0 of the mapping
e : [0, +∞) ∋ s → E(Ms), it holds that

∀η 6 1e(t), P

X t− > 1 − αη


> η. (2.7)

Then the pair (X t , Mt )t>0 is a physical solution.

Proof. In order to prove that (X t , Mt )t>0 is a physical solution, we must check that, for any
t > 0, there exists a decreasing sequence (ηn)n>1, with 1e(t) as its limit, such that

P

X t− + αηn > 1


< ηn, n > 1.

Together with (2.7), this indeed implies (4) in Definition 2.2.
We argue by contradiction. Fix t > 0 and assume that there exists η0 > 1e(t) such that

∀η ∈ (1e(t), η0], P

X t− > 1 − αη


> η.

Then, recalling from (2.3) that 1e(t) = P(X t− + α1e(t) > 1), we deduce that

∀η ∈ (1e(t), η0], P

1 − αη 6 X t− < 1 − α1e(t)


= P


X t− > 1 − αη


− P


X t− + α1e(t) > 1


> η − 1e(t).

Notice that, on the event {1 −αη 6 X t− < 1 −α1e(t)}, 1Mt = 0, so that X t = X t− +α1e(t).
Therefore, with η′

= η − 1e(t), we obtain, ∀η′
∈ (0, η0 − 1e(t)],

P

X t > 1 − αη′


> P


1 > X t > 1 − αη′, X t− + α1e(t) = X t


= P


1 − αη 6 X t− < 1 − α1e(t), X t− + α1e(t) = X t


= P


1 − αη 6 X t− < 1 − α1e(t)


> η′. (2.8)

To simplify, we let η′

0 := η0 − 1e(t) > 0.
The strategy is then to prove that lim infh↓0[e(t + h) − e(t)] > 0, which will contradict

the right-continuity of e. To do so, we use a stochastic comparison argument. For some small
h ∈ (0, 1), we indeed have

e(t + h) − e(t) > P

∃s ∈ (t, t + h] : Ys− > 1


,

where (Ys)s∈[t,t+h] solves the equation

Ys = X t +

 s

t
b(Yu)du + α(e(s) − e(t)) + Ws − Wt , t 6 s 6 t + h.

Indeed, as long as (Xs)s∈[t,t+h] does not spike, it coincides with (Ys)s∈[t,t+h]. In particular,
if Ms− − Mt = 0 and Ys− > 1, then Xs− > 1 and thus Ms − Mt = 1. Therefore,
{∃s ∈ (t, t + h] : Ys− > 1} ⊂ {Mt+h − Mt > 1}. We then get, for some constant C (the
value of which is allowed to increase from line to line, but will remain independent of h and α),

e(t + h) − e(t)

> P


X t − Ch

1 + sup

s∈[t,t+h]

|Ys |

+ sup

s∈[t,t+h]


α(e(s) − e(t)) + Ws − Wt


> 1


. (2.9)

By a standard application of Gronwall’s lemma (recalling that h can be chosen small enough so
that e(s) − e(t) 6 1 for all s ∈ [t, t + h] as e is right continuous),

|Ys | 6 C

1 + |X t | + sup

s∈[t,t+h]

|Ws − Wt |

, t 6 s 6 t + h,
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so that P(sups∈[t,t+h] |Ys | > 3C, |X t | 6 1) 6 Ch. Since X t > 0 implies |X t | 6 1, we obtain
P(sups∈[t,t+h] |Ys | > 3C, X t > 0) 6 Ch, so that, by (2.9),

e(t + h) − e(t)

> P

X t − Ch(1 + 3C) + sup

s∈[t,t+h]


α(e(s) − e(t)) +Ws − Wt


> 1, sup

s∈[t,t+h]

|Ys | 6 3C


> P


X t − Ch + sup
s∈[t,t+h]


α(e(s) − e(t)) + Ws − Wt


> 1, X t > 0


− Ch,

where we have adjusted C .
Assume now that there exists c > 0 such that α(e(r) − e(t)) > c

√
r − t for all r ∈ [t, t + h],

which is (at least) true with c = 0. Then, by the above bound, we get

e(t + h) − e(t) >


+∞

0
P

X t − Ch + u > 1, X t > 0


dν(u) − Ch, (2.10)

where ν denotes the law of the supremum of c
√

s + Ws over s ∈ [0, h]. Notice that u 6 1
and X t − Ch + u > 1 implies X t > 0. Assuming without any loss of generality that
αη′

0 = α(η0 − 1e(t)) 6 1, we deduce from (2.8) that

e(t + h) − e(t) >
 αη′

0

Ch

u − Ch

α
dν(u) − Ch >

1
α

 αη′

0

Ch
udν(u) − 2

Ch

α
, (2.11)

the constant C being independent of c. Recall now that c
√

h 6 α(e(t + h) − e(t)) 6 αη′

0/2 for
h small enough as e is right continuous. Therefore, using the fact that the tail of sups∈[0,h] Ws is
Gaussian, we obtain

+∞

αη′

0

udν(u) = E


sup
s∈[0,h]


c
√

s + Ws

1{ sup

s∈[0,h]

(c
√

s+Ws )>αη′

0}


6 E


sup

s∈[0,h]


αη′

0

2
+ Ws


1{ sup

s∈[0,h]

Ws>αη′

0/2}


6 Ch.

Moreover, quite obviously,
 Ch

0 udν(u) 6 Ch. Finally, by (2.11), with C independent of c,

α(e(t + h) − e(t)) >


+∞

0
udν(u) − Ch = E


sup

s∈[0,h]


c
√

s + Ws


− Ch

= h1/2


E


sup
s∈[0,1]


c
√

s + Ws


− Ch1/2


,

the last equality following from Brownian scaling. A similar inequality can be proved for any
r ∈ [t, t + h], that is α(e(r) − e(t)) > f (c)

√
r − t , where

f (c) = E


sup
s∈[0,1]


c
√

s + Ws


− C
√

h.

We deduce that, if the inequality α(e(r) − e(t)) > c
√

r − t holds for all r ∈ [t, t + h], then
α(e(r) − e(t)) > f (c)

√
r − t for all r ∈ [t, t + h]. Letting c0 = 0 and cn+1 = f (cn) for all

n > 0, we deduce that α(e(r) − e(t)) > cn
√

r − t for all r ∈ [t, t + h] and all n > 0.
Clearly, we can choose h small enough so that c1 > 0 = c0. Since f is non-decreasing, we

deduce that the sequence (cn)n>0 is non-decreasing. As e is locally bounded, the sequence has a
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finite limit c∗. Then, as f is obviously Lipschitz continuous, we have c∗
= f (c∗), that is,

c∗
= E


sup

s∈[0,1]

(c∗
√

s + Ws)


− C

√
h

= E


sup
s∈[0,1]

(c∗
√

s + Ws) − (c∗
+ W1)


+ c∗

− C
√

h.

Therefore, by time reversal,

C
√

h = E


sup
s∈[0,1]

(c∗
√

s + Ws) − (c∗
+ W1)


> E


sup

s∈[0,1]


c∗(s − 1) + Ws − W1


> E


sup

s∈[0,1]

(−c∗s + Ws)


,

which says that c∗ must be large when h is small. In particular, we can assume h small enough
so that c∗ > 1. Then,

C
√

h > E


sup
s∈[0,(c∗)−2]

(−c∗s + Ws)


=

1
c∗

E


sup
s∈[0,1]

(−s + Ws)


,

which proves that, for h small enough, c∗
√

h > β, for some constant β > 0. This implies
lim infh↓0[e(t + h) − e(t)] > β/α, which is a contradiction. �

3. Two candidates for approximate solutions

In this section we present two alternative systems, which are candidates to be approximations
of the nonlinear equation (1.1).

3.1. The particle system approximation

As noted above, one of the main motivations for studying (1.1) is the idea that it describes
the behavior of a very large number of interacting spiking neurons in a fully connected network,
each evolving according to the classical noisy integrate-and-fire model. More precisely, this idea
translates into the fact that we would like (1.1) to describe the behavior of the particle system

X i,N
t = X i,N

0 +

 t

0
b

X i,N

s


ds +

α

N

N
j=1

M j,N
t + W i

t − M i,N
t

X i,N
0

d
= X0 independent and identically distributed,

(3.1)

for i ∈ {1, . . . , N } and t > 0 when N is large. Here (X i,N
t )t>0 represents the electrical

potential of the i th neuron, X0 satisfies standing Assumption 2, (W i
t )t>0 are independent standard

Brownian motions, and now (M i,N
t )t>0 is the process that counts the number of times the i th

neuron has ‘spiked’ up until time t . Precisely, we define for i ∈ {1, . . . , N } and t > 0

M i,N
t :=


k>1

1[0,t](τ
i,N
k ),
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where τ
i,N
0 = 0 and

τ
i,N
k := inf


t > τ

i,N
k−1 : X i,N

t− +
α

N

N
j=1


M j,N

t − M j,N
t−


> 1


, k > 1, (3.2)

which should be compared with (2.2) (and which is as involved as (2.2) since the definitions of
τ

i,N
k and M i,N

t are fully coupled). The idea is that the system spikes if one of the particles reaches
the threshold 1, but this can cause other particles to instantaneously spike through the empirical
mean type interaction. However, exactly as in the previous section, where we defined a solution
to (1.1), we must be careful about what we mean by a ‘physical’ solution to the particle system
(3.1). This is because there may in fact exist multiple solutions to (3.1) and (3.2) (see section
on ‘non-physical’ solutions below). The ‘physical’ solution we will identify is in fact the one
in which we require the instantaneous spikes induced at a spike time to be ordered in a natural
way, the first spike occurring when one of the particles hits the barrier. See below for a precise
description. At time t = τ

i,N
k , X i,N

t = X i,N
t− −1+ (α/N )

N
j=1(M j,N

t − M j,N
t− ). Again, it should

also be noted that the presence of the ‘−’ in X i,N
t− in (3.2) ensures that M i,N and X i,N are càdlàg.

Anyway, the point is that the system (3.1) is mathematically equivalent to the one used by
Ostojic, Brunel and Hakim in [14] to describe the behavior of a finite network of neurons, and
that (1.1) is a good guess as to what happens in the limit as N → ∞. Indeed, the extremely
well developed theory of mean-field/McKean–Vlasov equations provides many rigorous results
about when an individual particle in a system that interacts through an empirical mean becomes
independent in the limit as N → ∞, and then behaves according to a distribution dependent
(McKean–Vlasov) limit equation. However, despite the use of such a result in [14], we argue that
the current situation is quite different to any that has been previously studied in the literature due
to the nature of the nonlinearity. Thus, one of the aims of this paper is to provide a complete
rigorous proof of this convergence.

Remark 3.1. The reader may argue that it makes more sense physically to replace the interaction
term N−1N

j=1 M j,N
t in (3.1) by (N − 1)−1

j≠i M j,N
t , so that if a single neuron spikes at

time t , it is reset from the threshold 1 to 0 (rather than to α/N ). However, we choose to keep
the stated interaction term since it renders the analysis notationally simpler, while remaining
mathematically equivalent in the limit N → ∞.

Remark 3.2 (Reformulation). Following Remark 2.5, it will be convenient to reformulate the
particle system (3.1) in terms of the processes (Z i,N

t )t>0, defined by

Z i,N
t := X i,N

t + M i,N
t , t > 0.

Then, similarly to (2.6), the reformulated system is given by

Z i,N
t = Z i,N

0 +

 t

0
b


Z i,N
s − M i,N

s


ds +

α

N

N
j=1

M j,N
t + W i

t ,

M i,N
t =


sup

s∈[0,t]
Z i,N

s


+


= sup

s∈[0,t]


Z i,N

s


+


,

(3.3)

for all t > 0 and i ∈ {1, . . . , N }, where Z i,N
0 = X i,N

0
d
= X0 are i.i.d. and X0 satisfies

Assumption 2. We will refer to (3.3) as the Z -particle system (and the original system (3.1)
as the X -particle system).
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Notation. In the sequel, we will use the convenient notation

ēN (t) =
1
N

N
i=1

M i,N
t , t > 0. (3.4)

We will also often omit the superscript N in the notations X i,N , Z i,N , M i,N and τ
i,N
k for

simplicity. When no confusion is possible, we thus write X i , Z i , M i and τ i
k instead.

3.1.1. Non-physical solutions
As mentioned already, the particle system defined above is not well-posed, as it may admit a

large number of solutions when α is close to 1.
Actually, uniqueness may fail for several reasons. A first way for constructing different so-

lutions is to allow one particle to admit several spikes at the same time. Indeed, consider the
Z -system (3.3) with b ≡ 0 and suppose that α has the form α = 1 − 1/(2m), for some integer
m > 1. Suppose moreover that, at some time t , it holds that (the system being initialized at
Z i

0 = 0, i ∈ {1, . . . , N })

∀i ∈ {1, . . . , N }, Z i
t− = 1 − δi , M i

t− = 0,

with δ1 = 0 and δi ∈ ((i − 2)/(4N ), (i − 1)/(4N )) for i = 2, . . . , N , which, by the support
theorem for Brownian motion, happens with positive probability. Then, the system is to spike
at time t since the first particle reaches the barrier, but the spike procedure may be arbitrarily
chosen. Indeed, setting arbitrarily M i

t = ℓ > 1, for all i ∈ {1, . . . , N }, the equation for Z i gives

Z i
t = 1 − δi +

α

N

N
i=1

ℓ = ℓ + 1 −
ℓ

2m
− δi ∈


ℓ +

3
4

−
ℓ

2m
, ℓ + 1


,

for all i ∈ {1, . . . , N }. Then, if ℓ/m 6 1, ⌊(sup06s6t Z i
s)+⌋ = ℓ = M i

t , so that the second rela-
tionship in (3.3) is satisfied. Since ℓ 6 m is arbitrary, the system (3.3) clearly does not possess
a unique solution. According to the discussion below, cases where ℓ > 2 will be considered as
non-physical.

