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Abstract

This paper introduces path derivatives, in the spirit of Dupire’s functional Itô calcu-

lus, for controlled rough paths in rough path theory with possibly non-geometric rough

paths. We next study rough PDEs with coefficients depending on the rough path itself,

which corresponds to stochastic PDEs with random coefficients. Such coefficients are

less regular in the time variable, which is not covered in the existing literature. The

results are useful for studying viscosity solutions of stochastic PDEs.
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1 Introduction

Firstly initiated by Lyons [33], rough path theory has been studied extensively and its appli-

cations have been found in many areas, including the recent application on KPZ equations

by Hairer [24]. We refer to Lyons [34], Friz and Hairer [9], Friz and Victoir [20], and the

references therein for the general theory and its applications.

On the other hand, the functional Itô calculus, initiated by Dupire [13] and further

developed by Cont and Fournie [9], has received very strong attention in recent years. In

particular, it has proven to be a very convenient language for the theory of path dependent

PDEs, see Peng and Wang [37], Ekren, Keller, Touzi and Zhang [14], and Ekren, Touzi and

Zhang [15, 16]. We also refer to Buckdahn, Ma and Zhang [5], Cosso and Russo [10], Leao,

Ohashi and Simas [27], and Oberhauser [36] for some recent related works on functional Itô

calculus.

The first goal of this paper is to develop the pathwise Itô calculus, in the spirit of Dupire’s

functional Itô calculus, in the rough path framework with possibly non-geometric rough

paths. Based on the quadratic compensator of rough paths, which plays the role of quadratic

variation in semimartingale theory, we introduce path derivatives for controlled rough paths

of Gubinelli [22]. Our first order spatial path derivative is the same as Gubinelli’s derivative,

and the time derivative is closely related to a second order Taylor expansion of the controlled

rough paths. This allows us to study the structure of a fairly general class of controlled

rough paths, and more importantly, to treat rough path integration and rough ODEs/PDEs

in the same manner as standard Itô calculus. In particular,

• the pathwise Taylor expansion and the pathwise Itô formula become equivalent;

• as observed by Buckdahn, Ma and Zhang [5] in a Brownian motion setting, the path-

wise Itô-Ventzell formula is equivalent to the chain rule of our path derivatives, which is

crucial for studying rough PDEs and stochastic PDEs;

• We may study rough ODEs/PDEs whose ”drift term” is driven by the quadratic

compensator, instead of dt. See (1.1) and (1.3) below. This is natural in semimartingale

theory when the driving martingale is not a Brownian motion.

We shall remark though, while we believe such presentation of path derivatives in the rough

path framework is new, many related ideas have already been discussed in the literature.

Besides [18] and the reference therein, we also refer to the recent work Perkowski and Prömel

[38] for some related studies.

We next study the following rough differential equations in the form:

dθt = g(t, θt)dωt + f(t, θt)d〈ω〉t, (1.1)

2
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where ω is a Hölder-α continuous rough path and 〈ω〉 is its quadratic compensator. We

remark that, as mentioned in previous paragraph, we use Young integration f(t, θt)d〈ω〉t
rather than Lebesgue integration f(t, θt)dt in the ”drift” term above, and they become the

same when ω is induced by a sample path of Brownian motion with Itô integration. Our

study of above RDE is mainly motivated from the following stochastic differential equations

with random coefficients:

dXt = g(t, ω,Xt)dBt + f(t, ω,Xt)dt, (1.2)

where B is a Brownian motion in the canonical probability space (Ω,F ,P), dB is Itô inte-

gration, and g, f are adapted, namely depend on the history of the path: {ωs}0≤s≤t. In

the literature, typically the coefficients g and f in (1.1) do not depend on t, or at least is

Hölder-(1− α) continuous in t, see Lejay and Victoir [28]. However, since a Brownian mo-

tion sample path ω is only Hölder-(1
2−ε) continuous, by setting α = 1

2−ε, for (1.2) it is not

reasonable to assume the mapping t 7→ g(·, ω, x) is Hölder-(1−α) continuous as required by

[28]. Consequently, we are not able to apply the existing results in the rough path literature

to study SDE (1.2) with random coefficients. We shall provide various estimates for rough

path integrations, which follow more or less standard arguments, and then establish the

wellposedness of RDE (1.1) under minimum regularity conditions on the coefficients. To

be precise, we require only that g(·, x), f(·, x), and ∂ωg(·, x) are Hölder-β continuous for

some β ∈ (1 − 2α, α], where ∂ωg is the spatial path derivative corresponding to Gubnelli’s

derivative. This can be easily satisfied for the coefficients of (1.2) when 1
3 < α < 1

2 . We

note that the recent works Gubinelli, Tindel and Torrecilla [23] and Lyons and Yang [35]

have also studied rough integration for more general integrands.

As a direct consequence of the above wellposedness result of RDE (1.1), we obtain

the pathwise solution of SDE (1.2) with random coefficients. Moreover, by restricting the

canonical space Ω slightly and by using the pathwise stochastic integration, we construct

the second order process ω via ω itself. Then the pathwise solution exists for all ω ∈ Ω,

without the exceptional P-null set, and the solution X(ω) is continuous in ω under the

rough path topology.

We would also like to mention that, for linear RDEs, we introduce a decoupling strategy

and provide a semi-explicit solution, by using the local solution of certain Riccati-type

RDEs. The result seems new even for standard linear SDEs in the multidimensional setting.

Finally, we extend the theory to the following rough PDEs with less regular coefficients:

du(t, x) =
[
σ(t, x)∂xu+ g(t, x, u)

]
dωt + f(t, x, u, ∂xu, ∂2

xxu)d〈ω〉t, (1.3)

3
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again motivated from pathwise analysis for stochastic PDEs with random coefficients:

du(t, ω, x) =
[
σ(t, ω, x)∂xu+ g(t, ω, x, u)

]
dBt + f(t, ω, x, u, ∂xu, ∂2

xxu)dt. (1.4)

As standard in the literature, see e.g. Kunita [26] for Stochastic PDEs and [18] for Rough

PDEs, the main tool is the (pathwise) characteristics. We construct the pathwise charac-

teristics via RDEs against a backward rough path. We remark that the backward rough

path we construct is also a rough path. Our result here will be crucial for the study of

viscosity solutions of SPDEs in Buckdahn, Keller, Ma and Zhang [2].

The rest of the paper is organized as follows. In Section 2 we introduce the basics of

our pathwise Itô calculus, in particular the path derivatives of controlled rough paths. In

Section 3 we study functions of controlled rough paths and their path derivatives. We shall

provide related estimates and prove the chain rule of path derivatives, which is equivalent to

the pathwise Itô-Ventzell formula. In Section 4 we study the wellposedness results of rough

differential equations. In particular, for linear RDEs we introduce a decoupling strategy

which enables us to construct semi-explicit global solution. In Section 5 we apply the RDE

results to SDEs with random coefficients. Finally in Section 6 we extend the results to

rough PDEs and stochastic PDEs.

At below we collect some notations used throughout the paper:

• T > 0 is a fixed time; and T := [0, T ], T2 := {(s, t) : 0 ≤ s < t ≤ T}.
• d is the fixed dimension for rough paths, and Sd the space of d×d symmetric matrices.

• E (and Ẽ) is a generic Euclidean space, and |E| is the dimension of E, namely

E = R|E|.
• By default En is viewed as a column vector. However, for a function g : y ∈ E → Ẽ,

we take the convention that the first order derivative ∂yg ∈ Ẽ1×|E| is viewed as a row vector,

and the second order derivative ∂2
yyg := ∂y[(∂yg)∗] ∈ Ẽ|E|×|E| is symmetric. Moreover, for

g : (x, y) ∈ E1×E2 → Ẽ, ∂xyg := ∂x[(∂yg)∗] ∈ Ẽ|E2|×|E1| and ∂yxg := ∂y[(∂xg)∗] ∈ Ẽ|E1|×E2 .

• ϕs,t := ϕt − ϕs for any function ϕ : T→ E and any (s, t) ∈ T2.

• For A ∈ Em×n, A∗ ∈ En×m is its transpose.

• For x ∈ Ed and y ∈ Rd, x · y ∈ E is their inner product.

• For A ∈ Em×n and Ã ∈ Rm×n, A : Ã := Trace(AÃ∗) ∈ E.

• For A = [ai,j : 1 ≤ i ≤ m, 1 ≤ j ≤ |E|] ∈ Ẽm×|E| and x = [xi,j , 1 ≤ i ≤ n, 1 ≤ j ≤
|E|] ∈ En = Rn×|E|, Ax ∈ Ẽm×n is their tensor contraction, whose (i, j)-th component is
∑|E|

k=1 ai,kxj,k.

• For A = [ai,j : 1 ≤ i ≤ |E1|, 1 ≤ j ≤ E2] ∈ Ẽ|E1|×|E2| and x = [xi,j , 1 ≤ i ≤ m, 1 ≤ j ≤

4
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|E1|] ∈ Em1 = Rm×|E1|, y = [yi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ |E2|] ∈ En2 = Rn×|E2|, A [x, y] ∈ Ẽm×n

is their (double) tensor contraction, whose (i, j)-th component is
∑|E1|

k=1

∑|E2|
l=1 ak,lxi,kyj,l.

2 Rough path integration and path derivatives

In this section we present the basics of rough path theory as well as our pathwise Itô calculus.

2.1 Rough path and its quadratic compensator

Denote, for a constant α > 0,

Ωα(E) :=
{
ω ∈ C(T, E) : ‖ω‖α <∞

}
, where ‖ω‖α := sup(s,t)∈T2

|ωs,t|
|t−s|α ;

Ωα(E) :=
{
ω ∈ C(T2, E) : ‖ω‖α <∞

}
, where ‖ω‖α := sup(s,t)∈T2

|ωs,t|
|t−s|α .

(2.1)

It is clear that

‖ω‖∞ := sup
0≤t≤T

|ωt| ≤ |ω0|+ Tα‖ω‖α, ∀ω ∈ Ωα(E). (2.2)

From now on, we shall fix two parameters:

α := (α, β) where α ∈ (
1
3
,
1
2

), β ∈ (1− 2α, α]. (2.3)

Our space of rough paths is:

Ω0
α :=

{
ω = (ω, ω) ∈ Ωα(Rd)× Ω2α(Rd×d) : (2.4)

ωs,t − ωs,r − ωr,t = ωs,rω
∗
r,t ∀0 ≤ s < r < t ≤ T

}

equipped with:

‖ω‖α := ‖ω‖α + ‖ω‖2α. (2.5)

The requirement in second line of (2.4) is called Chen’s relation. We remark that in general

‖λω‖α 6= |λ|‖ω‖α for a constant λ.

We next introduce the quadratic compensator of ω:

〈ω〉t := ω0,t(ω0,t)∗ − ω0,t − ω∗0,t ∈ Sd. (2.6)

By (2.4), one can easily check that

〈ω〉s,t = ωs,t(ωs,t)∗ − ωs,t − ω∗s,t and thus 〈ω〉 ∈ Ω2α(Sd). (2.7)

5
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Remark 2.1 (i) Clearly 〈ω〉 = 0 if and only if ω is a geometric rough path. This process

is intrinsic for non-geometric rough paths, and makes our study much more convenient.

(ii) The process 〈ω〉 is called the bracket process, denoted as [ω], of the so called reduced

rough path in [18]. As we will see later,

• this process plays essentially the same role as the quadratic variation process in semi-

martingale theory;

• ω2
t −〈ω〉t is always a rough path integration, which can be viewed as the counterpart of

martingale. So in spirit 〈ω〉t plays the similar role for ω2
t as the compensator for a random

measure.

For these reasons, in this paper we call 〈ω〉 the quadratic compensator of ω. However,

we shall note that a typical rough path may not have finite quadratic variation.

The following result is straightforward and its proof is omitted.

Lemma 2.2 For any ω, ω̃ ∈ Ω0
α, we have

‖〈ω〉‖2α ≤ ‖ω‖α[2 + ‖ω‖α]; ‖〈ω〉 − 〈ω̃〉‖2α ≤ [‖ω‖α + ‖ω̃‖α + 2]‖ω − ω̃‖α. (2.8)

2.2 Rough path integration

To study rough path integration against ω, we first introduce the controlled rough paths of

Gubinelli [22], which can be viewed as C1-regularity of the paths against the rough path.

