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Abstract

Microbial dormancy is an evolutionary trait that has emerged independently at various positions across
the tree of life. It describes the ability of a microorganism to switch to a metabolically inactive state that
can withstand unfavourable conditions. However, maintaining such a trait requires additional resources
that could otherwise be used to increase e.g. reproductive rates. In this paper, we aim for gaining a basic
understanding under which conditions maintaining a seed bank of dormant individuals provides a “fitness
advantage” when facing resource limitations and competition for resources among individuals (in an
otherwise stable environment). In particular, we wish to understand when an individual with a “dormancy
trait” can invade a resident population lacking this trait despite having a lower reproduction rate than
the residents. To this end, we follow a stochastic individual-based approach employing birth-and-death
processes, where dormancy is triggered by competitive pressure for resources. In the large-population
limit, we identify a necessary and sufficient condition under which a complete invasion of mutants
has a positive probability. Further, we explicitly determine the limiting probability of invasion and the
asymptotic time to fixation of mutants in the case of a successful invasion. In the proofs, we observe
the three classical phases of invasion dynamics in the guise of Coron et al. (2017, 2019).
© 2020 Elsevier B.V. All rights reserved.

MSC: 60J85; 92D25

Keywords: Dormancy; Seed bank; Competition-induced switching; Individual-based stochastic population model;
Multitype branching process; Lotka—Volterra type system

1. Introduction

Dormancy is an evolutionary trait that has emerged independently at various positions across
the tree of life. In the present article, we are in particular interested in microbial dormancy
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(cf. [27] and [30] for recent overviews of this subject). Microbial dormancy describes the ability
of a microorganism to switch to a metabolically inactive state in order to withstand unfavourable
conditions (such as resource scarcity and competitive pressure or extreme environmental
fluctuations), and this seems to be a highly effective (yet costly) evolutionary strategy. In certain
cases, for example in marine sediments, simulation studies indicate that under oligotrophic
conditions, the fitness of an organism is determined to a large degree by its ability to simply stay
alive, rather than to grow and reproduce (cf. [9]). Indeed, maintaining a dormancy trait requires
additional resources in comparison to individuals lacking this trait, resulting in significant
trade-offs such as e.g. a lower reproduction rate.

In this paper, we aim at gaining a basic rigorous understanding for the conditions under
which maintaining a dormancy trait can be beneficial. We investigate the particular question
whether an individual with a dormancy trait can invade a resident population lacking this
trait, even if maintaining dormancy reduces its reproduction rate compared to the rate of the
residents, under otherwise stable environmental conditions. To this end, we follow a stochastic
individual-based approach employing birth-and-death processes (a classic set-up underlying
much of adaptive dynamics, as outlined e.g. in [8]), where dormancy is triggered in response
to competitive pressure for limited resources. In the large-population limit, we identify a
necessary and sufficient condition under which the invasion of mutants, despite having a lower
reproduction rate than the resident population, has a positive probability. Further, we explicitly
determine the limiting probability of invasion and the asymptotic time of fixation of mutants
in the case of a successful invasion.

To be more explicit, in our model the total population evolves according to a continuous
time Markov chain. Initially, there is a fit resident population, which we assume to be close
to its equilibrium population size, featuring (random) reproduction, natural death (“‘death by
age”), and death by competition. This results in a stochastically evolving population with
logistically regulated drift fluctuating around a constant carrying capacity (reflecting a stable
yet limited supply of resources). We assume that environmental conditions are also stable and
do not affect reproduction, death or competition rates. In this situation, we then assume that
a single “mutant” (or “migrant”) with “dormancy trait” appears in the population, who on the
one hand is still fit enough to survive in absence of the residents (however with a strictly
lower reproduction rate), but on the other hand is able to switch to a dormant state at a rate
proportional to the “competitive pressure” exerted on her due to crowding and limited resource
availability. That is, for some 0 < p < 1, “competition events” that would normally cause
death for an ordinary resident individual kill a mutant individual only with probability 1 — p.
Otherwise, with probability p, the mutant individual affected by competition will persist and
switch to the dormant state. Finally, dormant mutant individuals neither reproduce nor are
affected by competitive pressure for resources while they are still to some degree exposed
to natural death (at a rate typically smaller than for active individuals). We assume that at a
constant “resuscitation rate” , they switch back to the active state.

Our main results show that the mutants will invade the resident population with positive
probability under a suitable condition on the parameters of the model. This condition has
the following interpretation: the advantage of the resident population caused by its higher
reproduction rate needs to be over-compensated by the advantage of the mutant population
resulting from being able to escape competitive deaths due to overcrowding by switching into
dormancy. This condition can be made entirely transparent in terms of the parameters of the
model, see (5) resp. Section 3. Under this condition, we characterize the probability of invasion
(that is, the mutants completely replace the residents and reach their own equilibrium carrying
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capacity), and we identify the expected time of invasion on a logarithmic scale in the large-
population limit. With high probability, a successful mutation follows the three classical phases
exhibited in basic adaptive dynamics models (which were introduced in [11, Section 3]; see
e.g. [8, Section 4.1] for a slightly more general picture, but in particular [15,16] for work in
a closely related context that inspired our analysis and provides many of the necessary tools):
(1) mutant growth until reaching a population size comparable to the carrying capacity, while
during the same time period the resident population stays close to its equilibrium size, (2) a
phase where all sub-populations are large and the dynamics of the frequency process can be
approximated by a deterministic dynamical system, (3) extinction of the resident population,
while the mutant population remains close to its equilibrium size.

Note that for our results it is essential that switching into dormancy is induced by competitive
pressure. Indeed, if instead this switching happens at a constant rate (“spontaneous” or
“stochastic switching”, cf. e.g. [27]), the mutants will never be able to invade the resident
population unless their birth rate is higher than that of the residents (in which case their invasion
would also be possible without a dormancy trait, and the assumption that dormancy is a costly
trait would be violated). Further, mutants cannot make the residents go extinct unless they are
fit enough to survive on their own; thus, evolutionary suicide, as observed e.g. in [4], does not
occur in our model. Long-term coexistence of residents and mutants is also excluded in our
modelling set-up.

Let us note that while dormancy was recently investigated in several mathematical works
in the area of population genetics and coalescent theory (see e.g. [5-7,24,26]), in the field
of adaptive dynamics we are not aware of prior work involving dormancy. The present paper
takes a first step in this direction, analysing the invasion dynamics in a simple toy model. In
order to make this model more realistic, one could e.g. incorporate further mutations in the
spirit of adaptive dynamics. In the regime of very rare mutations introduced by Champagnat
(cf. [3,11,13]), we expect that the model behaves similarly to the case of no further mutation.
Recently, in [14], a regime of still rare but more frequent mutations was considered, with the
additional effect of horizontal gene transfer. Here, mutation rates are large enough so that small
sub-populations can have macroscopic effects on the whole population. It should be interesting
to study the additional effects of dormancy traits in this regime. As a further step, one could also
introduce spatiality in the model, which is relevant in modelling the trait space (see e.g. [2])
or the environment of the populations (see e.g. [12,20]). Finally, the resuscitation rate, which
is assumed constant in the present paper, could also be made dependent on the strength of
competition.

Note that related scenarios involving “phenotypic switches”, arising e.g. in cancer modelling,
have been analysed recently by [2,23]. For dormancy and switching models in fluctuating envi-
ronments, dynamical systems and branching process models have been investigated in [17,29].
Here, as in the competition setup of the present paper, the basis of a rigorous understanding
for the evolutionary advantages of seed banks seems to be emerging. It seems fair to say that
dormancy in its many forms, and its interplay with other evolutionary and ecological forces,
will provide many interesting future research challenges in mathematical biology.

The remainder of this paper is organized as follows. In Section 2 we introduce our model and
state our main results. Next, in Section 3 we discuss some strongly related questions. Finally,
in Section 4 we prove the main results. Each of these sections starts with a description about
its internal organization.
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2. Model definition and main results

The structure of this section is the following. In Section 2.1 we define our stochastic
population model. Next, the goal of Section 2.2 is to introduce necessary and sufficient
conditions for mutant invasion with positive probability, to present the formulas for the
probability and time of invasion in the large-population limit, and to provide a heuristic
justification for these. In particular, we comment on the probability and time of the invasion.
The introduced quantities and conditions are then used in Section 2.3 in order to state our
main results, Theorems 2.1, 2.2, and 2.3, the proof of which will make our heuristic arguments
rigorous.

2.1. The model

We have two traits, the resident one (1) and the mutant one (2). Mutant individuals can have
an active (2a) and a dormant (2d) state. As an interpretation, we will sometimes say that the
dormant individuals are in the seed bank. Informally speaking, the model is defined as follows.

e A resident individual gives birth to another such individual at rate 1| > 0.

e An active mutant individual gives birth to another such individual at rate A, € (0, Ay).

e Any active individual has a natural death rate u € (0, A,).

e K > 0 is the carrying capacity of the population.

e The competitive pressure felt by an active individual from another active individual is

a/K > 0, where a > 0. For any ordered pair (x;, x;) of active individuals, at rate
a/K > 0 a competitive event affecting x; happens. We fix p € (0, 1). At a competitive
event, in case x; is a resident individual, it dies. If x; is a mutant individual, it dies with
probability 1 — p and becomes a dormant (mutant) individual with probability p.
In other words, writing Ny = {0,1,2,...} and N = {1,2,...}, in a population with
ny € Ny (active) resident individuals and ny, € Ny active mutant individuals, writing
n, = n1 + ny, for the total number of active individuals, a resident individual dies by
competition at rate an,/K, an active mutant dies by competition at rate (1 — p)an,/K
and switches to dormant mutant at rate pan,/K.

e For some « > 0, a dormant (mutant) individual dies at rate « u.

e A dormant (mutant) individual becomes an active (mutant) individual at rate o > 0.

Further necessary conditions on the parameters will be specified later in the sequel.