We give here a second example where uniqueness fails even if the property P(1M i
t 6 1) = 1

is fulfilled. We present it with N = 3 particles but it could be generalized in an obvious way.
Suppose that at some (random) time t , M1

t− = M2
t− = M3

t− = 0, Z1
t− = 1, Z2

t−, Z3
t− ∈

(1 − 2α/3, 1 − α/3). We can then make explicit two solutions to (3.3): a first one where only
particle 1 spikes, that is M1

t = 1 and M2
t = M3

t = 0, and a second one where all the particles
spike at time t , that is M1

t = M2
t = M3

t = 1. In this example, the second case will be said to be
non-physical. Intuitively, particle 1 is indeed intended to spike ‘first’. After particle 1 has spiked,
particles 2 and 3 are both strictly below 1, which should prevent them from spiking immediately.

3.1.2. Physical solutions
In view of the above discussion, the problem is that the ordering of the spike cascade is not

determined i.e. how spiking neurons instantaneously cause others to spike. We now argue that
in fact there is a natural way of ordering this cascade, which then leads to unique ‘physical’
solutions.

To this end, consider the X -particle system (3.1) and define the set

Γ0 := {i ∈ {1, . . . , N } : X i
t− = 1}.
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We say t is a spike time when Γ0 ≠ ∅. At a spike time t , it is certain that all the neurons in Γ0
spike. It then makes sense to introduce a second time axis, called the cascade time axis at spike
time t , and to say that, along this axis, neurons in Γ0 are the first ones to spike.

Then it is natural to determine exactly which other neurons spike given that those in Γ0 have
already spiked. Since the system says that all the other neurons should feel the effect of the ones
in Γ0 spiking by receiving a kick to their potential of size α|Γ0|/N , this in turn means that all the
neurons in the set

Γ1 :=


i ∈ {1, . . . , N } \ Γ0 : X i

t− + α
|Γ0|

N
> 1


,

now have potentials that are instantaneously above the threshold, and so should also spike. Thus
we are now sure that all the neurons in Γ0 ∪ Γ1 spike at t . Along the cascade time axis at time t ,
the neurons in Γ1 are said to spike after the neurons in Γ0. Similarly, it is then natural to determine
which other neurons spike, given that those in Γ0 ∪ Γ1 have already spiked. According to the
definition of the system, this is exactly those in the set

Γ2 :=


i ∈ {1, . . . , N } \ Γ0 ∪ Γ1 : X i

t− + α
|Γ0 ∪ Γ1|

N
> 1


.

By defining sequentially for general k ∈ N0

Γk+1 :=


i ∈ {1, . . . , N } \ Γ0 ∪ · · · ∪ Γk : X i

t− + α
|Γ0 ∪ · · · ∪ Γk |

N
> 1


, (3.5)

the natural cascade is continued in this way until Γl = ∅ for some l ∈ {1, . . . , N }. Note that
this must happen, since by definition ΓN = ∅ (if ΓN ≠ ∅, all the sets Γ0, . . . ,ΓN−1 contain at
least one element; since all of them are disjoint, we obtain a contradiction). Along the cascade
time axis at time t , neurons in Γk+1 (k + 1 < ℓ) spike after neurons in Γ0 ∪ · · · ∪ Γk . We can
then define Γ :=


06k6N−1 Γk , which is exactly the set of all neurons that spike at time t ,

according the natural ordering of the spike cascade (see also [6]). Having determined this, it is
then straightforward to perform the final update of all the neurons in the network by setting

X i
t = X i

t− +
α|Γ |

N
if i ∉ Γ , X i

t = X i
t− +

α|Γ |

N
− 1 if i ∈ Γ . (3.6)

Note that now X i
t < 1 for all i ∈ {1, . . . , N }. Indeed, if i ∉ Γ , then i must be such that

X i
t− +

α|Γ |

N
< 1 ⇒ X i

t < 1.

On the other hand, if i ∈ Γ then, since |Γ | 6 N and α < 1,

X i
t = X i

t− +
α|Γ |

N
− 1 6 X i

t− + α − 1 < X i
t− 6 1.

The above idea is completed by the following lemma.

Lemma 3.3. There exists a unique solution to the particle system (3.1) such that, whenever t is
a spike time, the entire system jumps according to

X i
t = X i

t− +
α|Γ |

N
if i ∉ Γ , X i

t = X i
t− +

α|Γ |

N
− 1 if i ∈ Γ

where Γ ⊂ {1, . . . , N } is as above. Such a solution will be known as a ‘physical’ solution.
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Proof. It is clear that in between spike times of the system there is no problem of uniqueness
(since the particles only interact at spike times). Therefore, since we have specified a unique
jumping procedure, any solution must be unique.

The proof of existence is more challenging. The issue is to prove that spike times of the system
do not accumulate. We feel it is more convenient to give it at this stage of the paper, but the reader
may skip ahead on a first reading.

We in fact prove the existence of a solution to the associated Z -system (3.3) (this is completely
equivalent to the existence of a solution to the original system (3.1)) with the given spike cascade.
For any 1 6 i 6 N , we define (Y 1,i

t )t>0 as the solution of the SDE

Y 1,i
t = Z i

0 +

 t

0
b

Y 1,i

s


ds + W i

t , t > 0.

We set τ 1,i
= inf{t > 0 : Y 1,i

t > 1}, 1 6 i 6 N . Clearly, we have 0 < τ 1,i < ∞ (a.s.), so that
0 < inf16i6N (τ 1,i ) < ∞ (a.s.). For t ∈ [0, τ 1), with τ 1

= inf16i6N (τ 1,i ), we set

Z i
t = Y 1,i

t , M i
t = 0, 0 6 t < τ 1, 1 6 i 6 N .

At time τ 1, there exists i1
∈ {1, . . . , N } such that τ 1

= τ 1,i1
. We then denote by Γ (1) the set of

particles that spike at τ 1 according to the physical procedure summarized in (3.6) (pay attention
that Γ (1) stands for the Γ in (3.6) and not for Γ1: the positions of the indices are different).
Then, according to the cascade, we know that the kick that the particle Z i receives at time τ 1 is
α|Γ (1)

|/N , so that

Z i
τ 1 = Y 1,i

τ 1 + α
|Γ (1)

|

N
, 1 6 i 6 N .

For a coordinate i ∈ Γ (1), it holds M i
τ 1 = 1. Since Z i

τ 1−
6 1 and the kick received by i is less

than α, it holds that Z i
τ 1 6 1 + α < M i

τ 1 + 1. Moreover, we must also have Z i
τ 1 > 1 so that

M i
τ 1 6 Z i

τ 1 < M i
τ 1 + 1, that is ⌊Z i

τ 1⌋ = M i
τ 1 . Since Z i

τ 1 = sups∈[0,τ 1] Z i
s = (sups∈[0,τ 1] Z i

s)+,

we deduce M i
τ 1 = ⌊(sups∈[0,τ 1] Z i

s)+⌋. On the other hand, for a coordinate i ∉ Γ (1), it holds that

M i
τ 1 = M i

τ 1−
= 0, and sups∈[0,τ 1] Z i

s < 1, so that M i
τ 1 = ⌊(sups∈[0,τ 1] Z i

s)+⌋ as well.

For any 1 6 i 6 N , we then define (Y 2,i
t )t>0 as the solution of the SDE

Y 2,i
t = Z i

τ 1 +

 t

τ 1
b

Y 2,i

s − M i
τ 1


ds +


W i

t − W i
τ 1


, t > τ 1.

Define then τ 2,i
= inf{t > τ 1

: Y 2,i
t > M i

τ 1 + 1}, 1 6 i 6 N . Since Z i
τ 1 < M i

τ 1 + 1, we have

τ 2,i > τ 1. Then, with τ 2
= inf16i6N (τ 2,i ), we set

Z i
t = Y 2,i

t , τ 1 < t < τ 2.

The spike procedure at time τ 2 is defined according to the process summarized in (3.6), the set
of particles jumping at τ 2 being denoted by Γ (2). By iteration, we build an increasing sequence
of stopping times (τ k)k>0 (with τ 0

= 0) such that

Z i
t = Z i

0 +

 t

0
b

Z i

s − M i
τ k


ds +

α

N

N
j=1

M j
τ k + W i

t , (3.7)
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for 1 6 i 6 N and τ k < t < τ k+1, k > 0, with τ k+1
= inf16i6N τ k+1,i , where τ k+1,i

= inf{t > τ k
: Z i

t− > M i
τ k + 1}, 1 6 i 6 N . The set of particles that jump at τ k is then denoted

by Γ (k). With such a construction, we notice that

M i
t =


sup

s∈[0,t]
Z i

s


+


, (3.8)

for 1 6 i 6 N and t 6 τ k , for any k > 1. Indeed, at time τ k , the proof is the same as at time τ 1.
At any time t ∈ (τ k, τ k+1), the equality follows from the fact that Z i

t < M i
τ k + 1.

To finish with the proof of existence, we prove that τ k
→ +∞ as k → +∞. Noting from

(3.8) that the drift part in (3.7) can be bounded by |b(Z i
s − M i

s )| 6 C(1 + sup06r6s |Z i
r |), for

some constant C > 0, and taking the empirical mean over i ∈ {1, . . . , N }, we deduce that, for
t 6 τ k , for k > 1,

1 − α

N

N
i=1

sup
s∈[0,t]

|Z i
s | 6

1
N

N
i=1


|X i

0| + sup
s∈[0,t]

|W i
s |

+ C

 t

0


1 +

1
N

N
i=1

sup
r∈[0,s]

|Z i
r |


ds.

We deduce from Gronwall’s lemma that, for any 1 6 i 6 N and t 6 τ k , for k > 1,

1
N

N
i=1

sup
s∈[0,t]

|Z i
s | 6 C exp(Ct)


t +

1
N

N
i=1


|X i

0| + sup
s∈[0,t]

|W i
s |


,

for a possibly new value of C . By (3.8), the same bound holds for N−1N
i=1 M i

t . Going back to
(3.7) and using Gronwall’s lemma again, we deduce, that for any T > 0, there exists a constant
CT > 0 such that, for any 1 6 i 6 N and t 6 τ k

∧ T , for k > 1,

sup
s∈[0,t]

|Z i
s | 6 CT


1 + |X i

0| + sup
s∈[0,t]

|W i
s | +

1
N

N
j=1


|X j

0 | + sup
s∈[0,t]

|W j
s |


. (3.9)

Again, by (3.8), the same bound holds for M i
t . In particular, if τ k 6 T ,

sup
i∈{1,...,N }

M i
τ k 6 CT


1 + sup

i∈{1,...,N }

|X i
0| + sup

i∈{1,...,N }

sup
s∈[0,T ]

|W i
s |


.

Applying the above inequality with Nk instead of k, we notice that supi∈{1,...,N } M i
τ Nk is larger

than k (as, at time τ Nk , there have been Nk spikes in the system, so that at least one of the
particles has spiked at least k times). Therefore, if τ Nk 6 T , then

k 6 CT


1 + sup

i∈{1,...,N }

|X i
0| + sup

i∈{1,...,N }

sup
s∈[0,T ]

|W i
s |


.

In particular, the sequence (τ k)k>1 cannot have a finite limit T , as otherwise, passing to the limit,
we would get supi∈{1,...,N } |X i

0| + supi∈{1,...,N } sups∈[0,T ] |W
i
s | = +∞. �

Physical solutions to the particle system satisfy a discrete version of (4) in Definition 2.2,
which motivates the notion of physical solutions to the original equation (1.1):

Proposition 3.4. For a physical solution as in Lemma 3.3, it holds that, for all t > 0,

N1ēN (t) =

N
i=1


M i

t − M i
t−


= inf


k ∈ {0, . . . , N } :

N
i=1

1
X i

t−>1−
αk
N

 6 k


. (3.10)
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Proof. We use the description of a physical solution. We know that the left-hand side in (3.10) is
equal to |Γ | by definition of Γ in paragraph 3.1.2. Clearly |Γ | =

l
k=0 |Γk | where l is the largest

integer such that Γl ≠ ∅. Then, for k ∈ {|Γ0 ∪ Γ1 ∪ · · · ∪ Γ j−1|, . . . , |Γ0 ∪ Γ1 ∪ · · · ∪ Γ j | − 1}

and j ∈ {1, . . . , l} (or k ∈ {0, . . . , |Γ0| − 1} if j = 0),

N
i=1

1
X i

t−>1−
αk
N

 >
N

i=1

1
X i

t−>1−
α|Γ0∪Γ1∪···∪Γ j−1|

N

 =

j
ℓ=0

|Γℓ| > k,

the equality following from (3.5), proving that the right-hand side in (3.10) is greater
than or equal to |Γ |. On the other hand, by construction,

N
i=1 1

{X i
t−>1−

α
N |Γ |}

6 |Γ | +
i ∉Γ 1

{X i
t−>1−

α
N |Γ |}

, but the last term in the right hand-side is zero. This shows that the right-
hand side in (3.10) is less than or equal to |Γ |. �

3.2. The system with delays

In this section we introduce a second approximation of the nonlinear system (1.1), by intro-
ducing delays. As we will see below (Proposition 3.5), the advantage of doing this is that the
resulting system has a global in time solution, for which the mean-firing rate e′ remains finite for
any value of the parameter α and initial condition (recall that this is in contrast to the system with-
out delays (1.1) which may ‘blow-up’ in finite time for some parameter values: see Theorem 2.3).

The point is that the introduction of a delay prevents a macroscopic proportion of the neurons
all spiking at the same time. Intuitively, this is because, even if other neurons are close enough
to the threshold to be induced to spike as a result of the first neuron spiking, this will occur only
after a positive amount of time.

Given that the delayed system does not experience a blow-up and has a global solution (see
below), part of our work is dedicated to the analysis of the solutions when the delay converges to
zero (see Section 4.2). However, the purpose of this current subsection is simply to introduce the
system with delays and to check well-posedness. To this end, let δ > 0 and consider the equation

X δ
t = X0 +

 t

0
b(X δ

s )ds + αeδ(t) + Wt − Mδ
t , t > 0. (3.11)

Here, similarly to above, Mδ
t counts the number of time (X δ

s )s∈[0,t] reaches the threshold.
Precisely, we write

Mδ
t =


k>1

1[0,t](τ
δ
k ), (3.12)

where τ δ
0 = 0 and, for k > 1,

τ δ
k = inf


t > τ δ

k−1 : X δ
t− + α1eδ(t) > 1


, with eδ(t) :=


0 if t 6 δ

E(Mδ
t−δ) if t > δ.

