
SPA: 3327 Model 1 pp. 1–13 (col. fig: NIL)

Please cite this article in press as: Y. Isozaki, The first hitting time of the integers by symmetric Lévy processes, Stochastic Processes and their
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Abstract

For one-dimensional Brownian motion, the exit time from an interval has finite exponential moments and
its probability density is expanded in exponential terms. In this note we establish its counterpart for certain
symmetric Lévy processes. Applying the theory of Pick functions, we study properties of the Laplace
transform of the first hitting time of the integer lattice as a meromorphic function in detail. Its density is
expanded in exponential terms and the poles and the zeros of a Pick function play a crucial role.

Intermediate results concerning finite exponential moments are also obtained for a class of nonsymmet-
ric Lévy processes.
c⃝ 2018 Published by Elsevier B.V.
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1. Introduction 1

Let B(t) be a standard Brownian motion starting at x . We denote the probability and the 2

expectation by P B M
x and E B M

x , respectively. If we set Ψ B M (ξ ) = (1/2)ξ 2 for ξ ∈ R we have 3

E B M
x

[
exp(iξ B(t))

]
= exp

(
iξ x − Ψ B M (ξ )t

)
. We fix L > 0, denote by LZ the lattice set 4

{Lm|m ∈ Z}, and by T B M
LZ its first hitting time by B(t): inf {t > 0|B(t) ∈ LZ}. Let R/LZ be the 5

quotient space of R with the equivalence relation that x ∼ y ↔ x − y ∈ LZ, i.e., R/LZ is the 6

circle with the length L . We denote by B̃(t) the projection of B(t) on R/LZ and by pB M
R/LZ(t, x, y) 7

its probability density. 8
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We introduce a meromorphic function1

RB M (z) =

∑
n∈Z

−1
z + Ψ B M (2nπ/L)

=
−L
√

2z
coth(

√
2zL/2)2

and a sequence ρk = Ψ B M (2kπ/L) for k ∈ N∪{0} so that the poles of RB M (z) are (−ρk)k∈N∪{0}.3

Let ζk = (1/2)(2k − 1)2π2/L2 for k ∈ N. Then the zeros of RB M (z) are (−ζk)k∈N. The sequence4

(ρk)k∈N∪{0} appears in the expansion5

pB M
R/LZ(t, x, y) =

∑
k∈Z

1
L

exp
(
i2kπ (y − x)/L − ρ|k|t

)
, (1)6

where t > 0 and x, y ∈ R/LZ. The sequence (ζk)k∈N appears in the expansion7

P B M
x [T B M

LZ ∈ dt]/dt =

∞∑
k=1

2(2k − 1)π
L2 sin

(
(2k − 1)πx

L

)
exp(−ζk t), (2)8

where t > 0 and 0 < x < L . The equality ζk = Ψ B M ((2k − 1)π/L) turns out to be merely a9

coincidence in view of our extension in Theorem 3.1 to the Lévy process case.10

Let X (t) be a Lévy process starting from x ∈ R. The probability and the expectation of X (t)11

are denoted by Px and Ex , respectively. We set T (LZ) = inf {t > 0|X (t) ∈ LZ} and call it the12

first hitting time of the integer lattice by X (t). We denote by X̃ (t) the projection of X (t) on13

R/LZ.14

Let Ψ (ξ ) be the characteristic exponent of the Lévy process X (t) such that Ex [eiξ X (t)] =15

eiξ x−Ψ (ξ )t . We will assume the conditions (3), (4) and (12) that are sufficient for existence of16

transition density p(t, x, y) for X (t). We denote that for X̃ (t) by pR/LZ(t, x, y).17

In [3] the author studies T (LZ) in the case X (t) = Xα(t), a symmetric α-stable Lévy process18

with 1 < α ≤ 2, and proves that its Laplace transform q ↦→ Ex [e−qT (LZ)] can be extended19

to a meromorphic function and is holomorphic on a neighborhood of the origin. Finiteness of20

some exponential moments of T (LZ) follows from this but the abscissa of convergence is not21

specified. The density of T (LZ) is only shown to exist and be square-integrable.22

In the present paper we extend to a wider class of Lévy processes and strengthen the result to23

obtain an expansion of the density of T (LZ). The crucial steps in the proof are an application of24

the theory of Pick functions and an upper bound of meromorphic functions based on a property25

of fractional linear transformations.26

More precisely, we study an instance of Pick function defined by R(z) =
∑

n∈Z(−1)/(z +27

Ψ (2nπ/L)). We will show, in the proof of Theorem 3.1(a), that the poles and the zeros of R(z)28

lie on the nonpositive real axis and are interlacing, where two sequences are said interlacing if29

one member of one of them lies between each pair of neighboring terms of the other. We redefine30

(ρk)k∈N∪{0} and (ζk)k∈N as two increasing and interlacing sequences of nonnegative real numbers31

such that (−ρk)k∈N∪{0} are the poles of R(z) and (−ζk)k∈N the zeros. These sequences will appear32

in (19):33

pR/LZ(t, x, y) =

∞∑
k=0

ak(x, y) exp(−ρk t)34

and in (14):35

Px [T (LZ) ∈ dt]/dt =

∞∑
k=1

bk(x) exp(−ζk t),36
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which is our main result. The coefficients ak(x, y) and bk(x) are specified in (19) and (14). 1

Fractional linear transformations appear in the following context. In Theorem 2.1 we prove 2

that the analytic continuation of 0 < q ↦→ Ex [e−qT (LZ)] is given by R(q; x)/R(q), where 3