To be more precise, we consider, for ¢ > 0, a finite number N, € Ny of individuals {x;: i €
[N;1}, where for all i € [N,] we have x; € {1, 2a, 2d}. Here we wrote [n] = {1,2, ..., n} for
n € Ny, in particular, [0] = &. We define the triple of rescaled frequency processes

(NO)iz0 = (N],, Nag 1 Nag Dizo,
where for x € {1, 2a, 2d},
NEK = l#{x-: i €[N/, xi = x}
x,t K ! thy M
is the number of individuals of type x rescaled by K. We also write
NZI,(t = NZI((I,I + Nzlfi,t

for 1/K times the total population size of mutant individuals and

N,
K K K t
Nt :Nl,t+N2,t:E
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. . . . 3 .
for 1/K times the total population size. Hence, NX is a (L N) -valued Markov process with
pop ‘ X p
transitions
(ny + % Nog, Naq) at rate KnAp,
(n1, n2g + . n2q) at rate Knyghs,
(11 — 7+ N2qx N2q) at rate Kny(u+ a(ng + ny,)),
(n1, naq, Nog) —> (n1, n2g — . n2q) at rate Kny(u + (1 — pa(ny + naa)),
(n1, n2g — . M2q + ) at rate Knoqpa(ny + na,),

1
(1, n2g, nog — F) at rate Knygku,

(1,24 + 5., 24 — &) at rate Knyyo.
2.2. Assumptions and heuristics

The Markov process (NX),~¢ is well-defined for any K > 0, given the initial condition.
Relevant initial conditions satisfy 1\_/0K ~ (ny, % 0) where n; is the equilibrium population size
of the resident population in absence of the mutant population. That is, at time O, resident
individuals are close to equilibrium, and there is precisely one active mutant and there are no
dormant mutants.

Now, we want to find necessary and sufficient conditions under which the probability
of mutant invasion is nonvanishing in the large-population limit. Further, conditional on a
successful invasion, we want to identify the time of invasion for large K on the logarithmic
scale. To this aim, we have to choose the parameters in such a way that, roughly speaking, the
following assertions hold.

1. The resident population is able to survive on its own, i.e., 771 > O.

2. Mutants are also fit: their equilibrium population size (74, 7124) 1S coordinatewise
positive.

3. Phase I of the invasion: For large K, starting from ]\_/(f ~ (ny, %, 0), the probability that
Nzlfl = 0 eventually is not close to one for large K.

4. Phase II: Given that the total mutant population has reached size €K, for ¢ > 0 small,
with high probability N, K will get close to (K&, Kitp,, Knpg) for arbitrarily small & > 0.

5. Phase III: Given that the process reached the state (Ke, Kny,, Knyy), the resident
population will die out with high probability.

Let us now heuristically identify the conditions corresponding to (1)—(5). The conditions that
are necessary and sufficient for (3) will turn out also to be sufficient for (4) and (5). These
heuristics will be made precise during the proof of the main results of the paper.

1. In absence of mutants, for large K, the rescaled resident population th can be
approximated by n(t), where n;(-) solves the quadratic ODE

ni(t) = ni(t)(A1 — p — ani(?)).
If Ay > u, this system has a unique positive equilibrium, given as
A—

nl:—’
o

which is also asymptotically stable. Else, there is no stable positive equilibrium.
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2. Similarly, in absence of residents, for large K, the rescaled mutant population size
(N5, .+ Njy ) can be approximated by (n124(1), n24(t)), where (n4(-), n24(-)) solves the
two-dimensional system of ODEs

N2a(t) = nog(H)(Ay — (1 — ang, (1)) + onoy(t),

. ()
R2a(1) = panag(1)® — (kp + 0)nzy(1).
Linearizing this system, we obtain the Jacobian matrix
Al maa) = (P22 7). @
Clearly, there is no equilibrium of the form (0, -) or (-, 0) apart from (0, 0). Further, we

have
A —u o
A0.00= (5" 7).

For X, > p, it is easy show that A(0, 0) has one negative and one positive eigenvalue
and hence (0, 0) is unstable. Let us now show that for A, > p© we have a unique
(coordinatewise) positive equilibrium, which is asymptotically stable. For an equilibrium
(nag, nag) with ny, # 0, dividing both equations in (1) by n,,, we obtain

Mg A — L —QNyg  Panyg 3)

g o K +o’

From (3) we obtain that there is precisely one such equilibrium, with coordinates

_ -k o) o (Gu—wPplp o)
Ny, = > 0, Nog = 5
akp+ (1 —p)o) alkpu + (1 — p)o)
were we used that Ay > u, ku >0, 0 > 0 and p € (0, 1). Comparing this to (2), we
obtain

det A(naq, n2g) = (ke + 0 )(Ao — ).

If A, > w, then the right-hand side is positive. In this case there are two strictly negative
eigenvalues. This is true because the trace Tr A (1, 7124) is negative, which follows from
the fact that ny, > A, — w and ku + o > 0. Hence, (15,4, 1124) is asymptotically stable.
3. As long as the mutant population size K Nz’,(z is negligible compared to K, the resident
population can be approximated by its equilibrium population size, and the competition
pressure felt by a mutant individual comes essentially only from the resident population.
This implies that the dynamics of the mutant population size process (K Nzlf”, K Nzlf“)
can be approximated by a bi-type linear branching process (Za(t), 22d(t)) with rates

(nyq + 1, noy) at rate ny Ao,
(n2q — 1, nag) at rate naye(u + ani(1 — p)),
(n2q, n2q) —> (n2q — 1, n2q + 1) at rate nyaniap,
(naq + 1, npq — 1) at rate onyy,
(n2q, nog — 1) at rate k unyy.
By classical results on multitype branching processes [1, Section 7.2], the process is

supercritical, i.e., there is no almost sure convergence to (0, 0), if and only if the
following mean matrix has a positive eigenvalue

7= <?»2 —u—an pan ) _ <)»2 — A p(Ar — M)) _ @

o —KU— 0O o —KU — 0o
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In the interesting case X, < Aj, it is impossible that we have two positive eigenvalues
because Tr J < O follows from the definition of 7. Hence, J has a positive eigenvalue
if and only its determinant is negative, which is equivalent to

o

&)

= pan .

KWW+ o KUw+o
The condition (5) turns out to be necessary and sufficient for the invasion probability to
be asymptotically positive. We will interpret it and discuss the related notion of invasion
fitness in Section 3.1.

4. Now we argue that under condition (5), given that the total mutant population has
reached a population size of order K, the second phase of invasion also takes place,
which ends with NtK ~ (0, naq, n24). In that phase, as long as all sub-populations are
of order K, the process NX can be approximated, for K large, by the (deterministic)
Lotka—Volterra type system

ny (1) = ni (O — p) — a1 (t) + no(1)),

12q(1) = nog(H)(Aa — ) — a(ny (1) + noe (1)) + on2q(t), (6

n2q(t) = panya(t)(ni(t) + naa()) — (ke + 0)noy(1).
We will show below (see Proposition 4.5) that (5) with A; > A, > u is also sufficient to
guarantee that this system has only one stable nonnegative equilibrium, which is equal
to (0, ny,, n124) and asymptotically stable. Moreover, there is a set of initial conditions
that NX reaches with high probability given that the mutants survived the first phase,
such that starting from this set, the solution of (6) tends to (0, 1p,, n24) as t — 0.

5. After the second phase of invasion, the population rescaled by 1/K is close to the
equilibrium (0, 7154, 124). To be more precise, the resident population size is of order e K
for some & > 0 small. It remains to show that for large K, with probability tending to
one, the resident population dies out within O(log K) time, while the mutant population
stays close to equilibrium. Now, as long as (KNZI;,, KNZIZ ;) is near (Kna,, Knyg) and
the resident population is small compared to K, the competiﬁve pressure that the resident
individuals feel comes essentially only from the mutant population. This implies that
K th can be approximated by a branching process Z;(¢) with rates

A=Ay < p(hr — )

n+1 atrate njiq,
n— _
n—1 atrate n(u + any,).
In order to show that this branching process goes extinct almost surely, we have to verify
that it is subcritical, i.e., the rate n — n + 1 is smaller than the rate n — n — 1. But
this assertion is equivalent to the inequality (5).
6. Using our multitype branching process approach, now we can compute the extinction
probabilities under condition (5) with A; > A, > u. Define

g =Pt < 001 Zoy(t) + Za(t) = 0[(Z24(0), Z2a(0)) = (1, 0)). ©)

By [1, Section 7], ¢ is the first coordinate of the unique solution of the system of
equations
a(sy = $a) + pOut — w)(sa — 5a) + (e + (1 = p)hi — )1 — 5,) =0,
(®)
0(8a = $a) + k(1 —54) =0,

in [0, 177 \ {(1, 1)}, while the second coordinate of the same solution is the extinction
probability given that the branching process is started from (0, 1). We will discuss the
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dynamics of the process started with one dormant individual and interpret the relation
between s, and s; in Section 3.3.

Summarizing, our heuristics indicates that under condition (5), for large K, given that the
mutants survive the first phase of invasion, the second and the third phase of the invasion are
also successful with high probability.

2.3. Statement of results
Recall that we have assumed A; > X, > p > 0, and recall also the stable equilibrium

(n24, N24), which is the unique solution of the system of Egs. (3) under the assumption X, > u.
For 8 > 0 define

Sp = {0} x [f2q — B, fizg + B] X [12q — B, 1i2q + B, )
a stopping time at which NX reaches this set:
Ts, = inf{r > 0: N € S}, (10)

and the first time when the rescaled mutant population size reaches a threshold x > 0 (from
below or above):

T? =inf{t > 0: KNy, = |xK |} (11)

We further note that the largest eigenvalue of the matrix J defined in (4) is given as follows.

~ 1
A= (()»2—)»1—16,“—0)4-
2 12)

V04 =k kgt + 07 — 40 — 2o +0) — plhy — o) )
Our first main result characterizes the probability of mutant invasion in the large-population
limit.
Theorem 2.1. Assume that (5) holds. Assume further that
NEO) — 7
K—o0
and
(N34(0), N33(0) = (. 0).
Then for any 0 < B < min{ny,, n24}, we have
Kli_r}n@[P’(Tsﬁ < TOZ) —1-q.

Next, we identify the time of fixation of mutants in the case of a successful invasion.

Theorem 2.2. Under the assumptions of Theorem 2.1, we have that on the event {Ts, < TOZ},

. TSﬁ 1 1
lim =t — (13)
K—-oologK A u+aiy — A
in probability.