Definition 2.3 For each ω ∈ Ωα(Rd), the space C1
ω,α(E) of controlled rough paths consists

of E-valued paths θ ∈ Ωβ(E) such that there exists ∂ωθ ∈ Ωβ(E1×d) satisfying:

Rω,θ ∈ Ωα+β(E) where Rω,θs,t := θs,t − ∂ωθsωs,t ∀(s, t) ∈ T2.

We note that for notational simplicity we take the convention that ∂ωθ is a row vector.

Remark 2.4 (i) The path derivative ∂ωθ depends on ω, but not on ω.

(ii) In general ∂ωθ is not unique. However, when ω is truly rough, namely ω ∈ Ωa as

defined in (2.9) below, ∂ωθ is unique. See [18] Proposition 6.4. For the ease of presentation,

in this paper we shall assume ω ∈ Ωa. However, most of our results still hold true when

ω ∈ Ω0
α, provided that we specify a version of ∂ωθ.

(iii) ∂ωθ is called the Gubinelli derivative in the rough path literature. As we will see in

Section 5, when ω is a sample path of Brownian motion, it coincides with the path derivative

introduced in [5]. So in this paper we also call it path derivative.

6
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For the ease of presentation, from now on we restrict to ω ∈ Ωa so that ∂ωθ is unique:

Ωa :=
{
ω ∈ Ω0

α : there exists a dense subset A ⊂ [0, T ) such that (2.9)

lim
t↓s

|v · ωs,t|
(t− s)α+β

=∞ for all s ∈ A and v ∈ Rd\{0}
}
.

For ω ∈ Ωa, we equip the space C1
ω,α(E) with the semi-norms:

‖θ‖ω,α := ‖∂ωθ‖β + ‖Rω,θ‖α+β, dω,ω̃α (θ, θ̃) := ‖∂ωθ − ∂ω̃ θ̃‖β + ‖Rω,θ −Rω̃,θ̃‖α+β,

||| θ ||| ω,α := ‖θ‖ω,α + |∂ωθ0|, dω,ω̃α (θ, θ̃) := dω,ω̃α (θ, θ̃) + |∂ωθ0 − ∂ω̃ θ̃0|.
(2.10)

In particular, we note that

dωα(θ, θ̃) := dω,ωα (θ, θ̃) = ‖θ − θ̃‖ω,α, dωα(θ, θ̃) := dω,ωα (θ, θ̃) = ||| θ − θ̃ ||| ω,α. (2.11)

By (2.2) one can easily check that

Ωα+β(E) ⊂ C1
ω,α(E), with ∂ωθ = 0 and ‖θ‖ω,α = ‖θ‖α+β, ∀θ ∈ Ωα+β;

C1
ω,α(E) ⊂ Ωα(E), with ‖θ‖α ≤ |∂ωθ0|‖ω‖α + T β[1 + ‖ω‖α]‖θ‖ω,α ∀θ ∈ C1

ω,α(E).
(2.12)

We are now ready to define the rough path integration. For each ω ∈ Ωa, θ ∈ C1
ω,α(Ed),

and each partition π : 0 = t0 < · · · < tn = T , denote

Θπ
t :=

n−1∑

i=0

[
θti∧t · ωti∧t,ti+1∧t + ∂ωθti∧t : ωti∧t,ti+1∧t

]
. (2.13)

Here, for θ = [θ1, · · · , θd]∗, we take the convention that ∂ωθ ∈ Ed×d with i-th row ∂ωθi.

Following Gubinelli [22], we may define the rough integral as the unique limit of Θπ:

Lemma 2.5 For each ω ∈ Ωa, θ ∈ C1
ω,α(Ed), the rough integral

∫ t

0
θs · dωs := Θt := lim

|π|→0
Θπ
t ∈ E (2.14)

exists, and is independent of the choice of π. Moreover, Θ ∈ C1
ω,α(E) with ∂ωΘ = θ∗ and

∣∣∣Θs,t − θs · ωs,t − ∂ωθs : ωs,t
∣∣∣ ≤ Cα‖ω‖α‖θ‖ω,α|t− s|2α+β;

‖Θ‖ω,α ≤ Tα−β‖ω‖α|∂ωθ0|+ CαT
α[1 + ‖ω‖α]‖θ‖ω,α,

(2.15)

where the constant Cα depends only on α and the dimensions |E| and d.

Proof This result follows the same arguments in [18] Theorem 4.10, except that the

second line of (2.15) appears slightly differently. To see that, by the first estimate we have

‖Rω,θ‖α+β ≤ ‖∂ωθ‖∞‖ω‖αTα−β + CTα‖ω‖α‖θ‖ω,α.

7
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Plug (2.2) with ω replaced by ∂ω and α replaced by β into above and then use the inequality

of (2.12). We obtain the second estimate of (2.15) immediately.

Moreover, we have the following stability result in terms of the rough integral, which

improves [18] Theorem 4.16 slightly.

Lemma 2.6 Let (ω, θ,Θ) be as in Lemma 2.5 and consider (ω̃, θ̃, Θ̃) similarly. Denote

M := ‖θ‖ω,α + ‖θ̃‖ω̃,α + ‖ω‖α + ‖ω̃‖α, and ∆ϕ := ϕ̃− ϕ, for ϕ = ω, θ,Θ.

Then, there exists a constant Cα,M , depending on α,M , and |E|, d, such that

dω,ω̃α (Θ, Θ̃) ≤ Tα−β
[
|∂ω θ̃0|‖∆ω‖α + ‖ω‖α|∆∂ωθ0|

]
+ Cα,MT

α
[
‖∆ω‖α + dω,ω̃α (θ, θ̃)

]
.

Proof First, similar to the first estimate in (2.15), or following the same arguments as in

[18] Theorem 4.16, we have
∣∣∣[Rω̃,Θ̃s,t − ∂ω θ̃s : ω̃s,t]− [Rω,Θs,t − ∂ωθs : ωs,t]

∣∣∣ ≤ CTα
[
‖∆ω‖α + dω,ω̃α (θ, θ̃)

]
(t− s)α+β.

Note that, by (2.2),

|∂ω θ̃s : ω̃s,t − ∂ωθs : ωs,t| ≤
[
‖∆∂ωθ‖∞‖ω‖2α + ‖∂ω θ̃‖∞‖∆ω‖2α

]
(t− s)2α

≤
[
[|∆∂ωθ0|‖ω‖2α + |∂ω θ̃0|‖∆ω‖2α] + CT β[‖∆∂ωθ‖β + ‖∆ω‖2α]

]
(t− s)2α.

Then we obtain the desired estimate for ‖Rω̃,Θ̃ −Rω,Θ‖α+β immediately. Moreover,

|∆∂ωΘs,t| = |∆θs,t| =
∣∣∣[∂ω θ̃sω̃s,t +Rω̃,θ̃s,t ]− [∂ωθsωs,t +Rω,θs,t ]

∣∣∣

≤
[
‖∆∂ωθ‖∞‖ω‖α + ‖∂ω θ̃‖∞‖∆ω‖α + T β‖Rω̃,θ̃ −Rω,θ‖α+β

]
(t− s)α

By (2.2) again we obtain the desired estimate for ‖∆∂ωΘ‖β, completing the proof.

We conclude this subsection with the Young’s integration against 〈ω〉. Since 〈ω〉 ∈
Ω2α(Sd), by (2.3) the Young’s integral θt : d〈ω〉t is well defined for all θ ∈ Ωβ(Ed×d). We

collect below some results concerning this integration. Since the proofs are standard and

are much easier than Lemmas 2.5 and 2.6, we tomit them.

Lemma 2.7 (i) Let ω ∈ Ωa, θ ∈ Ωβ(Ed×d), Θt :=
∫ t

0 θs : d〈ω〉s. Then Θ ∈ Ωα+β(E) and

|Θs,t − θs : 〈ω〉s,t| ≤ C‖θ‖β‖〈ω〉‖2α(t− s)2α+β,

‖Θ‖α+β ≤
[
Tα−β|θ0|+ CTα‖θ‖β

]
‖〈ω〉‖2α.

(2.16)

(ii) Let (ω̃, θ̃, Θ̃) satisfy the same properties. Then, denoting ∆ϕ := ϕ− ϕ̃ for ϕ = ω, θ,Θ,

‖∆Θ‖α+β ≤ Tα−β‖〈ω〉‖2α|∆θ0|+ CTα
[
‖〈ω〉‖2α‖∆θ‖β + ‖θ̃‖β‖〈ω〉 − 〈ω̃〉‖2α

]
. (2.17)
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2.3 Path derivatives

We next introduce further path derivatives of θ. Our following definition is motivated from

the path derivatives introduced in Ekren, Touzi and Zhang [15] and Buckdahn, Ma and

Zhang [5], which in turn were motivated by the functional Itô calculus of Dupire [13].

Definition 2.8 For each ω ∈ Ωa, the space C2
ω,α(E) consists of E-valued controlled rough

paths θ ∈ C1
ω,α(E) such that ∂ωθ ∈ C1

ω,α(E1×d) and there exists symmetric Dωt θ ∈ Ωβ(Ed×d)

satisfying the following pathwise Itô formula:

dθt = ∂ωθtdωt + [Dωt θt +
1
2
∂2
ωωθt] : d〈ω〉t, where ∂2

ωωθt := ∂ω[(∂ωθt)∗] ∈ Ed×d (2.18)

Remark 2.9 (i) In general Dωt θ may not be unique. Similar to (2.9), one can easily check

that Dωt θ is unique if ω is restricted to the following Ω̂a:

Ω̂a :=
{
ω ∈ Ωa : there exists a dense subset A ⊂ [0, T ) such that (2.19)

lim
t↓s
|v : 〈ω〉s,t|
(t− s)2α+β

=∞ for all s ∈ A and v ∈ Sd\{0}
}
.

(ii) However, 〈ω〉 is more regular than ω, and thus (2.19) is much more difficult to satisfy

than (2.9). For example, if ω is a sample path of Brownian motion with Itô integration, then

〈ω〉t = tId as we will see in Section 5 below. In the case d ≥ 2, by considering v ∈ Sd\{0}
with Trace(v) = 0, we see that Ω̂a = ∅. In the case d = 1 however, we have Ω̂a = Ωa

because v 6= 0 and 2α+ β > 1.

(iii) In many cases in this paper, θ already takes the form dθt = at · dωt + bt : d〈ω〉t,
then clearly ∂ωθ = a∗ and we shall always set, thanks to the symmetry of 〈ω〉,

Dωt θ :=
1
2

[
(b− 1

2
∂ωa) + (b− 1

2
∂ωa)∗

]
. (2.20)

(iv) In the case that 〈ω〉t = t, we will actually define ∂ωt θ :=Trace(Dωt θ). Then we see

that ∂ωt θ is unique (see Theorem 1, [21]).

Remark 2.10 (i) In general ∂ωi and ∂ωj do not commute, and Dωt and ∂ω are also not

commutative. In particular, ∂2
ωωθ is not symmetric. However, since 〈ω〉 is symmetric, we

see that (2.18) is equivalent to

dθt = ∂ωθtdωt +
[
Dωt θt +

1
4

[∂2
ωωθt + (∂2

ωωθt)
∗]
]

: d〈ω〉t. (2.21)

(ii) One can easily check that the pathwise Itô formulae (2.18) and (2.21) are equivalent

to the following pathwise Taylor expansion:

θs,t = ∂ωθsωs,t +
1
2
∂2
ωωθs : [ωs,tω∗s,t + ωs,t − ω∗s,t] +Dωt θs : 〈ω〉s,t +O((t− s)2α+β). (2.22)
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In the case that ∂2
ωωθ is symmetric, which is always the case when d = 1, (2.22) becomes

θs,t = ∂ωθsωs,t +
1
2
∂2
ωωθs : [ωs,tω∗s,t] +Dωt θs : 〈ω〉s,t +O((t− s)2α+β). (2.23)

We refer to [5] for related works in Brownian motion setting.

2.4 Backward rough integration

In this subsection we introduce the backward rough path, which is also a rough path and

will play an important role in constructing the pathwise characteristics in Section 6 below.

Let ω ∈ Ωa and θ ∈ C1
ω,α(Ed). For any t0 ∈ [0, T ] and 0 ≤ s ≤ t ≤ t0, define

←
ω
t0
t := ωt0 − ωt0−t,

←
ω
t0
s,t:= ωt0−t,t0−sω

∗
t0−t,t0−s − ωt0−t,t0−s,

←
ω
t0

:= (
←
ω
t0
,
←
ω
t0

);
←
θ
t0

t := θt0−t, (
←
∂ωθ)t0t := −∂ωθt0−t.