R(z; x) =
∑

n∈Z(− exp(i2nπx/L))/(z + Ψ (2nπ/L)). Since (−ρk)k∈N∪{0} are poles of order 4

1 of both R(z; x) and R(z), they are removable singularities of R(z; x)/R(z). The poles of 5

R(z; x)/R(z) are (−ζk)k∈N and are all of order 1. In Lemma 3.5 we derive an upper bound of 6

|R(z; x)/R(z)| on the lines {−ρk + iy|y ∈ R} using the fact that (−1)/(z + Ψ (2nπ/L)) lies on 7

the image of t ∈ R ↦→ (−1)/(z + t), which is the circle with the center i/(2ℑz) and the radius 8

1/(2|ℑz|). Finally by a contour integral of R(z; x)/R(z) involving the formula (17) we obtain in 9

Theorem 3.1 an expansion of Ex [e−qT (LZ)
; T (LZ) > h], that is connected with the density by 10

differentiation. 11

This paper is organized as follows. In Section 2 we prove Theorem 2.1 where we assume 12

conditions (3) and (4) and state that Ex [e−qT (LZ)] = R(q; x)/R(q), which implies some 13

exponential moments of T (LZ) are finite for certain nonsymmetric Lévy process X (t). A stable 14

Lévy process (with the index greater than 1) plus a drift is an instance and we give explicit 15

calculations for the case X (t) = B(t) + µt , a Brownian motion with drift. The method of proof 16

are the probabilistic potential theory, the Poisson summation formula, and the fact that analytic 17

continuation over a neighborhood of the origin of the Laplace transform of a probability measure 18

implies finiteness of some exponential moments. 19

In Section 3 we focus on symmetric Lévy processes and add the condition (12) that enables 20

the argument in the proof of Lemma 3.5. Theorem 3.1 is the main theorem and it contains the 21

expansion (14). In Remark 3.6 after the proof of Theorem 3.1 we suggest that our method also 22

applies to the nonsymmetric cases. The short subSection 3.1 is devoted to (19). Its method of 23

proof is the Poisson summation formula. 24

2. Finiteness of exponential moments in the nonsymmetric case 25

Let Ψ (ξ ) be the characteristic exponent of the Lévy process X (t) such that Ex [eiξ X (t)] = 26

eiξ x−Ψ (ξ )t . Fix L > 0 and for some q > 0 we assume 27∫
R

⏐⏐⏐⏐ 1
q + Ψ (ξ )

⏐⏐⏐⏐ dξ < ∞, (3) 28∑
n∈Z

⏐⏐⏐⏐ 1
q + Ψ (2nπ/L)

⏐⏐⏐⏐ < ∞. (4) 29

It is known that if (3) and (4) hold for some q > 0 then they hold for all q > 0. Let 30

uq (x) = (2π )−1
∫

∞

−∞
e−i xξ (q + Ψ (ξ ))−1dξ which is called the q-potential. By (3), uq (x) is 31

bounded and continuous and it holds Ψ (ξ ) = 0 if and only if ξ = 0. 32

For instance, let 1 < α ≤ 2, C > 0, β ∈ [−1, 1], µ ∈ R, and Ψ (ξ ) = C |ξ |
α (1 − iβsgn(ξ ) 33

tan(πα/2)) − iµξ . This exponent corresponds to a (nonsymmetric) stable Lévy process plus a 34

drift µt and satisfies (3) and (4). In Example 2.2 after the proof of Theorem 2.1 we will study 35

the case Ψ (ξ ) = (1/2)ξ 2
− iµξ , namely the Brownian motion with drift. 36

Before we state the theorem we introduce notations for some meromorphic functions. 37

Definition 2.1. We set R(z; x) =
∑

n∈Z(− exp(i2nπx/L))/(z+Ψ (2nπ/L)) and R(z) = R(z; 0) 38

for z ∈ C and x ∈ R. 39
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Applications (2018), https://doi.org/10.1016/j.spa.2018.06.001.

4 Y. Isozaki / Stochastic Processes and their Applications xx (xxxx) xxx–xxx

By (4) the map z ↦→ R(z; x) is well-defined and holomorphic on the set C\{−Ψ (2nπ/L) |n ∈1

Z}. Each pole z = −Ψ (2nπ/L) of R(z) is of order 1 and is possibly also a pole of R(z; x). Hence2

it is a removable singularity of z ↦→ R(z; x)/R(z) such that3

lim
z→−Ψ(2nπ/L)

R(z; x)
R(z)

=

∑
k:Ψ(2kπ/L)=Ψ(2nπ/L) exp(i2kπx/L)

#{k ∈ Z|Ψ (2kπ/L) = Ψ (2nπ/L)}
. (5)4

The following theorem immediately implies that some exponential moments of T (LZ) are finite.5

Theorem 2.1. Assume (3) and (4). Let X (t) be started at x ∈ R and let T (LZ) = inf {t > 0|X (t)6

∈ LZ} where LZ = {Lm|m ∈ Z}. Then there exists an r > 0, that may depend only on Ψ and7

L, such that the both sides of Ex [e−qT (LZ)] = R(q; x)/R(q) are finite and the equality holds for8

any q ∈ C with ℜq > −r .9

Proof. We first review some facts from the potential theory (see e.g. Bertoin [1], Chapter II).10

Let q > 0 and T (y) = inf {t > 0|X (t) = y} for y ∈ R. It follows from Corollary II.20, Theorem11

II.19 in [1], and (3) that a single point is regular for itself for X (t) and the q-resolvent has the12

density such that U q (x, dy) = uq (y − x)dy, where uq is bounded, continuous, positive, and13

satisfies14

1
q + Ψ (ξ )