Finally, we show that in case of an unsuccessful mutation, with high probability, the
extinction takes a sub-logarithmic time (in particular, the extinction happens during the first
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phase of the invasion), and at the time of extinction the resident population is close to its
equilibrium population size.

Theorem 2.3. Under the assumptions of Theorem 2.1, we have that on the event {TO2 <Ts, L
2

T
lim =0 (14)
K—o0 IOgK
and
U{Ts, > Tg}|NJ, — (71, 0,0)| —> 0, (15)
0 K—o0

both in probability.

The proof of Theorems 2.1. 2.2, and 2.3 will be carried out in Section 4. In multiple parts of
the proof, we are able to employ arguments that are similar to the ones used in [15,16] for the
three phases of invasion in individual-based models in the context of emergence of homogamy,
respectively speciation. A particular additional difficulty of our setting lies in guaranteeing
convergence of the underlying dynamical system (6) to its stable equilibrium (0, n15,, 1124), in
other words, in verifying certain global attractor properties of this equilibrium. Here, none of
the methods of the two aforementioned papers are applicable (see the proof of Lemmas 4.6
and 4.7). Our dynamical system is rather different from the ones considered in [15,16], which
have stronger monotonicity properties but also exhibit non-hyperbolic equilibria. The lack of
monotonicity in our system is due to the switches between activity and dormancy and to the
fact that dormant individuals are not affected by competition. These differences also influence
other parts of the proof of our main theorems nontrivially (see e.g. the construction of the
couplings in the proofs of Propositions 4.1 and 4.9).

3. Discussion

This section touches the following topics. In Section 3.1 we provide an interpretation of
condition (5) that is crucial for our main results and comment on the notion of invasion fitness.
The relevance of competition-induced vs. spontaneous switching is discussed in Section 3.2,
and the case where the first mutant individual is initially dormant instead of active is discussed
in Section 3.3. In Section 3.4 we comment on potential experimental studies related to the
subject of this paper for model verification.

3.1. Interpretation of the condition of the theorems

Condition (5) is equivalent to the assertion that the advantage of residents caused by their
higher birth rate is less than the advantage of the mutants caused by their ability to become
dormant under competitive pressure, at the beginning of the invasion where the mutants are
rare. Indeed, the right-hand side of (5) equals the rate at which those active mutant individuals
move to the seed bank that afterwards become active again before dying. Indeed, active mutants
become dormant at rate parng, and given that they have become dormant, the probability that
they turn active again (instead of dying in the seed bank) is Kﬂia. In the case x = 0 of no
death in the seed bank, (5) reduces to

M d—p
< )
1 1—p
where 1 — p is the probability that a mutant affected by a competitive event dies. On the
complementary event, this mutant will eventually become active again.
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Note that A, > u automatically follows from (5) given that A; > . Thus, our model is free
from evolutionary suicide: mutants who are not able to survive on their own will not make the
resident population go extinct with asymptotically positive probability.

The invasion fitness is the exponential growth rate of a mutant born with a given trait in
the presence of the current equilibrium population [8, Section 1.3.2]. In the present setting, the
precise formulation of such a quantity is not immediate, for the following reasons. First, the
total mutant population size process (K NZK,)po is not Markovian and hence has no well-defined
exponential rate. Second, the pair of active and dormant coordinates ((K N. 2a K N{f,’t)),zo is
Markovian, but its initial growth rate depends delicately on the initial condition. More precisely,
for k > 0, the mutant population has a lower probability to survive if it starts with one dormant
and no active individual than if it starts with one active and no dormant one (see Section 3.3
for further details). Nevertheless, if we define the invasion fitness as the principal eigenvalue
(a.k.a. Lyapunov exponent) 7 of the mean matrix J, then this eigenvalue is positive if and only
if the condition (5) holds, in other words, it has the same sign as the expression

o
P — W)——— — Ay + Ao
Ku+o

This sign is positive (respectively zero or negative) if and only if the approximating branching
process (Zga(t) sz(t))po is supercritical (respectively critical or subcritical). Further, accord-
ing to [1, Section 7], X is equal to the mean growth rate of the approximating branching process
(22,1(0, 22d(t)), which makes it rightful to call this eigenvalue the invasion fitness.

3.2. A comparison between spontaneous and competition-induced switching, and the case
without dormancy trait

We have seen that the bi-type mutant population is able to survive on its own if A, > u,
and if (5) holds, then the mutants will invade the population with positive probability even if
A2 < Aj. Let us note that without the mutants having a dormancy trait (i.e., for p = 0), even
though mutants can still survive on their own as soon as A, > u, invasion is not possible as
long as A, < Aj. This is true because the approximating branching process is not supercritical
in this case.

For k¥ > 0, it is not even the case that mutants are fit on their own if the switching from
activity to dormancy is not competition-induced but spontaneous, i.e., if an active mutant
individual switches to dormancy at some fixed rate ¢’ > 0. There, in absence of residents,
for large K, the rescaled mutant population is approximated by the system of ODEs

N2q(t) = 2 ()(ha — b — ano,(t) — o) + onay(t),
124(1) = 0'noa(t) — (Kt + 0)noq(1).

Hence, the determinant of the corresponding Jacobi matrix at the equilibrium (0, 0) is (A, —
u—0')Y—ku —o)—oo’. This is positive if and only if

(16)

!/

Ko
M <+ — (17)
IC/,L-}-(T
In this case, the trace of the matrix is negative because it equals
, ko' , oo’
M—p—0 —kp—0< ————0 —kp—0=—"""——kpu—0 <0,
Ki—+ o KW+ 0o

and therefore both eigenvalues of the matrix have negative real parts, which implies that the
equilibrium (0, 0) is asymptotically stable.
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Le., there are values A, > w such that the mutant population dies out with high probability
if K — oo. The right-hand side of (17) is the effective death rate: indeed, an active individual
dies at rate u, but additionally at rate o’ it becomes dormant, where it dies with probability
o + before ever becoming active (and capable of reproducing) again.

In the case of spontaneous switching, it is easy to show that the matrix defined analogously
to J (cf. (4)) has no positive eigenvalue for A, < A;. Le., mutant invasion is only possible if
the birth rate of mutants is higher than the one of the residents.

We expect that in case both spontaneous and competition-induced switching are present
in the model, the behaviour of the system remains similar to the case of purely competition-
induced switching, however, with a higher effective death rate, and hence condition (5) is not
satisfactory for invasion; A, has to satisfy a stronger condition, which can be derived similarly
to (5). In order to keep the notation simple, we do not consider this case of combined switching
in the present paper.

3.3. Starting with one dormant individual

Let us recall that s, is the extinction probability of the approximating bi-type branching
process (Zaq(t), Z24(t)):>0 starting from (1, 0), and s, the same probability starting from (0O, 1).
Note that the second equation of (8) reads as

gy = Da K1 (18)
KW+ o

Note that for x = 0, (18) reads as s; = s,. Thanks to the Markov property of our population
process (18) can be interpreted as follows: given that (Zza(O) ng(O)) = (0, 1), with probability
o +U the process dies out immediately at the first jump time that affects this single dormant
individual. Else (i.e., with probability W‘:_G ), it jumps to (1, 0), where it has probability s, to die
out. This argumentation also implies the following. Let T; o be the expected extinction time of
the mutant population starting from (1, 0) and 7y ; the same starting from (0, 1). Then we have

1
_|_
KU+ o KWw—+o

E[To’l]l{To’l < OO}] =

E[T1,01{T1,0 < 00}],

where wﬁ is the expected time of the first jump of the Markov chain. Hence, extinction
probabilities and extinction times started from (0, 1) can easily be handled using the same

quantities started from (1, 0). This is why our main results describe only the latter case.
3.4. Experimental studies

It would be highly interesting to check the results of the present paper experimentally. In
the spirit of the mathematical analysis of the Lenski experiment [10,28] (that also exhibits
the three phases of adaptive dynamics invasion), one could think of setting up a controlled
experiment where the environment is kept constant over time, with a relatively high but fixed
amount of resources. Now, one would need to find two types of microorganisms such that both
of them are able to survive on their own in this environment, but the first type reproduces faster,
whereas only the second one has a dormancy trait, in such a way that condition (5) holds for
the parameters estimated in the experiment. Then, one would first have to establish a resident
population of the first type, then augment it by a single individual (or several individuals) of
the second type, and continue the experiment until one of the types becomes extinct. Repeating
this experiment several times, it would become apparent whether the invasion of the second
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type has a positive probability, and whether the invasion probability would come close to the
one predicted by our model.

Certainly, the model presented in this paper captures only a small number of features of
natural populations. Hence, scenarios excluded by our model such as coexistence of the two
types may occur in the experiment. This could lead to interesting feed-back and theoretical
model extensions.

4. Proofs

This section is split into four parts: Section 4.1 investigates the first phase of the invasion:
the growth or extinction of the mutants. The next two phases only occur if the mutants survive
the first phase. Section 4.2 deals with the second phase, where the rescaled population size
process is approximated by the system of ODEs (6), and Section 4.3 describes the third phase
where the resident population dies out. Using all these, we complete the proof of our theorems
in Section 4.4. Throughout the proof we will assume that 8 € (0, min{n,,, 7124}).

4.1. The first phase of invasion: growth or extinction of the mutant population

The analysis of this phase proceeds similarly to [15, Section 3.1]. However, the presence of
dormancy induces nontrivial changes in some coupling arguments (see e.g. the construction of
the coupled process appearing in (32)). On the other hand, since we have a monomorphic
resident population, some arguments can be simplified or omitted, and the order of proof
ingredients will change accordingly.

We now define additional stopping times that will be relevant for this phase. The first one
is the time when the resident population first leaves a small-neighbourhood of its equilibrium:
for any ¢ > 0,

Re =infl = 05 [Nf, =i | > e].
Then our goal is to verify the following proposition.

