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Abstract

Microbial dormancy is an evolutionary trait that has emerged independently at various positions across
he tree of life. It describes the ability of a microorganism to switch to a metabolically inactive state that
an withstand unfavourable conditions. However, maintaining such a trait requires additional resources
hat could otherwise be used to increase e.g. reproductive rates. In this paper, we aim for gaining a basic
nderstanding under which conditions maintaining a seed bank of dormant individuals provides a “fitness
dvantage” when facing resource limitations and competition for resources among individuals (in an
therwise stable environment). In particular, we wish to understand when an individual with a “dormancy
rait” can invade a resident population lacking this trait despite having a lower reproduction rate than
he residents. To this end, we follow a stochastic individual-based approach employing birth-and-death
rocesses, where dormancy is triggered by competitive pressure for resources. In the large-population
imit, we identify a necessary and sufficient condition under which a complete invasion of mutants
as a positive probability. Further, we explicitly determine the limiting probability of invasion and the
symptotic time to fixation of mutants in the case of a successful invasion. In the proofs, we observe
he three classical phases of invasion dynamics in the guise of Coron et al. (2017, 2019).
c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Dormancy is an evolutionary trait that has emerged independently at various positions across
he tree of life. In the present article, we are in particular interested in microbial dormancy
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Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
and their Applications (2020), https://doi.org/10.1016/j.spa.2020.07.018.

ttps://doi.org/10.1016/j.spa.2020.07.018
304-4149/ c⃝ 2020 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2020.07.018
http://www.elsevier.com/locate/spa
mailto:blath@math.tu-berlin.de
mailto:tobias@math.tu-berlin.de
https://doi.org/10.1016/j.spa.2020.07.018


2 J. Blath and A. Tóbiás / Stochastic Processes and their Applications xxx (xxxx) xxx

(
o
c
fl
c
c
a
a
t

w
w
t
r
i
m
t
n
r
d
i

t
t
a
l
y
d
a
o
l
p
a

cf. [27] and [30] for recent overviews of this subject). Microbial dormancy describes the ability
f a microorganism to switch to a metabolically inactive state in order to withstand unfavourable
onditions (such as resource scarcity and competitive pressure or extreme environmental
uctuations), and this seems to be a highly effective (yet costly) evolutionary strategy. In certain
ases, for example in marine sediments, simulation studies indicate that under oligotrophic
onditions, the fitness of an organism is determined to a large degree by its ability to simply stay
live, rather than to grow and reproduce (cf. [9]). Indeed, maintaining a dormancy trait requires
dditional resources in comparison to individuals lacking this trait, resulting in significant
rade-offs such as e.g. a lower reproduction rate.

In this paper, we aim at gaining a basic rigorous understanding for the conditions under
hich maintaining a dormancy trait can be beneficial. We investigate the particular question
hether an individual with a dormancy trait can invade a resident population lacking this

rait, even if maintaining dormancy reduces its reproduction rate compared to the rate of the
esidents, under otherwise stable environmental conditions. To this end, we follow a stochastic
ndividual-based approach employing birth-and-death processes (a classic set-up underlying

uch of adaptive dynamics, as outlined e.g. in [8]), where dormancy is triggered in response
o competitive pressure for limited resources. In the large-population limit, we identify a
ecessary and sufficient condition under which the invasion of mutants, despite having a lower
eproduction rate than the resident population, has a positive probability. Further, we explicitly
etermine the limiting probability of invasion and the asymptotic time of fixation of mutants
n the case of a successful invasion.

To be more explicit, in our model the total population evolves according to a continuous
ime Markov chain. Initially, there is a fit resident population, which we assume to be close
o its equilibrium population size, featuring (random) reproduction, natural death (“death by
ge”), and death by competition. This results in a stochastically evolving population with
ogistically regulated drift fluctuating around a constant carrying capacity (reflecting a stable
et limited supply of resources). We assume that environmental conditions are also stable and
o not affect reproduction, death or competition rates. In this situation, we then assume that
single “mutant” (or “migrant”) with “dormancy trait” appears in the population, who on the

ne hand is still fit enough to survive in absence of the residents (however with a strictly
ower reproduction rate), but on the other hand is able to switch to a dormant state at a rate
roportional to the “competitive pressure” exerted on her due to crowding and limited resource
vailability. That is, for some 0 < p < 1, “competition events” that would normally cause

death for an ordinary resident individual kill a mutant individual only with probability 1 − p.
Otherwise, with probability p, the mutant individual affected by competition will persist and
switch to the dormant state. Finally, dormant mutant individuals neither reproduce nor are
affected by competitive pressure for resources while they are still to some degree exposed
to natural death (at a rate typically smaller than for active individuals). We assume that at a
constant “resuscitation rate” , they switch back to the active state.