=

∫
∞

−∞

ei xξ uq (x)dx, uq (x) =
1

2π

∫
∞

−∞

e−i xξ 1
q + Ψ (ξ )

dξ (6)15

and Ex [e−qT (y)] = uq (y − x)/uq (0) for all x and y. The capacitary measure µ
q
LZ is defined by16

µ
q
LZ(A) = q

∫
∞

−∞
Ex [e−qT (LZ)

; X (T (LZ)) ∈ A]dx for any Borel set A ⊂ R and is supported by17

LZ. Since the set LZ is translation invariant, µ
q
LZ assigns the same mass µ

q
LZ({0}) for each point18

of LZ. By Theorem II.7 in [1] we have Êx [e−qT (LZ)]dx = µ
q
LZU q (dx), where Êx is concerned19

with the dual process X̂ (t) defined by X̂ (t)− X̂ (0) = −(X (t)− X (0)). By exploiting this identity20

for the dual and by taking the density, we have21

Ex [e−qT (LZ)] = µ
q
LZ({0})

∑
m∈Z

uq (Lm − x) (7)22

for a.e. x . We denote the right hand side of (7) by f (x).23

On one hand, we prove the continuity of the left hand side of (7) as a function of x .24

By Ex [e−qT (y)] = uq (y − x)/uq (0) and the continuity of uq (x), it holds lim|x−y|→025

Ex [e−qT (y)] = 1. Let m ∈ Z. Since Lm is regular for LZ we have ELm[e−qT (LZ)] = 1. As26

x → Lm, we have27

1 ≥ Ex [e−qT (LZ)] ≥ Ex [e−qT (Lm)] → 1.28

Hence x ↦→ Ex [e−qT (LZ)] is continuous at Lm ∈ LZ.29

Let z ̸∈ LZ. For any x it holds Ex [e−qT (LZ)] ≥ Ex [e−qT (z)]Ez[e−qT (LZ)] and Ez[e−qT (LZ)] ≥30

Ez[e−qT (x)]Ex [e−qT (LZ)] by the strong Markov property. Making x → z we obtain31

lim inf
x→z

Ex [e−qT (LZ)] ≥ Ez[e−qT (LZ)] ≥ lim sup
x→z

Ex [e−qT (LZ)],32

which means continuity at z. Now the proof of continuity on R is completed.33

On the other hand, we prove that (−µ
q
LZ({0})/L)R(q; x) is a continuous version of the right34

hand side of (7) as a function of x . Since uq (x) is positive and
∫

∞

−∞
uq (x)dx = 1/q , the function35

f (x) defined after (7) is integrable on [0, L]. By (4) the Fourier coefficient (ck)k∈Z defined by36

ck =
1
L

∫ L

0
exp(−i2kπx/L) f (x)dx37
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satisfies
∑

k∈Z|ck | < ∞ since 1

ck =
µ

q
LZ({0})

L

∫
∞

−∞

exp(−i2kπx/L)uq (−x)dx =
µ

q
LZ({0})

L(q + Ψ (2kπ/L))
. 2

By Corollary 1.8 in Chapter VII of [7] we have f (x) =
∑

k∈Zck exp(i2kπx/L) for a.e. x ∈ [0, L] 3

and the right hand side is a continuous function. This equality holds for a.e. x ∈ R by periodicity. 4

Since Ex [e−qT (LZ)] = f (x) a.e. we have 5

Ex [e−qT (LZ)] =

∑
k∈Z

ck exp(i2kπx/L) = (−µ
q
LZ({0})/L)R(q; x), (8) 6

where the second equality follows from Definition 2.1. Since the quantities in (8) are continuous 7

in x the two equalities hold for x ∈ R. Setting x = 0 we have 1 = (−µ
q
LZ({0})/L)R(q). The 8

ratio between respective sides of this equality and (8) yields 9

Ex [e−qT (LZ)] =
R(q; x)

R(q)
(9) 10

for q > 0. 11

In the final part of proof we check that q ↦→ Ex [e−qT (LZ)] admits analytic continuation over a 12

neighborhood of the origin. Note that 13

R(q; x)
R(q)

=
1 +

∑
n∈Z,n ̸=0 exp(i2nπx/L)q/(q + Ψ (2nπ/L))

1 +
∑

n∈Z,n ̸=0 q/(q + Ψ (2nπ/L))
(10) 14

for q > 0. 15

Set fn(z) = z/(z + Ψ (2nπ/L)) for z ∈ C and n ∈ Z \ {0}. Each of them is a meromorphic 16

function having only one simple pole at z = −Ψ (2nπ/L). Set also f0(z) = 1. By (4), we 17

have Ψ (2nπ/L) ̸= 0 for all n ̸= 0 and limn→∞|Ψ (2nπ/L)| = ∞. Hence ρ =
1
3 infn∈Z\{0} 18

|Ψ (2nπ/L)| > 0. 19

For n ∈ Z \ {0} and z ∈ C with |z| < ρ, we have the uniform bound 20

| fn(z)| ≤
ρ

|Ψ (2nπ/L)| − ρ
21

≤
ρ

1
3 |Ψ (2nπ/L)| +

2
3 infn∈Z\{0}|Ψ (2nπ/L)| − ρ

22

=
ρ

1
3 |Ψ (2nπ/L)| + ρ

. 23

Since the rightmost hand is a summable sequence, the sequence of holomorphic functions 24∑
|n|<N fn(z) converges uniformly on {|z| < ρ}. Hence g(z; 0) =