Proposition 4.1. Assume that (5) holds with Ay > A, > u. Let K > m{( be a function from
(0, 00) 1o [0, 00) such that mf € %No and limKﬁoom{( = ny. Then there exists a function
f:(0,00) — (0, 00) tending to zero as ¢ |, 0 such that for any & € [1/2, 1],

T? 1 1
li IP’(T2 T2 A Ry, | —2 —=‘< ‘NK= K,—,O)— 1— ‘
imsup |P(T5 < Tg' A R, |{o = 5| < /(@) [Ns (mt. %:0) == g
= 0.(1)
and

1
lim sup ]P’(TO2 <T: ARy |N§ = (mf, —,O)) —q) = 0,(1), (20)
K—o0 ¢ K

where 0.(1) tends to zero as € | 0.

In order to prove the proposition, we first verify the following lemma.

Lemma 4.2. Under the assumptions of Proposition 4.1, there exists a positive constant &
such that for any & € [1/2,1] and 0 < & < g,

lim sup ]P’(st < ngs A Toz) =0.

K—o0
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Proof. We verify this lemma via coupling the rescaled population size th with two birth-
and-death processes, Y, 11,z and Y ﬁt, on time scales where the mutant population is still small
compared to K. More precisely, following [15, Section 3.1.2],

Y, <Nf <Y, as.  Vi<TjATL. (21)

The latter processes will also depend on K, but we omit the notation K from their nomenclature
for simplicity. In order to satisfy (21), the processes Y11 = 1{;):20 and Y, 12 = (Y, 12,,):30 can be
chosen with the following birth and death rates

Y, l? — z;l at rate ik,
i—> i1 at rate i(u—l—o:i + a&).
K K K
and
Yﬁt: % — l;1 at rate iAg,
L—) i1 at rate i(u+ai).
K K K

Let us estimate the time until which the processes Y| and Y, stay close to the value 71;. We
define the stopping times

Rl =inf{t > 0: Y], ¢ [i1 — &, + €]}, ie{l,2}, e>0.

For large K, according to [19, Theorem 2.1, p. 456], the dynamics of Yllyt is close to the one
of the unique solution to

n=n0 —pn—an —asd).

The equilibria of this ODE are 0 and fz(f) = # = n1; — &5, Since A; > u, the latter
equilibrium is positive for all sufficiently small ¢ > 0. Linearizing implies that for all small
enough & > 0 (namely, for & such that @’ < A; — ), the equilibrium O is unstable and the
one ﬁ(ls) is asymptotically stable. A direct analysis of the sign of n(A; — u —an — as®) implies
that for such ¢, any solution with a positive initial condition converges to the stable equilibrium

ﬁﬁe) as t — oo. These also imply that there exists &g > 0 such that for all 0 < ¢ < g,
i —a?| =¢  and  0¢[a —2e i + 2l

Now, using a result about exit of jump processes from a domain by Freidlin and Wentzell [21,
Chapter 5], there exists a family (over K) of Markov jump processes Y, = (Yll,,)zzo whose
transition rates are positive, bounded, Lipschitz continuous, and uniformly bounded away from
0 such that for

Rl=inflt >0: ¥, ¢ —e i +el},  ie(l,2}, e>0,
there exists V > 0 such that

P(R), > eXV) = P(R}, > eXV) — 0. (22)

K—o00

Using similar arguments for N 12 we derive that for ¢ > 0, V > 0 small enough, we have that

P(R), > eXV) 0. (23)
—00
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Now, on the event {R,, < TO2 A ngg} we have R,, > RZIE A R%e. Using (22) and (23), we derive
that

lim sup P(Rzg <efV Ry < T02 A ngé) =0.

K—o0

Moreover, using Markov’s inequality,
P(Rye < Ty AT2) <P(Rye <€V Ry < Ty AT3)
+P(Roe ATy ATS = XY
<P(Ry <€V Ry < T{ ATZ) + e X E(Ro. AT; AT).
Since we have

2. 72
Roe ATy /\Tgé

B[Ry A T2 AT2] < ]E[/
0

it suffices to show that there exists C > 0 such that

KNz’f,dt],

Rzg/\TOz/\ngé
E| / KNFdi] < CefK. (24)
A ,

This can be done similarly to [15, Section 3.1.2]. Indeed, let £ be the infinitesimal generator
of (NK),~9. We want to show that there exists a function g: (+Np)* — R defined as

g(n1, nag, N2q) = YiNag + Y224 (25)
such that
LgNF) = NE,. (26)
If (26) holds, then (24) follows because thanks to Dynkin’s formula,
RngTOzATZE R2€AT02AT25
E[/O ‘ KNz'f,dt] < E[/O ‘ KLg(N,K)dt]
= ]E[Kg(NgngTOzATfE) a Kg(Né()]

S VEK —(n A,
which implies (24), independently of the signs of y; and y,. Let us apply the infinitesimal
generator £ to the function g defined in (25). We obtain

LENF) = Nj, [(h2 — o — a(N{, + Nj Dy + pa(N, + Ny )vs
+ Ny [ovi — (ke + o)y

Hence, according to (26), it sufficies to show that there exists y;, y» € R such that the following
system of inequalities is satisfied:
(o — p—a(Nf, + Ny vt + pa(NE, + NS )y > 1, (27)
oy — (kK +0)yr > 1. (28)
Since th + NZIZ!, varies in ¢, the system (27)—(28) of inequalities is not easy to handle.
However, for ¢ € [0, RZE/\TOZ/\TE%], we have e NX < a(iij+2e+¢%) and paNX > pa(in;—2e).
Hence,

(2 — p— a(Nf, + Npo Ivi + pa(N, + NX )y
> (hy — o — a1ty + 2e + €))y1 + pa(i, — 2¢)ys,
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which implies that (27) is satisfied as soon as
(A2 — @ — (it +2& + )yi + paliy —28)y, > 1,
which, according to the definition of 7, can also written as
(h2 = h1 =26 —e)y1 + plhy — = 28)y2 > 1. (29)

Let us verify the existence of y; and y, satisfying (29) and (28). First of all, we can rewrite
(28) as follows

oy — 1 (30)
< .
v2 KU +o
Hence, let us first consider the equation
£ oy1 — 1
A=t =2 =)+ ph —p—28)——— > L. €29)
KL+ o
The inequality (5) is satisfied by assumption, and hence there exists ¢ > 0 such that
(= A1 — 26 — €5) 4 p(ht — 1 — 26)—2— > 0.
KW+ o

Hence, (A, — A1 —28 — &5y + p(A; — . — 28),(?_20 tends to infinity as y; — o0, in particular,

for all sufficiently large y; it is strictly larger than 1 + %, and thus (31) holds. By
continuity of the function x — p(A; — u — 2¢)x, this implies that for any y; satisfying (31)

there exists y, satisfying (30) such that (29) holds. We conclude the lemma. [

Proof of Proposition 4.1. In what follows, we consider our population process on the event
Ao =T ATS < Ry}

for sufficiently small ¢ > 0. On this event, the invasion or extinction of the mutant population
will happen before the resident population substantially deviates from its equilibrium size. We

couple on A, the process (K Nzlfi’ K NZISM) with two bi-type branching processes (Z;;L_,, ZZ,T,)

and (Z;;:r,, Z;;;;) on N7 (these processes again depend on K, but we omit that from the notation

for readability) such that almost surely, for any ¢ < 7, = TO2 A ngs A Ry, and v € {a, d},

78 < Za(t) < Z5T

20,1 2u,t0
700 < KNK < ot (32)
2u,t — 2u,t — “2u,1°

where we recall the approximating branching process (220 (0, 22d(t)) defined in Section 2.2.
We claim that in order to satisfy (32), these processes can be defined with the following jump
rates:

(Zyies Zag )
@G jH—>0+1,)) at rate i\,
@G jH—>>G-1,) at rate i(n + (1 — p)a(sg + iy 4+ 2¢) + pa(de +8§)),

(,j)— (G —1,j+1) atrate ipa(n; — 2¢),
(i, j)—> G+1,j—1) atrate jo,
@GjH—>0ji—-1 at rate jxu,
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and
(Zot Z531):
@ j)H—G+1,) at rate i,
(@, j)—G—17) at rate  i(u—+ (1 — pla(it; — 2¢) — pa(de + £%)),

(i,j)— (G —1,j+1) atrate ipa(i +2e+ &),
i, j)—> @G+1,j—1) atrate jo,
GpH—>0GJj—-1D at rate  jK /L.

Informally speaking, (32) holds thanks to the fact that for branching processes having the same
kind of transitions as (K Nzlfl, K NZIZJ),Z(), competition-induced switching to dormancy is more
favourable for an active mutant individual than immediate death by competition, but not better,
and for k¥ > O strictly worse, than not being hit by a competitive event at all.

Now, for ¢ € {4, —} and for a fixed initial condition (i, j), the total competitive event rate
of (25, Z5;,) is given as the sum of the (i, j) — (i — 1, j) and the (i, j) = (i — 1, j + 1)
jump rate corresponding to the process. Given that a competitive event has happened, the ratio
of the probability of death by competition and the one of switching to dormancy is equal to
the ratio of the (i, j) — (i — 1, j) rate and the (i, j) — (i — 1, j + 1) rate. Further, for any
fixed initial condition, (Z;z,_t’ Zg’d;) has higher death rate, higher total competitive event rate,
but lower rate for active—dormant switching rate than (/Z\ZQ (1), 2zd(t)) for any ¢ > 0 or than
(K Nzlf”, K Nzlf,’l) for t < t. on the event A,, while all other rates are the same for all these
processes. Birth-and-death processes are coordinatewise nonincreasing (for ¥ > 0 decreasing)
in the rate of competitive events. Indeed, after a competitive event the affected active mutant
individual either dies immediately or moves to the seed bank, where it dies with probability
less than one (but for « > 0 more than zero) before ever becoming active again. On the other
hand, the (i, j) — (i — 1, j + 1) switching rates are the lowest for (Z3,,, Z5,,), which ensures
that less individuals enter the seed bank and the couplings (32) hold also for v = d. The
corresponding inequalities for (Z3,,, Z5;",) in (32) follow similarly since this process has the
lowest rate for death and for competitive events in total but the highest rate for active—dormant
switching.