(2.24)

By restricting the processes on [0, t0] in obvious sense, we have

Lemma 2.11 Let ω ∈ Ωa and θ ∈ C1
ω,α(Ed). Then

←
ω
t0∈ Ω0

α,
←
θ
t0
∈ C1

←
ω
t0
,α

(Ed) with

∂←
ω
t0

←
θ
t0

= (
←
∂ωθ)t0 and

∫ t0−s

t0−t

←
θ
t0

r ·d
←
ω
t0
r =

∫ t

s
θr · dωr, 0 ≤ s < t ≤ t0. (2.25)

Proof In this proof we omit the superscript t0 and denote t′ := t0 − t, s′ := t0 − s,

r′ := t0 − r, δ := t− s. First, one can easily check that
←
ωs,t= ωt′,s′ ,

←
ωs,t −

←
ωs,r −

←
ωr,t= ωr′,s′ω

∗
t′,s′ =

←
ωs,r

←
ωr,t .

This implies that
←
ω∈ Ω0

α. Next,
←
θ s,t= −θt′,s′ = −∂ωθt′ωt′,s′ −Rω,θt′,s′ =

←
∂ωθs

←
ωs,t +∂ωθt′,s′ωt′,s′ −Rω,θt′,s′ .

Then clearly
←
∂ωθ is a Gubinelli derivative of

←
θ with respect to

←
ω . Finally, the second

equality of (2.25) is exactly the same as [18] Proposition 5.10.

Remark 2.12 (i) Note that the lim in (2.9) is taken from the right. Due to the time

change, it is not clear that the backward rough path
←
ω
t0

will still be truly rough.

(ii) However, thanks to the additional regularity requirement of the path derivative,

∂←
ω
t0

←
θ
t0

is still unique. Indeed, let η be an arbitrary path satisfying the desired proper-

ties of the path derivative ∂←
ω
t0

←
θ
t0

. Then, for 0 ≤ s < t ≤ t0,

θs,t =
←
θ
t0

t0−t,t0−s= ηt0−t
←
ω t0−t,t0−s +O(|t− s|α+β)

= ηt0−tωs,t +O(|t− s|α+β) = ηt0−sωs,t +O(|t− s|α+β).

By the uniqueness of ∂ωθ, we see that ηt0−s = ∂ωθs, and thus ηs = ∂ωθt0−s is unique.
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3 Functions of controlled rough paths

In this section we study functions ϕ : T× Ẽ → E and its related path derivatives. Similar

to (2.18), we shall take the notational convention that

∂yyϕ := ∂y[(∂yϕ)∗], ∂yωϕ := ∂y[(∂ωϕ)∗], ∂ωyϕ := ∂ω[(∂yϕ)∗]. (3.1)

Definition 3.1 (i) For k ≥ 0, let Ckloc(Ẽ, E) be the set of mappings g : T × Ẽ → E such

that g is k-th differentiable in y. Moreover, let Ck(Ẽ, E) ⊂ Ckloc(Ẽ, E) be such that

‖g‖k :=
k∑

i=0

sup
y∈Ẽ
‖∂(i)

y g(·, y)‖∞ <∞. (3.2)

(ii) For k ≥ 0, let Ckβ,loc(Ẽ, E) ⊂ Ckloc(Ẽ, E) be such that, for i = 0, · · · , k, ∂(i)
y g is Hölder-

β continuous in t, and the mapping y 7→ ∂
(i)
y g(·, y) is continuous under ‖ · ‖β. Moreover, let

Ckβ(Ẽ, E) ⊂ Ckβ,loc(Ẽ, E) be such that

‖g‖k,β :=
k∑

i=0

sup
y∈Ẽ
‖∂(i)

y g(·, y)‖β <∞. (3.3)

(iii) Let C1,2
ω,α,loc(Ẽ, E) ⊂ C2

loc(Ẽ, E) be such that g(·, y) ∈ C1
ω,α(E), ∂yg(·, y) ∈ C1

ω,α(E1×|Ẽ|),

for each y ∈ Ẽ, the mappings y 7→ g(·, y) and y 7→ ∂yg(·, y) are continuous under ||| · ||| ω,α,

and ∂ωg ∈ C1
β,loc(Ẽ, E

1×d). Moreover, let C1,2
ω,α(Ẽ, E) ⊂ C1,2

ω,α,loc(Ẽ, E) be such that

‖g‖2,ω,α := ‖g‖2 + ‖∂ωg‖1 + sup
y∈Ẽ

[‖g(·, y)‖ω,α + ‖∂yg(·, y)‖ω,α] <∞. (3.4)

(iv) Let C2,3
ω,α,loc(Ẽ, E) ⊂ C1,2

ω,α,loc(Ẽ, E) be such that ∂ωg ∈ C1,2
ω,α,loc(Ẽ, E

1×d), ∂yg ∈
C1,2
ω,α,loc(Ẽ, E

1×|Ẽ|), g(·, y) ∈ C2
ω,α(E) for every y ∈ Ẽ and there exists Dω

t g ∈ C1
β,loc(Ẽ, E

d×d).

Moreover, let C2,3
ω,α(Ẽ, E) ⊂ C2,3

ω,α,loc(Ẽ, E) be such that

‖g‖3,ω,α := ‖g‖2,ω,α + ‖∂ωg‖2,ω,α + ‖∂yg‖2,ω,α <∞. (3.5)

(v) Let C3,3
ω,α,loc(Ẽ, E) ⊂ C2,3

ω,α,loc(Ẽ, E) be such that ∂ωg ∈ C2,3
ω,α,loc(Ẽ, E

1×d).

(vi) For ω, ω̃ ∈ Ωa, and g ∈ C1,2
ω,α(Ẽ, E), g̃ ∈ C1,2

ω̃,α(Ẽ, E) define

dω,ω̃2,α(g, g̃) := ‖g − g̃‖2 + ‖∂ωg − ∂ω̃ g̃‖1
+ sup
y∈Ẽ

[
dω,ω̃α (g(·, y), g̃(·, y)) + dω,ω̃α (∂yg(·, y), ∂y g̃(·, y))

]
. (3.6)
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Remark 3.2 (i) For g ∈ C2,3
ω,α(Ẽ, E), by (2.18) we have

dg(t, y) = h(t, y) · dωt + f(t, y) : d〈ω〉t, where

h := (∂ωg)∗ ∈ C1,2
ω,α,loc(Ẽ, E

d), f := Dω
t g + 1

2∂ωh ∈ C1
β,loc(Ẽ, E

d×d).
(3.7)

(ii) In (3.4), we need only ‖∂ωg‖1 instead of ‖∂ωg‖1,β, and in (3.5), we do not need

‖Dω
t g‖1,β. The latter is particularly convenient because Dω

t g may not be unique.

(iii) It is clear that dω2,α(g, g̃) := dω,ω2,α(g, g̃) = ‖g − g̃‖2,ω,α.

3.1 Commutativity of ∂y and path derivatives

Lemma 3.3 (i) Let g ∈ C2,3
ω,α(Ẽ, E). Then ∂ωyg = [∂yωg]∗ ∈ E|Ẽ|×d, namely

∂ω∂yig = ∂yi∂ωg, i = 1, · · · , |Ẽ|. (3.8)

(ii) Let g ∈ C3,3
ω,α(Ẽ, E). Then, for appropriate Dω

t and for each i = 1, · · · , |Ẽ|,

∂2
ωω∂yig = ∂yi∂

2
ωωg and Dωt ∂yig = ∂yiD

ω
t g. (3.9)

Proof Without loss of generality, we assume |Ẽ| = 1, namely Ẽ = R. Recall (3.7).

(i) Fix y ∈ R and denote, for 0 6= ∆y ∈ R,

∇ϕt(y) :=
ϕ(t, y + ∆y)− ϕ(t, y)

∆y
, ϕ = g, h, f.

It is straightforward to check that

∇gt(y) =
∫ t

0
∇hs(y) · dωs +

∫ t

0
∇fs(y) : d〈ω〉s

∇ht(y) =
∫ 1

0
∂yh(t, y + λ∆y)dλ, ∇ft(y) =

∫ 1

0
∂yf(t, y + λ∆y)dλ,

and thus, as |∆y| → 0,

|||∇h(y)− ∂yh(y) ||| ω,α ≤
∫ 1

0
||| ∂yh(y + λ∆y)− ∂yh(y) ||| ω,αdλ→ 0,

‖∇f(y)− ∂yf(y)‖β ≤
∫ 1

0
‖∂yf(y + λ∆y)− ∂yf(y)‖βdλ→ 0.

Then it follows from Lemma 2.6 and Lemma 2.7 (ii) that

∂yg(t, y) =
∫ t

0
∂yh(s, y) · dωs +

∫ t

0
∂yf(s, y) : d〈ω〉s. (3.10)

This implies (3.8) immediately.
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(ii) Since h ∈ C2,3
ω,α(Ẽ, E1×d), by (i) we have ∂y∂ωh = ∂ω∂yh and thus ∂y∂2

ωωg = ∂2
ωω∂yg.

Now applying the convention (2.20) for Dω
t on (3.10) and by (3.7), we have

2Dωt (∂yg) = (∂yf −
1
2
∂ωyh) + (∂yf −

1
2
∂ωyh)∗ = ∂y

[
(f − 1

2
∂ωh) + (f − 1

2
∂ωh)∗

]

= (∂yf −
1
2
∂yωh) + (∂yf −

1
2
∂yωh)∗ = 2∂yDωt g.

This completes the proof.

3.2 Chain rule of path derivatives

Theorem 3.4 (i) Let ω ∈ Ωa, θ ∈ C1
ω,α(Ẽ), g ∈ C1,2

ω,α,loc(Ẽ, E), and ηt := g(t, θt). Then

η ∈ C1
ω,α(E) with ∂ωηt = (∂ωg)(t, θt) + ∂yg(t, θt) ∂ωθt. (3.11)

(ii) Assume further that θ ∈ C2
ω,α(Ẽ) and g ∈ C2,3

ω,α,loc(Ẽ, E). Then, for appropriate Dωt ,

η ∈ C2
ω,α(E) with Dωt ηt = (Dωt g)(t, θt) + ∂yg(t, θt)Dωt θt. (3.12)

Remark 3.5 Similar to [5] Proposition 2.7, the chain rule of pathwise derivatives is equiv-

alent to the Itô-Ventzell formula, which extends the Itô formula in [18] Proposition 5.6.

Indeed, note that θ ∈ C2
ω,α(Ẽ) takes the form:

dθt = at · dωt + bt : d〈ω〉t where a := (∂ωθ)∗, b := Dωt θ +
1
2
∂ωa. (3.13)

Recall (3.7) again. It follows from Lemma 3.3 (i) that ∂ω∂yg = (∂yh)∗. Then, noticing

that h ∈ C1,2
ω,α,loc(Ẽ, E

d), ∂yg ∈ C1,2
ω,α,loc(Ẽ, E

1×|Ẽ|), by applying (3.11) several times and by

(3.12), we have

∂ωηt = h∗(t, θt) + ∂yg(t, θt) a∗t ,

∂2
ωωηt = ∂ω[h(t, θt) + ∂yg(t, θt) at]

=
[
∂ωh+ ∂yh a

∗ + (∂yh a∗)∗ + ∂2
yyg [a, a] + ∂yg ∂ωa

]
(t, θt);

Dωt ηt =
1
2

[
[(f − 1

2
∂ωh) + (f − 1

2
∂ωh)∗] + ∂yg [(b− 1

2
∂ωa) + (b− 1

2
∂ωa)∗]

]
(t, θt).

This, together with (2.18) and the symmetry of 〈ω〉, implies:

d[g(t, θt)] =
[
h(t, θt) + ∂yg(t, θt) at

]
· dωt (3.14)

+
[
f + ∂yg bt +

1
2
∂2
yyg [at, at] + ∂yh a

∗
t

]
(t, θt) : d〈ω〉t,

which we call the pathwise Itô-Ventzell formula.
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Proof of Theorem 3.4. (i) For (s, t) ∈ T2, we have

ηs,t = g(t, θt)− g(s, θs) = g(t, θt)− g(s, θt) + g(s, θt)− g(s, θs) (3.15)

= [∂ωg](s, θt)ωs,t +R
ω,g(·,θt)
s,t +

∫ 1

0
∂yg(s, θs + λθs,t)dλ θs,t

=
[
(∂ωg)(s, θs) + ∂yg(s, θs) ∂ωθs

]
ωs,t +Rω,ηs,t ,

where

Rω,ηs,t :=
[
[∂ωg](s, θt)− [∂ωg](s, θs)

]
ωs,t +R

ω,g(·,θt)
s,t

+
∫ 1

0
[∂yg(s, θs + λθs,t)− ∂yg(s, θs)]dλ ∂ωθsωs,t +

∫ 1

0
∂yg(s, θs + λθs,t)dλR

ω,θ
s,t .