Our main results show that the mutants will invade the resident population with positive
probability under a suitable condition on the parameters of the model. This condition has
the following interpretation: the advantage of the resident population caused by its higher
reproduction rate needs to be over-compensated by the advantage of the mutant population
resulting from being able to escape competitive deaths due to overcrowding by switching into
dormancy. This condition can be made entirely transparent in terms of the parameters of the
model, see (5) resp. Section 3. Under this condition, we characterize the probability of invasion
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
and their Applications (2020), https://doi.org/10.1016/j.spa.2020.07.018.
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capacity), and we identify the expected time of invasion on a logarithmic scale in the large-
population limit. With high probability, a successful mutation follows the three classical phases
exhibited in basic adaptive dynamics models (which were introduced in [11, Section 3]; see
e.g. [8, Section 4.1] for a slightly more general picture, but in particular [15,16] for work in
a closely related context that inspired our analysis and provides many of the necessary tools):
(1) mutant growth until reaching a population size comparable to the carrying capacity, while
during the same time period the resident population stays close to its equilibrium size, (2) a
phase where all sub-populations are large and the dynamics of the frequency process can be
approximated by a deterministic dynamical system, (3) extinction of the resident population,
while the mutant population remains close to its equilibrium size.

Note that for our results it is essential that switching into dormancy is induced by competitive
pressure. Indeed, if instead this switching happens at a constant rate (“spontaneous” or
“stochastic switching”, cf. e.g. [27]), the mutants will never be able to invade the resident
population unless their birth rate is higher than that of the residents (in which case their invasion
would also be possible without a dormancy trait, and the assumption that dormancy is a costly
trait would be violated). Further, mutants cannot make the residents go extinct unless they are
fit enough to survive on their own; thus, evolutionary suicide, as observed e.g. in [4], does not
occur in our model. Long-term coexistence of residents and mutants is also excluded in our
modelling set-up.

Let us note that while dormancy was recently investigated in several mathematical works
in the area of population genetics and coalescent theory (see e.g. [5–7,24,26]), in the field
of adaptive dynamics we are not aware of prior work involving dormancy. The present paper
takes a first step in this direction, analysing the invasion dynamics in a simple toy model. In
order to make this model more realistic, one could e.g. incorporate further mutations in the
spirit of adaptive dynamics. In the regime of very rare mutations introduced by Champagnat
(cf. [3,11,13]), we expect that the model behaves similarly to the case of no further mutation.
Recently, in [14], a regime of still rare but more frequent mutations was considered, with the
additional effect of horizontal gene transfer. Here, mutation rates are large enough so that small
sub-populations can have macroscopic effects on the whole population. It should be interesting
to study the additional effects of dormancy traits in this regime. As a further step, one could also
introduce spatiality in the model, which is relevant in modelling the trait space (see e.g. [2])
or the environment of the populations (see e.g. [12,20]). Finally, the resuscitation rate, which
is assumed constant in the present paper, could also be made dependent on the strength of
competition.

Note that related scenarios involving “phenotypic switches”, arising e.g. in cancer modelling,
have been analysed recently by [2,23]. For dormancy and switching models in fluctuating envi-
ronments, dynamical systems and branching process models have been investigated in [17,29].
Here, as in the competition setup of the present paper, the basis of a rigorous understanding
for the evolutionary advantages of seed banks seems to be emerging. It seems fair to say that
dormancy in its many forms, and its interplay with other evolutionary and ecological forces,
will provide many interesting future research challenges in mathematical biology.

The remainder of this paper is organized as follows. In Section 2 we introduce our model and
state our main results. Next, in Section 3 we discuss some strongly related questions. Finally,
in Section 4 we prove the main results. Each of these sections starts with a description about
its internal organization.
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
and their Applications (2020), https://doi.org/10.1016/j.spa.2020.07.018.
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. Model definition and main results

The structure of this section is the following. In Section 2.1 we define our stochastic
opulation model. Next, the goal of Section 2.2 is to introduce necessary and sufficient
onditions for mutant invasion with positive probability, to present the formulas for the
robability and time of invasion in the large-population limit, and to provide a heuristic
ustification for these. In particular, we comment on the probability and time of the invasion.
he introduced quantities and conditions are then used in Section 2.3 in order to state our
ain results, Theorems 2.1, 2.2, and 2.3, the proof of which will make our heuristic arguments

igorous.