(3.13)

We write the equation in this way, even though, as the following proposition shows, the delay
guarantees that there is a unique solution to (3.11) such that eδ is always continuously differ-
entiable (so that 1eδ ≡ 0). This makes any notion of ‘physical’ solutions unnecessary for the
delayed equation. As in Section 2, we take α ∈ (0, 1) and (Wt )t>0 a standard real-valued Brow-
nian motion, and we assume that Assumptions 1 and 2 are in force.
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Proposition 3.5. Let T > 0 and α ∈ (0, 1). Then there exists a unique càdlàg process
(X δ

t , Mδ
t )t∈[0,T ], such that (Mδ

t )t>0 has integrable marginal distributions, satisfying (3.11) and
(3.12). The resulting map eδ is continuously differentiable.

Proof. Step 1: Solution on [0, δ]. For t 6 δ (3.11) reads

X δ
t = X0 +

 t

0
b(X δ

s )ds + Wt − Mδ
t . (3.14)

Clearly, this has a unique strong solution for t 6 δ (there is no difficult nonlinear term).
Moreover, by [7, Proposition 4.5], we have that [0, δ] ∋ t → E(Mδ

t ) is continuously
differentiable, and moreover

d

dt
E(Mδ

t ) = −
1
2

 t

0
∂y pδ

0(t − s, 1)
d

ds
E(Mδ

s )ds −
1
2
∂y pδ

X0
(t, 1), t ∈ [0, δ], (3.15)

where, for a random variable χ0, pδ
χ0

represents the density of the process X δ killed at 1 with
X δ

0 = χ0, namely pδ
χ0

(t, y)dy := P(X δ
t ∈ dy, sups∈[0,t] X δ

s < 1|X δ
0 = χ0). Note that the shift

by s that is required in [7, Proposition 4.5] is not necessary here, as (3.14) is time homogeneous.
By continuous differentiability, 0 6 supt∈[0,δ](d/dt)E(Mδ

t ) < +∞.
Step 2: Solution on [0, 2δ]. For t 6 2δ (3.11) reads

X δ
t = X0 +

 t

0
b(X δ

s )ds + αeδ(t) + Wt − Mδ
t , (3.16)

where eδ(t) = 0 on [0, δ] and E(Mδ
t−δ) on [δ, 2δ].

We now claim that [0, 2δ] ∋ t → eδ(t) is continuously differentiable. This is clearly the
case on [0, δ], and on [δ, 2δ] by Step 1. It remains to check that it is also true at t = δ, i.e.
limt↓δ e′

δ(t) = limt↓0[d/dt]E(Mδ
t ) = 0. This follows from (3.15), since limt↓0 ∂y pδ

χ0
(t, 1) = 0

for χ0 satisfying Assumption 2, see [7, Lemma 4.2]. In particular, 0 6 supt∈[0,2δ](d/dt)E(Mδ
t ) <

+∞. By [7, Section 3], Eq. (3.16) has a unique strong solution.
Moreover, since [0, 2δ] ∋ t → eδ(t) is continuously differentiable, we can apply [7,

Proposition 4.5] on this new interval to see that [0, 2δ] ∋ t → E(Mδ
t ) is continuously

differentiable.
Step 3: Solution on [0, 3δ]: We replicate Step 2 by proving that [0, 3δ] ∋ t → eδ(t) is

continuously differentiable. Indeed, [δ, 3δ] ∋ t → eδ(t) is continuously differentiable by Step 2,
and eδ(t) is equal to 0 on [0, δ], but, as already noted, [d/dt]|t=δ+eδ(t) = 0, so that the ‘join’ is
continuously differentiable.

Conclusion: Let T > 0. One may iterate this procedure up until Step ⌈T/δ⌉. This will yield
the fact that there exists a unique strong solution to the system given by (3.11) and (3.12) up until
time T , such that [0, T ] ∋ t → E(Mδ

t ) is continuously differentiable. �

4. Results

Given the setup described in the previous sections, we are now in a position to present our
main results. The objective is to pass to the limit as N → ∞ in the particle system described
in Section 3.1 and as δ → 0 in the delayed equation described in Section 3.2, deriving as a
by-product a new global in time solvability result for the original model (1.1) including solutions
that blow up.



F. Delarue et al. / Stochastic Processes and their Applications 125 (2015) 2451–2492 2467

With this in mind, the thrust of the paper is to identify a very convenient topology for tackling
both problems. Basically, the strategy is to make use of the so-called M1 Skorohod topology,
which is different from the more famous J1 topology and which turns out to be much more
adapted to the problem at hand. The reason is that relative compactness for the M1 topology is
indeed easily checked for sets of monotone càdlàg functions, which exactly fits the nature of the
process (Mt )t>0 in (1.1).

4.1. The M1 topology

We first supply the reader with some reminders about the M1 topology. For a complete
overview, we refer to the original paper by Skorohod [15] and to the monograph by Whitt [19].
We denote by D̂ ([0, T ], R) the space of càdlàg functions from [0, T ] to R that are left-continuous
at time T .2 For a function f ∈ D̂ ([0, T ], R), we denote by G f the completed graph of f i.e.

G f := {(x, t) ∈ R × [0, T ] : x ∈ [ f (t−), f (t)]} ,

where [ f (t−), f (t)] stands for the non-ordered segment between f (t−) and f (t) ( f (t−) could
be bigger than f (t)). We define an order on G f in the following way: for (x1, t1), (x2, t2) ∈ G f ,
we say that (x1, t1) 6 (x2, t2) if either t1 < t2, or t1 = t2 and | f (t1−) − x1| 6 | f (t1−) − x2|. In
other words this is the natural order when the graph G f is traced out from left to right. We then
define a parametric representation of G f as being a continuous function (u, r) that maps [0, T ]

onto G f that is non-decreasing with respect to the order on G f defined above i.e.

(u, r) : [0, T ] ∋ t → (u(t), r(t)) ∈ G f ,

where u ∈ C([0, T ], R), r ∈ C([0, T ], R). We define R f as the set of all parametric
representations of G f . A parametric representation of G f is thus a way of tracing it out ‘without
going back on oneself’ with respect to the natural order of the graph.

For f1, f2 ∈ D̂ ([0, T ], R) we finally define the M1 distance between them as

dM1( f1, f2) := inf
(u j ,r j )∈R f j

j=1,2

{∥u1 − u2∥ ∨ ∥r1 − r2∥} ,

where ∥ ·∥ is the usual supremum norm on C([0, T ], R). In order to characterize the convergence
in M1, we define for f ∈ D̂ ([0, T ], R) , t ∈ [0, T ] and δ > 0,

wT ( f, t, δ) := sup
0∨(t−δ)6t1<t2<t36T ∧(t+δ)

 f (t2) − [ f (t1), f (t3)]
 (4.1)

where f (t2) − [ f (t1), f (t3)]
 = inf

θ∈[0,1]

θ f (t1) + (1 − θ) f (t3) − f (t2)


is the distance between f (t2) and the set [ f (t1), f (t3)]. In particular, if a function
f ∈ D̂ ([0, T ], R) is monotone (non-increasing or non-decreasing), then wT ( f, t, δ) = 0.

From [19, Theorems 12.5.1, 12.4.1, 12.12.2], we have:

2 The condition forcing elements in D̂([0, T ], R) to be left-continuous at the terminal time is implicitly done in
Whitt [19]: in Theorem 12.2.2 therein, the piecewise constant functions used for approximating càdlàg functions on
[0, T ] are precisely assumed to be continuous at terminal time T .
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Theorem 4.1. A sequence of functions ( fn)n>1 ⊂ D̂ ([0, T ], R) converges to some
f ∈ D̂ ([0, T ], R) in the M1 topology if and only if fn(t) → f (t) for each t in a dense subset
of full Lebesgue measure of [0, T ] that includes 0 and T , and

lim
δ→0

lim sup
n→∞

sup
t∈[0,T ]

wT ( fn, t, δ) = 0.

Theorem 4.2. Suppose that the sequence ( fn)n>1 ⊂ D̂ ([0, T ], R) converges to some
f ∈ D̂ ([0, T ], R) in the M1 topology. Then for all points t ∈ [0, T ] at which f is continuous it
holds that

lim
δ→0

lim sup
n→∞

sup
s∈[0∨(t−δ),T ∧(t+δ)]

| fn(s) − f (s)| = 0.

In particular, if f is continuous on the entire interval [0, T ], then the convergence of ( fn)n>1
to f is uniform. Moreover, if fn is monotone for each n, then fn → f in M1 if and only if
fn(t) → f (t) for all t in a dense subset of full Lebesgue measure of [0, T ] including 0 and T .

Theorem 4.3. A subset A of D̂ ([0, T ], R) has compact closure in the M1 topology if and only
if sup f ∈A ∥ f ∥ < ∞ and

lim
δ→0

sup
f ∈A


sup

t∈[0,T ]

wT ( f, t, δ)


∨ vT ( f, 0, δ) ∨ vT ( f, T, δ)


= 0

where vT ( f, t, δ) := sup0∨(t−δ)6t16t26T ∧(t+δ)

 f (t1) − f (t2)
.

Finally, we mention that D̂([0, T ], R), endowed with M1, is Polish, and that the Borel σ -field
coincides with the σ -field generated by the evaluation mappings (see [18, p. 8]). This guarantees
that the law of a process over D̂([0, T ], R), endowed with M1, is characterized by its finite-
dimensional distributions. The Polish property renders the Skorohod representation theorem licit,
both on D̂([0, T ], R) and on P(D̂([0, T ], R)), which is defined as the set of probability measures
on D̂([0, T ], R) (see [2, Theorem 6.7] and [9, Chapter III, Theorem 1.7]). It also renders the
Prohorov theorem licit (see [2, Chapter 1, Section 5]): we let the reader derive the tightness
criterion from Theorem 4.3 (see [19, Theorem 12.12.3]).

4.2. Existence of weak solutions with simultaneous spikes

The purpose of this Section is to state two results showing that the existence of a solution to
(1.1) can be deduced by extracting weakly convergent subsequences either along the distributions
of the particle systems (as the number of particles N tends to +∞), or along the distributions of
the delayed systems (as the delay tends to 0).

Theorem 4.4. Given T > 0 and the (physical) solution ((Z i,N
t )t∈[0,T ])i=1,...,N to the particle

system (3.3), consider the extended system

Z i,N
t :=


Z i,N

t , if t 6 T,

W i
t − W i

T + Z i,N
T , if t ∈ (T, T + 1],

(4.2)

for i ∈ {i, . . . , N }. Define the empirical measure µ̄N :=
1
N

N
i=1 Dirac(Z i,N ), which reads as

a random variable with values in P(D̂([0, T + 1], R)). Then, denoting by ΠN the law of µ̄N ,
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the family (ΠN )N>1 is tight in P(P(D̂([0, T + 1], R))) endowed with the topology of weak
convergence inherited from the M1 topology.

Moreover, for any weak limit Π∞, for Π∞-almost every measure µ ∈ P(D̂([0, T + 1], R)),
the canonical process (zt )t∈[0,T +1] on D̂([0, T + 1], R) generates, under µ, a physical solution
to (2.6), and hence to (1.1), up until time T i.e.

(1) under µ, z0 is distributed according to the law of X0;
(2) under µ, (zt − z0 −

 t
0 b(zs − ms)ds − α⟨µ, mt ⟩)t∈[0,T ) is a Brownian motion, where

mt = ⌊(sup06s6t zs)+⌋ and ⟨µ, mt ⟩ denotes the expectation of mt under µ (⟨·, ·⟩ is the
duality bracket between a probability measure and a measurable function);

(3) under µ, (1), (2) and (4) in Definition 2.2 are fulfilled.

Remark 4.5. In the usual terminology of SDEs, the solution to (2.6) as given by Theorem 4.4 is
weak as the Brownian motion is part of the solution.

The extension of the Z -processes in (4.2) to the interval (T, T + 1] permits to get for free
uniform bounds on the modulus of continuity of the particles at the final time T + 1, which is
a requirement for tightness for the M1 topology (see Lemma 5.4). As recalled in Footnote 2 on
p. 2467, elements of D̂([0, S], R), for S > 0, are assumed to be left-continuous at S, which
requires bounds on the modulus of continuity at S when addressing questions of convergence
or compactness. With S = T , we see that Z i,N (or equivalently Z i,N ) may not be continuous
at S, but with S = T + 1, Z i,N is obviously continuous at S, with the modulus of continuity
at S being controlled by the Brownian part only. Although rather arbitrary, the reason why we
include Brownian oscillations in the definition of Z i,N on [T, T + 1] will be made clear in
Lemma 5.6. Basically, noise is needed to guarantee that the counting process [0, +∞) ∋ t → Mt
in (2.6) is stable in law under perturbation of the dynamics. Moreover, this avoids introducing any
distinction between the dynamics on [0, T ] and on [T, T + 1] in the application of the stability
property.

By Cantor’s diagonal argument, it is possible to construct a solution on a sequence of intervals
([0, Tn))n>1, with Tn → +∞, and thus to prove existence in infinite time.

We have a similar result for the delayed equation:

Theorem 4.6. Given T > 0 and the family of solutions ((X δ
t )t∈[0,T ])δ∈(0,1) to the delayed

equation (3.11), with X δ
0 = X0 satisfying Assumption 2, consider the family of extended paths

Z δ
t :=


X δ

t + Mδ
t , if t 6 T,

Wt − WT + Z δ
T , if t ∈ (T, T + 1].

(4.3)

Define by µδ the law of (Z δ
t )t∈[0,T +1] on D̂([0, T + 1], R). Then, the family (µδ)δ∈(0,1) is

tight in P(D̂([0, T + 1], R)) endowed with the topology of weak convergence inherited from
the M1 topology. Moreover, under any weak limit µ as δ tends to 0, the canonical process
(zt )t∈[0,T +1] on D̂([0, T + 1], R) generates a physical solution to (2.6), and hence to (1.1),
until time T , in the sense that (1), (2) and (3) in Theorem 4.4 hold true.