∑
n∈Z fn(z) is a holomorphic 25

function on {|z| < ρ} such that g(0; 0) = 1 and hence g(z; 0) ̸= 0 on {|z| < r} with some 26

r ∈ (0, ρ). It is clear that r may depend only on Ψ and L . 27

If we fix x ∈ R and set g(z; x) =
∑

n∈Zei2nπx/L fn(z) then we can verify that z ↦→ g(z; x) is 28

holomorphic on {|z| < ρ} by |ei2nπx/L
| = 1 and the argument in the last paragraph. 29

Since (9) and (10) imply Ex [e−qT (LZ)] = g(q; x)/g(q; 0) for all q ∈ (0, r ) and g(z; x)/g(z; 0) 30

is holomorphic on {|z| < r} we have Ex [e−qT (LZ)] = g(q; x)/g(q; 0) < ∞ for all q with 31

ℜq > −r by the method of proof of Theorem 2 in Lukacs–Szasz [5]. □ 32

Example 2.2 (Brownian Motion with Drift). Let B(t) be a standard Brownian motion. Set q > 0, 33

0 < x < L , µ ∈ R and X (t) = x + B(t) + µt so that Ψ (ξ ) =
1
2ξ 2

− iµξ . 34
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By the optional stopping theorem we can deduce that1

Ex [e−qT (LZ)] =
eµ(L−x) sinh

√
2q + µ2x + e−µx sinh

√
2q + µ2(L − x)

sinh
√

2q + µ2L
, (11)2

which is equivalent to the formula 2.3.0.1 in Borodin–Salminen [2, p. 233].3

The quantities appearing in Theorem 2.1 are computed as follows. First we invert the Fourier4

transform Fuq (ξ ) = 1/(q +
1
2ξ 2

− iµξ ) of the q-potential to obtain5

uq (x) =
1√

2q + µ2
exp

(
µx −

√
2q + µ2|x |

)
.6

If we set x = 0 in (7) we have E0[e−qT (LZ)] = 1 and7

1
µ

q
LZ({0})

=

∑
m∈Z

uq (Lm)8

=
1√

2q + µ2

∑
m∈Z

exp
(
µLm −

√
2q + µ2L|m|

)
9

=
1√

2q + µ2

(
1

1 − e−(
√

2q+µ2−µ)L
+

e−(
√

2q+µ2+µ)L

1 − e−(
√

2q+µ2+µ)L

)
10

=
sinh

√
2q + µ2L

2
√

2q + µ2 sinh((
√

2q + µ2 − µ) L
2 ) sinh((

√
2q + µ2 + µ) L

2 )
.11

By (11) and (8) we have12

R(q; x) =

−L
(

eµ(L−x) sinh
√

2q + µ2x + e−µx sinh
√

2q + µ2(L − x)
)

2
√

2q + µ2 sinh((
√

2q + µ2 − µ) L
2 ) sinh((

√
2q + µ2 + µ) L

2 )
.13

Since both sides of this equality are meromorphic functions of q ∈ C and coincide with each14

other on the positive real axis, they have common poles and coincide with each other outside15

the poles. Here are several consequences. On one hand, q = −2π2n2/L2
+ iµ2nπ/L where16

n ∈ Z are the poles of R(q; x) and R(q) but they are removable singularities of R(q; x)/R(q).17

On the other hand, q = −µ2/2 is a removable singularity of R(q; x) and R(q). The poles of18

R(q; x)/R(q) are q = −µ2/2 − π2k2/(2L2) where k ∈ N. Hence the abscissa of convergence19

of Ex [e−qT (LZ)] is q = −µ2/2 − π2/(2L2).20

The density of T (LZ) is obtained in Remark 3.6 after the proof of Theorem 3.1.21

3. Expansion of density in the symmetric case22

In Section 3 we assume (3), (4), the symmetry of X (t), and the following. Note first that the23

symmetry implies Ψ (−ξ ) = Ψ (ξ ) and that Ψ (ξ ) is real and nonnegative. For n ∈ Z we define24

In ⊂ R as the open interval (Ψ (2(n − 1)π/L),Ψ (2nπ/L)) if Ψ (2(n − 1)π/L) < Ψ (2nπ/L), as25

(Ψ (2nπ/L),Ψ (2(n − 1)π/L)) if Ψ (2nπ/L) < Ψ (2(n − 1)π/L), and as ∅ if Ψ (2(n − 1)π/L) =26

Ψ (2nπ/L). We assume27

sup
t∈[0,∞)

#{n ∈ Z|t ∈ In} ≤ M0 for some M0 > 0. (12)28

For instance, if Ψ (ξ ) is strictly increasing for 0 < ξ < ∞, (12) holds with M0 = 2. Other29

examples are symmetric stable Lévy processes plus jumps of length ±L/2 with exponential30
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waiting times: Ψ (ξ ) = C |ξ |
α

+ a(1 − cos(Lξ/2)) where 1 < α < 2, C > 0, and a > 0. If the 1

parameters satisfy 2a > (2α
− 1)C(2π/L)α we have 0 < Ψ (±4π/L) < Ψ (±2π/L) and 2

I−1 = I2 = (Ψ (4π/L),Ψ (2π/L)) ⊊ I0 = I1 = (0,Ψ (2π/L)) . 3

Since Ψ (ξ ) is strictly increasing for all sufficiently large ξ , the condition (12) holds and any 4

t ∈ I2 satisfies #{n ∈ Z|t ∈ In} ⊃ {−1, 0, 1, 2}, which implies 4 ≤ M0 < ∞. 5

Before we state Theorem 3.1 we introduce the notation for the poles and the zeros of R(z) 6

that is defined in Definition 2.1. 7

Definition 3.1. Let (ρk)k∈N∪{0} be the strictly increasing sequence of real numbers such that 8