Then clearly

‖Rω,η‖α+β ≤ ‖g‖2,ω,α
[
‖θ‖β‖ω‖α + 1 + ‖θ‖β‖∂ωθ‖∞‖ω‖α + ‖θ‖ω,α

]
<∞. (3.16)

Moreover, under our conditions it is clear that (∂ωg)(t, θt) + ∂yg(t, θt) ∂ωθt is Hölder-β-

continuous. This proves (3.11).

(ii) Recall (3.7) and (3.13). By reversing the arguments in Remark 3.5, it suffices to

prove (3.14). Denote δ := t− s. Recall the first line of (3.15) and note that

θs,t = as · ωs,t + ∂ωas : ωs,t + bs : 〈ω〉s,t +O(δ2α+β);

g(t, y)− g(s, y) = h(s, y) · ωs,t + ∂ωh(s, y) : ωs,t + f(s, y) : 〈ω〉s,t +O(δ2α+β)

Then, by the standard Taylor expansion and applying Lemma 3.3 (i) on g, we have

g(t, θt)− g(t, θs) = ∂yg(t, θs) θs,t +
1
2
∂2
yyg(t, θs) [θs,t, θs,t] +O(δ3α)

=
[
∂yg(s, θs) + ∂yh(s, θs) · ωs,t

]
θs,t +

1
2
∂2
yyg(s, θs) [θs,t, θs,t] +O(δ2α+β);

g(t, θs)− g(s, θs) = h(s, θs) · ωs,t + [∂ωh](s, θs) : ωs,t + f(s, θs) : 〈ω〉s,t +O(δ2α+β).

On the other hand,
∫ t

s
[h(r, θr) + ∂yg(r, θr) ar] · dωr

= [h(s, θs) + ∂yg(s, θs) as] · ωs,t + ∂ω[h(s, θs) + ∂yg(s, θs) as] : ωs,t +O(δ2α+β);
∫ t

s
[f(r, θr) + ∂yg(r, θr) br] : d〈ω〉r = [f(s, θs) + ∂yg(s, θs) bs] : 〈ω〉s,t +O(δ2α+β).

By Lemma 3.3 (i) we have ∂ωyg = [∂yωg]∗ = ∂yh
∗. Then it follows from (3.11) that

∂ω[h(s, θs) + ∂yg(s, θs) as] (3.17)

=
[
∂ωh+ ∂yh a

∗
s + ∂yh

∗ as + ∂2
yyg [a∗s, a

∗
s] + ∂yg ∂ωas](s, θs).

14
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Noting that ωs,t = O(δα), ωs,t = O(δ2α), and 〈ω〉s,t = O(δ2α), then we have

ηs,t −
∫ t

s
[h(r, θr) + ∂yg(r, θr) ar] · dωr −

∫ t

s
[f(r, θr) + ∂yg(r, θr) br] : d〈ω〉r

=
[
[∂yh(s, θs) · ωs,t] [as · ωs,t] +

1
2
∂2
yyg(t, θs) [(as · ωs,t)∗, (as · ωs,t)∗]

−
[
∂yh(s, θs) a∗s + [∂yh(s, θs) a∗s]

∗ + ∂2
yyg(s, θs) [a∗s, a

∗
s]]
]

: ωs,t +O(δ2α+β)

=
[1

2
∂2
yyg(t, θs) [∂ωθs, ∂ωθs] + ∂yh(s, θs) ∂ωθs

]
: 〈ω〉s,t +O(δ2α+β)

This proves (3.14), and hence (3.12).

3.3 Some estimates

In this subsection we provide some estimates for η = g(t, θt), which will be crucial for

studying rough differential equations in next section. These results correspond to [18]

Lemma 7.3 and Theorem 7.5, where g does not depend on t.

Lemma 3.6 (i) Let ω ∈ Ωa, θ ∈ C1
ω,α(E), g ∈ C1,2

ω,α(Ẽ, E), ηt := g(t, θt), and denote

M1 := ‖ω‖α + ||| θ ||| ω,α.

Then for any T0 > 0 and any T ≤ T0, there exists a constant Cα,M1,T0, depending only on

α, M1, T0, and |E|, |Ẽ|, such that

‖η‖ω,α ≤ Cα,M1,T0‖g‖2,ω,α. (3.18)

(ii) Assume further that g ∈ C2,3
ω,α(Ẽ, E), and (ω̃, θ̃, g̃, η̃) satisfy the same conditions.

Denote ∆ϕ := ϕ̃− ϕ for appropriate ϕ, and

M2 := ||| θ ||| ω,α + ||| θ̃ ||| ω̃,α + ‖ω‖α + ‖ω̃‖α + ‖g‖3,ω,α + ‖g̃‖3,ω̃,α.

Then, for any T ≤ T0 as in (i), there exists a constant Cα,M2,T0 such that

dω,ω̃α (η, η̃) ≤ Cα,M2,T0

[
dω,ω̃2,α(g, g̃) + dω,ω̃α (θ, θ̃) + |∆θ0|+ ‖∆ω‖α

]
. (3.19)

Proof (i) First, by (2.2) and (2.12) we have ‖∂ωθ‖∞ + ‖θ‖β ≤ C. By the first line of

(3.15) it is clear that

‖η‖β ≤ C
[
‖g‖0,β + ‖g‖1

]
. (3.20)

Next, recall (3.11) and note that

|∂ωηs,t| ≤ |∂ωg(t, θt)− ∂ωg(s, θs)|+ |∂yg(t, θt)− ∂yg(s, θs)||∂ωθt|+ |∂yg(s, θs)||∂ωθs,t|.

15
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Applying (3.20) on ∂ωg and ∂yg we obtain ‖∂ωη‖β ≤ C‖g‖2,ω,α. Moreover, by (3.16) we

have ‖Rω,η‖α+β ≤ C‖g‖2,ω,α. Putting together we prove (3.18).

(ii) First, note that

∆ηs,t = g̃(t, θ̃t)− g(t, θt)− g̃(s, θ̃s) + g(s, θs)

= [∆g(t, θ̃t)−∆g(s, θ̃s)] +
∫ 1

0
∂yg(s, θs + λ∆θs)dλ∆θs,t

+
∫ 1

0
[∂yg(t, θt + λ∆θt)− ∂yg(s, θs + λ∆θs)]dλ∆θt.

Apply (3.20) on ∆g and ∂yg, we obtain

‖∆η‖β ≤ C
[
‖∆g‖0,β + ‖∆g‖1 + ‖∆θ‖β + |∆θ0|

]

Note that θs,t = ∂ωθsωs,t +Rω,θs,t , and similarly for θ̃. Then, by (2.2),

‖∆θ‖β ≤ ‖∂ω̃ θ̃ − ∂ωθ‖∞‖ω̃‖β + ‖∂ωθ‖∞‖∆ω‖β + ‖Rω̃,θ̃ −Rω,θ‖β
≤ C

[
dω,ω̃α (θ, θ̃)] + ‖∆ω‖α

]
. (3.21)

Thus

‖∆η‖β ≤ C
[
‖∆g‖0,β + ‖∆g‖1 + |∆θ0|+ dω,ω̃α (θ, θ̃) + ‖∆ω‖α

]
. (3.22)

We shall emphasize that the above C depends on ‖g‖2,ω,α+‖g̃‖2,ω̃,α, not ‖g‖3,ω,α+‖g̃‖3,ω̃,α.

Next, note that

∂ω̃η̃t − ∂ωηt = [∂ω̃ g̃(t, θ̃t)− ∂ωg(t, θt)] + [∂y g̃(t, θ̃t)− ∂yg(t, θt)] ∂ω̃ θ̃t

+∂yg(t, θt) [∂ω̃ θ̃t − ∂ωθt].
[∂ω̃η̃ − ∂ωη]s,t = [∂ω̃ g̃(·, θ̃·)− ∂ωg(·, θ·)]s,t + [∂y g̃(·, θ̃·)− ∂yg(·, θ·)]s,t ∂ω θ̃t

+[∂y∆g(s, θ̃s) + ∂yg(s, θ̃s)− ∂yg(s, θs)] ∂ω θ̃s,t

+[∂yg(·, θ·)]s,t ∆∂ωθt + ∂yg(s, θs) ∆∂ωθs,t.

Apply (3.22) on ∂ωg and ∂yg, and (3.20) on ∂yg, we obtain from (3.21) that

‖∆∂ωη‖α ≤ C
[
dω,ω̃2,α(g, g̃) + |∆θ0|+ dω,ω̃α (θ, θ̃) + ‖∆ω‖α

]
(3.23)

Finally, recall (3.16) and note that

R
ω̃,g̃(·,ỹ)
s,t −Rω,g(·,y)

s,t

= R
ω̃,g̃(·,ỹ)
s,t −Rω,g(·,ỹ)

s,t +
[
[g(·, ỹ)s,t − ∂ωg(s, ỹ)ωs,t

]
−
[
[g(·, y)]s,t − ∂ωg(s, y)ωs,t

]

= R
ω̃,g̃(·,ỹ)
s,t −Rω,g(·,ỹ)

s,t +
∫ 1

0
R
ω,∂yg(·,y+λ∆y)
s,t dλ∆y,

16



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

one can obtain the desired estimate for ‖Rω̃,η̃ −Rω,η‖α+β straightforwardly. This, together

with (3.23), completes the proof.

Moreover, we have the following simpler results whose proof is omitted.

Lemma 3.7 (i) Let θ ∈ Ωβ(E), f ∈ C1
β(Ẽ, E), and ηt := f(t, θt). Then η ∈ Ωβ(E) and

‖η‖β ≤ ‖f‖0,β + ‖f‖1‖θ‖β ≤ ‖f‖1,β[1 + ‖θ‖β]. (3.24)

(ii) Let θ, θ̃ ∈ Ωβ(E), f, f̃ ∈ C2
β(Ẽ, E), and ηt := f(t, θt), η̃ := f̃(t, θ̃t). Then

‖η̃ − η‖β ≤ [1 + ‖θ‖β + ‖θ̃‖β]
[
‖f̃ − f‖1,β + ‖f‖2[|θ̃0 − θ0|+ ‖θ̃ − θ‖β]

]
. (3.25)

4 Rough Differential Equations

In this section we study rough path differential equations with coefficients less regular in the

time variable t, motivated from our study of stochastic differential equations with random

coefficients in next section. Let ω ∈ Ωa, g ∈ C2,3
ω,α(E,Ed), f ∈ C2

β(E,Ed×d), and y0 ∈ E.

Consider the following RDE:

θt = y0 +
∫ t

0
g(s, θs) · dωs +

∫ t

0
f(s, θs) : d〈ω〉s, t ∈ T. (4.1)

Our goal is to find solution θ ∈ C1
ω,α(E). By Theorem 3.4 and Lemma 3.7, in this case

g(·, θ) ∈ C1
ω,α(Ed), f(·, θ) ∈ Ωβ(Ed×d), and thus the right side of (4.1) is well defined.

Remark 4.1 When θ ∈ C1
ω,α(E) is a solution, clearly ∂ωθt = g(t, θt), then by Theorem 3.4

(i) it is clear that θ ∈ C2
ω,α(E). So a solution to RDE (4.1) is automatically in C2

ω,α(E). We

shall use this fact without mentioning it.

In standard rough path theory the vector field g of RDE (4.1) is independent of t. In

Lejay and Victoir [28], g may depend on t, but is required to be Hölder-(1−α) continuous,

which is violated for g ∈ C2,3
ω,α(E,Ed) (since α < 1

2). This relaxation of regularity in t is

crucial for studying SDEs and SPDEs with random coefficients, see Remark 5.7 below. We

also refer to Gubinelli, Tindel and Torrecilla [23] for some discussion along this direction.

Theorem 4.2 Let ω ∈ Ωa, g ∈ C2,3
ω,α(E,Ed), f ∈ C2

β(E,Ed×d), and y0 ∈ E. Then RDE

(4.1) has a unique solution θ ∈ C2
ω,α(E). Moreover, there exists a constant Cα, depending

only on α, d, |E|, T , ‖f‖2,β, ‖g‖3,ω,α, and ‖ω‖α, such that

‖θ‖α + ‖θ‖ω,α ≤ Cα. (4.2)

17
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Furthermore, the constant Cα is bounded for d, |E|, T , ‖f‖2,β, ‖g‖3,ω,α, and ‖ω‖α bounded

from above and for α and β bounded from below.