4.3. Convergence of the particle system and propagation of chaos

An important corollary to Theorem 4.4 is that when we have uniqueness for Eq. (1.1), we also
have propagation of chaos for the particle system ((Z i,N

t , M i,N
t )t∈[0,T ])i=1,...,N given by (3.3):
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Theorem 4.7. Assume that there exists a unique physical solution (X t , Mt )t>0 to (1.1) and
denote by (Z t , Mt )t>0 the reformulated solution (as defined in Remark 2.5). Denote also by
J the (at most countable) set of discontinuity points of the function [0, +∞) ∋ t → E(Mt ).
Then, for any S ∈ [0, +∞) \ J and any k > 1,

(Ẑ1,N
s , M̂1,N

s ), . . . , (Ẑ k,N
s , M̂k,N

s )


s∈[0,S]
⇒ P⊗k

(Zs ,M̂s )s∈[0,S]

as N → +∞, (4.4)

on the space [D̂([0, S], R) × D̂([0, S], R)]k equipped with the product topology induced by
the M1 topology, where

Ẑ i,N
s , M̂ i,N

s


=


Z i,N

s , M i,N
s


if s < S,

Z i,N
S−

, M i,N
S−


if s = S.

Here, for a random variable X, PX stands for the law of X, and ⇒ indicates weak convergence.
Moreover, as N → +∞, on D̂([0, S], R) equipped with the M1 topology,

1
N

N
i=1

M̂ i,N
s


s∈[0,S]

→

E(Ms)


s∈[0,S]

in probability. (4.5)

Remark 4.8. (i) In the case when the unique solution (Z t , Mt )t>0 has a continuous firing
function e : [0, +∞) ∋ t → E(Mt ), then the process (Z t )t>0 has continuous paths. Such a
situation is guaranteed for some initial conditions and values of α by Theorem 2.4. Then, by
Theorem 4.2, the weak convergence of the law of the particles Ẑ1,N , . . . , Ẑ k,N in (4.4) holds on
the space [D̂([0, S], R)]k equipped with the product uniform topology. Similarly, in such a case,
the convergence in (4.5) holds on D̂([0, S], R) equipped with the uniform topology.

(ii) In (4.4), we could replace (Zs)s∈[0,S] by (Ẑs)s∈[0,S] but this would be useless as Z is
continuous at point S for any realization of the randomness: since S ∈ J , the (deterministic)
jump function [0, +∞) ∋ t → E(Mt ) is continuous at point S. Similarly, we could replace
(M̂s)s∈[0,S] by (Ms)s∈[0,S], by noticing that, with probability 1 under P, MS = MS−, but this
would be slightly abusive as the paths of (Ms)s∈[0,S] are in D̂([0, S], R) with probability 1 only
(and not for all realizations of the randomness).

(iii) Convergence of the X -particles in (4.4) follows from the relationship X i,N
t = Z i,N

t −

M i,N
t , for i ∈ {1, . . . , N }. However, since addition may not be continuous for the M1 topology

(see Chapter 12 in [19]), we cannot deduce the convergence of the X -particles on D̂([0, S], R).
By Theorem 4.2, the best we can say is that, for any k > 1, any ℓ > 1 and any t1, . . . , tℓ ∉ J ,
the law of the random vector ((X i,N

t j
, M i,N

t j
)i∈{1,...,k}) j∈{1,...,ℓ} converges towards the finite-

dimensional marginals, at times t1, . . . , tℓ, of k independent copies of (X t , Mt )t>0.
(iv) Finally, we emphasize that (4.5) is the keystone to switch from the finite system of

particles to dynamics of the McKean–Vlasov type.

4.4. Convergence of the delayed system

Here is the analogue of the previous result for the delayed system ((Z δ
t , Mδ

t )t>0)δ∈(0,1), where
Z δ

t := X δ
t + Mδ

t and (X δ
t , Mδ

t )t>0 is a solution to (3.11).

Theorem 4.9. Assume that there exists a unique physical solution (X t , Mt )t>0 to (1.1) and
denote by (Z t , Mt )t>0 the reformulated solution (as defined in Remark 2.5). Denote also by
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J the (at most countable) set of discontinuity points of the function [0, +∞) ∋ t → E(Mt ).
Then, for any S ∈ [0, +∞) \ J ,

Z δ
s , M̂δ

s


s∈[0,S]

⇒ P
(Zs ,M̂s )s∈[0,S]

as δ → 0, (4.6)

on the space D̂([0, S], R) × D̂([0, S], R) equipped with the product topology induced by
the M1 topology, where M̂δ

s = Mδ
s if s < S and M̂δ

s = Mδ
S−

if s = S. Moreover,
E

M̂δ

s


s∈[0,S]

→

E(Ms)


s∈[0,S]

(4.7)

as δ → 0, on D̂([0, S], R) equipped with the M1 topology.

5. Proofs

5.1. Preliminary estimates for the particle system

This first subsection is devoted to the proof of two preliminary technical lemmas. The first
one will be used for establishing suitable tightness properties of the particle system, while the
second one will be needed to show that in the limit the solution does indeed satisfy the required
properties to be physical in the sense defined above.

Throughout the section ((Z i
t , M i

t )t>0)i=1,...,N will denote the physical solution to (3.3). We
start with a moment estimate:

Lemma 5.1. For any p > 1 and T > 0, there exists C (p)
T > 0, independent of N , such that

∀i ∈ {1, . . . , N }, E


sup
t∈[0,T ]

|Z i
t |

p
+

M i

T

p
6 C (p)

T .

Proof. The proof is a consequence of (3.8), (3.9) and Assumptions 1 and 2. �

Lemma 5.2. For all η > 0 there exists a constant λ(η) > 0 that is independent of N (but
depends on the constant ε0 in Assumption 2), such that

P

∀t ∈ [0, λ(η)], ēN (t) >


λ(η)

−1t1/4 6 η,

where ēN (t) is defined by (3.4).

Proof. Given T ∈ (0, 1), define τ by

τ = inf


t > 0 :
1
N

N
i=1

1
{M i

t >1}
> T


(inf ∅ = +∞),

which is the first time the proportion of particles that have spiked at least once is bigger than T .
For t < τ ∧ T , the Cauchy–Schwarz inequality yields

1
N

N
i=1

M i
t 6


1
N

N
i=1

1
{M i

t >1}

1/2
1
N

N
i=1


M i

t

21/2

6 T 1/2


1
N

N
i=1


M i

T

21/2

. (5.1)

The point is now to investigate P{τ 6 T }. To this end, we define the events
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A =


1
N

N
i=1


M i

T

2
6 T −1/2


, A′

=


1
N

N
i=1

1Ai 6 T 2

, where

Ai
=


C
 T

0
(1 + sup

r∈[0,s]
|Z i

r |)ds + αT 1/4
+ sup

s∈[0,T ]

|W i
s | > ε0/2


,

(5.2)

and C > 0 (independent of N and T ) is chosen to be the constant such that on A, for t < τ ∧ T
and any 1 6 i 6 N ,

sup
s∈[0,t]


Z i

s


+

6

Z i

0


+

+ C
 t

0


1 + sup

r∈[0,s]
|Z i

r |

ds + αT 1/4

+ sup
s∈[0,t]

|W i
s |.

The existence of such a constant follows from the definition of the reformulated particle system
(3.3) and (5.1). As (Z i

0)+ 6 1 − ε0 by Assumption 2, we have, on A, for t < τ ∧ T ,

sup
s∈[0,t]


Z i

s


+

> 1 −
ε0

2
⇒ C

 T

0


1 + sup

r∈[0,s]
|Z i

r |

ds + αT 1/4

+ sup
s∈[0,T ]

|W i
s | >

ε0

2
.

If τ 6 T , the above is true on A for all t < τ . We deduce that, on A ∩ {τ 6 T }

1
N

N
i=1

1{sups∈[0,τ )(Z i
s )+>1−ε0/2} 6

1
N

N
i=1

1Ai ,

with (Ai )i=1,...,N as in (5.2). On A ∩ A′
∩ {τ 6 T }, it thus holds that

1
N

N
i=1

1{sups∈[0,τ )(Z i
s )+>1−ε0/2} 6 T 2.

Assume that T 2 6 ε0/4. Then the number of particles such that sups∈[0,τ )(Z i
s)+ > 1− ε0/2 is at

most Nε0/4. The other particles cannot cross 1 at time τ , since the size of the kick they receive
due to those such that sups∈[0,τ )(Z i

s)+ > 1−ε0/2 is bounded by ε0/4. Therefore, the number that

have crossed 1 up to and including τ must also be less than N T 2, i.e. (1/N )
N

i=1 1{M i
τ >1} 6 T 2.

Since T 6
√

ε0/2 6 1/2, we have T 2 < T . This yields a contradiction since, by definition of
τ and by right-continuity, (1/N )

N
i=1 1{M i

τ >1} > T . In other words A ∩ A′
∩ {τ 6 T } = ∅, so

that {τ 6 T } ⊂ (A ∩ A′){ (the complementary of A ∩ A′). Hence

P(τ 6 T ) 6 P


A{
+ P


(A′){


. (5.3)

By Markov’s inequality, P((A′){) = P((1/N )
N

i=1 1Ai > T 2) 6 (1/N T 2)
N

i=1 P(Ai ). Thus,
by (5.2) and using the fact that T 6 1,

P

(A′){


6

1

N T 2

N
i=1


P

(α + C)T 1/4

+ sup
s∈[0,T ]

|W i
s | >

ε0

4


+ P


sup

s∈[0,T ]

|Z i
s | >

ε0

4CT


. (5.4)

By Lemma 5.1 (with p = 3) and Markov’s inequality again, we see that (since T 6 1),

P


sup
s∈[0,T ]

|Z i
s | >

ε0

4CT


6 43C3C (3)

1 ε−3
0 T 3 6 C ′T 3, (5.5)
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for another constant C ′ depending upon ε0. Under the additional assumption that (α +C)T 1/4 6
ε0/8, the first term in the right-hand side of (5.4) can be bounded by

1

N T 2

N
i=1

P


(α + C)T 1/4
+ sup

s∈[0,T ]

|W i
s | >

ε0

4


6

1

N T 2

N
i=1

P


sup
s∈[0,T ]

|W i
s | >

ε0

8


6 cT −2 exp


−c−1T −1,

for some constant c > 0, independent of N and T (but depending upon ε0). Here we have used
the reflection principle and an elementary bound on the Gaussian distribution function.

In the end, by (5.4), (5.5) and the above inequality, we obtain

P

(A′){


6 C ′T + cT −2 exp


−c−1T −1 6 C ′T,

for some C ′, independent of N and T and the value of which is allowed to increase from one
inequality to another. In a similar way to the proof of (5.5), we also have that P(A{) 6 C ′T .
Therefore, (5.3) yields

P(τ 6 T ) 6 C ′T,

for T 2 6 ε0/4 and (α + C)T 1/4 6 ε0/8. The point is that this probability is small in T . Finally,
by (5.1) and by Lemma 5.1 again,

P

ēN (T ) > T 1/4 6 P


ēN (T ) > T 1/4, T < τ


+ P


τ 6 T


6 P


1
N

N
i=1

(M i
T )2 > T −1/2


+ P


τ 6 T


6 P(A{) + P


τ 6 T


6 C ′T .

Choose now T = Tk and Tk = λk with λ < 1 such that (α + C)λ1/4 6 ε0/8 and λ2 6 ε0/4.
Then by above,

P

ēN (Tk) > T 1/4

k


6 C ′λk,

so that, for any k0 > 1,

P


k>k0


ēN (Tk) > T 1/4

k


6

k>k0

C ′λk
=: η(k0),

where η is finite since the sum converges, is independent of N and satisfies limx→+∞ η(x) = 0.
Observe now that, for any t ∈ (Tk+1, Tk], M i

t 6 M i
Tk

and λ−1/4t1/4 > T 1/4
k , so that

ēN (t) > λ−1/4t1/4 implies ēN (Tk) > T 1/4
k (recall that ēN is non-decreasing). Therefore,

P

∃t ∈ [0, Tk0 ] : ēN (t) > λ−1/4t1/4 6 η(k0),

thus completing the proof. �

The next proposition shows that there is a very small chance of observing a macroscopic
proportion of particles spiking twice or more in a small interval and extends Proposition 3.4 to
intervals of non-zero length.



2474 F. Delarue et al. / Stochastic Processes and their Applications 125 (2015) 2451–2492

Proposition 5.3. For a given T > 0, consider 0 6 t < t + h 6 T , h ∈ (0, 1). Then, we can find
C > 0, independent of h, and an integer N0 := N0(h), such that, for N > N0,

P

ēN (t + h) − ēN (t−) > 1 + Ch1/16 6 Ch

and

P


∀λ 6

ēN (t + h) − ēN (t−) − Ch1/16

+
,

1
N

N
i=1

1
{X i

t−>1−αλ−Ch1/16} > λ


> 1 − Ch.

Proof. The first step of the proof is to show that the proportion of particles that spike twice in
a small interval tends to 0 with the length of the interval, uniformly in N > 1. More precisely,
given an interval [t, t + h] and β ∈ (0, 1), define

τ(β) = inf


s ∈ [t, t + h] :
1
N

N
i=1

1
{M i

s−M i
t−>2}

> β

, inf ∅ = +∞.

Then we want to show that, for β = h1/4, N > h−1/2 and p > 1, there exists a constant C p
(independent of h), such that

P

τ(β) 6 t + h


6 C ph p. (5.6)

In order to do this, we will have to enter into the spike cascade, which will require the
cascade time axis defined in paragraph 3.1.2 11. Indeed, we will say that particle i ∈ {1, . . . , N }

spikes twice before j if inf{s > t, M i
s > M i

t− + 2} < inf{s > t, M j
s > M j

t− + 2}, or

inf{s > t, M i
s > M i

t− + 2} = inf{s > t, M j
s > M j

t− + 2} =: ρ and X i
ρ− > X j

ρ−. This
precisely means that particle i will spike twice before j either in (usual) time, or before j along
the cascade time axis.