{Ψ (2nπ/L) |n ∈ Z} = {ρk |k ∈ N ∪ {0}} and let µk be the number of multiplicity of appearances 9

# {n ∈ Z|ρk = Ψ (2nπ/L)} of the value ρk in the list (Ψ (2nπ/L); n ∈ Z). 10

By its definition, the sequence (−ρk)k∈N∪{0} exhausts the poles of R(z). Since limn→±∞Ψ 11

(2nπ/L) = +∞ by (4), (ρk)k∈N∪{0} is well-defined and it holds ρk → +∞ as k → +∞. Since 12

Ψ (ξ ) = 0 ⇔ ξ = 0 and Ψ (ξ ) > 0 ⇔ ξ ̸= 0, we have ρ0 = 0 and µ0 = 1. Hence it holds 13

R(z) =

∑
n∈Z

−1
z + Ψ (2nπ/L)

=
−1
z

+

∞∑
k=1

−µk

z + ρk
. (13) 14

Note also that µk ≥ 2 for any k ∈ N since ρk = Ψ (2nπ/L) > 0 implies ρk = Ψ (−2nπ/L). 15

If Ψ (ξ ) is strictly increasing for 0 < ξ < ∞ we have ρk = Ψ (2kπ/L) and µk = 2 for k ∈ N. 16

Inspecting each term of R(z) we easily conclude the following: R(z) is strictly increasing on 17

each interval without poles; R(z) < 0 if z > 0; for each k ∈ N∪{0} it holds limt→±0 R(−ρk+t) = 18

∓∞ since the term −µk/(z + ρk) is dominant. 19

Hence R(z) has a unique simple zero on each interval (−ρk+1, −ρk). 20

Definition 3.2. We define ζk > 0 by R(−ζk) = 0 and ζk ∈ (ρk−1, ρk) for each k ∈ N. 21

Note that limk→∞ζk = ∞ and the zeros and the poles of R(z) on R are aligned as · · · < −ζ3 < 22

−ρ2 < −ζ2 < −ρ1 < −ζ1 < 0 = ρ0. Levin [4] calls this alignment “interlacing”. As we will 23

see in the proof Theorem 3.1(a), R(z) is an instance of Pick function that is studied in Theorem 24

1 in [4, p. 220]. 25

Theorem 3.1. Assume X (t) is a symmetric Lévy process that satisfies (3), (4), and (12). Let the 26

sequence (ζk)k∈N be defined in Definition 3.2. Fix an x ∈ R \ LZ. 27

(a) The sequence (−ζk)k∈N exhausts the zeros of R(z). The abscissa of convergence of 28

Ex [e−qT (LZ)] is q = −ζ1. For any q ∈ C with ℜq > −ζ1, Ex [e−qT (LZ)] = R(q; x)/R(q). 29

(b) For any q ∈ C with ℜq > 0 and h > 0 it holds 30

Ex [e−qT (LZ)
; T (LZ) > h] =

∞∑
k=1

R(−ζk; x)
R′(−ζk)

1
q + ζk

exp(−h(q + ζk)), 31

where the convergence holds uniformly and absolutely for h ∈ (ε, ∞) for any ε > 0. 32

(c) The law of T (LZ) is absolutely continuous. Its density pLZ(t; x) satisfies 33

pLZ(t; x) =

∞∑
k=1

R(−ζk; x)
R′(−ζk)

exp(−ζk t), (14) 34

and possesses derivatives in t of every order, which are obtained by term-by-term differentiation 35

of the series in (14). Moreover, the convergence is uniform and absolute for t ∈ (ε, ∞) for any 36

ε > 0. 37
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Example 3.2 (Symmetric α-stable Lévy Process). Set Ψ (ξ ) = C |ξ |
α with 1 < α ≤ 2 and C > 0.1

Then the conditions (3), (4), and (12) hold with M0 = 2.2

We have ρ0 = 0, ρk = C(2kπ/L)α , µ0 = 1, µk = 2 for k ∈ N, R(z) = (−1)/z +3 ∑
∞

k=1(−2)/(z + ρk), and R(z; x) = (−1)/z +
∑

∞

k=1(−2) cos(2kπx/L)/(z + ρk).4

With some additional effort we can prove that5

lim
k→∞

ζk − ρk−1

ρk − ρk−1
= t∗6

where t∗ ∈ (0, 1) is the solution of7

∞∑
m=0

2(1 − 2t∗)
α(m + t∗)(m + 1 − t∗)

+
2π

α
cot

π

α
= 0.8

In the case 1 < α < 2 we have t∗ ̸= 1/2 and hence ζk ̸= Ψ ((2k − 1)π/L) for all large k since9

limk→∞(Ψ ((2k − 1)π/L) − ρk−1)/(ρk − ρk−1) = 1/2.10

Remark 3.3. If we make h → +0 in Theorem 3.1(b) the left hand side tends to Ex [e−qT (LZ)].11

But this fact does not imply the convergence, as n → ∞, of
∑n

k=1 R(−ζk; x)R′(−ζk)−1(q +ζk)−1
12

with q = 0 or ℜq > 0. In the case Ψ (ξ ) = C |ξ |
α (Example 3.2) we can prove the convergence13

by elementary and tedious estimates.14

Example 3.4 (Standard Brownian Motion). Set Ψ (ξ ) = (1/2)|ξ |
2. Then the conditions (3), (4),15

and (12) hold with M0 = 2.16

It holds ρ0 = 0, ρk = (π2/2L2)(2k)2, µ0 = 1, µk = 2, ζk = (π2/2L2)(2k − 1)2 for17

k ∈ N, R(z; x) = (−L/
√

2z) cosh(
√

2z(x − L/2)) sinh(
√

2zL/2)−1 if 0 < x < L , and R(z) =18

(−L/
√

2z) coth(
√

2zL/2). Since R(−ζk; x)/R′(−ζk) = 2π (2k − 1)L−2 sin ((2k − 1)πx/L) the19

result in Theorem 3.1(c) coincides with (2). The formula 1.3.0.2 in [2, p. 172] is an alternative to20