For o € {4, -}, let ¢'>* denote the extinction probability of the process (Z3;,., Z5;,)
started from (1, 0). The extinction probability of a supercritical branching process is continuous
with respect to all kinds of transitions that the mutant population in our model has. Given
the total competitive event rate, this probability increases with the rate of active death by
competition. Further, given the ratio between the rate of death by competition and the one of
active—dormant switching, it increases with the total competitive event rate. These assertions
can be proven using the methods of [15, Sections A.3]. Hence, by the first line of (32), we

have ¢ < g < ¢®) for fixed ¢ > 0 and

0 < liminf|¢*® — ¢| < limsup |¢®* — g| < limsup|¢®* ™ — ¢*P| =0, (33)
£l0 €10 £l0
for all ¢ € {4+, —}, where we recall the extinction probability g defined in (7).
Next, we prove that the probabilities of extinction and invasion of the actual process
(Nf, .. N5, ) also tend to g and 1 — g, respectively, with high probability as K — oo. We
define the stopping times

TEO? =inflr > 0: 235,70 + 257 (1) = |Kx]}),  oef{+ -} xeR
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Thanks to the coupling in the second line of (32), which is valid on A,, we have
P(TE7? < T2, A) < P(T3 < T3, A) < P(TEP? < 19972, A,) (34)

Indeed, if a process reaches the size K&° before dying out, then the same holds for a larger

process. However, A, is independent of (ZZa R 2d ;,) for both ¢ = + and ¢ = —, and hence

fiminf (77 < 772 A) = timinf PAJP(TS ™ < 707

35)
> (1= g% 7)1 —o0.(1))

and
lim sup IE”(TE(;‘JF)‘2 < 1,572, A;) = lim sup}P’(AE)]P’(T;;’"L)’2 < To(s’+)’2)
K—oo K—oo (36)
< (=4 ")+ o:(1)).
Letting K — oo in (34) and applying (35) and (36) yields that
1@gﬂ%ﬁsﬁ$&—ﬂ—ﬂ=@m,
as required. Eq. (20) can be derived similarly.

It reglains to s~how that in the case of invasion, the time before reaching size K &% is of order
log K /A, where A was defined in (12) as the maximal eigenvalue of the matrix J defined in
(4), which is positive under our assumptions.

Let )\(8 ?), o € {+, —}, denote the maximal eigenvalue of the mean matrix of the process
(Z;{f R 2d t) This eigenvalue is positive for all small enough ¢ > 0 and converges to A as
¢ | 0. Hence, there exists a function f: (0, 00) — (0, oo) with lim, o f(¢) = 0 such that for
all ¢ > 0 sufficiently small,

‘)»(5 ,0) ‘ - f(8) 37

Let us fix & small enough such that (37) holds. Then from the second line of (32) we deduce
that

log K
P(TE72 < T2 A i(l + f(e)). As) < P(T2 < T2 A

e)-

Using this together with the independence between A, and (ZZL”, Z3;,) and employing
[1, Section 7.5], we obtain for ¢ > 0 small enough (in particular such that f(e) < 1)

(A) = (1= q" )1 = 0u(1).

This inequality follows from computatlons that are analogous to [15, Section 3.1.3, first display
below (3.41)]. Similarly, using the second line of (32), we derive that for all sufficiently small
e>0
log K
lim mfIP(T“ D25 b2 gT(l T f(e)), AS) > (1 = g® (1 + 0.(1)).

K—o0

11m1nf]P’(T(€ 2 < T(E 2 A

K—o0

These together imply (19), hence the proof of the proposition is finished. O
4.2. The second phase of invasion: Lotka—Volterra phase
4.2.1. Convergence to a dynamical system for large population size

Now we rigorously state in what sense our population process (NX),-o is close to the
solution (n;);>0 = (n1(¢), n24(t), n24(t));>0 of the system of ODEs (6) for large K given that the
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corresponding initial conditions are close to each other. As for (6), note that the vector field
is locally Lipschitz and solutions do not explode in finite time, which guarantees existence
and uniqueness for a given initial condition. Let n’ = (n?, nga, ngd) € [0, oo)3 be an initial
condition, and let (n(“o)(t)),zo be the unique solution of the ODE started from the initial
condition n°. Then, [19, Theorem 2.1, p. 456] implies the following.

Lemma 4.3. Let T > 0. Assume that (Né< )k>1 converge in probability to some deterministic
vector n® = (n(l), nga, n(z)d) € [0, oo)3 as K tends to infinity. Then
lim sup |[N®(s)— n(“o)(s)| =0

K—00g<s<T

in probability, where | - | denotes the Euclidean norm on R3.

4.2.2. Mutant active—dormant proportions

On the event {T\2/E < To2 A Ry} C A,, after time TS2 the total mutant population has size
close to ¢K. Note that Proposition 4.1 provides us no coordinatewise information about the
mutant population at this point in time. However, in order to guarantee convergence of the
rescaled population process (NX),~o to a corresponding solution of the system of ODEs (6),
we have to guarantee convergence of the initial conditions. We will thus show that with high
probability, there exists a point in time in the interval [Tsz, Tjg] such that at this time, the
resident population is still close to equilibrium, the total mutant population size is still at least
of order ¢K and the proportion of active and dormant mutants is close to the equilibrium
proportion of the approximating branching process ((22a (1), 22d (#)))>0. The present section is
devoted to this problem. Next, in Section 4.2.3, we show that the ODE system (6) started from
the limiting initial condition converges to (0, i1p,, 124) as t — 0.

Since 7 is positive, the Kesten—Stigum theorem (see e.g. [22, Theorem 2.1]) ensures that
we have

( Zoa(1) Zoa(1) )
Zoo(t) + Zoa(t) Zoa(t) + Zoy(t)

on the event of survival of the branching process ((22a,z,224,z))r30, where (75,, m24) 1 the
positive left eigenvector of J defined in (4) associated to A such that m,, + 7y = 1, which

can be computed explicitly according to (12). We verify the next proposition, employing some
arguments of [15, Proposition 3.2].

—> (T2q, M2d)
K—o0

Proposition 4.4.  There exists C > 0 sufficiently large such that for § > 0 such that
. £ 6 € (0, 1), under the same assumptions as Proposition 4.1,

eK
liminfP (3 € [12, 73], = < KN, < VK,
Moy — 8 < —— 201 4 s|IT2 < T2AR )>1—0(1)
2a N2Kt+N2]‘(1r 2a NG 0 2¢ | e .
a, B
NK
Proof. If 715, —§ < —x—=-5%— < 75, +3, then there is nothing to show. Let us assume that
2a,72 " 2d,12
K
2a,T?

NK NX
2a,T? + 2d,T?

= Mg — 87
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the symmetric case > my, + 8 can be treated similarly. Let us introduce the

event
A, = {T% < Tg A Ry

on which we conditioned in (38). Our first goal is to show that for ¢ > 0 small, with high
probability, once the total mutant population size reaches €K, for sufficiently large C > 0 it
will not decrease to a level lower than ¢ K /C again before it reaches v/ K. To be more precise,
for C > 0 we introduce the stopping time

Tiejc =inf{t > T7: NJ, < £}

Then our goal is to show that if C is large enough, then TZS is larger than T + loglog(1/¢)
and smaller than T; ;/c. First of all, for all & > 0 sufficiently small, since the coupling (32)
is satisfied on A, and the branching processes (25, - Z5,) is supercritical, [15, Lemma A.1]
implies that for C large enough,

Kli%moo]P’(Tw/c < Tjﬂ&) =0. (39)

On the other hand, note that the total size of mutant individuals is stochastically dominated
from above by a Yule process with birth rate A,. Thus, by [15, Lemma A.2], we have

Jim P(T7; < T7 +loglog(1/e)| &) < ve(log(1/e)2. (40)

K
Using these, we want to show that the fraction KNZ“” %— cannot stay below mp,—§ on [ng, T2 ]
Nog 1T Nog 4 Ve

with probability close to one. Let us define the following five independent Poisson random
measures on [0, co]?® with intensity dsdo:

sza(ds, df) representing the birth events of the active mutant individuals,

Pﬁl(ds, deo) representing the death events of the active mutant individuals,

P;,_ ,,(ds, df) representing the active—dormant switching events,

Pzdd(ds, df) representing the death events of the dormant mutant individuals (for k = 0
this measure can be omitted),

o P},  ,,(dsdf) representing the dormant— active switching events.

The reason why competitive death events can be assumed as independent of active—dormant
switches is that the corresponding Poisson random measures can be obtained as an independent
thinning of a Poisson random measure with survival probability 1 — p respectively the
complementary thinning (with survival probability p), which are independent Poisson random
measures according to [25, Section 5.1]. Let

PP (ds, df) == PP (ds, df) — dsd6, ..., P5, ., (ds, d6) == P}, ,,(ds,d6) — dsde

be the associated compensated measures.
K

. N . . .
The fraction ﬁ is a semimartingale and can be decomposed as follows
2a,t 2d,t
K K
N2a,t Nza,ng

- + Ma(t) + Va(2), t>T2,
NE, +NE, T NE L+ NE 21) + V2 :

2d,T?
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with M, being a martingale and V, a finite variation process such that

1 N{fi ~
M(t):/ f 1{6 < }NE  }—— 24— PP (ds, df)
’ 72 J10.00) V- NE_(NK_+1)° %

- / f 1{0 < N3, _(u+oa(l — p)(NK_ + NS, )}
¢ J[0,00)

K
2d,s—

X—
Ny (NS = 1)

-, f 1O = NE _@p(VE -+ NE D Py, 00)
T¢ J10,00) 2,5—

P (ds, do)

NK
/ f 1{6 < K,uNMS_}#Pde(dS, do)
72 J10,00) NzKA_(Nsz-— 1y

+/ / n{egaNz’g,s,}TP;dm(ds,de)
12 J10.00) TNy

and

Va(t) /I{ANK _ Mg
1) = ,
2 TEZ 24¥24,s Nzl,{s(Nzl,(s"i_l)

K
2d,s
— Ny (n+a(l = p)Nf +N2’§,S>)—N,{ NE D)
2,8 2.5
N, (ap(N{ + N3, ) —d NK N NK ! d
— o + s S + kK — 40 —} S.
2P 2 NZY PRNEWE =D T NE

Further, the predictable quadratic variation of the martingale M, is given as follows