Proof We proceed in three steps.

Step 1. Denote M := [‖∂ωg‖0 + ‖g‖21]‖ω‖α + ‖f‖0‖ω‖α[2 + ‖ω‖α] and

Aα :=
{
θ ∈ C1

ω,α(E) : θ0 = y0, ∂ωθ0 = g∗(0, y0), ‖θ‖ω,α ≤M + 1
}
, (4.3)

equipped with the norm ‖ · ‖ω,α. Note that Aα contains θt := y0 + g(0, y0) · ω0,t and thus

is not empty. Define a mapping Φ on Aα:

Φ(θ) := Θ where Θt := y0 + Θ1
t + Θ2

t := y0 +
∫ t

0
g(s, θs) · dωs +

∫ t

0
f(s, θs) : d〈ω〉s.

We show that, there exists 0 < δ ≤ 1, which depends on α, d, |E|, T , ‖f‖2,β, ‖g‖3,ω,α, and

‖ω‖α, but not on y0, such that whenever T ≤ δ, Φ is a contraction mapping on Aα. One

can easily check that Aα is complete under dω,ωα , then Φ has a unique fixed point θ ∈ Aα
which is clearly the unique solution of RDE (4.1).

To prove that Φ is a contraction mapping, let C denote a generic constant which depends

only on the above parameters, but not on y0. We first show that Φ(θ) ∈ Aα for all θ ∈ Aα.

Indeed, clearly Θ0 = y0 and ∂ωθ0 = g∗(0, y0). For any θ ∈ Aα, denote ηt := g(t, θt).

Applying Lemma 3.6 and then Lemma 2.5, we have,

‖η‖ω,α ≤ C, ‖∂ωη0| ≤ ‖∂ωg‖0 + ‖∂ωg‖21, and thus

‖Θ1‖ω,α ≤ ‖ω‖α|∂ωη0|+ Cδα[1 + ‖ω‖α]‖η‖ω,α ≤ [‖∂ωg‖0 + ‖g‖21]‖ω‖α + Cδα.

Similarly, It follows from Lemmas 2.7 and 3.7 (i) that

‖Θ2‖ω,α = ‖Θ2‖α+β ≤ ‖f‖0‖ω‖α[2 + ‖ω‖α] + Cδα,

and thus ‖Θ‖ω,α ≤ ‖Θ1‖ω,α + ‖Θ2‖ω,α ≤M + Cδα.

Set δ small enough we have ‖Θ‖ω,α ≤M + 1. That is, Θ ∈ Aα.

Next, let θ̃ ∈ Aα and denote Θ̃, Θ̃1, Θ̃2, η̃ in obvious sense. Let ∆ϕ := ϕ̃ − ϕ for

appropriate ϕ. Recall (3.21) we see that

‖∆θ‖∞ ≤ Cδβ‖∆θ‖β ≤ Cδβ‖∆θ‖ω,α. (4.4)

Then, applying Lemmas 2.6, 3.6 (ii), 2.7 (ii), and 3.7 (ii), we have

‖∆Θ1‖ω,α ≤ Cδα‖∆η‖ω,α ≤ Cδα‖∆θ‖ω,α, ‖∆Θ2‖α+β ≤ Cδα‖∆θ‖β,
and thus ‖∆Θ‖ω,α ≤ Cδα‖∆θ‖ω,α.

18
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Set δ be small enough such that Cδα ≤ 1
2 , then Φ is a contraction mapping.

Step 2. We now prove the result for general T . Let δ be the constant in Step 1. Let

0 = t0 < · · · < tn = T such that ti+1 − ti ≤ δ, i = 0, · · · , n − 1. We may solve the RDE

over each interval [ti, ti+1] with initial condition (θti , g(ti, θti)), which is obtained from the

previous step by considering the RDE on [ti−1, ti], and thus we obtain the unique solution

over the whole interval [0, T ].

Step 3. We now estimate ‖θ‖ω,α. First, when T ≤ δ for the constant δ = δα in Step 1,

we have θ ∈ Aα and thus ‖θ‖ω,α ≤M + 1. In particular, this implies that

|∂ωθs,t| ≤ (M + 1)(t− s)β, |Rω,θs,t | ≤ (M + 1)(t− s)α+β, whenever t− s ≤ δ.

Now for arbitrary s, t, let k := [ t−sδ ] + 1 be the smallest integer greater than t−s
δ , and

ti := s+ i
k (t− s), i = 0, · · · , k. Then

|∂ωθs,t| ≤
k−1∑

i=0

|∂ωθti,ti+1 | ≤ (M + 1)k(
t− s
k

)β

= (M + 1)k1−β(t− s)β ≤ (M + 1)(δ−1T + 1)1−β(t− s)β.

Thus we have ‖∂ωθ‖β ≤ (M + 1)(δ−1T + 1)1−β. Similarly we may prove that ‖Rω,θ‖α+β ≤
(M + 1)(δ−1T + 1)1−α−β.

Finally, note that ‖∂ωθ‖∞ ≤ C, it is clear that ‖θ‖α ≤ ‖∂ωθ‖∞‖ω‖α + ‖Rω,θ‖α ≤ C.

We next study the stability of RDEs.

Theorem 4.3 Let (y0,ω, f, g) and (ỹ0, ω̃, f̃ , g̃) be as in Theorem 4.2, and θ, θ̃ be the cor-

responding solution of the RDE. Then there exists a constant Cα, depending only on α, d,

|E|, T , ‖f‖2,β, ‖f̃‖2,β, ‖g‖3,ω,α, ‖g̃‖3,ω̃,α, and ‖ω‖α, ‖ω̃‖α, such that, denoting ∆ϕ := ϕ−ϕ̃
for appropriate ϕ,

dω,ω̃α (θ, θ̃) ≤ Cα[∆Iα + |∆y0|] where ∆Iα := dω,ω̃2,α(g, g̃) + ‖∆f‖1,β + ‖∆ω‖α. (4.5)

Proof First assume T ≤ δ for some constant δ > 0 small enough. Use the notations in

Step 1 of Theorem 4.2. Applying Lemma 3.6 (i) and (4.2) we see that |∂ω̃η̃0|+ ‖η̃‖ω,β ≤ C.

Then, it follows from Lemmas 2.6 and 3.6 (ii) that

dω,ω̃α (Θ1, Θ̃1) ≤ C
[
δαdω,ω̃α (η, η̃) + dα(ω, ω̃) + |η′0 − η̃′0|

]

≤ C
[
δαdω,ω̃α (θ, θ̃) + ∆Iα + |∆y0|

]
.
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Similarly, by Lemmas 2.7 and 3.7, we have

‖∆Θ2‖α+β ≤ C
[
δα‖∆θ‖β + ∆Iα + |∆y0|

]
.

Putting together we get

dω,ω̃α (θ, θ̃) = dω,ω̃α (Θ, Θ̃) ≤ C
[
δαdω,ω̃α (θ, θ̃) + ∆Iα + |∆y0|

]
.

Set δ be small enough such that Cδα ≤ 1
2 , we obtain dω,ω̃α (θ, θ̃) ≤ C[∆Iα + |∆y0|].

Now for general T , let k := [Tδ ] + 1 be the smallest integer greater than T
δ and ti := i

kT ,

i = 0, · · · , k. Denote

∆Ji := sup
ti≤s<t≤ti+1

[ |∆∂ωθs,t|
(t− s)β +

|Rω̃,θ̃s,t −Rω,θs,t |
(t− s)α+β

]
, i = 0, · · · , k − 1.

By the above arguments we have ∆Ji ≤ C[∆Iα+ |∆θti |]. Then, applying (3.21) on [ti, ti+1]

and noting that ∂ωθti = g(ti, θti) and ∂ω θ̃ti = g̃(ti, θ̃ti) are bounded, we have

|∆θti+1 | ≤ |∆θti |+ |∆θti,ti+1 | ≤ |∆θti |+ ∆Ji + C[|∆∂ωθti |+ ‖∆ω‖α] ≤ C[∆Iα + |∆θti |].

By induction we get

max
0≤i≤k

|∆θti | ≤ C[∆Iα + |∆y0|], and thus max
0≤i≤k

∆Ji ≤ C[∆Iα + |∆y0|].

Now following the arguments in Theorem 4.2 Step 3 we can prove the desired estimate.

Remark 4.4 (i) The uniqueness of RDE solutions does not depend on boundedness of g,

∂ωg, and f . Indeed, let θ and θ̃ be two solutions. Notice that any element of C1
ω,α(E) is

bounded, and thus we may denote M0 := ‖θ‖∞ + ‖θ̃‖∞ < ∞. One can see that all the

arguments in Theorem 4.2 remain valid if we replace the supy∈E in (3.2) with supy∈E,|y|≤M0
,

while the latter is always bounded for g, ∂ωg, and f .

(ii) If we do not assume boundedness of g, ∂ωg, and f , in general we can only obtain the

local existence, namely the solution exists when T is small. However, if we can construct a

solution for large T , as we will see for linear RDEs, then by (ii) above this solution is the

unique solution.

4.1 Linear RDE

Now consider RDE (4.1) with

g(t, y) = at y + bt, f(t, y) = λt y + lt, , where

y ∈ E, a ∈ C2
ω,α(Ed×|E|), b ∈ C1

ω,α(Ed), λ ∈ Ωβ(Ed×d×|E|), l ∈ Ωβ(Ed×d).
(4.6)
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We remark that the above f and g are not bounded and thus we cannot apply Theorem

4.2 directly. In Friz and Victoir [20], some a priori estimate is provided for linear RDEs

and then the global existence follows from the arguments of Theorem 4.2, by replacing the

supy∈E in (3.2) with the supremum over the a priori bound of the solution, as illustrated in

Remark 4.4 (ii). At below, we shall construct a solution semi-explicitly. When |E| = 1, we

have an explicit representation in the spirit of Feyman-Kac formula in stochastic analysis

literature, see (4.7) below. However, the formula fails in the multidimensional case due to

the noncommutativity of matrices. Our main idea is to introduce a decoupling strategy, by

using the local solution of certain Riccati type of RDEs, so as to reduce the dimension of E.

To our best knowledge, such a construction is new even for multidimensional linear SDEs.

Theorem 4.5 The linear RDE (4.1) with (4.6) has a unique solution.

Proof If b ∈ C2
ω,α(Ed), under (4.6) it is straightforward to check that g ∈ C2,3

ω,α,loc(E,E
d)

and f ∈ C2
β,loc(E,E

d×d), and thus the uniqueness follows from Theorem 4.2 and Remark

4.4 (ii). However, in the linear case, by going through the arguments of Theorem 4.2 we

can easily see that it is enough to assume the weaker condition b ∈ C1
ω,α(Ed). We shall

construct the solution and thus obtain the existence via induction on |E|.
Step 1. We first assume |E| = 1, namely E = R. Applying Theorem 3.4 and Remark

3.5 we may verify directly that the following provides a representation of the solution:

θt = Γ−1
t

[
θ0 +

∫ t

0
Γsbs · dωs +

∫ t

0
Γs
[
ls − asb∗s

]
: d〈ω〉s

]
, (4.7)

where Γt := exp
(
−
∫ t

0
as · dωs +

∫ t

0

[1
2
asa
∗
s − λs

]
: d〈ω〉s

)
.

Step 2. In order to show the induction idea clearly, we present the case |E| = 2 in

details. With the notations in obvious sense, the linear RDE becomes

dθ1
t = [a11

t θ
1
t + a12

t θ
2
t + b1t ] · dωt + [λ11

t θ
1
t + λ12

t θ
2
t + l1t ] : d〈ω〉t;

dθ2
t = [a21

t θ
1
t + a22

t θ
2
t + b2t ] · dωt + [λ21

t θ
1
t + λ22

t θ
2
t + l2t ] : d〈ω〉t.