Define the set I = {i ∈ {1, . . . , N } : M i
t+h − M i

t− > 2} of particles that have spiked at least
twice in the interval [t−, t + h]. We prove the following claim:

Claim: Suppose τ(β) 6 t + h. Then there exists a set I (β) ⊂ {1, . . . , N }, such that
βN 6 |I (β)| 6 βN + 1 and, for all i ∈ I (β), it holds that

1 6 α + β1/2


1
N

N
j=1


M j

t+h

21/2

+ Ch

1 + sup

s∈[0,t+h]

|Z i
s |

+ sup

s∈[t,t+h]

W i
s − W i

t

. (5.7)

To prove (5.7), suppose τ(β) 6 t + h. By right-continuity of each (M i
s )s>0, |I | > Nβ.

For i0 ∈ I , let I (i0) be the set of particles that have spiked twice before i0 in the above sense.
Whenever |I (i0)| < βN , the sum of the kicks received by particle i0 due to the effect of the
particles in I (i0) spiking before it (again in the previous sense) is bounded by

α

1 +

1
N


i∈I (i0)


M i

t+h − M i
t−


6 α


1 +

1
N


i∈I (i0)

M i
t+h



6 α + β1/2


1
N

N
i=1


M i

t+h

21/2

. (5.8)

The first α stands for the kick generated by particles that have spiked once only. The other part
corresponds to the particles that have spiked twice or more. At the time when the particle i0
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spikes for the second time, X i0 has to cross 1, or equivalently, the Z -particle i0 crosses a new
integer. Since it is its second spike in the interval [t, t + h], the Z -particle i0 has run more than 1
since t-, i.e. 1 6 supt6s6t+h |Zs − Z t−|, so that

1 6
 t+h

t
|b(X i0

s )|ds + α + β1/2


1
N

N
j=1


M j

t+h

21/2

+ sup
s∈[t,t+h]

W i0
s − W i0

t

.
Using the bound for the growth of b,

1 6 α + β1/2


1
N

N
j=1


M j

t+h

21/2

+ Ch

1 + sup

s∈[0,t+h]

|Z i0
s |

+ sup

s∈[t,t+h]

W i0
s − W i0

t

.
Iterating the argument up until the number of particles that have spiked more than twice is greater
than Nβ, we can find an index i1 such that I (i1) ⊂ {1, . . . , N } and βN 6 |I (i1)| 6 βN + 1. This
proves the claim.

To proceed, we can take the mean in (5.7) over the particles in I (β). Using the bound
|I (β)| 6 Nβ + 1 and the Cauchy–Schwarz inequality, we see that

β 6 αβ + β1/2β +
1
N

 1
N

N
j=1


M j

t+h

21/2

+

β +

1
N

1/2


Ch


1 +

1
N

N
j=1

sup
s∈[0,t+h]

|Z j
s |

2
1/2

+


1
N

N
j=1

sup
s∈[t,t+h]

|W j
s − W j

t |
2
1/2

.

Since β = h1/4 > 1/
√

N , we have 1/(βN ) 6 1/
√

N . Dividing both sides of the above
inequality by β, we deduce that τ(β) 6 t + h implies

1 6 α + 2β1/2


1
N

N
j=1


M j

t+h

21/2

+ Chβ−1/2


1 +
1
N

N
j=1

sup
s∈[0,t+h]

|Z j
s |

2
1/2

+ 2β−1/2


1
N

N
j=1

sup
s∈[t,t+h]

|W j
s − W j

t |
2
1/2

.

We can now apply Markov’s inequality with any exponent p > 1. By Lemma 5.1, we get that
there exists a constant C p such that

P

τ(β) 6 t + h


6 C p


β p/2

+ h pβ−p/2
+ h p/2β−p/2

= C p

h p/8

+ h7p/8
+ h3p/8. (5.9)

On the event {τ(β) > t + h} ∩ {N−1N
i=1(M i

t+h)2 6 h−1/8
}, we have, as in (5.8),

ēN (t + h) − ēN (t−) 6 1 + β1/2


1
N

N
i=1


M i

t+h

21/2

6 1 + β1/2h−1/16. (5.10)

Since β = h1/4, we deduce from Lemma 5.1 and (5.9) that the first bound in the statement holds
with N large enough.
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Now, we can focus on the particles that spike no more than once between t and t + h. The set
of such particles coincides with I {. In I {, there are two kind of particles: The set I {,0 denotes
the set of particles that do not spike and the set I {,1 the set of particles that spike once. In order
to characterize the sets I {,0 and I {,1, we can make use of the ordering of the spikes again, as
defined in paragraph 3.1.2.

A particle i1 ∈ I {,1 is to spike at some time s ∈ [t, t + h], if, at some moment along the time
cascade axis at s, the kick it receives from the particles that spike before in the cascade is larger
than 1 − X i1

s−. Now, as i1 does not spike between t and s-, 1 − X i1
s− is equal to

1 − X i1
s− = 1 − X i1

t− −

 s

t
b(X i1

r )dr − (W i1
s − W i1

t ) − α

ēN (s−) − ēN (t−)


.

We observe that α(ēN (s−) − ēN (t−)) represents the kick i1 receives from the other neurons
between t- and s-. Therefore, i1 ∈ I {,1 is to spike at some time s ∈ [t, t + h], if the kick it
receives between t- and s- plus the kick it receives along the time axis cascade at s before it
spikes is greater than

1 − X i1
t− −

 s

t
b(X i1

r )dr − (W i1
s − W i1

t ).

The sum of the two kicks is called the kick received by i1 before it spikes. Following (5.8), it can
be bounded by

α
k

N
+


|I |

N
×

1
N

N
j=1


M j

t+h

21/2

,

where k stands for the number of particles in I { that spike once before i1. Therefore, for i1 to be
in I {,1, it must hold that

X i1
t− + α

k

N
+


|I |

N 2

N
j=1


M j

t+h

21/2

+ Ch

1 + sup

s∈[0,t+h]

|Z i1
s |


+ sup
s∈[t,t+h]

|W i1
s − W i1

t | > 1, (5.11)

the two last terms in the left-hand side standing for bounds on the drift and Brownian parts in the
dynamics of X i1 . Obviously, the number of particles for which the above inequality holds must
be larger than k + 1 (it must be true for the k particles that spiked before i1 and for i1 as well).
On the model of Proposition 3.4, this must be true for any k < |I {,1

|.
Now, following (5.10) for estimating the overall kick on [t, t + h], we deduce

|I {,1
|

N
6 ēN (t + h) − ēN (t−) 6

|I {,1
|

N
+


|I |

N 2

N
j=1


M j

t+h

21/2

.

Therefore, for an integer 0 6 k < N (ēN (t + h) − ēN (t−)) − [|I |
N

j=1(M j
t+h)2

]
1/2, we have

k < |I {,1
|. By (5.11), we can deduce that

1
N

N
i=1

1Bi,1(k) >
k

N
, with Bi,1(k) =


X i

t− + α
k

N
+


|I |

N 2

N
j=1


M j

t+h

21/2

+ Ch

1 + sup

s∈[0,t+h]

|Z i
s |

+ sup

s∈[t,t+h]

|W i
s − W i

t | > 1

. (5.12)
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Define now the events

B0
= {τ(β) > t + h} ∩


1
N

N
j=1


M j

t+h

2
6 h−1/8



B2
=


1
N

N
i=1

1Bi,2 6 h


,

Bi,2
=


Ch

1 + sup

s∈[0,t+h]

|Z i
s |

+ sup

s∈[t,t+h]

|W i
s − W i

t | > h1/16

.

On B0, the term ((|I |/N 2)
N

j=1(M j
t+h)2)1/2 is less than h1/16. Therefore, on B0, for any

λ 6 ēN (t + h) − ēN (t−) − 3h1/16, we have

⌊λN + 2Nh1/16
⌋ 6 N


ēN (t + h) − ēN (t−)


−


|I |

N
j=1

(M j
t+h)2

1/2

.

For such a λ, we choose k = ⌊λN + 2Nh1/16
⌋, so that k satisfies the required condition to apply

(5.12). On B0
∩ Bi,1(k) ∩ (Bi,2){, X i

t− + αk/N > 1 − 2h1/16, so that

X i
t− + αλ > X i

t− + α
k

N
− 2h1/16 > 1 − 4h1/16.

Therefore, on B0
∩ B2,

1
N

N
i=1

1
{X i

t−>1−αλ−4h1/16} >
1
N

N
i=1

1Bi,1(k) −
1
N

N
i=1

1Bi,2 >
k

N
− h > λ,

the last inequality following from the fact that, since N > h−1/2 and h 6 1, k/N − h >
λ + 2h1/16

− 1/N − h > λ. To complete the proof, notice from (5.9) and Lemma 5.1 that

P


B0
∩ B2{ 6 C ′h + P


B2{ 6 C ′h + h−1 1

N

N
i=1

P

Bi,2 6 C ′h,

the value of C ′ being allowed to increase from one inequality to another. �

5.2. Tightness properties and convergent subsequences

This section is now devoted to the proof of the tightness property of the family of measures
(ΠN )N>1 defined in Theorem 4.4. It is for this result that the M1 Skorohod topology plays a key
role. Recall that Z i,N

∈ D̂([0, T + 1], R) satisfies

Z i,N
t :=


Z i,N

t , if t 6 T
W i

t − W i
T + Z i,N

T , if t ∈ (T, T + 1]
(5.13)

for i ∈ {i, . . . , N }, where (Z i,N
t )t∈[0,T ] is the (physical) solution to the particle system (3.3),

µ̄N :=
1
N

N
i=1

Dirac(Z i,N ),

so that µ̄N is a random variable taking values in P(D̂([0, T + 1], R)) and ΠN = Law(µ̄N ).
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Lemma 5.4. For any T > 0, the family of laws of Z1,N , N > 1, is tight in P(D̂([0, T + 1], R))

endowed with the weak topology inherited from the M1 topology on D̂([0, T + 1], R).

Proof. By definition of tightness, we must show that for any ε > 0, there exists
K ⊂ D̂([0, T + 1], R) compact for the M1 topology, such that infN>1 P(Z1,N

∈ K ) > 1 − ε.
By Theorem 4.3, K is compact for M1 if and only if limδ→0 sup f ∈K uT +1( f, δ) = 0, where

uT +1( f, δ) :=


sup

t∈[0,T +1]

wT +1( f, t, δ)


∨ vT +1( f, 0, δ) ∨ vT +1( f, T + 1, δ) (5.14)

is the modulus of continuity appearing in that result, and the functions wT +1 and vT +1 are given
by (4.1) and in Theorem 4.3 respectively. With this in mind, for any R > 1, define the set

K R :=


f ∈ D̂([0, T + 1], R) : uT +1( f, δ) 6 Rδ
1
4 , δ ∈ (0, 1/R)


.

It is thus clear that K R is compact for every R > 1. It therefore suffices to show that

lim
R→∞

inf
N>1

P

∀δ ∈ (0, 1/R), uT +1(Z1,N , δ) 6 Rδ

1
4


= 1. (5.15)

Since uT +1 is a maximum of three terms, the above certainly holds if it also holds when uT +1
is replaced by each of the three terms appearing in the maximum in (5.14) individually. This is
what we aim to show now, starting with the first term.

To this end define the new process (U N
t )t∈[0,T +1] as

U N
t = Z1,N

t −
1
N

N
i=1

M i,N
t∧T , t ∈ [0, T + 1].

Then U N is the continuous part of Z1,N . We use the easily verified fact that

wT +1( f + g, t, δ) 6 vT +1(g, t, δ) t ∈ [0, T ], δ > 0,

whenever f, g ∈ D̂([0, T +1], R), and f is monotone. Thus, since Z1,N
−U N is non-decreasing,

sup
t∈[0,T +1]

wT +1(Z1,N , t, δ) 6 sup
t∈[0,T +1]

vT +1(U N , t, δ), δ > 0,

almost surely. Hence, in order to show that (5.15) holds in the first case, it is sufficient to prove
that infN>1 P(∀δ ∈ (0, 1/R), supt∈[0,T +1] vT +1(U N , t, δ) 6 Rδ1/4) converges to 1 as R → ∞.
Since (U N

t )t∈[0,T +1] is a continuous process driven by a Lipschitz drift and a Brownian motion,
this directly follows from Lemma 5.1.

To handle the second case, when uT +1( f, δ) = vT +1( f, 0, δ), by Lemma 5.2, we know that,
for any η > 0 there exists λ(η) > 0 independent of N (depending only on the ε0 appearing in
Assumption 2) such that

P

∀t ∈ [0, λ(η)], ēN (t) >


λ(η)

−1t1/4 6 η.

In particular, by taking R =

λ(η)

−1, it follows that

lim
R→+∞

inf
N>1

P


∀δ ∈ (0, 1/R), vT +1


1
N

N
i=1

M i,N , 0, δ


6 Rδ1/4


= 1,
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where we have also used the definition of vT +1, given in Theorem 4.3. As the continuous partU N of the dynamics of Z1,N can be handled in the standard way, we deduce that

lim
R→+∞

inf
N>1

P


∀δ ∈ (0, 1/R), vT +1
Z1,N , 0, δ


6 Rδ1/4


= 1.

For the final term in the maximum in (5.14), by definition, Z1,N behaves as W 1 in
neighborhoods of T + 1, so that (again in the standard way)

lim
R→+∞

inf
N>1

P


∀δ ∈ (0, 1/R), vT +1
Z1,N , T + 1, δ


6 Rδ1/4


= 1.

This completes the proof. �

By [17, Proposition 2.2], we deduce:

Lemma 5.5. For any T > 0 the family (ΠN )N>1 ⊂ P(P(D̂([0, T + 1], R))) is tight, where
P(D̂([0, T + 1], R)) is endowed with the weak topology deriving from the M1 topology on
D̂([0, T + 1], R).