‘ (NK )P
(M), = / JNK :
C TR (NEDANE + i
(NK )?
4 / UNE G+ a(l = p)NE_+ NE ) :
't b TS AN, = 12
( 2a3)2

+ Njy ap(N{_ + NX ) ds + kLN

(NK)? (NK(NE =Dy

K 1
+ o Ny —(NZK 7 ds
,8

This yields that there exists Cy > 0 such that for all ¢ > Tez,

1
M), < Co(t = T?) sup ———.
(Ma); = Co( 8)T35f5t NE 1
This implies
Coploglog(1/¢e)
(M) (12 ptogrog(1/epnTicse = T K 4D
C
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ZS)

< limsup (IP’( sup IMa(1)] > ¢
K—o0 T2 <t=(T?+loglog(1/e))ATs ¢/ C

+ IP’(TM/C < Tf + log log(l/e)ygs) )

and

lim sup IP’( sup |My(2)| > ¢
K—o0 T2 <1<T2+loglog(1/e)

ZS)

(42)

Ae] + Vetog /ey

1
< limsup E[WZ)(TF 2 loglog(1 /) ATe e/
K—o0

— Ve(log l/ew,
where in the first inequality of the last line we used Doob’s martingale inequality for the first
term and (39) together with (40) for the second term, and the last inequality of the last line is

due to (41).
Let us now consider the finite variation process V,. This can be written as

t NK NK NK NK
Vo(t) = P( 2a,s> 2,5 (y)( 2a K ) 2,5 + R(3)< 2a,s )ds, 43
2(0) /ng NE /NE +1 +Q NE /NE —1 NX, @)

with

P(x) = hox(1 —x), QW) = (kp —  —a(l — p)(NE + NE Dx(1 —x),
RO(x) = o (1 —x) — pa(NK + NE )x.

For ¢ > 0 small, on [T?, T%], 0% and R® are close on [0, 1], respectively, to the polynomial

functions Q, R given as follows

Ox)=kp—pu—aldl—pn)x(l —x)=ku—p— 1= p)Ar —pm)x(1 —x),
R(x)=0( —x)— panix =o(l —x)— p(h1 — u)x.

Thus, for given ¢ > 0, for all sufficiently large K, the integrand in (43) is close to the
polynomial function

Sx) =M +xpu—p— 10 =p)ri —pw)x(l —x)+ 0o —x) — p(hi — wx.

Since S(0) > 0 and S(1) < 0, further, S is of degree 2, the equation x = S(x) has a unique
equilibrium in (0, 1). Now, let (7, m24) be the left eigenvector of the matrix J defined in (4)
corresponding to the eigenvalue  such that 7o, + 729 = 1. A direct computation implies that
7y, 1s a root of S and thus equal to this equilibrium. Thus, we can choose § > 0 and 6 > 0
such that 7, — 8 > 0 and for all x < m, —§, S(x) > 6/2. By continuity, this implies that for
all sufficiently small ¢ > 0 and accordingly chosen sufficiently large K > 0, on the event A,

the following relation holds for all s € [Tf, T\z/g] and x € (0, my, — 98):

P(x)NZK—+ 0¥ (x)—— N 1 + RW(x) > o > 0. (44)
N2,s N2,s 2
Let us define
K

N
tgil) = inf{t > Tf: 2[;” > T, — 6}.
2d,t
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From (42) and (44) we obtain that on the event ZS, for any ¢ € [ng, (ng +loglog(1/¢)) A (Z)],

K
Ty — 8 > Naas 9(1og10g(1/5) A — T2)> —¢
— Nf, — 2 a &

with a probability higher than 1 — \/g(log(1/¢))*2. Since glog log(1/¢) tends to oo as ¢ | 0, it
follows that for & > 0 small, £ is smaller than T2 + loglog(1/¢) and thus smaller than T%

with a probability close to 1 on the event Zg, where we also used (40).

Lastly, note that each jump of the process N ,/NJ, is smaller than (¢K/C 4 1)7', and
hence smaller than § for all K sufficiently large (given ¢). Thus, after the time 1‘(22) the process
will be contained in the interval [m,, — §, 72, + 6] for some positive amount of time. Hence,
we conclude the proposition. [

4.2.3. Convergence of the dynamical system for large times

In this section, we first investigate the stability of the equilibria of the system of ODEs (6)
via linearization. Then we show convergence of the solution of the system to (0, 7254, 1124) for
initial conditions corresponding to Proposition 4.4, and for the two-dimensional projection of
the system even for any nonnegative initial condition that has at least one nonzero coordinate.
As mentioned before, the behaviour of the dynamical system is rather different from the ones
described in [15,16].

Proposition 4.5. Assume that (5) holds. Then the system of ODEs (0) admits precisely three
equilibria: (0, 0, 0), (11, 0, 0) and (0, ny,, n24), the first two of which are unstable, whereas the
third one is asymptotically stable.

Proof. We easily identify the equilibria (0, 0, 0), (721, 0, 0) and (0, 7254, 124), and we claim that
further equilibria do not exist. Indeed, it is easy to see that apart from (0, 0, 0), the only possible
coordinatewise nonnegative equilibrium of the form (0, -, -) is (0, 7154, 1124) and the only possible
one of the form (-, 0, -) or (-, -, 0) is (121, 0, 0). Hence, it remains to exclude the existence of
equilibria with three positive coordinates. For such equilibria (n;, ny,, n,4), expressing n; from
the first line of (6) and substituting it into the second and third line divided by n,, yields

}12,1_)»1—)\2_ 1

)\' - )
Nog o KM-I—O’p(l 2

but the last inequality contradicts with (5). We conclude the claim.
We continue with checking stability of the three equilibria. At any equilibrium (ny, na,4, n24),
the Jacobian matrix is given as

Al — 1 —2an1 —any, —any 0
B(ny, naq, nog) = —anyg Ay — = 2anzq —ang o
panyg 2panyg + pang —(kpn+o)

As for the origin, B takes the block diagonal form

)»1 — MU 0 0
B(0,0,0) = 0 A — U o
0 0 —(kp + o)

Its spectrum is the union of the spectra of the two blocks, hence A; — u is an eigenvalue (with
eigenvector (1, 0, 0)). Since this eigenvalue is positive, the origin is unstable. At (111, 0, 0), since

Please cite this article as: J. Blath and A. Tébias, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
and their Applications (2020), https://doi.org/10.1016/j.spa.2020.07.018.




J. Blath and A. Tobids / Stochastic Processes and their Applications xxx (xxxx) xxx 23

an; = A — U, the Jacobian matrix is
—At+p —Atp 0
B(n,0,0) = 0 A — A o . (45)
0 pA — ) —(ku+o)

The determinant of this matrix is

det B(n1,0,0) = —(A1 — w) (A2 — A)(—kp — 0) — p(A1 — u)o).
Now, since A > u, further, thanks to (5),

(A1 — M)k +0) — p(hy — o <0,

the determinant is positive. Hence, in order to conclude that the equilibrium is unstable,
it suffices to show that all eigenvalues are real. This follows from the fact that by (45),
det B(n1, 0,0)/(n — XAp) is negative. Since this quotient equals the product of the two other
eigenvalues of the matrix, it is impossible that these eigenvalues are complex (and thus
conjugate). Finally, let us consider the equilibrium (0, 715,, 7124). We have

A — [ — aiiag 0 0
B(0, nag, nag) = 0 Ay — u — 2an, o
P 2panyy, —(kp + o)

We have already seen in Section 2.2 that A} —u—any, < 0 under condition (5), and this quantity
is clearly an eigenvalue of the matrix B(0, n15,, 1124). The other two ones are the eigenvalues
of the matrix A(ny,, n24) (cf. (2)), which are negative since A, > u, see also Section 2.2.
We conclude that B(0, 15,4, 1124) is negative definite and hence the equilibrium (0, 712,, 7124) 1s
asymptotically stable under condition (5). [

Now, for the two-dimensional variant
N2a(t) = Rog ()X — (0 — ang, (1)) + onoy(t),
fina(t) = pan3,(t) — (ki + 0)naa(1), (46)

of the system, introduced in (1), which corresponds to starting the system (6) from {0} x [0, 00)?
and ignoring the invariant first coordinate, (12,4, 1154) turns out to be the limit of the solution
started from any nonnegative initial condition apart from (0, 0). Let us recall that this system has
an asymptotically stable equilibrium (71,,, 1154) and an unstable one (0, 0) under the assumption
that A, > .

Lemma 4.6. In case (n2,(0), n24(0)) € [0, 00)* \ {(0, 0)}, we have

tl_iflolo(”za(l), n24(t)) = (M2q, N2q).

Proof. Observe that the active coordinate of the stable equilibrium,

(- Wkp+o)

2a —
a(kp + (1 — p)o)
satisfies
Ay — Ay —
2B e 2T @7)
o (1 - p
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where the second inequality is an equality if and only if x = 0. Further, the dormant coordinate
ny4 is positive. Note further that the divergence of the system is given as

Ay — = 2ana (1) — (kp +0).

This is certainly negative if ny, > 22a“, nyq > 0, and at least one of the latter two inequalities

is strict. In particular, the Bendixson criterion [18, Theorem 7.10] implies that there is no

nontrivial periodic solution in the open and simply connected set

lo—p
2

U= {(l/lza,nzd) (S RZZ Ny, > Nog > O}

Since this is a two-dimensional system and all solutions of the system with coordinatewise
nonnegative initial conditions are bounded, this implies that any solution starting from U
converges to the equilibrium (712,, 1174) € U. It remains to show that any solution started from
[0, 00) \ ({(0, 0)} U U) will enter the open set U after finite time.

Now, observe that if n,,(0) > 0 and ny,(0) > 0, then rny, is positive and bounded away
from zero until n,, reaches )»22;u , hence n,, will reach this level. If n,,;(0) > 0 and n,,(0) = 0,
then there exists § > 0 such that n,,(5) > 0 and n,,(8) > 0, and hence n,, will also reach the
level ’\22;" in finite time. Further, for ¢t > 0, if n,,(t) = Mz;“ and ny,(t) > 0, then plugging
in the first inequality of (47) to the first equation of (46) implies that 71,,(#) > 0. This implies

that if n,,4(t) > 0, then

(npu(t + ), npq(t +¢)) € U, Ve > 0 sufficiently small. 48)

Else, np,(t) = 0 but rnp4(t) > 0, and hence the observations of the previous case imply that
N2, (t + €) > 0 for all sufficiently small & > 0, thus (48) also holds. [J

Finally, we show convergence of the original 3-dimensional system to the equilibrium
(0, 7124, 1124) as t — oo for initial conditions corresponding to Proposition 4.4. In other words,
we verify some global attractor properties of this equilibrium, which are not as general as for
the two-dimensional system but sufficient for the goals of the present paper.