(4.8)

Clearly, if the system is decoupled, for example if a12 = 0 and λ12 = 0, one can easily solve

the system by first solving for θ1 and then solving for θ2. In the general case, we introduce

a decoupling strategy as follows. Consider an auxiliary RDE:

dΓt = at · dωt + λt : d〈ω〉t. (4.9)
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where a, λ will be specified later. Denote θt := θ2
t + Γtθ1

t . Then, applying the Itô-Ventzell

formula (3.14) we have

dθt =
[
[a22
t θ

2
t + a21

t θ
1
t + b2t ] + Γt[a12

t θ
2
t + a11

t θ
1
t + b1t ] + atθ

1
t

]
· dωt (4.10)

+
[
[λ22
t θ

2
t + λ21

t θ
1
t + l2t ] + Γt[λ12

t θ
2
t + λ11

t θ
1
t + l1t ] + λtθ

1
t + at[a11

t θ
1
t + a12

t θ
2
t + b1t ]

∗
]

:d〈ω〉t.

We want to choose a, λ so that the right side above involves only θ. That is,

a21 + Γta11 + a = Γ[a22 + Γa12], λ21 + Γλ11 + λ+ a(a11)∗ = Γt[λ22 + Γλ12 + a(a12)∗].

This implies

a = a12(Γ)2 + [a22 − a11]Γ− a21; (4.11)

λ = λ12(Γ)2 + [λ22 − λ11]Γ− λ21 + a[a12Γ− a11]∗

= c3(Γ)3 + c2(Γ)2 + c1Γ + c0, where

c3 := a12(a12)∗, c2 := λ12 − a12(a11)∗ + (a22 − a11)(a12)∗

c1 := λ22 − λ11 − (a22 − a11)(a11)∗ − a21(a12)∗, c0 := a21(a11)∗ − λ21.

Plugging this into (4.9) we obtain the following Riccati type of RDE:

dΓt =
[
a12
t (Γ)2

t + [a22
t − a11

t ]Γt − a21
t

]
· dωt +

[
c3
t (Γ)3

t + c2
t (Γ)2

t + c1
tΓt + c0

t

]
: d〈ω〉t, (4.12)

and the RDE (4.10) becomes:

dθt =
[
[a22 + Γa12]θt + [b2t + Γtb1t ]

]
· dωt (4.13)

+
[
[λ22 + Γλ12 + a(a12)∗]θt + [l2t + Γtl1t + at(b1t )

∗]
]

: d〈ω〉t.

Moreover, plug θ2 = θ − Γθ1 into the second equation of (4.8), we have

dθ1
t =

[
[a11
t − a12

t Γt]θ1
t + [a12

t θt + b1t ]
]
· dωt +

[
[λ11
t − λ12

t Γt]θ1
t + [λ12

t θt + l1t ]
]

: d〈ω〉t.(4.14)

Now the RDEs (4.12), (4.13), and (4.14) are decoupled. We shall emphasize though the

Riccati RDE (4.12) typically does not have a global solution on [0, T ]. However, following

the arguments in Theorem 4.2, there exists a constant δ > 0, which depends only on the

coefficients a, λ and the rough path ω, such that the Riccati RDE (4.12) with initial value 0

has a solution whenever the time interval is smaller than δ. We now set 0 = t0 < · · · < tn =

T such that ti − ti−1 ≤ δ for i = 1, · · · , n, and we solve the system (4.8) as follows. First,

we solve RDE (4.12) on [t0, t1] with initial value Γt0 = 0. Plug this into (4.13), where a is
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determined by (4.11), we solve (4.13) on [t0, t1] with initial value θ0 = θ2
0. Plug Γ and θ into

(4.14), we may solve (4.14) on [t0, t1] with initial value θ1
0. Moreover, θ2 := θ−Γθ1 satisfies

the second equation of (4.8) on [t0, t1] with initial value θ2
0. Next, we solve the Riccati RDE

(4.12) on [t1, t2], again with initial value Γt1 = 0. Then we solve (4.13) on [t1, t2] with initial

value θt1 = θ2
t1 . Plug Γ and θ into (4.14), we may solve (4.14) on [t1, t2] with initial value

θ1
t1 . Moreover, θ2 := θ − Γθ1 satisfies the second equation of (4.8) on [t1, t2] with initial

value θ2
t1 . Repeat the arguments we solve the system (4.8) over the whole interval [0, T ].

Step 3. We now assume the result is true for |E| = n − 1 and we shall prove the case

|E| = n. With obvious notations, we consider

dθit =
[ n∑

j=1

aijt θ
j
t + bit

]
· dωt +

[ n∑

j=1

λijt θ
j
t + lit

]
: d〈ω〉t, i = 1, · · · , n. (4.15)

Denote θ := θn +
∑n−1

i=1 Γiθi, where, for i = 1, · · · , n− 1,

dΓit =
[ n−1∑

j=1

[ajnΓit − ajit ]Γjt + [annt Γit − anit ]
]
· dωt

+
[
[Γitλ

nn
t − λnit ] +

n−1∑

j=1

Γjt [Γ
i
tλ
jn
t − λjit ] (4.16)

+
n−1∑

j=1

[ n−1∑

k=1

[aknΓjt − akjt ]Γkt + [annt Γjt − anjt ]
]
[Γit(a

jn
t )∗ − (ajit )∗]

]
: d〈ω〉t,

Then

dθt =
[
[annt +

n−1∑

i=1

Γita
in
t ]θt + [bnt +

n−1∑

i=1

Γitb
i
t]
]
· dωt (4.17)

+
[[
λnnt +

n−1∑

i=1

[Γitλ
in
t + ait(a

in)∗]
]
θt +

[
ln +

n−1∑

i=1

[Γitl
i
t + ait(b

i
t)
∗]
]]

: d〈ω〉t.

where ait :=
n−1∑

j=1

[ajnΓit − ajit ]Γjt + [annt Γit − anit ].

Plug this into (4.15), we obtain

dθit =
[ n−1∑

j=1

[aijt − aint Γjt ]θ
j
t + [bit + aint θt]

]
· dωt (4.18)

+
[ n−1∑

j=1

[λijt − λint Γjt ]θ
j
t + [lit + λint θt]

]
: d〈ω〉t, i = 1, · · · , n− 1.
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Now similarly, there exists δ > 0, depending only on a, λ, and the rough path ω, such that

the system of Riccati type RDE (4.16) with initial condition 0 has a solution whenever the

time interval is smaller than δ. Now set 0 = t0 < · · · < tn = T such that ti − ti−1 ≤ δ. As

in Step 2, we may first solve (4.16) on [t0, t1] with initial condition Γi0 = 0. We then solve

(4.17) on [t0, t1] with initial condition θ0 = θn0 . Now notice that the linear system (4.18)

has only dimension n − 1, then by induction assumption, we may solve (4.18) on [t0, t1]

with initial condition θi0, i = 1, · · · , n−1, which further provides θn := θ−∑n−1
i=1 Γiθi. Now

repeat the arguments as in Step 2, we obtain the solution over the whole interval [0, T ].

Remark 4.6 (i) When E = R, the representation formula (4.7) actually holds under weaker

conditions: a, b ∈ C1
ω,α(Rd). Moreover, uniqueness also holds under this weaker condition.

Indeed, for any arbitrary solution θ ∈ C2
ω,α(E) and for the Γ defined in (4.7), by applying

the Itô-Ventzell formula (3.14) we see that

Γtθt = θ0 +
∫ t

0
Γsbs · dωs +

∫ t

0
Γs
[
ls − asb∗s

]
: d〈ω〉s.

Then θ has to be the one in (4.7).

(ii) In the multidimensional case, we note that the Riccati RDE (4.12) does not involve

b. Then we may also obtain the uniqueness, under our weaker condition b ∈ C1
ω,α(Ed), from

the strategy in this proof.

Applying Theorem 4.3 and following the arguments in the beginning of the proof for

Theorem 4.5 (or Remark 4.6 (ii)) concerning the weaker condition on b, the following result

is immediate.

Corollary 4.7 Let ω, a, b, λ, l, θ be as in Theorem 4.5 and ω̃, ã, b̃, λ̃, l̃, θ̃. Denote ∆ϕ :=

ϕ− ϕ̃ for appropriate ϕ. Then

dω,ω̃α (θ, θ̃) ≤ C
[
dω,ω̃α (a, ã) + dω,ω̃α (b, b̃) + ‖∆λ‖β + ‖∆l‖β + ‖∆ω‖α

+|∆a0|+ |∂ωa0 − ∂ω̃ã0|+ |∆b0|+ |∂ωb0 − ∂ω̃ b̃0|
]
.

5 Pathwise solutions of stochastic differential equations

5.1 The rough path setting for Brownian motion

Let Ω0 := {ω ∈ C([0, T ],Rd) : ω0 = 0} be the canonical space, B the canonical process,

F = FB the natural filtration, and P0 the Wiener measure. Following Föllmer [17] (or see

24



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Bichteler [1] and Karandikar [25] for more general results on pathwise stochastic integration),

we may construct pathwise Itô integration as follows:

Φt(ω) := lim
n→∞

2n−1∑

i=0

ωtni (ωtni ∧t,tni+1∧t)
∗ where tni :=

iT

2n
, i = 0, · · · , 2n. (5.1)

Then Φ is F-adapted and Φt =
∫ t

0 BsdItoB
∗
s , 0 ≤ t ≤ T , P0-a.s. Here dIto stands for Itô

integration. Define

Φs,t(ω) := Φt(ω)− Φs(ω)− ωsω∗s,t, ΦStr
s,t (ω) := Φs,t(ω) + 1

2(t− s)Id;
〈ω〉t := ωtω

∗
t − Φt(ω)− [Φt(ω)]∗.

(5.2)

It is straightforward to check that

Φs,t(ω)− Φs,r(ω)− Φr,t(ω) = ωs,rω
∗
r,t = ΦStr

s,t (ω)− ΦStr
s,r (ω)− ΦStr

r,t (ω). (5.3)

Moreover, we have the following well known result:

Lemma 5.1 For any 1
3 < α < 1

2 , we have P0(Aα) = 1, where

Aα :=
{

sup
(s,t)∈T2

|Φs,t|
|t− s|2α <∞

}
∩
{
〈ω〉t = tId, 0 ≤ t ≤ T

}
(5.4)

∩
{

lim
t↓s
|v · ωs,t|
|t− s|2α =∞, ∀s ∈ Q ∩ [0, T ), v ∈ Rd\{0}

}
.

Now set, for the Aα defined in (5.4),

Ω :=
{
ω ∈ Ω0 : (ω,Φ(ω)) ∈ Ωa and ω ∈ Aα, for all 1

3 < α < 1
2

}
;

dα(ω, ω̃) := dα

(
(ω,Φ(ω)), (ω̃,Φ(ω̃))

)
, for all ω, ω̃ ∈ Ω and 1

3 < α < 1
2 .

(5.5)

By (5.3) and Lemma 5.1, we see that P0(Ω) = 1. From now on, we shall always restrict the

sample space to Ω, and we still denote by B the canonical process and F := FB. Define

C(Ω, E) :=
⋃{Cα(Ω, E) : α satisfies (2.3)

}
, where (5.6)

Cα(Ω, E) :=
{
θ ∈ L0(F) : θ(ω) ∈ C1

ω,α(E), ∀ω ∈ Ω, and EP0

[
‖θ(ω)‖2ω,α

]
<∞

}
.

We now define the pathwise stochastic integral by using the rough path integral: for θ ∈
C(Ω, Ed),

(∫ t

0
θs · dBs

)
(ω) :=

∫ t

0
θs(ω) · d(ω,Φ(ω))s, ∀ω ∈ Ω;

(∫ t

0
θs ◦ dBs

)
(ω) :=

∫ t

0
θs(ω) · d(ω,ΦStr(ω))s, ∀ω ∈ Ω.

(5.7)

The following result can be found in [18] Proposition 5.1 and Corollary 5.2.
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Theorem 5.2 For any θ ∈ C(Ω, Ed), the above pathwise stochastic integrals
∫ t

0 θs ·dBs and
∫ t

0 θs ◦ dBs coincide with the Itô integral and the Stratonovic integral, respecively.

Remark 5.3 Let X be a semi-martingale with dXt = θt · dBt + λtdt, where θ ∈ C(Ω, Ed)
and λ is continuous. Then X ∈ C(Ω, E) with ∂ωXt(ω) = θt(ω) for each ω ∈ Ω. In the spirit

of Dupire [13]’s functional Itô calculus, [5] defines the above θ as the path derivative of the

process X. So the Gubinelli’s derivative ∂ωX(ω) in Definition 2.3 is consistent with the

path dervatives introduced in [5].