5.3. Proof of Theorem 4.4

We now give the proof of Theorem 4.4. As we will see, the proof will rely on some key
convergence results that will be proved afterwards. Throughout the proof, as in the statement
of the result, (zt )t∈[0,T +1] will denote the canonical process on D̂([0, T + 1], R) and mt =

⌊(sups∈[0,t] zs)+⌋.
The first part of the theorem is contained in Lemma 5.5, namely that (ΠN )N>1 is tight. We

can therefore extract a convergent subsequence as N tends to +∞, which we denote in the same
way. We set Π∞ to be the limit point of such a sequence.

Consider the function

[0, T + 1] ∋ t →


µ

zt− = zt


dΠ∞(µ).

Since the application A ∈ B(D̂([0, T +1], R)) →


µ(A)dΠ∞(µ) defines a probability measure
on D̂([0, T + 1], R), the function matches 1 for any t in [0, T + 1] but in some countable subset
J ⊂ [0, T + 1] (see Lemma 7.7, p. 131, Chap. 3 in Ethier and Kurtz [9]). Therefore, for t ∉ J ,
for a.e. µ under the probability Π∞, µ{zt− = zt } = 1. Similarly, the function

[0, T + 1] ∋ t →


⟨µ, mt ⟩dΠ∞(µ)

is non-decreasing and has at most a countable number of jumps. Up to a modification of J , we
can assume that the jumps are all included in J . Then, for any t ∉ J ,

⟨µ, mt ⟩dΠ∞(µ) =


⟨µ, mt−⟩dΠ∞(µ).

Therefore, for t ∉ J , for a.e. µ under the probability measure Π∞, ⟨µ, mt−⟩ = ⟨µ, mt ⟩.
For p > 1, S1, . . . , Sp ∉ J , 0 = S0 6 S1 < · · · < Sp < T and f0, . . . , f p bounded and

uniformly continuous functions from R into itself, put

F(z) =

p
i=0

fi

zSi


, z ∈ D̂([0, T + 1], R). (5.16)
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For another bounded and uniformly continuous function G from R into itself, consider

QN := E


G


µ̄N , F


z − z0 −


·

0
b(zs − ms)ds − α⟨µ̄N , m·⟩


.

The point is that we may write

Z i,N
t = Z i,N

0 +

 t∧T

0
b(Z i,N

s − M i,N
s )ds + α⟨µ̄N , mt∧(T −)⟩ + W i

t

for all t ∈ [0, T + 1] and i ∈ {1, . . . , N }. It then follows that QN = E[G(N−1N
i=1 F(W i ))].

By the law of large numbers, we deduce that

lim
N→+∞

QN = G

E

F(W )


. (5.17)

The key result in order to proceed is contained in Lemma 5.10, where it is shown that under
Π∞, the functional

µ ∈ P


D̂([0, T + 1], R)


→


µ, F


z − z0 −


·

0
b(zs − ms)ds − α⟨µ, m·⟩


, (5.18)

is a.e. continuous. Indeed, with this in hand, by the continuous mapping theorem, we have

lim
N→+∞

QN =


G


µ, F


z − z0 −


·

0
b(zs − ms)ds − α⟨µ, m·⟩


dΠ∞(µ),

so that, from (5.17),
G


µ, F


z − z0 −


·

0
b(zs − ms)ds − α⟨µ, m·⟩


dΠ∞(µ) = G


E

F(W )


.

Applying the above equality with G(·) = [G(·) − G(E(F(W )))]2 instead of G itself, we deduce
that, Π∞ a.s.,

G


µ, F


z − z0 −


·

0
b(zs − ms)ds − α⟨µ, m·⟩


= G


E

F(W )


,

so that, for a.a. probability measures µ under Π∞, under µ, the process
Υt = zt − z0 −

 t

0
b(zs − ms)ds − α⟨µ, mt ⟩


t∈[0,T +1]

has the same finite-dimensional distributions as a Brownian motion at any points 0 6 S1 <

S2 < · · · < Sp < T which are not in J . Since (Υt )t∈[0,T ) has right-continuous paths under
µ (and [0, T ) ∩ J { is dense in [0, T )), it has the same finite-dimensional distributions as a
Brownian motion. Moreover, since the Borel σ -field generated by M1 is also generated by the
evaluation mappings, we deduce that the distribution of (Υ̂t )t∈[0,T ] on D̂([0, T ], R) is the Wiener
distribution, where Υ̂t = Υt if t < T and Υ̂T = ΥT −. This says that, for Π∞ a.e. µ, the
canonical process solves the reformulated Eq. (2.6) up until time T , with z0 as initial condition,
which proves (2) in Theorem 4.4.

We now check that the law of z0 under µ is the distribution of X0 under P. To this end, let
π0 : D̂([0, T + 1], R) → R be given by π0(z) = z0, and π0♯µ be the push-forward measure of
µ by π0. Then the mapping P(D̂([0, T + 1], R)) ∋ µ → π0♯µ is continuous (see Theorem 4.1).
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Using the Skorohod representation theorem, this allows the joint application of Theorem 4.2 at
t = 0. By the law of large numbers, π0♯µ̄N converges towards the law of X0. Therefore, for a.e.
µ under Π∞, π0♯µ matches the law of X0, which proves (1) in Theorem 4.4.

We finally prove that, for almost all µ under Π∞, the canonical process under µ satisfies
the required conditions for defining a physical condition up until T . This requires showing the
conditions (2) and (4) of Definition 2.2 are satisfied for the canonical process under µ. We make
use of Proposition 5.3, which says that, for 0 6 t < t + h < T and for N large enough,

P

ēN (t + h) − ēN (t−) > 1 + Ch1/16 6 Ch,

P

∀λ 6 ēN (t + h) − ēN (t−) − Ch1/16, µ̄N


zt− − mt− > 1 − αλ − Ch1/16 > λ


> 1 − Ch,

where ēN (t + h) − ēN (t−) = ⟨µ̄N , mt+h − mt−⟩.
By the Skorohod representation theorem, we can assume that µ̄N converges almost surely to

µ. Choosing t and t + h in J {, we make use of Lemma 5.9. It says that limN→+∞⟨µ̄N , mt+h −

mt−⟩ = ⟨µ, mt+h − mt ⟩ (a.e. under Π∞). Moreover, as t ∉ J , Theorem 4.2 says that the law
of zt− − mt− under µ̄N converges to the law of zt− − mt− under µ (for almost all µ under
Π∞). Therefore, following the proof of the Portmanteau theorem and modifying the constant C
if necessary, we get

Π∞


⟨µ, mt+h − mt ⟩ > 1 + Ch1/16 6 Ch,

Π∞


∀λ 6 ⟨µ, mt+h − mt ⟩ − Ch1/16, µ


zt− − mt− > 1 − αλ − Ch1/16 > λ


> 1 − Ch.

(5.19)

The above inequalities are true for any t, t + h that are not in J . Assume now that t is some
point in [0, T ) ∩ J . Then, we can find sequences (tp)p>1 and (h p)p>1 such that 0 6 tp < t <

tp + h p < T , tp and tp + h p ∉ J , and tp ↑ t , h p ↓ 0. Then, applying (5.19) to any (tp, tp + h p)

and letting p tend to +∞, we deduce that

Π∞


⟨µ, mt − mt−⟩ > 1


= 0,

Π∞


∀λ < ⟨µ, mt − mt−⟩, µ


zt− − mt− > 1 − αλ


> λ


= 1.

(5.20)

The first equality shows that under µ the canonical process satisfies condition (2) of
Definition 2.2 (a.e. under Π∞). Moreover, since J is countable, we deduce that

Π∞


∀t ∈ [0, T ) ∩ J, ∀λ < ⟨µ, mt − mt−⟩, µ


zt− − mt− > 1 − αλ


> λ


= 1,

which is enough to conclude that condition (4) of Definition 2.2 is also satisfied (a.e. under Π∞),
by invoking Proposition 2.7.

5.4. Proof of Theorem 4.7

Assume now that (2.6) admits a unique solution (Z t )t∈[0,T ] on [0, T ]. By identification, we
deduce from the proof of Theorem 4.4 that, for Π∞ a.e. µ, the pair (zt , mt )t∈[0,T ) has the same
law, under µ, as the pair (Z t , Mt )t∈[0,T ) under P. In particular, for some fixed S ∈ (0, T ) such
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that E(MS) = E(MS−), we have ⟨µ, mS⟩ = ⟨µ, mS−⟩ and zS = zS− for Π∞ a.e. µ. Define the
map

γS : D̂([0, T + 1], R) → D̂([0, S], R), γS(z) = ẑ, (5.21)

where ẑ is the element of D̂([0, S], R) given by zt if t < S and ẑS = zS−. The map γS is
measurable for the σ -fields on D̂([0, T +1]) and D̂([0, S]) generated by the evaluation mappings
and thus for the Borel σ -fields generated by M1. Moreover, the push forward of µ by γS , denoted
by γS♯µ, coincides, for Π∞ a.e. µ, with the law of (Z t )t∈[0,S] under P.

Thus, defining ΓS(µ) = γS♯µ for an arbitrary µ ∈ P(D̂([0, T + 1], R)), we have that
ΓS♯Π∞ = Dirac(µS), where µS := Law((Zs)t∈[0,S]). Notice that ΓS is indeed measurable when
both P(D̂([0, T + 1], R)) and P(D̂([0, S], R)) are equipped with the Borel σ -fields generated
by the topology of weak convergence.

Moreover, as a consequence of Theorem 4.2, γS is continuous at any z ∈ D̂([0, T + 1], R)

such that zS− = zS . In particular, if µ is a probability measure on D̂([0, T + 1]) such that
µ{zS− = zS} = 1, then µ is a point of continuity of ΓS . Therefore, under the probability Π∞,
a.e. µ is a continuity point of ΓS . Since (ΠN )N>1 converges towards Π∞ in the weak sense, we
deduce that

lim
N→+∞

ΓS♯ΠN = ΓS♯Π∞ = Dirac(µS).

Since (with Ẑ i,N
= γS(Z i,N ) given by (5.21))

ΓS♯ΠN = P
γS♯(N−1

N
i=1 Dirac(Z i,N ))

= PN−1
N

i=1 Dirac(Ẑ i,N )
,

we obtain that, in the weak sense,

lim
N→+∞

PN−1
N

i=1 Dirac(Ẑ i,N )
= Dirac(µS), (5.22)

where N−1N
i=1 Dirac(Ẑ i,N ) and µS are seen as probability measures on D̂([0, S], R) equipped

with M1. Since the law of the N -tuple (Ẑ1,N , . . . , Ẑ N ,N ) is invariant by permutation, we deduce
from [17, Proposition 2.2] that the family (Ẑ i,N )i=1,...,N is chaotic on D̂([0, S], R) endowed with
M1, that is, for any integer k > 1,

Ẑ1,N , . . . , Ẑ k,N 
⇒

µS
⊗k

= P⊗k
(Zs )s∈[0,S]

as N → +∞, (5.23)

in the weak sense, on [D̂([0, S], R)]k equipped with the product topology induced by M1. By
Lemma 5.6, this also proves that

(Ẑ1,N , M̂1,N ), . . . , (Ẑ k,N , M̂k,N )


⇒ P⊗k
(Zs ,M̂s )s∈[0,S]

as N → +∞, (5.24)

on [D̂([0, S], R) × D̂([0, S], R)]k equipped with the product topology induced by M1. Indeed,
assuming without loss of generality that the sequence representing the convergence in (5.23) in
the almost-sure sense is (Ẑ1,N , . . . , Ẑ k,N ) itself and denoting the a.s. limit by (Z1,∞, . . . , Z k,∞),
Lemma 5.6 says that, for any ℓ = 1, . . . , k, a.s., for t in a dense subset of [0, S]

⌊


sup
s∈[0,t]

Ẑℓ,N
s


+
⌋ → ⌊


sup

s∈[0,t]
Zℓ,∞

s


+
⌋. (5.25)



F. Delarue et al. / Stochastic Processes and their Applications 125 (2015) 2451–2492 2483

Obviously, (5.25) holds at t = 0 since both sides are zero. At t = S, we know that E(Mℓ
S) =

E(Mℓ
S−

) since t → E(Mt ) is continuous at t = S, so that P(MS = MS− = M̂S) = 1. Therefore,
by Lemma 5.6, (5.25) holds at t = S. By Theorem 4.2, we deduce that, for any ℓ = 1, . . . , k,
((M̂ℓ,N

s )s∈[0,S])N>1 converges a.s. to (Mℓ,∞
s )s∈[0,S] in D̂([0, S], R), where (Mℓ,∞

s )s∈[0,S] is the
counting process associated with (Zℓ,∞

s )s∈[0,S]. Actually, the Skorohod representation theorem
says that the a.s. convergence holds for a representation sequence only, but, in any case, (5.24)
holds.

To complete the proof of Theorem 4.7, we use the Skorohod representation theorem once
again. In fact we can assume without loss of generality that the convergence in (5.22) holds
almost-surely, namely N−1N

i=1 Dirac(Ẑ i,N ) converges to µS almost surely. Lemma 5.9 then
guarantees that a.s.

lim
N→+∞

1
N

N
i=1

M i,N
s = E(Ms)

for all s ∈ [0, S), except at any points of discontinuity of · → E(M·) (of which there are
countably many). Actually, the Skorohod representation theorem says that convergence holds
almost-surely for a representation sequence only. Anyhow, the convergence always holds in
probability (using for instance the fact that M1 convergence is metrizable). Since S can be
chosen as close as needed to T , we can apply the above result to some S′

∈ (S, T ), where
S′ is a continuity point of · → E(M·). This says that the limit holds for all continuity points
s ∈ [0, S] since S ∈ [0, S′), and S is also a continuity point. By Theorem 4.2, we deduce that
the mapping [0, S] ∋ s → N−1N

i=1 M̂ i,N
s converges to the mapping [0, S] ∋ s → E(Ms) in

probability on D̂([0, S], R) equipped with the M1 topology, where M̂ i,N
s = M i,N

s for s ∈ [0, S)

and M̂ i,N
S = M i,N

S−
.