(2).21

Proof of Theorem 3.1. (a) If ℑz > 0 then each term in (13) satisfies ℑ(−1/(z+Ψ (2nπ/L))) > 022

and if ℑz < 0 then ℑ(−1/(z + Ψ (2nπ/L))) < 0. Being their sum, R(z) satisfies the same23

property and R(z) ̸= 0 if z ∈ C\R. Hence (−ζk)k∈N exhausts the zeros of R(z) and possible poles24

of R(z; x)/R(z). We easily conclude that Ex [e−qT (LZ)] converges and equals to R(q; x)/R(q) for25

all q ∈ C with ℜq > −ζ1 by Theorem 2.1 and the method of proof of Theorem 2 in [5]. The26

proof of (a) is completed.27

(b) By (5) and Definition 3.1, z = −ρk is a removable singularity of R(z; x)/R(z) and it holds28

limz→−ρk |R(z; x)/R(z)| ≤ 1. We depend on the following lemma that provides an upper bound29

of |R(z; x)/R(z)|.30

Lemma 3.5. There exist constants M1 and M2 that may depend on L and x ∈ (0, L) such that31

sup
k∈N

sup
y∈R

⏐⏐⏐⏐ R(−ρk + iy; x)
R(−ρk + iy)

⏐⏐⏐⏐ ≤ M1 < +∞ (15)32

and33

sup
−|ℑz|<ℜz<0

⏐⏐⏐⏐ R(z; x)
R(z)

⏐⏐⏐⏐ ≤ M2 < +∞. (16)34
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Proof. Since the series in Definition 2.1 is absolutely convergent it holds 1∑
n∈Z

− exp(i2nπx/L)
z + Ψ (2(n − 1)π/L)

= exp(i2πx/L)R(z; x). 2

We have for x ∈ (0, L) 3

R(z; x) =

∑
n∈Z

exp(i2nπx/L)
exp(i2πx/L) − 1

(
−1

z + Ψ (2(n − 1)π/L)
−

−1
z + Ψ (2nπ/L)

)
4

and 5

|R(z; x)| ≤
1

|exp(i2πx/L) − 1|

∑
n∈Z

⏐⏐⏐⏐ −1
z + Ψ (2(n − 1)π/L)

−
−1

z + Ψ (2nπ/L)

⏐⏐⏐⏐ . 6

We next prove |R(z; x)| ≤ M3/|ℑz| for all z ∈ C \ R for some M3 > 0 using a property 7

of fractional linear transformations, where M3 that may depend on L and x . The map [0, ∞) ∋ 8

t ↦→ −1/(z + t) is an injection to the circle C(z) = {w ∈ C| |w − i/(2ℑz)| = 1/(2|ℑz|)}. For 9

0 ≤ t1 < t2 we denote the arc {−1/(z + t) ∈ C(z)|t ∈ [t1, t2]} by arc(−1/(z + t1), −1/(z + t2)) 10

and denote the length of a curve C by len(C). 11

Set An = {−1/(z + t)|t ∈ In} ⊂ C(z) where In is defined in the first paragraph in Section 3. 12

Note that the two endpoints of An are −1/(z + Ψ (2(n − 1)π/L)) and −1/(z + Ψ (2nπ/L)) 13

if In ̸= ∅. By (12) each point −1/(z + t) ∈ C(z) can belong to An at most M0 times: 14

supt∈[0,∞)#{n ∈ Z| − 1/(z + t) ∈ An} ≤ M0. 15

By the inequality |−1/(z + t1) − (−1/(z + t2))| ≤ len(arc(−1/(z + t1), −1/(z + t2))) we have 16

17∑
n∈Z

⏐⏐⏐⏐ −1
z + Ψ (2(n − 1)π/L)

−
−1

z + Ψ (2nπ/L)

⏐⏐⏐⏐ 18

≤

∑
n∈Z

len(An) ≤ M0lenC(z) ≤ M0
2π

2|ℑz|
. 19

Hence we have |R(z; x)| ≤ M3/|ℑz| with M3 = π M0/|1 − exp(i2πx/L)|. 20

To prove (15) we may assume y = ℑ(−ρk + iy) > 0 since R(z) = R(z) for any z ∈ C. 21

Note that ℑ(−1/(−ρk + iy)) > 0 and ℑ(−µm/(−ρk + iy + ρm)) > 0 for all m ∈ N. The term 22

corresponding to m = k gives the following lower bound for any k ∈ N and y > 0: 23

|R(−ρk + iy)| ≥ ℑR(−ρk + iy) > ℑ
−µk

−ρk + iy + ρk
=

µk

y
≥

2
y
. 24

Hence |R(−ρk+iy; x)/R(−ρk+iy)| ≤ (M3/y)/(2/y) = M3/2 and (15) holds with M1 = M3/2. 25

To prove (16) we may assume ℑz > −ℜz > 0, which implies |z|2 ≤ 2(ℑz)2 and 26

ℑ(−1/z) = ℑz/|z|2 ≥ 1/(2ℑz). Since ℑ(−µk/(z + ρk)) > 0 for each k ∈ N, we have 27

|R(z)| ≥ ℑR(z) ≥ ℑ(−1/z) ≥ 1/(2ℑz). Hence |R(z; x)/R(z)| ≤ (M3/ℑz)/(1/(2ℑz)) = 2M3 28

and (16) holds with M2 = 2M3. The proof of lemma is completed. □ 29

We resume proving (b). We can verify using the residue theorem that, for any q ∈ C with 30