Remark 5.4 Let ω ∈ Ω and θ ∈ C2
(ω,Φ(ω)),α(E) for certain α satisfying (2.3). Define

∂ωt θ := Trace(Dω
t θ). (5.8)

Then ∂ωt θ is unique and is consistent with the time derivative in [5]. Moreover, the pathwise

Ito formula (2.18) and the pathwise Taylor expansion (2.22), (2.23) become:

dθt = ∂ωθtdωt +
[
∂ωt θt +

1
2

Trace(∂2
ωωθt)

]
dt;

θs,t = ∂ωθsωs,t +
1
2
∂2
ωωθs : [ωs,tω∗s,t + ωs,t − ω∗s,t] + ∂ωt θs(t− s) +O((t− s)2α+β); (5.9)

θs,t = ∂ωθsωs,t +
1
2
∂2
ωωθs : [ωs,tω∗s,t] + ∂ωt θs(t− s) +O((t− s)2α+β),

respectively. These are also consistent with [5].

5.2 Stochastic differential equations with regular solutions

We now consider the following SDE with random coefficients:

Xt = x+
∫ t

0
σ(s,Xs, ω) · dBs +

∫ t

0
b(s,Xs, ω)ds, ω ∈ Ω, (5.10)

where b, σ are F-progressively measurable. Clearly, the above SDE can be rewritten as the

following RDE:

Xt(ω) = x+
∫ t

0
σ(s,Xs(ω), ω) · d(ω,Φ(ω))s +

∫ t

0
b(s,Xs(ω), ω)

Id
d

: d〈ω〉s, ω ∈ Ω. (5.11)

The following result is a direct consequence of Theorems 4.2 and 4.3.

Theorem 5.5 (i) Assume, for each ω ∈ Ω, there exists α(ω) satisfying (2.3) such that

b(·, ω) ∈ C2
β(ω)(E,E) and σ(·, ω) ∈ C2,3

ω,α(ω)(E,E
d). Then the SDE has a unique solution X

such that X(ω) ∈ C2
ω,α(ω)(E) for all ω ∈ Ω.
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(ii) Assume further that b and σ are continuous in ω in the following sense:

limn→∞
[
‖b(·, ωn)− b(·, ω)‖1,β(ω) + dω,ω

n

2,α(ω)(σ(·, ωn), σ(·, ω))
]

= 0, (5.12)

for any ω, ωn ∈ Ω such that limn→∞ dα(ω)(ωn, ω) = 0.

Then X is also continuous in ω in the sense that:

lim
n→∞

dω,ω
n

α(ω)(X(ω), X(ωn)) = 0, and consequently, lim
n→∞

‖X(ω)−X(ωn)‖∞ = 0. (5.13)

Remark 5.6 The construction of pathwise solutions of SDEs via rough path is standard.

However, we remark that our canonical sample space Ω is universal, which particularly does

not depend on the integrands θ in (5.7) or the vector fields σ(t, ω, x) in (5.10). Consequently,

our solution is constructed indeed for every ω ∈ Ω, without the exceptional null set.

Remark 5.7 (i) Assume σ is Hölder-1
2 continuous in t and Lipschitz continuous in ω in

the following sense:

|σ(t, x, ω)− σ(t̃, x, ω̃)| ≤ C
[√

t̃− t+ sup
0≤s≤T

|ωs∧t − ω̃s∧t̃|
]
, (5.14)

Then σ(·, x, ω) is Hölder-α continuous in t for all α < 1
2 . We remark that the distance

in the right side of (5.14) is used in Zhang and Zhuo [39] and is equivalent to the metric

introduced by Dupire [13].

(ii) As mentioned in Introduction, since ω is only Hölder-α continuous for α < 1
2 , it is

not reasonable to assume σ(·, x, ω) is Hölder-(1 − α) continuous as required in Lejay and

Victoir [28].

Remark 5.8 Under the Stratonovich integration, the quadratic compensator of the Brow-

nian motion sample path defined in (2.6) vanishes: 〈(ω,Φstr(ω))〉t = 0. If we want to

consider SDE in the form:

dXt = σ(t,Xt, ω) ◦ dBt + b(t, ω,Xt)dt, (5.15)

we cannot simply rewrite it into

dXt(ω) = σ(t, ω,Xt(ω)) · d(ω,Φstr(ω))t + b(t, ω,Xt(ω))
Id
d

: d〈(ω,Φstr(ω))〉t.

We can obtain pathwise solution of (5.15) in the following two ways:
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(i) We may rewrite (5.15) in Itô form:

dXt = σ(t, ω,Xt) · dBt +
[
b+

1
2

Trace
(
∂ωσ + ∂yσ σ

∗)](t, ω,Xt)dt, (5.16)

which corresponds further to the following RDE:

dXt(ω)=σ(t, ω,Xt(ω)) · d(ω,Φ(ω))t +
[bId
d

+
∂ωσ + ∂yσ σ

∗

2

]
(t, ω,Xt(ω)) : d〈ω〉t. (5.17)

(ii) In Section 4, we may easily extend our results to more general RDEs:

dθt = g(t, θt) · dωt + f(t, θt) : d〈ω〉t + h(t, θt)dt. (5.18)

Then we may deal with (5.15) directly.

6 Rough PDEs and Stochastic PDEs

In this section, we extend the results in previous sections to rough PDEs (1.3) and stochas-

tic PDEs (1.4) with random coefficients. The wellposedness of such RPDEs and SPDEs,

especially in the fully nonlinear case, is very challenging and has received very strong atten-

tion. We refer to Lions and Souganidis [29, 30, 31, 32], Buckdahn and Ma [3, 4], Caruana

and Friz [7], Caruana, Friz and Oberhauser [8], Friz and Obhauser [19], Diehl and Friz [11],

Oberhauser and Riedel [12], and Gubinelli, Tindel and Torrecilla, [23] for wellposedness of

some classes of RPDEs/SPDEs, where various notions of solutions are proposed.

While this section is mainly motivated from the study of pathwise viscosity solutions of

SPDEs in Buckdahn, Ma and Zhang [6] and Buckdahn, Keller, Ma and Zhang [2], in this

section we shall focus on classical solutions only. In particular, we do not intend to establish

strong wellposedness for general f , instead we shall investigate diffusion coefficients σ and g

and see when the RPDE/SPDE can be transformed to a deterministic PDE. Again, unlike

most results in the standard literature of rough PDEs, we allow the coefficients to depend

on (t, ω). The results will require quite high regularity of the coefficients, in the sense of our

path regularity. In order to simplify the presentation, for some results we shall not specify

the precise regularity conditions.

6.1 RDEs with spatial parameters

Let u0 : Ẽ → E, g : T × Ẽ × E → Ed, f : T × Ẽ × E → Ed×d, and consider the following

RDE with parameter x ∈ Ẽ:

ut(x) = u0(x) +
∫ t

0
g(s, x, us(x)) · dωs +

∫ t

0
f(s, x, us(x)) : d〈ω〉s. (6.1)

28



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Assume u0, g and f are differentiable in x, and differentiate (6.1) formally in xi, i =

1, · · · , |Ẽ|, we obtain: denoting vit(x) := ∂xiut(x),

vit(x) = ∂xiu0(x) +
∫ t

0
[∂xig(s, x, us(x)) + ∂yg(s, x, us(x)) vis(x)] · dωs

+
∫ t

0
[∂xif(s, x, us(x)) + ∂yf(s, x, us(x)) vis(x)] : d〈ω〉s. (6.2)

Theorem 6.1 Assume

(i) u0, g, f are continuously differentiable in x;

(ii) for each x ∈ Ẽ, i = 1, · · · , |Ẽ|, j = 1, · · · , |E|,

g(x, ·) ∈ C2,3
ω,α(E,Ed), f(x, ·) ∈ C2

β(E,Ed×d);

∂xig(x, ·) ∈ C1,2
ω,α(E,Ed), ∂yjg(x, ·) ∈ C2,3

ω,α(E,Ed), ∂xif(x, ·) ∈ C0
β(E,Ed×d).

(6.3)

(iii) for any x ∈ Ẽ, denoting ∆ϕ := ϕ(x+ ∆x, ·)− ϕ(x, ·) for appropriate ϕ,

lim|∆x|→0

[
‖∆g‖2,ω,α + ‖∆f‖1,β

]
= 0;

lim|∆x|→0

[
‖∆[∂xg]‖2,ω,α + ‖∆[∂yg]‖2,ω,α + ‖∆[∂xf ]‖0,β + ‖∆[∂yf ]‖0,β

]
= 0.

(6.4)

Moreover, ∂ωxg and ∂ωyg are continuous.

Then, for each x ∈ Ẽ, RDEs (6.1) and (6.2) have unique solution u(x, ·), vi(x, ·) ∈
C2
ω,α(E), respectively. Moreover, u is differentiable in x with ∂xiu = vi.

Proof First, without loss of generality we may assume |Ẽ| = 1, namely Ẽ = R. For each

x ∈ Ẽ, by the first line of (6.3) and applying Theorem 4.2, we see that RDE (4.1) has a

unique solution u(x) ∈ C2
ω,α(E). By the second line of (6.3) and applying Theorem 3.4 and

Lemma 3.7, we see that, for j = 1, · · · , |E|,

∂xg(x, u(x)) ∈ C1
ω,α(Ed), ∂yjg(x, u(x)) ∈ C2

ω,α(Ed), ∂xf(x, u(x)), ∂yjf(x, u(x)) ∈ Ωβ(Ed×d).

Then by Theorem 4.5 the linear RDE (6.2) has a unique solution v(x) ∈ C2
ω,α(E).

It remains to prove ∂xu = v. Given x ∈ R, ∆x ∈ R\{0} and λ ∈ [0, 1], denote

∆ut := ut(x+ ∆x)− ut(x), ∇ut := ∆ut
∆x ,

ϕt(λ) := ϕ(t, x+ λ∆x, ut(x) + λ∆ut(x)), ∆ϕt(λ) := ϕt(λ)− ϕt(0), for appropriate ϕ.

By the first line of (6.4), it follows from Theorem 4.3 that:

lim
|∆x|→0

‖∆u‖ω,α = 0. (6.5)

29



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Moreover, one can easily check that,

d∇ut =
∫ 1

0
[∂xgt(λ) + ∂ygt(λ)∇ut]dλ · dωt +

∫ 1

0
[∂xft(λ) + ∂yft(λ)∇ut]dλ : d〈ω〉t;

dvt(x) = [∂xgt(0) + ∂ygt(0) vt(x)] · dωt + [∂xft(0) + ∂yft(0) vt(x)] : d〈ω〉t.

By the second line of (6.4) and (6.5), it follows from Lemmas 3.6 (ii) and 3.7 (ii) that

lim|∆x|→0

[
‖∂xgt(λ)− ∂xg(0)‖ω,α + ‖∂ygt(λ)− ∂yg(0)‖ω,α

]
= 0,

lim|∆x|→0

[
‖∂xft(λ)− ∂xf(0)‖β + ‖∂yft(λ)− ∂yf(0)‖β

]
= 0,

for any λ ∈ [0, 1]. Furthermore, by Theorem (3.4) (i) we have

∂ω[∂xg0(λ)] = ∂ωxg0(λ) + ∂yxg0(λ) g0(λ), ∂ω[∂yg0(λ)] = ∂ωyg0(λ) + ∂yyg0(λ) g0(λ)

Recalling the continuity of ∂ωxg, ∂ωyg in (iii) we see that, for any λ ∈ [0, 1],

lim
|∆x|→0

[
|∂ω[∂xg0(λ)]− ∂ω[∂xg0(0)|+ |∂ω[∂yg0(λ)]− ∂ω[∂yg0(0)|

]
= 0.

Now by Corollary 4.7 we have lim|∆x|→0 ‖∇u− v(x)‖ω,α = 0. That is, ∂xut(x) = vt(x).

6.2 Pathwise characteristics

As standard in the literature, see e.g. Kunita [26] for Stochastic PDEs and [18] Chapter 12

for rough PDEs, the main tool for dealing with semilinear RPDEs/SPDEs is the charac-

teristics, which we shall introduce below by using RDEs against rough paths and backward

rough paths.

Let σ : T× Ẽ → Ẽd and g : T× Ẽ × E → Ed×d. Fix t0 ∈ T and denote

←
σ
t0

(t, y) := σ(t0 − t, y),
←
g
t0

(t, x, y) := g(t0 − t, x, y). (6.6)

Consider the following characteristic RDEs:

θxt = x−
∫ t

0
σ(s, θxs ) · dωs,

←
θ
t0,x

t = x+
∫ t

0

←
σ
t0

(s,
←
θ
t0,x

s ) · d ←ωt0s ; (6.7)

ηx,yt = y +
∫ t

0
g(s, θxs , η

x,y
s ) · dωs,

←
η
t0,x,y

t = y −
∫ t

0

←
g
t0

(s,
←
θ
t0,x

s ,
←
η
t0,x,y

s ) · d ←ωt0s . (6.8)

By Lemma 2.11 and Theorem 4.2, the following result is obvious.