5.5. Continuity of related mappings

The aim of this section is to complete the proof of Theorems 4.4 and 4.7 by providing the
technical results needed therein. In particular, we prove the key continuity result used in the
proof of Theorem 4.4 i.e. the continuity of the functional given in (5.18) (see Lemma 5.10).

In the whole section, S is a given positive real, and we make use of the notation and definitions
of Section 4.1 for the M1 topology. Moreover, as above, (zt )t∈[0,S] will be the canonical process
on D̂([0, S], R) and mt :=


sups∈[0,t] zs


+


, t ∈ [0, S].

We begin with the following continuity property.

Lemma 5.6. Consider a sequence (zn)n>1 of functions in D̂([0, S], R), converging towards
some z ∈ D̂([0, S], R) for M1. Assume that z has the following crossing property:

∀k ∈ N∗, ∀h > 0, τ k < S ⇒ sup
t∈[τ k ,min(S,τ k+h)]


zt − zτ k


> 0, (5.26)

where τ k
= inf{t ∈ [0, S] : zt > k} (inf ∅ = S). Then, there exists an at most countable subset

J ⊂ [0, S], such that

∀t ∈ [0, S] \ J, lim
n→+∞

mn
t = mt ,

where mn
t = ⌊(sups∈[0,t] zn

s )+⌋, mt = ⌊(sups∈[0,t] zs)+⌋. The set [0, S] \ J contains all the points
t of continuity of z such that (sups∈[0,t] zs)+ is not in N \ {0}.
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Proof. Since zn
→ z for the M1 topology, we can find a sequence of parametric representations

((un, rn))n>1 of (zn)n>1 that converges towards a parametric representation (u, r) of z uniformly
on [0, S] (see Theorem 12.5.1 in [19]). For any t ∈ [0, S], we thus have

lim
n→+∞

sup
s6t

un
s = sup

s6t
us . (5.27)

Fix t ∈ [0, S]. Since Gzn ⊂ (un, rn)([0, S]), we know that, for every s ∈ [0, S], there exists
s′

∈ [0, S] such that (un
s′ , rn

s′) = (zn
s , s). If s < rn

t , it therefore must hold that s′ < t , as s′ > t
would imply s = rn

s′ > rn
t (rn is non-decreasing). Therefore, sups6t un

s > sups<rn
t

zn
s .

Moreover, for any s ∈ [0, S], un
s ∈ [zn

rn
s −

, zn
rn

s
], so that un

s 6 max(zn
rn

s −
, zn

rn
s
). Therefore, for

s 6 t ,

un
s 6 max


sup

s′6rn
t

zn
s′−

, sup
s′6rn

t

zn
s′


= sup

s′6rn
t

zn
s′ .

In the end we see that sups<rn
t

zn
s 6 sups6t un

s 6 sups6rn
t

zn
s . Similarly, we have sups<rt

zs 6
sups6t us 6 sups6rt

zs . Thus, by (5.27),

lim inf
n→+∞

sup
s6rn

t

zn
s > sup

s<rt

zs, lim sup
n→+∞

sup
s<rn

t

zn
s 6 sup

s6rt

zs . (5.28)

If rt is a point of continuity of z, the two right-hand sides above coincide, and moreover, by
Theorem 4.2,

lim
δ→0

lim sup
n→+∞

sup
max(0,rt −δ)6s6min(S,rt +δ)

|zn
s − zrt | = 0.

That is, for any ε > 0, we can find δ > 0, such that, for n large enough,

sup
max(0,rt −δ)6s6min(S,rt +δ)

|zn
s − zrt | 6 ε. (5.29)

In particular, for n large enough that |rn
t − rt | < δ,

sup
s6rt

zn
s = max


sup

s6max(0,rt −δ)

zn
s , sup

max(0,rt −δ)6s6rt

zn
s


6 max


sup

s6max(0,rt −δ)

zn
s , zrt


+ ε 6 max


sup
s<rn

t

zn
s , zrt


+ ε. (5.30)

Therefore, by (5.28),

lim sup
n→+∞

sup
s6rt

zn
s 6 sup

s6rt

zs . (5.31)

Similarly, for n large enough, we have

sup
s6rt

zn
s > max


sup

s6max(0,rt −δ)

zn
s , zrt


− ε

> max


sup
s6max(0,rt −δ)

zn
s , sup

max(0,rt −δ)6s6rn
t

zn
s


− 2ε > sup

s6rn
t

zn
s − 2ε.

By (5.28) again, lim infn→+∞ sups6rt
zn

s > sups<rt
zs . By (5.31), we deduce that

lim
n→+∞

sup
s6rt

zn
s = sup

s6rt

zs,
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whenever rt is a continuity point of z. Since r maps [0, S] onto itself, we deduce that for any
continuity point t ∈ [0, S] of z,

lim
n→+∞

sup
s6t

zn
s = sup

s6t
zs .

Now, if (sups6t zs)+ is not an integer, we deduce that

lim
n→+∞


sup
s6t

zn
s


+


=


sup
s6t

zs

+


.

If (sups6t zs)+ is an integer, there are two cases. If the integer is zero, it means that sups6t zs 6 0,
so that limn→+∞ sups6t zn

s 6 0 and thus

lim
n→+∞

(sup
s6t

zn
s )+ = 0.

In this case, limn→+∞⌊(sups6t zn
s )+⌋ = 0. If the integer is not zero and t < S, the crossing

property (5.26) says that t must be the first time when this integer is crossed (rather than just
touched), so that the number of points of continuity of z for which the convergence of the integer
parts can fail is finite. �

The following corollary is simply a result of Lebesgue’s dominated convergence theorem.

Corollary 5.7. Under the assumptions of Lemma 5.6, the functions [0, S] ∋ t →
 t

0 b

zn

s −

mn
s


ds converge in C([0, S], R) towards [0, S] ∋ t →

 t
0 b

zs − ms


ds.

The next result guarantees the convergence of the expectation of mt whenever µn
→ µ and

the canonical process z satisfies the crossing property of Lemma 5.6 under µ, under appropriate
assumptions.

Proposition 5.8. Assume that (µn)n>1 is a sequence of probability measures on the space
D̂([0, S], R), converging towards some µ for the weak topology deriving from M1.
If supn>1⟨µ

n, supt∈[0,S] |zt |
2
⟩ < +∞, then, at any point of continuity of the mapping (0, S) ∋

t → ⟨µ, mt ⟩, it holds that

lim
n→+∞

⟨µn, mt ⟩ = ⟨µ, mt ⟩,

provided that, for any integer k > 1 and for τ k
:= inf{t ∈ [0, S] : zt > k},

∀h > 0, µ

τ k < S, sup

s∈[τ k ,min(S,τ k+h)]

(zs − zτ k ) = 0


= 0. (5.32)

Proof. Let δ > 0. Then, for every n > 1, the function

[0, S] ∋ t → m̄n
t =

⟨µn, mδ⟩, t ∈ [0, δ],

⟨µn, mt ⟩, t ∈ [δ, S − δ],

⟨µn, mS−δ⟩, t ∈ [S − δ, S]

is (deterministic) non-decreasing nonnegative and càdlàg such that supn>1 m̄n
S < +∞.

Since each m̄n is constant on both [0, δ] and [S − δ, S], the sequence (m̄n)n>1 is relatively
compact for the M1 topology by Theorem 4.3. Extracting a convergent subsequence, still indexed
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by n, and denoting the limit by m̄, we have, for any bounded and measurable function f from
[0, S] into R vanishing outside (δ, S − δ), that

lim
n→+∞

 S

0
ft m̄

n
t dt =

 S

0
ft m̄t dt.

This follows from the dominated convergence theorem and the fact that (m̄n)n>1 converges
pointwise towards m̄ on a subset of [0, S] of full Lebesgue measure, see Theorem 4.1. Since
f vanishes outside (δ, S − δ), we can forget the definition of m̄n outside (δ, S − δ). Therefore,
by the Skorohod representation theorem S

0
ft m̄

n
t dt = E

 S

0
ft


sup
s∈[0,t]

ζ n
s


+


dt,

where (ζ n)n>1 is a sequence of processes distributed according to (µn)n>1 and converging a.s.
for M1 towards some process ζ with law µ. By assumption, we know that, a.s.,

∀k > 1, ∀h > 0, τ k < S ⇒ sup
s∈[τ k ,min(S,τ k+h)]

(ζs − ζτ k ) > 0,

so that almost all paths of ζ satisfy the assumption of Lemma 5.6. We deduce that, a.s., the
functions [0, S] ∋ t → ⌊(sups∈[0,t] ζ

n
s )+⌋ converge pointwise towards

[0, S] ∋ t → ⌊(sups∈[0,t] ζs)+⌋ on the complement of an at most countable set. Therefore, a.s.

lim
n→+∞

 S

0
ft


sup
s∈[0,t]

ζ n
s


+


dt =

 S

0
ft


sup
s∈[0,t]

ζs

+


dt,

by the Lebesgue dominated convergence theorem. Using this result again, we deduce that

lim
n→+∞

E

 S

0
ft


sup
s∈[0,t]

ζ n
s


+


dt


= E

 S

0
ft


sup
s∈[0,t]

ζs

+


dt


=

 S

0
ft ⟨µ, mt ⟩dt,

the last equality following from the fact that the law of (ζs)06s6S is µ. By right-continuity,
this proves that m̄t = ⟨µ, mt ⟩ for any t ∈ (δ, S − δ). Therefore, at any point of continuity of
(δ, S − δ) ∋ t → ⟨µ, mt ⟩, Theorem 4.2 says that

lim
n→+∞

⟨µn, mt ⟩ = ⟨µ, mt ⟩.

Letting δ tend to 0, we complete the proof, as the set of discontinuity points of [0, S] ∋ t →

⟨µ, mt ⟩ is at most countable. �

The previous result is general. In order to be able to apply it, we need to check that whenever
Π∞ is a limit point of the family (ΠN )N>1 (see Theorem 4.4), any measure µ in the support of
Π∞ must satisfy the crossing property.

Lemma 5.9. For a.e. µ under Π∞, for any integer k > 1 and any real h > 0,

µ

τ k < T + 1, sup

s∈[τ k ,min(T +1,τ k+h)]

(zs − zτ k ) = 0


= 0, with τ k
= inf{t > 0 : zt > k}.

In particular, if (µn)n>1 is a sequence of probability measures on the space D̂([0, S], R),
converging towards µ for the weak topology deriving from M1, then, at any point of continuity
of the mapping (0, S) ∋ t → ⟨µ, mt ⟩, it holds that limn→+∞⟨µn, mt ⟩ = ⟨µ, mt ⟩.
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Proof. In order to prove this result, we actually will introduce a second empirical measure

θ̄N :=
1
N

N
i=1

Dirac(Z i,N , W i ).

We will consider θ̄N as a random probability measure on D̂([0, T + 1], R) × C([0, T + 1], R),
endowed with the product of the M1 topology and of the standard topology of uniform
convergence. Note that the marginal distribution of θ̄N on the first coordinate is µ̄N . We also
define ΞN := Law(θ̄N ). Following Lemma 5.5, we have that the family (ΞN )N>1 is tight on
P(D̂([0, T + 1], R) × C([0, T + 1], R)) (endowed with the topology of weak convergence), so
that we can extract a convergent subsequence of (ΞN )N>1, still indexed by N . We denote its limit
by Ξ∞.

Returning to the particle system, we first claim that there exists a constant c > 0 such that, for
any N > 1 and i = 1, . . . , N ,Z i,N

t − Z i,N
s > W i

t − W i
s − c


1 + sup

v∈[0,T ]

|Z i,N
v |


(t − s),

for s, t ∈ [0, T + 1] with s 6 t . Indeed this follows from the fact that b is Lipschitz and that
M i,N

t 6 supv∈[0,T ] |Z
i,N
v |, for all t ∈ [0, T ] and every i = 1, . . . , N .

Denoting by (zt , wt )t∈[0,T +1] the canonical process on D̂([0, T + 1], R) × C([0, T + 1], R),
we get that, P-a.s.,

zt − zs > wt − ws − c

1 + sup

v∈[0,T +1]

|zv|

(t − s), 0 6 s 6 t 6 T + 1 (5.33)

holds under the empirical measure θ̄N , or that (5.33) holds a.s. under a.e. probability measure θ

under ΞN . Since (ΞN )N>1 converges towards Ξ∞ in the weak sense, we know from the Skorohod
representation theorem that, on some probability space (still denoted by (Ω , A, P)), there exists
a sequence of random probability measures (ϑN )N>1 on the space D̂([0, T + 1], R)× C([0, T +

1], R), such that (ϑN )N>1 converges towards some random probability measure ϑ∞ a.s., with ϑN
being distributed according to ΞN and ϑ∞ according to Ξ∞. Hence, a.s., under ϑN the canonical
process (z, w) has the property (5.33).

Step 1: The first step is to show that under ϑ∞ the canonical process (z, w) also satisfies (5.33),
simply using the facts that it is true under ϑN for each N , and that ϑN converges to ϑ∞ a.s.
Again, we can use the Skorohod representation theorem (still with (Ω , A, P) as the underlying
probability space). Indeed, we can find a sequence of processes (ζ N , ξ N ) with law ϑN under
P, converging a.s. towards some process (ζ, ξ) distributed according to ϑ∞. Since (5.33) holds
under ϑN for each N , we have that P a.s., for any 0 6 s 6 t 6 T + 1,

ζ N
t − ζ N

s > ξ N
t − ξ N

s − c

1 + sup

v∈[0,T +1]

|ζ N
v |

(t − s). (5.34)

We want to prove that, P a.s., for any s 6 t ,

ζt − ζs > ξt − ξs − c

1 + sup

v∈[0,T +1]

|ζv|

(t − s). (5.35)

It is sufficient to prove that, for an arbitrary sequence (ζ N , ξ N )N>1 satisfying (5.34) and con-
verging towards (ζ, ξ) in D̂([0, T +1], R)× C([0, T +1], R) equipped with the product topology
derived from the M1 and uniform topologies, the limit (ζ, ξ) satisfies (5.35).
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To this end, if ζ N
→ ζ in D̂([0, T + 1], R) with respect to the M1 topology, then by [19,

Theorem 12.5.1], there exist parametric representations (uN , r N ) of ζ N and (u, r) of ζ (see
Section 4.1 for definition) such that ∥uN

− u∥ ∨ ∥r N
− r∥ → 0, where

∀t ∈ [0, T + 1], uN
t ∈


ζ N

r N
t −

, ζ N
r N

t


, ut ∈


ζrt −, ζrt


.