.1. The model

We have two traits, the resident one (1) and the mutant one (2). Mutant individuals can have
n active (2a) and a dormant (2d) state. As an interpretation, we will sometimes say that the
ormant individuals are in the seed bank. Informally speaking, the model is defined as follows.

• A resident individual gives birth to another such individual at rate λ1 > 0.
• An active mutant individual gives birth to another such individual at rate λ2 ∈ (0, λ1).
• Any active individual has a natural death rate µ ∈ (0, λ2).
• K > 0 is the carrying capacity of the population.
• The competitive pressure felt by an active individual from another active individual is

α/K > 0, where α > 0. For any ordered pair (xi , x j ) of active individuals, at rate
α/K > 0 a competitive event affecting xi happens. We fix p ∈ (0, 1). At a competitive
event, in case xi is a resident individual, it dies. If xi is a mutant individual, it dies with
probability 1 − p and becomes a dormant (mutant) individual with probability p.
In other words, writing N0 = {0, 1, 2, . . .} and N = {1, 2, . . .}, in a population with
n1 ∈ N0 (active) resident individuals and n2a ∈ N0 active mutant individuals, writing
na = n1 + n2a for the total number of active individuals, a resident individual dies by
competition at rate αna/K , an active mutant dies by competition at rate (1 − p)αna/K
and switches to dormant mutant at rate pαna/K .

• For some κ ≥ 0, a dormant (mutant) individual dies at rate κµ.
• A dormant (mutant) individual becomes an active (mutant) individual at rate σ > 0.

Further necessary conditions on the parameters will be specified later in the sequel.
To be more precise, we consider, for t ≥ 0, a finite number Nt ∈ N0 of individuals {xi : i ∈

[Nt ]}, where for all i ∈ [Nt ] we have xi ∈ {1, 2a, 2d}. Here we wrote [n] = {1, 2, . . . , n} for
∈ N0, in particular, [0] = ∅. We define the triple of rescaled frequency processes

(NK
t )t≥0 = ((N K

1,t , N K
2a,t , N K

2d,t ))t≥0,

here for x ∈ {1, 2a, 2d},

N K
x,t =

1
K

#{xi : i ∈ [Nt ], xi = x}

s the number of individuals of type x rescaled by K . We also write

N K
2,t = N K

2a,t + N K
2d,t

or 1/K times the total population size of mutant individuals and

N K
= N K

+ N K
=

Nt
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
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for 1/K times the total population size. Hence, NK
t is a

( 1
K N

)3-valued Markov process with
transitions

(n1, n2a, n2d ) →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n1 +
1
K , n2a, n2d ) at rate K n1λ1,

(n1, n2a +
1
K , n2d ) at rate K n2aλ2,

(n1 −
1
K , n2a, n2d ) at rate K n1(µ + α(n1 + n2a)),

(n1, n2a −
1
K , n2d ) at rate K n2a(µ + (1 − p)α(n1 + n2a)),

(n1, n2a −
1
K , n2d +

1
K ) at rate K n2a pα(n1 + n2a),

(n1, n2a, n2d −
1
K ) at rate K n2dκµ,

(n1, n2a +
1
K , n2d −

1
K ) at rate K n2dσ.

.2. Assumptions and heuristics

The Markov process (NK
t )t≥0 is well-defined for any K > 0, given the initial condition.

elevant initial conditions satisfy N̄ K
0 ≈ (n̄1,

1
K , 0) where n̄1 is the equilibrium population size

f the resident population in absence of the mutant population. That is, at time 0, resident
ndividuals are close to equilibrium, and there is precisely one active mutant and there are no
ormant mutants.

Now, we want to find necessary and sufficient conditions under which the probability
f mutant invasion is nonvanishing in the large-population limit. Further, conditional on a
uccessful invasion, we want to identify the time of invasion for large K on the logarithmic
cale. To this aim, we have to choose the parameters in such a way that, roughly speaking, the
ollowing assertions hold.