ℜq > 0 and h, t ∈ R, 31

e−qh

2
1{h}(t) + e−qt 1(h,∞)(t) = lim

A→∞

∫ A

−A

e−h(q+iθ)

2π (q + iθ )
eiθ t dθ. (17) 32

Moreover, the uniform bound 33

sup
A∈(2|q|,∞),t∈R

⏐⏐⏐⏐∫ A

−A

e−h(q+iθ )

2π (q + iθ )
eiθ t dθ

⏐⏐⏐⏐ < 2e−hℜq
34
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can be derived using the line integral along the half circle C+(A) = {Aeis
|0 ≤ s ≤ π} for the1

case t > h and C−(A) =
{

Aeis
| − π ≤ s ≤ 0

}
for the case t ≤ h.2

It follows from the bounded convergence theorem that3

e−qh

2
Px [T (LZ) = h] + Ex [e−qT (LZ)

; T (LZ) > h]4

= lim
A→∞

∫ A

−A

e−h(q+iθ )

2π (q + iθ )
Ex [eiθT (LZ)]dθ.5

Since the limit exists, we may replace limA→∞

∫ A
−A with limn→∞

∫ ρn
−ρn

. The expectation6

Ex [eiθT (LZ)] coincides for θ ∈ R with R(−iθ; x)/R(−iθ ), which is a meromorphic function7

of θ and whose poles are θ = −iζn for n ∈ N.8

We define the paths C1(n), C2(n), and C3(n) as the line segments from −ρn to −ρn − iρn ,9

from −ρn − iρn to ρn − iρn , and from ρn − iρn to ρn , respectively.10

By the residue theorem we have11 ∫ ρn

−ρn

e−h(q+iθ )

2π (q + iθ )
R(−iθ; x)

R(−iθ )
dθ12

= −2π i
n∑

k=1

Res
(

e−h(q+iθ )

2π (q + iθ )
R(−iθ; x)

R(−iθ )
; θ = −iζk

)
13

+

(∫
C1(n)

+

∫
C2(n)

+

∫
C3(n)

)
e−h(q+iθ )

2π (q + iθ )
R(−iθ; x)

R(−iθ )
dθ14

where15

Res
(

e−h(q+iθ )

2π (q + iθ )
R(−iθ; x)

R(−iθ )
; θ = −iζk

)
=

e−h(q+ζk )

2π (q + ζk)
R(−ζk; x)

(−i)R′(−ζk)
.16

Fix an h > 0. If ℑθ < 0 and ℜq > 0 it holds ℜ(q + iθ ) = ℜq + |ℑθ | ≥ ℜq , |e−h(q+iθ )
| =17

e−hℜq−h|ℑθ | and |q + iθ | ≥ |ℑ(q + iθ )| = |ℑq + ℜθ | ≥ |ℜθ | − |ℑq| for any θ with sufficiently18

large |ℜθ |.19

By the estimate (15) and (16) we have20 ⏐⏐⏐⏐ e−h(q+iθ )

2π (q + iθ )
R(−iθ; x)

R(−iθ )

⏐⏐⏐⏐ ≤
e−hℜq−h|ℑθ |

2πℜq
M1 ≤

e−hℜq−hρn

2πℜq
M121

for θ ∈ C2(n) and22 ⏐⏐⏐⏐ e−h(q+iθ )

2π (q + iθ )
R(−iθ; x)

R(−iθ )

⏐⏐⏐⏐ ≤
e−hℜq−h|ℑθ |

2π (|ℜθ | − |ℑq|)
M2 ≤

e−hℜq−h|ℑθ |

2π (ρn − |ℑq|)
M223

for θ ∈ C1(n) ∪ C3(n) with sufficiently large n.24

The length of C2(n) is 2ρn and it holds25 ⏐⏐⏐⏐∫
C2(n)

e−h(q+iθ )

2π (q + iθ )
R(−iθ; x)

R(−iθ )
dθ

⏐⏐⏐⏐ ≤
e−hℜq−hρn

2πℜq
M1 · 2ρn → 026

as n → ∞. We also have27 ⏐⏐⏐⏐(∫
C1(n)

+

∫
C3(n)

)
e−h(q+iθ )

2π (q + iθ )
R(−iθ; x)

R(−iθ )
dθ

⏐⏐⏐⏐ ≤
e−hℜq

2π (ρn − |ℑq|)
M2 · (2/h) → 028
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as n → ∞ for any fixed h > 0. Hence 1

e−qh

2
Px [T (LZ) = h] + Ex [e−qT (LZ)

; T (LZ) > h] 2

= lim
n→∞

∫ ρn

−ρn

e−h(q+iθ )

2π (q + iθ )
R(−iθ; x)

R(−iθ )
dθ 3

= lim
n→∞

n∑
k=1

e−h(q+ζk )

q + ζk

R(−ζk; x)
R′(−ζk)

. 4

We denote the rightmost side by f (h). We have next to prove the continuity of f (h) in h > 0, 5

which implies Px [T (LZ) = h] = 0 and the statement of (b). For this we show that f (h1 + h2) is 6

continuous in h2 ∈ (h3, ∞) for any fixed h1 > 0 and h3 > 0. If we set 7

ak =
e−h1(q+ζk )

q + ζk

R(−ζk; x)
R′(−ζk)