Lemma 6.2 (i) Assume σ ∈ C2,3
ω,α(Ẽ, Ẽd). Then, for each x ∈ Ẽ, the RDEs (6.7) have

unique solution θx ∈ C1
ω,α(Ẽ) and

←
θ
t0,x
∈ C1

←
ω
t0
,α

([0, t0], Ẽ) satisfying
←
θ
t0,θxt0
t = θxt0−t, t ∈

[0, t0]. In particular, the mapping x 7→ θxt0 is one to one with inverse function x 7→
←
θ
t0,x

t0 .

30



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(ii) Assume further that, for each x ∈ Ẽ and for the above solution θx, the mapping

(t, y) 7→ g(t, θxt , y) is in C2,3
ω,α(E,Ed×d). Then the RDEs (6.8) have unique solution ηx,y ∈

C1
ω,α(E) and

←
η
t0,x,y∈ C1

←
ω
t0
,α

(E) satisfying
←
η
t0,θxt0

,ηxt0
t = ηx,yt0−t, t ∈ [0, t0]. In particular, the

mapping (x, y) 7→ (θxt0 , η
x,y
t0

) is one to one with inverse functions (x, y) 7→ (
←
θ
t0,x

t0 ,
←
η
t0,x,y

t0 ).

Now define

ϕ(t, x) :=
←
θ
t,x

t , ψ(t, x, y) :=
←
η
t,θxt ,y

t , ζ(t, x, y) := η
ϕ(t,x),y
t , ĝ(t, x, y) := g(t, θxt , y). (6.9)

Lemma 6.3 Assume σ and g are smooth enough in the sense of Theorem 6.1. Then ϕ,ψ

are twice differentiable in (x, y), and for any fixed (x, y), ϕ(·, x), ψ(·, x, y) ∈ Cωα . Moreover,

they satisfy the following RDEs:

ϕ(t, x) = x+
∫ t

0
∂xϕσ(s, x) · dωs

+
∫ t

0

[1
2
∂2
xxϕ [σ, σ] + ∂xϕ [∂xσ σ∗]

]
(s, x) : d〈ω〉s;

ψ(t, x, y) = y −
∫ t

0
[∂yψ ĝ](s, x, y) · dωs

+
∫ t

0

[1
2
∂2
yyψ [ĝ, ĝ] + ∂yψ [∂y ĝ ĝ∗]

]
(s, x, y) : d〈ω〉s.

Proof By Theorem 6.1, θx,
←
θ
t,x

, ηx,y,
←
η
t,x,y

are sufficiently differentiable in (x, y). This

implies the desired differentiability of ϕ,ψ. We now check the RDEs.

First, given (s, t) ∈ T2 and denote δ := t− s. Note that

ϕ(t, x) =
←
θ
t,x

t =
←
θ
s,
←
θ
t,x

δ

s = ϕ(s,
←
θ
t,x

δ );

and that, applying Lemma 2.11,

←
θ
t,x

δ −x =
∫ δ

0

←
σ
t

(r,
←
θ
t,x

r ) · d ←ωtr

=
←
σ
t

(0, x)· ←ω t0,δ +[∂←
ω
t
←
σ
t

+∂x
←
σ
t

(
←
σ
t
)∗](0, x) :

←
ω
t

0,δ +O(δ2α+β)

= σ(t, x) · ωs,t + [−∂ωσ + ∂xσ σ
∗](t, x) : [ωs,tω∗s,t − ωs,t] +O(δ2α+β)

= σ(s, x) · ωs,t + ∂ωσ(s, x) : ωs,t + ∂xσ σ
∗(s, x) : [ωs,tω∗s,t − ωs,t] +O(δ2α+β)
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Then, applying Taylor expansion,

ϕ(t, x)− ϕ(s, x) = ϕ(s,
←
θ
t,x

δ )− ϕ(s, x)

= ∂xϕ(s, x) [
←
θ
t,x

δ −x] +
1
2
∂2
xxϕ(s, x) [

←
θ
t,x

δ −x,
←
θ
t,x

δ −x] +O(δ3α)

= ∂xϕ(s, x)
[
σ(s, x) · ωs,t + ∂ωσ(s, x) : ωs,t + ∂xσ σ

∗(s, x) : [ωs,tω∗s,t − ωs,t]
]

+
1
2
∂2
xxϕ(s, x) [σ(s, x) · ωs,t] +O(δ2α+β)

In particular, this implies

∂ωϕ = ∂xϕσ.

On the other hand, by applying Theorem 6.1 on (6.7) and view (θx, ∂xθx) as the solution

to a higher dimensional RDE, one can check similarly that

∂ω[∂xϕ] = ∂x[(∂xϕσ)∗].

Denote ϕ̃ as the right side of the RDE for ϕ. Then, taking values at (s, x),

[ϕ̃(·, x)]s,t = ∂xϕσ · ωs,t + ∂ω[∂xϕσ] : ωs,t

+
[1

2
∂2
xxϕ [σ, σ] + ∂xϕ [∂xσ σ∗]

]
: 〈ω〉s,t +O(δ2α+β)

= ∂xϕσ · ωs,t +
[[
∂x[∂xϕσ]σ∗ + ∂xϕ∂ωσ

]
: ωs,t

+
[1

2
∂2
xxϕ [σ, σ] + ∂xϕ [∂xσ σ∗]

]
: [ωs,tω∗s,t − ωs,t − ω∗s,t] +O(δ2α+β).

It is straightforward to check that [ϕ(·, x)]s,t = [ϕ̃(·, x)]s,t +O(δ2α+β), impling ϕ = ϕ̃.

Similarly, notice that

ψ(t, x, y) =
←
η
t,θxt ,y

t =
←
η
s,
←
θ
t,θxt
δ ,

←
η
t,θxt ,y

δ

s =
←
η
s,θxs ,

←
η
t,θxt ,y

δ

s = ψ(s, x,
←
η
t,θxt ,y

δ ).

Following similar arguments one can verify the RDE for ψ.

6.3 Rough PDEs

Now consider RPDE:

ut(x) = u0(x) +
∫ t

0
[∂xus(x)σs(x) + gs(x, us(x))] · dωs (6.10)

+
∫ t

0
fs(x, us(x), ∂xus(x), ∂2

xxus(x)) : d〈ω〉s.

Define

v(t, x) := ψ(t, x, u(t, θxt )) and equivalently u(t, x) = ζ(t, x, v(t, ϕ(t, x))).
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Theorem 6.4 Assume the coefficients and u are smooth enough. Then u is a solution of

RPDE (6.10) if and only if v satisfies:

dvt(x) = f̂(t, x, vt(x), ∂xvt(x), ∂2
xxvt(x)) : d〈ω〉t, (6.11)

or equivalently, Dω
t vt(x) = f̂(t, x, vt(x), ∂xvt(x), ∂2

xxvt(x)),

where

f̂(t, x, y, z, γ) := ∂yψ(t, x, ŷ)
[
f(t, θxt , ŷ, ẑ, γ̂)− 1

2
γ̂ : [σ, σ](t, θxt )

−
[
ẑ ∂xσ + ∂xg + ∂yg ẑ]σ∗

]
(t, θxt , ŷ); (6.12)

ŷ = ζ(t, θxt , y);

ẑ = ∂xζ(t, θxt , y) + ∂yζ(t, θxt , y) z ∂xϕ(t, θxt );

γ̂ = ∂2
xxξ(t, θ

x
t , y) + [∂xyζ(t, θxt , y) + ∂yxσ(t, θxt )] [z, ∂xϕ(t, θxt )]

+∂2
yyζ(t, θxt , y) [∂xϕ∂xϕ, ∂xϕ∂xϕ](t, θxt )

+∂yζ(t, θxt , y)
[
γ [∂xϕ, ∂xϕ](t, θxt ) + z ∂2

xxϕ(t, θxt )
]
.

Proof Applying the Itô-Ventzell formula (3.14) we have

du(t, θxt ) = g(t, θxt , u(t, θxt ))dωt +
[
f(·, u, ∂xu, ∂2

xxu)

−[
1
2
∂2
xu : [σ, σ] + ∂xu ∂xσ σ

∗ + ∂xg(·, u)σ∗ + ∂yg ∂xuσ
∗]
]
(t, θxt ) : d〈ω〉t;

dv(t, x) = d[ψ(t, x, u(t, θxt ))] = ∂yψ(t, x, u(t, θxt ))
[
f(·, u, ∂xu, ∂2

xxu) (6.13)

−1
2
∂2
xu : [σ, σ]−

[
∂xu ∂xσ + ∂xg + ∂yg ∂xu]σ∗

]
(t, θxt , u(t, θxt )) : d〈ω〉t.

Now note that

u(t, x) = ζ(t, x, v(t, ϕ(t, x)));

∂xu = ∂xζ + ∂yζ ∂xv ∂xϕ;

∂2
xxu = ∂2

xxξ + [∂xyξ + ∂yxσ] [∂xv, ∂xϕ] + ∂2
yyζ [∂xϕ∂xϕ, ∂xϕ∂xϕ]

+∂yζ ∂2
xxv [∂xϕ, ∂xϕ] + ∂yζ ∂xv ∂

2
xxϕ.
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Then

u(t, θxt ) = ζ(t, θxt , v(t, x));

∂xu(t, θxt ) = ∂xζ(t, θxt , v(t, x)) + ∂yζ(t, θxt , v(t, x)) ∂xv(t, x) ∂xϕ(t, θxt );

∂2
xxu(t, θxt ) = ∂2

xxξ(t, θ
x
t , v(t, x)) + [∂xyζ(t, θxt , v(t, x))

+∂yxσ(t, θxt )] [∂xv(t, x), ∂xϕ(t, θxt )]

+∂2
yyζ(t, θxt , v(t, x)) [∂xϕ∂xϕ, ∂xϕ∂xϕ](t, θxt )

+∂yζ(t, θxt , v(t, x)) ∂2
xxv(t, x) [∂xϕ, ∂xϕ](t, θxt )

+∂yζ(t, θxt , v(t, x)) ∂xv(t, x) ∂2
xxϕ(t, θxt ).

Plug this into (6.13), we obtain the result immediately.

6.4 Pathwise solution of Stochastic PDEs

We now study Stochastic PDE:

ut(ω, x) = u0(x) +
∫ t

0
[σs(ω, x)∂xus(ω, x) + gs(ω, x, us(ω, x))] · dBs (6.14)

+
∫ t

0
fs(ω, x, us(ω, x), ∂xus(ω, x), ∂2

xxus(ω, x))ds, P0-a.s.

Clearly, this corresponds to RPDE:

ut(ω, x) = u0(x) +
∫ t

0
[σs(ω, x)∂xus(ω, x) + gs(ω, x, us(ω, x))] · d(ω, F (ω))s (6.15)

+
∫ t

0
Fs(ω, x, us(ω, x), ∂xus(ω, x), ∂2

xxus(ω, x)) : d〈ω〉s, ∀ω ∈ Ω,

where F (t, ω, x, y, z, γ) := f(t, ω, x, y, z, γ)
Id
d
. (6.16)

Define θω,xt , ψ(t, ω, x, y), F̂ (t, ω, x, y, z, γ) in obvious sense and

v(t, ω, x) := ψ(t, ω, x, u(t, ω, θω,xt )), f̂(t, ω, x, y, z, γ) := Trace[F̂ (t, ω, x, y, z, γ)]. (6.17)

Then we have, recalling ∂ωt v defined in Remark 5.4,

dv(t, ω, x) = ∂ωt v(t, ω, x)dt = f̂t(ω, x, vt(ω, x), ∂xvt(ω, x), ∂2
xxvt(ω, x))dt.

Clearly, this implies that ∂ωt vt(x) = ∂tv(t, ω, x), the standard time derivative for fixed (ω, x).

We now conclude the paper with the following result:

Theorem 6.5 Assume the coefficients and u are smooth enough. Then, for each ω ∈ Ω,

u(ω, ·) is a solution of (6.15) if and only if v(ω, ·) is a solution of the following PDE:

∂tvt(ω, x) = f̂t(ω, x, vt(ω, x), ∂xvt(ω, x), ∂2
xxvt(ω, x)). (6.18)
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