1. The resident population is able to survive on its own, i.e., n̄1 > 0.
2. Mutants are also fit: their equilibrium population size (n̄2a, n̄2d ) is coordinatewise

positive.
3. Phase I of the invasion: For large K , starting from N̄ K

0 ≈ (n̄1,
1
K , 0), the probability that

N K
2,t = 0 eventually is not close to one for large K .

4. Phase II: Given that the total mutant population has reached size εK , for ε > 0 small,
with high probability N̄ K

t will get close to (K ε, K n̄2a, K n̄2d ) for arbitrarily small ε > 0.
5. Phase III: Given that the process reached the state (K ε, K n̄2a, K n̄2d ), the resident

population will die out with high probability.

Let us now heuristically identify the conditions corresponding to (1)–(5). The conditions that
are necessary and sufficient for (3) will turn out also to be sufficient for (4) and (5). These
heuristics will be made precise during the proof of the main results of the paper.

1. In absence of mutants, for large K , the rescaled resident population N K
1,t can be

approximated by n1(t), where n1(·) solves the quadratic ODE

ṅ1(t) = n1(t)(λ1 − µ − αn1(t)).

If λ1 > µ, this system has a unique positive equilibrium, given as

n̄1 =
λ1 − µ

α
,

which is also asymptotically stable. Else, there is no stable positive equilibrium.
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
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2. Similarly, in absence of residents, for large K , the rescaled mutant population size
(N K

2a,t , N K
2d,t ) can be approximated by (n2a(t), n2d (t)), where (n2a(·), n2d (·)) solves the

two-dimensional system of ODEs

ṅ2a(t) = n2a(t)(λ2 − µ − αn2a(t)) + σn2d (t),

ṅ2d (t) = pαn2a(t)2
− (κµ + σ )n2d (t).

(1)

Linearizing this system, we obtain the Jacobian matrix

A(n2a, n2d ) =

(
λ2−µ−2αn2a σ

2pαn2a −κµ−σ

)
. (2)

Clearly, there is no equilibrium of the form (0, ·) or (·, 0) apart from (0, 0). Further, we
have

A(0, 0) =

(
λ2−µ σ

0 −κµ−σ

)
.

For λ2 > µ, it is easy show that A(0, 0) has one negative and one positive eigenvalue
and hence (0, 0) is unstable. Let us now show that for λ2 > µ we have a unique
(coordinatewise) positive equilibrium, which is asymptotically stable. For an equilibrium
(n2a, n2d ) with n2a ̸= 0, dividing both equations in (1) by n2a , we obtain

n2d

n2a
= −

λ2 − µ − αn2a

σ
=

pαn2a

κµ + σ
. (3)

From (3) we obtain that there is precisely one such equilibrium, with coordinates

n̄2a =
(λ2 − µ)(κµ + σ )
α(κµ + (1 − p)σ )

> 0, n̄2d =
(λ2 − µ)2 p(κµ + σ )
α(κµ + (1 − p)σ )2 > 0.

were we used that λ2 > µ, κµ ≥ 0, σ > 0 and p ∈ (0, 1). Comparing this to (2), we
obtain

det A(n̄2a, n̄2d ) = (κµ + σ )(λ2 − µ).

If λ2 > µ, then the right-hand side is positive. In this case there are two strictly negative
eigenvalues. This is true because the trace Tr A(n̄2a, n̄2d ) is negative, which follows from
the fact that n̄2a > λ2 − µ and κµ + σ > 0. Hence, (n̄2a, n̄2d ) is asymptotically stable.

3. As long as the mutant population size K N K
2,t is negligible compared to K , the resident

population can be approximated by its equilibrium population size, and the competition
pressure felt by a mutant individual comes essentially only from the resident population.
This implies that the dynamics of the mutant population size process (K N K

2a,t , K N K
2d,t )

can be approximated by a bi-type linear branching process (Ẑ2a(t), Ẑ2d (t)) with rates

(n2a, n2d ) →

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(n2a + 1, n2d ) at rate n2aλ2,

(n2a − 1, n2d ) at rate n2a(µ + αn̄1(1 − p)),
(n2a − 1, n2d + 1) at rate n2a n̄1αp,

(n2a + 1, n2d − 1) at rate σn2d ,

(n2a, n2d − 1) at rate κµn2d .