Lemma 4.7. Let us consider the system of ODEs (0). If the initial condition (ny, naq, nag) =
(n1(0), n24(0), n24(0)) satisfies
pa(ny + ny) LT Ao+ alng +ny)
KW+ o Noq o

, ny >0, n,, n2q > 0, (49)

then
fl_ifgo(nl(l), N24(1), n2q(t)) = (0, n2g, 12g). (50)

Note that in the two-dimensional case n{(0) = 0, Lemma 4.7 is weaker than Lemma 4.6. We
will use the stronger assertion (more precisely, an approximative version of it) when handling
the third phase of invasion in Section 4.3, where perturbations of the system (16) need to be
treated.

Proof. Let us assume that for some t > 0, (n1(¢), ny,(t), n24(t)) = (n1, nay, nog). Then the first
inequality in (49) is equivalent to the statement that 715,(¢) > 0 and the second one is equivalent
to the statement that 71,,(¢) > 0. Hence, as long as (49) holds, ¢ + ny,(¢) and t > ny,(t) are
strictly increasing.

Let us assume that condition (49) is satisfied for

(1, Rog, nag) = (n1(0), n24(0), n24(0)).
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We claim that this implies that the condition also holds for all 1 > 0 with (ny, ny,, nog) =
(n1(t), naa(t), noq(t)), unless (ny,(t), n2q(t)) = (124, n2g) holds eventually. Indeed, let us assume
that for some ¢t > 0, (n(t), ny,(t), n24(¢)) lies on the boundary of the set

{(ny, nya, nog) € [0, 00) x (0, 00) x (0, 00): (11, nay, nyy) satisfies (49)} (629

with ny,, 1oy > 0, in such a way that (n(s), 12,(s), n24(s)) is contained in the set (51) for
all 0 < s < t. Then ny,, nyg > 0 holds because n,,(0), noy > 0 by assumption, moreover,
s > ny,(s) and s +— nyy(s) are increasing on [0, ¢). Hence, one of the following conditions
holds:

(@) 1124(t) = 0, 1g(t) > 0,
(i) 124(t) = 0, n2g(t) > 0,
(iid) 712,(2) = 124(t) = 0.

In case (i) we have
—T24 ()24 (1)

o
The case (ii) yields

.y (Do (1)

(2)0="wr ~°

In case (iii) we have (thanks to the condition that n,,, n,; > 0) that (ny,, n2g) = (24, N2g). We
conclude that if (nq, ny4, n2g) = (11(0), n2,(0), n24(0)) satisfies (49), then t +— (n1(z), nau (1),
ny4(t)) never enters the complement of the closure of the set (51) apart from (725,, 7124), which
implies the claim.
Now, given that condition (49) is satisfied for (ny, na, n2g) = (11(0), n2,(0), n24(0)),
t > np,(t) and ¢t +— npy(¢) are nonnegative, bounded, increasing, and strictly increasing
unless (12,(t), nog(t)) = (24, N2g) eventually, in which case both coordinates would im-
mediately become constant. Further,  +— n;(¢) is also bounded and nonnegative. Hence,
(n1(2), naq(t), naq(t)) converges along a subsequence to (nj, fiag, iag) for some nf > 0. Now
we argue that n] must be equal to zero. Indeed, taking limits of (49) implies that
pa(”T + 72q) = @ - = A+ oz(n’f + 72q)
Kiw+o " o o ’
Observe that both inequalities in (52) holds with equality for n] = 0 thanks to (3). Taking this
into account, any subsequential limit n} has to satisfy

(52)

*

*
pany 0> anl'
kmw+o - T o
Since by our assumptions, - 2 L we conclude that n} = 0. Hence, (50) follows. [
u+o o

The last auxiliary result corresponding to the second phase of invasion states that the state
of the population process reached thanks to Proposition 4.4 belongs to the domain of attraction
of the stable equilibrium (0, 715, 1124).

Lemma 4.8. Let C be chosen according to Proposition 4.4, further, ny, ny,, naq positive such
that ny € () —2¢, 1 +2¢), nog+nyy € (¢/C, \/¢), and % = % Then, if ¢ > 0 is sufficiently
small, then (ny, ny,, nyg) satisfies (49).
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Proof. Since (my,, m4) is a left eigenvector of J corresponding to the eigenvalue *, we have
TT2d

~ T
(o —A)+0 =2 =% = p(h — =2 — (kp + 0).
TTq

TT2q
Hence, since % > 0, given that ¢ > 0 is small enough, we obtain
g X—K2+k1 )”_)‘2+“+a()hl7_u) _)‘2+“+a<%+3‘/§>

= = >
g o o o

MK — A+ a(ng + nog)
- o

and

Al—n LS e T
T2d poz( o ) pa( a 25) < po(ny + nag)

= = <
Ta A4+kp+o Kp+o T kpto

as asserted. [
4.3. The third phase of invasion: extinction of the resident population

At the end of the second phase, the rescaled process NtK is close to the state (0, no4, 1124).
In particular, th is at most € K for some ¢ > 0 small. In this subsection, we estimate the time
of the extinction of the resident population. We also need to check that the mutant population
stays close to (7124, 7124) during its time. We recall the set Sg (9) and the time T Sp (10). We
have the following proposition.

Proposition 4.9. There exist gy, Co > 0 such that for all ¢ € (0, &y), under condition (5) with
A > do > W, if there exists n € (0, 1/2) that satisfies

|NJ(0) — iz | <& and |Nyy(0) —iiag| <& and ne/2 < N{(0) < &/2,

then
VC > (1 4 aitag — M)~ + Coe, P(Ts, < ClogK) — L
—00
Y0 < C < (1 + aiiag — M)~ = Coe, P(Ts, < Clog K) — 0.
—00

Proof. We first show that the rescaled population size vector (Nzlfm, NZIZ’ ;) stays close to its
equilibrium (715,, n24) for long times, given that the resident population is small. To this aim,
we employ arguments similar to the ones of [16, Proof of Proposition 4.1, Step 1]. For ¢ > 0
we define the stopping times

R.; =inf{t > 0: |N3, —ioi| > €}, i €fa,d},

Ty =inf{r > 0: Nf, =0},
and

T =inf{t > 0: Nf, > &}

&

These stopping times depend on K, but we omit the K-dependence from the notation for
readability.
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&,

We couple (Nzlfw, Nz’fz,z) with two bi-type birth-and-death processes, denoted by (stft, Yzﬁ)

and (Y55, Y5,7), such that

Y55 < N3, < Y55 as. Yuvelad), VO<t<T/ (53)

In order to satisfy (53), these processes can be defined with the following rates:

< e,=< J . j ] ' 1
(Y55, YED): (’_’ L) N (l + ,i) at rate iAo,

2a,t°

: o '
(D)= (L) atme it ot~ pk+en,
[ i —1 j+1 4
(l—, L) - (l ) i) at rate %’2,
K K K K
iJ i+1 j—1 ,
(?, E) - ( K T) at rate jo,
(2= () o s
—, =)= = .
K’ K K’ K at rate JK
and
> > [ i +1 )
(stz}}’ Yzi}})i (l?, %) — (l ; , %) at rate i\,
S 1 A
l—,i = ( ,i at rate  i(u + a(l — p)= — pae),
K K K K M Py )4
2 i —1 j+1 A
(ZE, %) — (l s —J; ) at rate —p"‘(’;*s),
L i+1 j—1 .
(g, E) e ( K T) at rate jo,
i j i j—1 )
<—, —) - <—, —) at rate  jk .
K K K K

The idea of this coupling is similar to the one in the proof of Proposition 4.1: in order to
decrease (increase) the process, one needs higher (lower) total competition event rate and rate
of death by competition for the actives and lower (higher) active—dormant switching rate.

We will show that the processes (Y;fl, Y;ﬁ) and (Y;ﬁ, Y;ft) will stay close to (fiz4, 724)
for at least an exponential (in K) time with a probability close to 1 for large K. To do so, we

will study the stopping times

R;v = inf{t >0: Nif, [x, — 71, x, + n]}

<

for n > 0, v € {a,d} and ¢ € {<, >}. Let us first study the process (st(;f, Yz‘i‘l;). According
to [19, Theorem 2.1, p. 456], the dynamics of this process is close to the dynamics of the
unique solution to

Mg = Noa(Ay — U — ae — anog) + o nay,
. 2
Nog = pans, — (K + o)ny.

Similar to point (2) in Section 2.2, we have that for all sufficiently small ¢ > 0, this system has
. .. .y - . —e.< -—g< -
a unique positive equilibrium, which we denote by (n,~, n,;°). Here, analogously to 75,, we
have 715~ = %, whereas 7157 depends on ¢ in a more involved way, but it tends
&

to fiag as € | 0. For & > 0 small enough, the equilibrium (0, 0) is unstable and (725, 5;°) is
asymptotically stable, further, we can verify convergence of the solution to (ﬁi’f, ﬁ;f) for any
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coordinatewise nonnegative initial condition but (0, 0), as + — o0, using similar arguments as
in the proof of Lemma 4.6. Thus, we can find constants ¢y and &;, such that for any ¢ € (0, &),
Vi € {a,d}: |15 —iini| < (co — De and 0 ¢ [iia; — coe, fia; + coel.