Noting that sup06v6T +1 |ζ N
v | = sup06v6T +1 |uN

v |, we have by (5.34), for any s 6 t ,

max

ζ N

r N
t −

, ζ N
r N

t


− min


ζ N

r N
s −

, ζ N
r N

s


> ξ N

r N
t

− ξ N
r N

s
− c


1 + sup

v∈[0,T +1]

|uN
v |


r N
t − r N

s


,

since the right-hand side is continuous in the subscript parameter. Thus

uN
t − uN

s > ξ N
r N

t
− ξ N

r N
s

− c

1 + sup

v∈[0,T +1]

|uN
v |


r N
t − r N

s


.

Passing to the limit as N → ∞ and using the continuity of ξ , we obtain, for any s 6 t ,

ut − us > ξrt − ξrs − c

1 + sup

v∈[0,T +1]

|uv|

(rt − rs).

For any t ′, s′
∈ [0, T + 1], s′ 6 t ′, we can find t, s ∈ [0, T + 1] with s 6 t such that

ζt ′ = ut , ζs′ = us and t ′ = rt , s′
= rs . This proves that

ζt ′ − ζs′ > ξt ′ − ξs′ − c

1 + sup

v∈[0,T +1]

|ζv|

(t ′ − s′),

and thus that (ζ, ξ) satisfies (5.35).

Step 2: We now use the previous step to prove the lemma. Indeed, by Step 1 we have that (5.33)
holds a.s. under θ , for almost all θ under Ξ∞. Thus for almost all θ under Ξ∞, we have for any
real R, integer k and h > 0

θ

τ k < T + 1, sup

s∈[τ k ,min(T,τ k+h)]

(zs − zτ k ) = 0


6 θ


sup
v∈[0,T +1]

|zv| > R


+ θ

τ k < T + 1, sup

s∈[τ k ,min(T,τ k+h)]

[ws − wτ k − c(1 + R)(s − τ k)] = 0

.

Clearly, τ k is a stopping time for the filtration generated by (z, w). Assume that w is a Brownian
motion w.r.t. this filtration under θ (this is proved below). Then the strong Markov property says
that the second term in the right-hand side of the above is zero for any h > 0. Letting R tend to
+∞, we get

θ

τ k < T + 1, sup

s∈[τ k ,min(T,τ k+h)]

(zs − zτ k ) = 0


= 0 for a.e. θ under Ξ∞. (5.36)

We finally claim that (5.36) then also holds for all µ under Π∞. For θ ∈ P(D̂([0, T +

1], R) × C([0, T + 1], R)) let Ψ(θ) ∈ P(D̂([0, T + 1], R)) be the marginal of θ on the first
coordinate. Since θ → Ψ(θ) is obviously continuous and ΠN = Ψ♯ΞN , where ♯ indicates the
push forward map, we have Π∞ = Ψ♯Ξ∞. Then, for any Borel subset A ⊂ D̂([0, T + 1], R),

θ{(zt )t∈[0,T +1] ∈ A}dΞ∞(θ) =


µ{(zt )t∈[0,T +1] ∈ A}dΠ∞(µ). Choosing A = {τ k <

T + 1, sups∈[τ k ,min(T,τ k+h)](zs − zτ k ) = 0}, we complete the proof.
It thus remains to prove that w is a Brownian motion under the filtration generated by (z, w),

for which it is sufficient to prove that
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f (wt − ws)

n
i=1

gi (zsi , wsi )dθ(z, w)

=


f (wt − ws)dθ(z, w)

 n
i=1

gi (zsi , wsi )dθ(z, w),

for bounded and continuous functions gi and f , and for 0 6 s1 < · · · < sn 6 s < t i.e. w is a
continuous martingale. This follows from the convergence of the finite-dimensional distributions
up to a countable subset under the weak convergence for the M1 Skorohod topology (see [15,
Theorem 3.2.2]) and from the right-continuity of the paths. �

We then finally arrive at the required continuity lemma:

Lemma 5.10. Under Π∞, the functional (5.18) is a.e. continuous.

Proof. Let µ be in the support of Π∞, and let (µn)n>1 be a sequence of measures on
D̂([0, T + 1], R) converging towards µ (in the weak topology induced by the M1 topology).
By choice of S1 < · · · < Sp = S in the definition (5.16) of F , both the canonical process and
⟨µ, m⟩ are a.s. continuous at S1, . . . , Sp. We want to prove that

lim
n→+∞


µn, F


z· − z0 −


·

0
b(zs − ms)ds − α⟨µn, m·⟩


=


µ, F


z· − z0 −


·

0
b(zs − ms)ds − α⟨µ, m·⟩


.

Again, we make use of the Skorohod representation theorem. We consider a sequence of pro-
cesses (ζ n)n>1, with (µn)n>1 as distributions on D̂([0, T + 1], R), converging a.s. towards some
process ζ , admitting µ as distribution. We set, for any t ∈ [0, T ],

ηn
t =


sup

s∈[0,t]
ζ n

s


+


, ηt =


sup

s∈[0,t]
ζs

+


.

Since, a.s., S is a point of continuity of ζ , we deduce from Theorems 4.1 and 4.2 that, a.s.,
(ζ̂ n

s )s∈[0,S] converges towards (ζs)s∈[0,S] in D̂([0, S], R), where ζ̂ n
s = ζ n

s if s < S and ζ̂ n
S = ζ n

S−

as usual.
By Corollary 5.7, a.s.,

lim
n→+∞

sup
v∈[0,S]

 v

0
b(ζ n

s − ηn
s )ds −

 v

0
b(ζs − ηs)ds

 = 0.

Moreover, since S0, S1, . . . , Sp are almost-surely points of continuity of ζ , we deduce from
Theorem 4.2 that ζ n

Si
→ ζSi as n → +∞, for any i ∈ {0, . . . , p}.

Similarly, since S1, . . . , Sp are points of continuity of [0, T ] ∋ t → ⟨µ, mt ⟩ (which coincides
with the expectation of ηt under µ), we deduce from Proposition 5.8 that ⟨µn, mSi ⟩ → ⟨µ, mSi ⟩

as n → +∞, for any i ∈ {1, . . . , p}. This proves the lemma. �

5.6. Proof of Theorems 4.6 and 4.9

Theorems 4.6 and 4.9 are proved in a completely similar way to Theorems 4.4 and 4.7.
We first discuss the proof of Theorem 4.6, using the same notation as in the statement.

Following the proof Lemma 5.1, we can prove that supδ∈(0,1) E[supt∈[0,T ] |Z
δ
t |

p
+ (Mδ

T )p
] is
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finite for any p > 1. Following the proof of [7, Lemma 5.2], we know that eδ(t) 6 Ct1/2, for
a constant C independent of δ. Following the proof of Lemma 5.4, we deduce that the laws of
(µδ)δ∈(0,1) are tight in D̂([0, T + 1], R), where µδ is defined in the statement of Theorem 4.6. In
order to pass to the limit along convergent subsequences, we consider, for a given weak limit µ,
the countable set of points J in [0, T + 1] at which the function

[0, T + 1] ∋ t → µ

zt− = zt


differs from one. Checking that µ satisfies the ‘crossing’ property in Lemma 5.9, it is then quite
straightforward to pass to the limit in the identity

Z δ
Si+1

= Z δ
Si

+

 Si+1

Si

b

Z δ

s − Mδ
s


ds + α⟨µδ, mSi+1 − mSi ⟩ + WSi+1 − WSi ,

for points 0 = S0 < S1 < · · · < Sp < T that are not in J . This permits to prove that, under µ,
the canonical process (zt )t∈[0,T ] satisfies (2) in Theorem 4.4.

The most difficult point is to check (3). It follows from Lemma 5.11, which is the counterpart
of Proposition 5.3 for the particle system. The end of the proof is then similar. The proof of
Theorem 4.9 works on the same model as the one of Theorem 4.7.

Lemma 5.11. For a given T > 0, consider 0 6 t < t + h 6 T , h ∈ (0, 1). Then, we can find
C > 0, independent of h, such that, for any δ ∈ (0, 1),

eδ(t + h) − eδ(t−) = eδ(t + h) − eδ(t) 6 1 + Ch1/8,

∀λ 6 eδ(t + h) − eδ(t), P

X δ

t− > 1 − αλ − Ch1/8 > λ + eδ(t) − eδ(t + δ) − Ch1/8.

Notice that the second statement in Lemma 5.11 slightly differs from the second statement
in Proposition 5.3. However, the application for passing to the limit is the same. With the same
notation as in (5.19), it says that, for t, t + h, t + δ′

∈ J { and λ < ⟨µ, mt+h − mt ⟩, it holds
µ(zt− − mt− > 1 − αλ − Ch1/8) > λ + ⟨µ, mt − mt+δ′⟩ − Ch1/8. Letting δ′

↓ 0, it permits to
recover (5.19).

Proof. Given some δ > 0 and 0 6 t < t + h 6 T , consider σ δ
t := inf{s > t : Mδ

s − Mδ
t− = 1}

and τ δ
t := inf{s > t : Mδ

s − Mδ
t− = 2}. As eδ is continuously differentiable, we know from [7,

Lemma 4.2] that σ δ
t and τ δ

t have differentiable cumulative distribution functions. Recalling the
definition of (3.11) and setting Z δ

= X δ
+ Mδ as usual, we see that

sup
s∈[t,t+h]

|Z δ
s − Z δ

t | 6 α

eδ(t + h) − eδ(t)


+ sup

s∈[t,t+h]

|W δ
s − W δ

t | + Ch

1 + sup

s∈[0,T ]

|Z δ
s |

.

On {τ δ
t 6 t + h}, (Z δ

s )s∈[t,t+h] crosses at least two new integers, i.e. sups∈[t,t+h] |Z
δ
s − Z δ

t | > 1:

1 6 α

eδ(t + h) − eδ(t)


+ sup

s∈[t,t+h]

|W δ
s − W δ

t | + Ch

1 + sup

s∈[0,T ]

|Z δ
s |

, (5.37)

where (with the convention that Mδ
r = Mδ

0 , σ δ
r = σ δ

0 and τ δ
r = τ δ

0 if r 6 0),

eδ(t + h) − eδ(t) 6 P

Mδ

t+h−δ − Mδ
t−δ > 1


+ E


Mδ

t+h−δ − Mδ
t−δ


1
{τ δ

t−δ6t+h−δ}


6 P


σ δ

t−δ 6 t + h − δ

+ C


P(τ δ

t−δ 6 t + h − δ)
1/2

6 1 + C

P(τ δ

t−δ 6 t + h − δ)
1/2

. (5.38)
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Therefore, taking the expectation in (5.37) on the event {τ δ
t 6 t + h}, applying the

Cauchy–Schwarz inequality and noticing that P(τ δ
t 6 t + h) ≠ 0, we deduce:

1 6 α + C

P(τ δ

t−δ 6 t − δ + h)
1/2

+ Ch1/2P(τ δ
t 6 t + h)

−1/2
.

For t = 0, this says that

1 6 α + C

P(τ δ

0 6 h)
1/2

+ Ch1/2P(τ δ
0 6 h)

−1/2
.

We claim that (with C the constant found in the above equation)

P

τ δ

0 6 h


6 h1/4, for h ∈ [0, h0), where h0 =
1 − α

2C
. (5.39)

We argue by contradiction. If there exists h∗
∈ (0, h0) such that P(τ δ

0 6 h∗) > (h∗)1/4, we can
take, by differentiability of the cumulative distribution function of τ δ

0 , h∗ so that in fact equality

is satisfied i.e. P(τ δ
0 6 h∗) = (h∗)1/4. We deduce that 1 6 α + 2C(h∗)1/8 < α + 2Ch1/8

0 , which
is a contradiction.

For t ∈ [0, δ], we deduce that P(τ δ
t−δ 6 t − δ + h) = P(τ δ

0 6 h) 6 h1/4. Assume then that,
for some integer 1 6 k 6 ⌈T/δ⌉ and for all t ∈ [0, kδ], we have P(τ δ

t−δ 6 t − δ + h) 6 h1/4, for
h ∈ [0, h0). We then claim that P(τ δ

t 6 t + h) 6 h1/4 for all t ∈ [0, (kδ) ∧ T ] and h ∈ [0, h0).
This can be proved by contradiction again by considering h∗ such that P(τ δ

t 6 t +h∗) = (h∗)1/4.
We finally deduce that

P(τ δ
t 6 t + h) 6 Ch1/4 so that eδ(t + h) − eδ(t) 6 1 + Ch1/8, (5.40)

the second claim following from (5.38) and proving the first statement.
For the second statement, notice that, on the event {σ δ

t 6 s}, for t 6 s 6 t + h,

X δ

σ δ
t −

− X δ
t− 6 α


eδ(s) − eδ(t)


+ sup

s∈[t,t+h]

|Ws − Wt | + C ′h

1 + sup

s∈[t,t+h]

|Z δ
s |

.

Since X δ

σ δ
t −

= 1 (eδ being continuous, see (3.13)), we have for eδ(s) − eδ(t) 6 λ:

P

X δ

t− > 1 − αλ − C ′h1/8 > P

σ δ

t 6 s

− P


sup

s∈[t,t+h]

|Ws − Wt |

+ C ′h

1 + sup

s∈[t,t+h]

|Z δ
s |


> C ′h1/8
> P


σ δ

t 6 s

− C ′h > eδ(s + δ) − eδ(t + δ) − 2C ′h1/8,

the last inequality following from the second line in (5.38) and from (5.40). Now, for λ 6
eδ(t + h) − eδ(t), we can find s∗

∈ [t, t + h] such that λ = eδ(s∗) − eδ(t), which completes the
proof since eδ(s∗

+ δ) − eδ(t + δ) > λ + eδ(t) − eδ(t + δ). �
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