By classical results on multitype branching processes [1, Section 7.2], the process is
supercritical, i.e., there is no almost sure convergence to (0, 0), if and only if the
following mean matrix has a positive eigenvalue

J =

(
λ2 − µ − αn̄1 pαn̄1

)
=

(
λ2 − λ1 p(λ1 − µ)

)
. (4)
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
and their Applications (2020), https://doi.org/10.1016/j.spa.2020.07.018.
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In the interesting case λ2 < λ1, it is impossible that we have two positive eigenvalues
because Tr J < 0 follows from the definition of n̄1. Hence, J has a positive eigenvalue
if and only its determinant is negative, which is equivalent to

λ1 − λ2 < p(λ1 − µ)
σ

κµ + σ
= pαn̄1

σ

κµ + σ
. (5)

The condition (5) turns out to be necessary and sufficient for the invasion probability to
be asymptotically positive. We will interpret it and discuss the related notion of invasion
fitness in Section 3.1.

4. Now we argue that under condition (5), given that the total mutant population has
reached a population size of order K , the second phase of invasion also takes place,
which ends with NK

t ≈ (0, n̄2a, n̄2d ). In that phase, as long as all sub-populations are
of order K , the process NK

t can be approximated, for K large, by the (deterministic)
Lotka–Volterra type system

ṅ1(t) = n1(t)(λ1 − µ) − α(n1(t) + n2a(t)),
ṅ2a(t) = n2a(t)(λ2 − µ) − α(n1(t) + n2a(t)) + σn2d (t),
ṅ2d (t) = pαn2a(t)(n1(t) + n2a(t)) − (κµ + σ )n2d (t).

(6)

We will show below (see Proposition 4.5) that (5) with λ1 > λ2 > µ is also sufficient to
guarantee that this system has only one stable nonnegative equilibrium, which is equal
to (0, n̄2a, n̄2d ) and asymptotically stable. Moreover, there is a set of initial conditions
that NK

t reaches with high probability given that the mutants survived the first phase,
such that starting from this set, the solution of (6) tends to (0, n̄2a, n̄2d ) as t → ∞.

5. After the second phase of invasion, the population rescaled by 1/K is close to the
equilibrium (0, n̄2a, n̄2d ). To be more precise, the resident population size is of order εK
for some ε > 0 small. It remains to show that for large K , with probability tending to
one, the resident population dies out within O(log K ) time, while the mutant population
stays close to equilibrium. Now, as long as (K N K

2a,t , K N K
2d,t ) is near (K n̄2a, K n̄2d ) and

the resident population is small compared to K , the competitive pressure that the resident
individuals feel comes essentially only from the mutant population. This implies that
K N K

1,t can be approximated by a branching process Ẑ1(t) with rates

n →

{
n + 1 at rate n1λ1,

n − 1 at rate n1(µ + αn̄2a).

In order to show that this branching process goes extinct almost surely, we have to verify
that it is subcritical, i.e., the rate n → n + 1 is smaller than the rate n → n − 1. But
this assertion is equivalent to the inequality (5).

6. Using our multitype branching process approach, now we can compute the extinction
probabilities under condition (5) with λ1 > λ2 > µ. Define

q = P
(
∃t < ∞: Ẑ2a(t) + Ẑ2d (t) = 0

⏐⏐(Ẑ2a(0), Ẑ2d (0)) = (1, 0)
)
. (7)

By [1, Section 7], q is the first coordinate of the unique solution of the system of
equations

λ2(s2
a − sa) + p(λ1 − µ)(sd − sa) + (µ + (1 − p)(λ1 − µ))(1 − sa) = 0,

σ (sa − sd ) + κµ(1 − sd ) = 0,
(8)

in [0, 1]2
\ {(1, 1)}, while the second coordinate of the same solution is the extinction
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
and their Applications (2020), https://doi.org/10.1016/j.spa.2020.07.018.
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dynamics of the process started with one dormant individual and interpret the relation
between sa and sd in Section 3.3.

ummarizing, our heuristics indicates that under condition (5), for large K , given that the
utants survive the first phase of invasion, the second and the third phase of the invasion are

lso successful with high probability.

.3. Statement of results

Recall that we have assumed λ1 > λ2 > µ > 0, and recall also the stable equilibrium
n̄2a, n̄2d ), which is the unique solution of the system of Eqs. (3) under the assumption λ2 > µ.