Now, similarly to the proof of Lemma 4.2, we can use results by Freidlin—Wentzell about
exit of jump processes from a domain [21, Section 5] in order to construct a family (over K)
of Markov processes (Yza ‘s Y2d +)r=0 Whose transition rates are positive, bounded, Lipschitz
continuous and uniformly bounded away from O such that for

R: =inf{t > 0: |[YX, — x| > e},  iefa,d),
there exists V > 0 such that for all i € {a, d} we have

PR, >V RS, ,>eX)=P(R;,, > e R, ;> e") — L (54)

cpé,a cpé¢.a K—00
Similarly, we obtain

P(RZ,, > eV RS, ,>e"Y) — 1, (55)

cot.a K—00

where without loss of generality we can assume that the constant V in (55) is the same as the
one in (54). Now note that Rej; > R=_. A RZ_. on the event {Repei < Tgl}. This together

C El 0 E‘l
with (54) and (55) implies that ’
KV
Kh_r)nooIP’( coei <€ AT, ) 0
holds for all i € {a, d}, hence
Kh_l)n P(Regea A Regea <XV AT!) = 0. (56)

Now, we can find two branching processes Z{'= = (Z])i=0 and Z{"= = (Z} )i=o such that
Zy; <KNf, =777 (57)
almost surely on the time interval
1X =10, Royea A Regera AT

Indeed, in order to satisfy (57), the processes Z;'= and Z;"= can be chosen with the following
rates and initial conditions:

e,<

Z=:i—1i+1 atrateii;, [ —i—1 atrate i(u—i—a(ﬁzg + (co + 1)8)),

started from L"ZK ], and
ZyZii—i+1 atrateiry, i—i—1atrate i(i+ (i, — Co8)),

started from |25 ] + 1.

For all ¢ > 0 sufficiently small, both of these branching processes are subcritical according
to point (5) in Section 2.2. The growth rates of these three processes are A — i —any, £ O(e).
From this, analogously to [15, Section 3.3], we deduce that the extinction time of these
processes started from [L"TK‘EJ, L%J + 1] is of order (u — Ay + any, = O(¢))log K. This
in turn follows from the general assertion that for a branching process N' = (N(f));=0
with birth rate 5 > 0 and death rate D > O that is subcritical (i.e., B < D), given that
N(O) € [| 255 ], [££] + 1], defining

Sg =inf{r > 0: N(t) > |eK ]|}, e >0,
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and

SN =inf{r > 0: N(t) =0},
the following hold according to [1, p. 202]:

VC < (D - B)~", lim P(S)Y <ClogK)=0
and

VC > (D —B)™!, lim P(S)Y < ClogK) = 1.
—00
Further, if A(0) = |24 |, then for all sufficiently small & > 0,
lim P(53 > K ASYy,) =0. (58)

K—o0

Now for C > 0 we can estimate as follows
P(T) < ClogK)—P(S;! < ClogK)
<P(T) > T/ AK)+P(T) AK > Repera A Repena) (59)
<P(Sy" > 8l AK)+P(T) AK > Regea A Regerd).
Here, the first inequality can be verified as follows:
P(T) < ClogK)—P(S;! < ClogK)=P(T} < Clogk <S;' )
=< P(Rcos,a N Rc()s,d < Tol < alog K, Rcos,a A Rcos,d < Tgl)
+ (T < T} <ClogK, Reyea A Regend > T.)
< P(Repea A Regea < T} A Clog K)+ (T} > T,))
< P(Reyea A Reogea < T A K)+P(T) > T! AK).
Given that ¢ > 0 is small enough, the second term in the last line of (59) tends to zero as
K — oo according to (56) and so does the first one according to (58). We conclude that

limsup P(7, < Clog K) < lim IP(SOZ"’_ < Clog K),
K—o00 K—o0
and similarly, we deduce

&,
1

.. ~ . VA ~
liminfP(7y < ClogK) > lim P(S," < ClogK),

which implies the proposition. [

4.4. Proof of Theorems 2.1, 2.2, and 2.3

Putting together Propositions 4.1, 4.4, and 4.9, we now verify our main results. The structure
of this part of our proof is similar to the one of [15, Section 3.4], the main difference lies in the
behaviour of the corresponding dynamical systems. Our proof strongly relies on the coupling
(32). More precisely, we define a Bernoulli random variable B as the indicator of nonextinction

B = 1{Vt > 0: Zou(t) + Zou(t) > 0}

of the process (22,,(0, 22d(t)),20 defined in point 3 of Section 2.2, which is initially coupled
with (KN, . KNS, )i=0 according to (32). Let f be the function defined in Proposition 4.1.
Throughout the rest of the proof, we can assume that ¢ > 0 is so small that f(g) < 1.
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Our goal is to show that

liKm infE(K,¢e) > q — o(e) (60)
holds for
To2 2
E(K, €)= P<logK < (&), T < Ts,, B=0)
and
liminfZ(K, &) > 1 — g — o(¢) 61)
K—oo
holds for
Ts, AT} 1 1
I(K, ::]P’"S——z —‘< , T T2, B =1).
(K,¢) ( log K <)»+M_)\l+aﬁ2a) < fe),Ts, < Ty )

These together will imply Theorems 2.1, 2.2, and Eq. (14) in Theorem 2.3. The other assertion
of Theorem 2.3, Eq. (15), follows already from (20).

Let us start with the case of mutant extinction in the first phase of invasion and verify (60).
Clearly, we have

2

T,
I P(IO;K < f(e), T2 < Ts,, B=0,T2 < T A Rzg).

Now, considering our initial conditions, for all sufficiently small ¢ > 0 we have T, f/\st < Tsﬂ,
almost surely. Hence,

E(K T02 _ 2 2
(K.¢) = P(logK < f(€).B=0,T7 < T2 A Ry). (62)

Moreover, analogously to the proof of Proposition 4.1 with & = 1, we obtain

limsupP({B = 0JA{T2 < T2 A st}) i IP({B = 0} A{T" P2 < oo}) —o.(1), (63)
K—o0
where A stands for symmetric difference. Together with (62), these imply

liminf £(K, €)

K—o0

> limianP’( iy <f),B=0,T? <T*AR, )

- IOgK —_ ’ » 40 —= *¢ &

K—o00
(e,4).2

> 1iKnLi£fP< 12)g1< < f(e).B=0,T2 <T? A R28> (64)

(g,+),2
> liminfP(C— < /(o). Ty < 00) + 0,(1),
log K

K—o0

where in (64) we used the coupling (32). Thus, using (7) and (33), we conclude (14).
Let us continue with the case of mutant survival in the first phase of invasion and verify
(61). Arguing analogously to (63) but for £ = 1/2, we obtain
limsupP({B = 1}A{Tjg < Tg A Rye}) = 0.(1).

K—o00
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Thus,
1
liminfZ(K, & :liminf[P’( —(=+—_)‘5 ~
K—o0 ( ) K—oo log K A n — )»1 + ans, f( ) (65)
Ty, < T3. T2 < T2 A Ry, ) Fo.(1).

For ¢ > 0, 8 > 0, we introduce the sets
Ba1 = [Te — 8, aq + 81 X [e/C, /el x [y — 2¢, i1y + 2¢],
= [0, B/2] x [n2a — (B/2), n2q + (B/2)] X [124 — (B/2), 124 + (B/2)]
and the stopping times
T, ::inf{t >0: (KNZ—IZIK, NS, Nf,) € Bel},
Ny + Nag,
1y =infl = T: NF e B3},

Informally speaking, our goal is to show that with high probability the process has to pass
through B! and Bé in order to reach Sg. Then, thanks to the Markov property, we can estimate
Ts, by estimating T/, Té’ — T/ and Ts, — T”. (65) implies that

T’ //
hmlan(K &) >P ( _ =’ f(g)’ ‘ f(8)
logk A 3 logK 3
Te — TV 1
|2 - | <9 2 2 ag,,
logK M_)Ll + any, 3 NG

Ty < T, To, < T3 ) +o.(D),

see [15, display before (3.60)] for further details in a similar setting. Note that for ¢ > 0
sufficiently small, Ry. < T, almost surely, further, if T! < oo, then T} < Té’. Hence, the
strong Markov property applied at times 7, and 7 implies

T/
liminf Z(K, £) > liminf [ IP(( z) SO T2 < T3 A Rzg)
K—o0 K—o0 IOgK A 3 €
// /
x inf P(|~ SRIQN TOZ‘N{)( =n)
n=(n1,n24,M24): 3 (66)
(W nyg+nag, 111)68
T — T/ 1
X inf IP’(‘ S B _ | < f(g),TSﬁ < TOZ‘N(I)( =n> ] +ou(1).
ness log K M= A+ oy 3

It remains to show that the right-hand side is close to 1 — g as K — oo and ¢ is small. We
first consider the first term and verify that

Ty f(&) 2 g2 2
OlogK_T‘— T TO,Tﬁ<TOAR28)Zl—q+08(1). (67)
This can be done analogously to [15, Proof of (3.61)].

Next, we handle the second term on the right-hand side of (66). For m = (m1, my,, myy) €
[0, 00), let "™ denote the unique solution of the dynamical system (6) with initial condition
m. Thanks to the continuity of flows of this dynamical system with respect to the initial
condition and thanks to the convergence provided by Lemma 4.7, we deduce that there exist

liminf P

K—o0
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g0 and &o > 0 such that for all & € (0, &9) and § € (0, dp), there exists g5 . > 0 such that for
all t > 16.5.e5

0 — _
n™ (1) — (0, t2q, M24)| <

&~

holds for any initial condition n° = (n?, nga, ngd) satisfying (nga/(nga + ngd), nga + ngd, n(l)) €
B;. Indeed, because of Lemma 4.8, n° satisfies (49) in case ”ga/(”(z)a + ngd) is equal to my,,
and for all sufficiently small & > 0, the same follows by continuity for all n° = (n(l), nga, n9,)
such that (nga/(nga + ngd), nga + ngd, ”(1)) € Bc}.

Now, using Lemma 4.3, we conclude that for all ¢ < &,

Mo
+,NK,NK) e61)=1—o 1.
<N2IZ,0+N2151,0 2,0 1,0 & 6( )
Thus, the second term on the right-hand side of (66) is close to 1 when K tends to co and
e > 0 is small.

Lastly, we investigate the third term on the right-hand side of (66). By Proposition 4.9, there
exists Bo > 0 (denoted as g in Proposition 4.9) such that for all 8 < By, for ¢ > 0 sufficiently
small,

Jm PTH =T < s

lim P

(\ Ts, — T 1 < féé‘) ‘Né( € Bﬁ) =1—0.(1).

log K B W — A+ any,
Further By can be chosen as large as min{ry,, 1174}. Combining (67) with the convergence of
the second and the third term on the right-hand side of (66) to 1, we obtain (61), which implies
(13).
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