8

we have 9

f (h1 + h2) =

∞∑
k=1

ake−h2(q+ζk ). 10

On one hand, since
∑n

k=1ak converges as n → ∞ the sequence (ak) is bounded. On the other 11

hand, by (4), 12∫
∞

0

∞∑
k=1

e−h(ℜq+ζk )dh =

∞∑
k=1

1
ℜq + ζk

<

∞∑
k=1

1
ℜq + ρk−1

13

<

∞∑
k=0

µk

ℜq + ρk
=

∑
n∈Z

1
ℜq + Ψ (2nπ/L)

< ∞ 14

and hence
∑

∞

k=1 exp(−h(ℜq +ζk)) < ∞ for all h > 0. Since exp(−h(ℜq +ζk)) is monotonically 15

decreasing we have 16

∞∑
k=1

sup
h2∈(h3,∞)

|ake−h2(q+ζk )
| ≤ (sup

n
|an|)

∞∑
k=1

e−h3(ℜq+ζk ) < ∞, 17

which implies uniform and absolute convergence of f (h1 + h2) for h2 ∈ (h3, ∞). Now the 18

continuity of f (h1 + h2) follows and the proof of (b) is completed. 19

(c) Let ℜq > 0 and retain the notations f (h) and ak . Note that 20

∞∑
k=1

sup
h2∈(h3,∞)

⏐⏐⏐⏐ak
d

dh2
e−h2(q+ζk )

⏐⏐⏐⏐ 21

=

∞∑
k=1

sup
h2∈(h3,∞)

⏐⏐ak(q + ζk)e−h2(q+ζk )
⏐⏐ 22

≤ (sup
n

|an|)
(

sup
n

|q + ζn|e−(h3/2)(ℜq+ζn )
) ∞∑

k=1

e−(h3/2)(ℜq+ζk )
23

≤ (sup
n

|an|)
(

|q| + sup
t>0

te−(h3/2)t
) ∞∑

k=1

e−(h3/2)(ℜq+ζk )
24

< ∞, 25
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which implies that f (h1 + h2) =
∑

∞

k=1ak exp(−h2(q + ζk)) is differentiable term by term in1

h2 ∈ (h3, ∞) for any fixed h1 > 0 and h3 > 0. Hence f (h) =
∑

∞

k=1 exp(−h(q + ζk))(q +2

ζk)−1 R(−ζk; x)R′(−ζk)−1
= Ex [e−qT (LZ)

; T (LZ) > h] is differentiable term by term in h > 0.3

We have4

− e−qh pLZ(h; x) =
d

dh
Ex [e−qT (LZ)

; T (LZ) > h] =

∞∑
k=1

(
−e−h(q+ζk )) R(−ζk; x)

R′(−ζk)
.5

Repeating this argument we immediately verify differentiability of all order and the uniform and6

absolute convergence in the statement (c). □7

Remark 3.6. The method of Theorem 3.1 also applies to certain nonsymmetric cases. Recall8

Example 2.2 where X (t) is a Brownian motion with drift. The poles q = −ζk = −µ2/2 −9

π2k2/(2L2) of R(q; x)/R(q) are located on the negative real axis. By an elementary argument10

we can prove two upper bounds for |R(q; x)/R(q)|, which are similar to (15) and (16) on the11

line {q ∈ C|ℜq = −µ2/2 − π2(k −
1
2 )2/(2L2)} and on the set {q ∈ C| − |ℑq| < ℜq < 0},12

respectively. By the argument in the proof of Theorem 3.1(b) and (c) we have13

pLZ(t; x) =

∞∑
k=1

πk
L2

(
(−1)k−1eµ(L−x)

+ e−µx) sin
(

kπx
L

)
exp(−ζk t). (18)14

We can find an alternative expression for this formula in [2, p. 233]. In fact, (18) is a spectral15

representation of the formula 2.3.0.2 there.16

It seems probable that other nonsymmetric Lévy process X (t) admits similar expansion of17

pLZ(t; x) but we have not made any progress in this direction.18

3.1. Transition density for periodic process19

Since the resolvent density uq (x) exists by the condition (3), the transition density p(t, x, y)20

for X (t) exists if X (t) is symmetric (see Sato [6, Remark 41.13]). In Section 1 we define X̃ (t) as21

the projection of X (t) on R/LZ and pR/LZ(t, x, y) as the transition density for X̃ (t).22

Lemma 3.7. For x, y ∈ R and t > 0 we have23

pR/LZ(t, x, y) =

∞∑
k=0

1
L

exp(−ρk t)
∑

n:Ψ (−2nπ/L)=ρk

exp (i2nπ (y − x)/L) . (19)24

Proof. By the periodic sum we have pR/LZ(t, x, y) =
∑

k∈Z p(t, x, y + kL). We define an as25

an =
1
L

∫ L
0 exp (−i2nπy/L) pR/LZ(t, x, y)dy. Then it holds26

an =
1
L

∫
∞

−∞

exp (−i2nπy/L) p(t, x, y)dy27

=
1
L

Ex [exp (−i2nπ X (t)/L)]28

=
1
L

exp (−i2nπx/L − Ψ (−2nπ/L)t) .29

Since Ψ (ξ ) is real-valued and nonnegative there exists a constant M4(t, q) > 0 such that30

exp(−Ψ (ξ )t) < M4(t, q)/(q + Ψ (ξ )) for any ξ ∈ R. The condition (4) implies
∑

n∈Z|an| < ∞.31
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By Corollary 1.8 in [7, Chapter VII] we have 1∑
n∈Z

an exp(i2nπy/L) = pR/LZ(t, x, y) 2

for almost all y ∈ [0, L]. Rearrangement of terms yields the desired formula in view of 3

Definition 3.1. □ 4
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