For β > 0 define

Sβ = {0} × [n̄2a − β, n̄2a + β] × [n̄2d − β, n̄2d + β], (9)

stopping time at which NK
t reaches this set:

TSβ
:= inf{t > 0 : NK

t ∈ Sβ}, (10)

nd the first time when the rescaled mutant population size reaches a threshold x ≥ 0 (from
elow or above):

T 2
x := inf{t > 0 : K N K

2,t = ⌊x K ⌋}. (11)

e further note that the largest eigenvalue of the matrix J defined in (4) is given as follows.

λ̃ =
1
2

(
(λ2 − λ1 − κµ − σ )+√

(λ1 − λ2 + κµ + σ )2 − 4
(
(λ1 − λ2)(κµ + σ ) − p(λ1 − µ)σ

) )
.

(12)

Our first main result characterizes the probability of mutant invasion in the large-population
limit.

Theorem 2.1. Assume that (5) holds. Assume further that

N K
1 (0) →

K→∞

n̄1

and

(N K
2a(0), N K

2d (0)) = ( 1
K , 0).

hen for any 0 < β < min{n̄2a, n̄2d}, we have

lim
K→∞

P
(

TSβ
< T 2

0

)
= 1 − q.

Next, we identify the time of fixation of mutants in the case of a successful invasion.

heorem 2.2. Under the assumptions of Theorem 2.1, we have that on the event {TSβ
< T 2

0 },

lim
K→∞

TSβ

log K
=

1
λ̃

+
1

µ + αn̄2a − λ1
(13)

n probability.

Finally, we show that in case of an unsuccessful mutation, with high probability, the
xtinction takes a sub-logarithmic time (in particular, the extinction happens during the first
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
and their Applications (2020), https://doi.org/10.1016/j.spa.2020.07.018.
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phase of the invasion), and at the time of extinction the resident population is close to its
equilibrium population size.

Theorem 2.3. Under the assumptions of Theorem 2.1, we have that on the event {T 2
0 < TSβ

},

lim
K→∞

T 2
0

log K
= 0 (14)

and

1{TSβ
> T 2

0 }

⏐⏐⏐NK
T 2

0
− (n̄1, 0, 0)

⏐⏐⏐ −→
K→∞

0, (15)

oth in probability.

The proof of Theorems 2.1. 2.2, and 2.3 will be carried out in Section 4. In multiple parts of
he proof, we are able to employ arguments that are similar to the ones used in [15,16] for the
hree phases of invasion in individual-based models in the context of emergence of homogamy,
espectively speciation. A particular additional difficulty of our setting lies in guaranteeing
onvergence of the underlying dynamical system (6) to its stable equilibrium (0, n̄2a, n̄2d ), in
ther words, in verifying certain global attractor properties of this equilibrium. Here, none of
he methods of the two aforementioned papers are applicable (see the proof of Lemmas 4.6
nd 4.7). Our dynamical system is rather different from the ones considered in [15,16], which
ave stronger monotonicity properties but also exhibit non-hyperbolic equilibria. The lack of
onotonicity in our system is due to the switches between activity and dormancy and to the

act that dormant individuals are not affected by competition. These differences also influence
ther parts of the proof of our main theorems nontrivially (see e.g. the construction of the
ouplings in the proofs of Propositions 4.1 and 4.9).

. Discussion

This section touches the following topics. In Section 3.1 we provide an interpretation of
ondition (5) that is crucial for our main results and comment on the notion of invasion fitness.
he relevance of competition-induced vs. spontaneous switching is discussed in Section 3.2,
nd the case where the first mutant individual is initially dormant instead of active is discussed
n Section 3.3. In Section 3.4 we comment on potential experimental studies related to the
ubject of this paper for model verification.

.1. Interpretation of the condition of the theorems

Condition (5) is equivalent to the assertion that the advantage of residents caused by their
igher birth rate is less than the advantage of the mutants caused by their ability to become
ormant under competitive pressure, at the beginning of the invasion where the mutants are
are. Indeed, the right-hand side of (5) equals the rate at which those active mutant individuals
ove to the seed bank that afterwards become active again before dying. Indeed, active mutants

ecome dormant at rate pαn̄1, and given that they have become dormant, the probability that
hey turn active again (instead of dying in the seed bank) is σ

κµ+σ
. In the case κ = 0 of no

eath in the seed bank, (5) reduces to
λ1 − µ

1
<

λ2 − µ

1 − p
,

here 1 − p is the probability that a mutant affected by a competitive event dies. On the
complementary event, this mutant will eventually become active again.
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
and their Applications (2020), https://doi.org/10.1016/j.spa.2020.07.018.
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Note that λ2 > µ automatically follows from (5) given that λ1 > µ. Thus, our model is free
from evolutionary suicide: mutants who are not able to survive on their own will not make the
resident population go extinct with asymptotically positive probability.

The invasion fitness is the exponential growth rate of a mutant born with a given trait in
the presence of the current equilibrium population [8, Section 1.3.2]. In the present setting, the
precise formulation of such a quantity is not immediate, for the following reasons. First, the
total mutant population size process (K N K

2,t )t≥0 is not Markovian and hence has no well-defined
xponential rate. Second, the pair of active and dormant coordinates ((K N K

2a,t , K N K
2d,t ))t≥0 is

Markovian, but its initial growth rate depends delicately on the initial condition. More precisely,
for κ > 0, the mutant population has a lower probability to survive if it starts with one dormant
and no active individual than if it starts with one active and no dormant one (see Section 3.3
for further details). Nevertheless, if we define the invasion fitness as the principal eigenvalue
(a.k.a. Lyapunov exponent) λ̃ of the mean matrix J , then this eigenvalue is positive if and only
if the condition (5) holds, in other words, it has the same sign as the expression

p(λ1 − µ)
σ

κµ + σ
− λ1 + λ2.

This sign is positive (respectively zero or negative) if and only if the approximating branching
process (Ẑ2a(t), Ẑ2d (t))t≥0 is supercritical (respectively critical or subcritical). Further, accord-
ing to [1, Section 7], λ̃ is equal to the mean growth rate of the approximating branching process
(Ẑ2a(t), Ẑ2d (t)), which makes it rightful to call this eigenvalue the invasion fitness.

3.2. A comparison between spontaneous and competition-induced switching, and the case
without dormancy trait

We have seen that the bi-type mutant population is able to survive on its own if λ2 > µ,
and if (5) holds, then the mutants will invade the population with positive probability even if
λ2 < λ1. Let us note that without the mutants having a dormancy trait (i.e., for p = 0), even
though mutants can still survive on their own as soon as λ2 > µ, invasion is not possible as
long as λ2 ≤ λ1. This is true because the approximating branching process is not supercritical
in this case.

For κ > 0, it is not even the case that mutants are fit on their own if the switching from
activity to dormancy is not competition-induced but spontaneous, i.e., if an active mutant
individual switches to dormancy at some fixed rate σ ′ > 0. There, in absence of residents,
for large K , the rescaled mutant population is approximated by the system of ODEs

ṅ2a(t) = n2a(t)(λ2 − µ − αn2a(t) − σ ′) + σn2d (t),
ṅ2d (t) = σ ′n2a(t) − (κµ + σ )n2d (t).

(16)

Hence, the determinant of the corresponding Jacobi matrix at the equilibrium (0, 0) is (λ2 −

µ − σ ′)(−κµ − σ ) − σσ ′. This is positive if and only if

λ2 < µ +
κµσ ′

κµ + σ
. (17)

In this case, the trace of the matrix is negative because it equals

λ2 − µ − σ ′
− κµ − σ <

κµσ ′

κµ + σ
− σ ′

− κµ − σ = −
σσ ′

κµ + σ
− κµ − σ < 0,

nd therefore both eigenvalues of the matrix have negative real parts, which implies that the
quilibrium (0, 0) is asymptotically stable.
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
and their Applications (2020), https://doi.org/10.1016/j.spa.2020.07.018.
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I.e., there are values λ2 > µ such that the mutant population dies out with high probability
f K → ∞. The right-hand side of (17) is the effective death rate: indeed, an active individual
ies at rate µ, but additionally at rate σ ′ it becomes dormant, where it dies with probability
κµ

κµ+σ
before ever becoming active (and capable of reproducing) again.

In the case of spontaneous switching, it is easy to show that the matrix defined analogously
to J (cf. (4)) has no positive eigenvalue for λ2 < λ1. I.e., mutant invasion is only possible if
he birth rate of mutants is higher than the one of the residents.

We expect that in case both spontaneous and competition-induced switching are present
n the model, the behaviour of the system remains similar to the case of purely competition-
nduced switching, however, with a higher effective death rate, and hence condition (5) is not
atisfactory for invasion; λ2 has to satisfy a stronger condition, which can be derived similarly
o (5). In order to keep the notation simple, we do not consider this case of combined switching
n the present paper.

.3. Starting with one dormant individual

Let us recall that sa is the extinction probability of the approximating bi-type branching
rocess (Ẑ2a(t), Ẑ2d (t))t≥0 starting from (1, 0), and sd the same probability starting from (0, 1).
ote that the second equation of (8) reads as

sd =
σ sa + κµ

κµ + σ
. (18)

Note that for κ = 0, (18) reads as sd = sa . Thanks to the Markov property of our population
process, (18) can be interpreted as follows: given that (Ẑ2a(0), Ẑ2d (0)) = (0, 1), with probability

κµ

κµ+σ
the process dies out immediately at the first jump time that affects this single dormant

individual. Else (i.e., with probability σ
κµ+σ

), it jumps to (1, 0), where it has probability sa to die
out. This argumentation also implies the following. Let T1,0 be the expected extinction time of
he mutant population starting from (1, 0) and T0,1 the same starting from (0, 1). Then we have

E
[
T0,11{T0,1 < ∞}

]
=

1
κµ + σ

+
σ

κµ + σ
E
[
T1,01{T1,0 < ∞}

]
,

where 1
κµ+σ

is the expected time of the first jump of the Markov chain. Hence, extinction
probabilities and extinction times started from (0, 1) can easily be handled using the same
quantities started from (1, 0). This is why our main results describe only the latter case.

3.4. Experimental studies

It would be highly interesting to check the results of the present paper experimentally. In
the spirit of the mathematical analysis of the Lenski experiment [10,28] (that also exhibits
the three phases of adaptive dynamics invasion), one could think of setting up a controlled
experiment where the environment is kept constant over time, with a relatively high but fixed
amount of resources. Now, one would need to find two types of microorganisms such that both
of them are able to survive on their own in this environment, but the first type reproduces faster,
whereas only the second one has a dormancy trait, in such a way that condition (5) holds for
the parameters estimated in the experiment. Then, one would first have to establish a resident
population of the first type, then augment it by a single individual (or several individuals) of
the second type, and continue the experiment until one of the types becomes extinct. Repeating
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
and their Applications (2020), https://doi.org/10.1016/j.spa.2020.07.018.
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ype has a positive probability, and whether the invasion probability would come close to the
ne predicted by our model.

Certainly, the model presented in this paper captures only a small number of features of
atural populations. Hence, scenarios excluded by our model such as coexistence of the two
ypes may occur in the experiment. This could lead to interesting feed-back and theoretical

odel extensions.

. Proofs

This section is split into four parts: Section 4.1 investigates the first phase of the invasion:
he growth or extinction of the mutants. The next two phases only occur if the mutants survive
he first phase. Section 4.2 deals with the second phase, where the rescaled population size
rocess is approximated by the system of ODEs (6), and Section 4.3 describes the third phase
here the resident population dies out. Using all these, we complete the proof of our theorems

n Section 4.4. Throughout the proof we will assume that β ∈ (0, min{n̄2a, n̄2d}).

.1. The first phase of invasion: growth or extinction of the mutant population

The analysis of this phase proceeds similarly to [15, Section 3.1]. However, the presence of
ormancy induces nontrivial changes in some coupling arguments (see e.g. the construction of
he coupled process appearing in (32)). On the other hand, since we have a monomorphic
esident population, some arguments can be simplified or omitted, and the order of proof
ngredients will change accordingly.

We now define additional stopping times that will be relevant for this phase. The first one
s the time when the resident population first leaves a small-neighbourhood of its equilibrium:
or any ε > 0,

Rε := inf
{

t ≥ 0 :
⏐⏐N K

1,t − n̄1
⏐⏐ > ε

}
.

hen our goal is to verify the following proposition.

roposition 4.1. Assume that (5) holds with λ1 > λ2 > µ. Let K ↦→ mK
1 be a function from

0, ∞) to [0, ∞) such that mK
1 ∈

1
K N0 and limK→∞ mK

1 = n̄1. Then there exists a function
f : (0, ∞) → (0, ∞) tending to zero as ε ↓ 0 such that for any ξ ∈ [1/2, 1],

lim sup
K→∞

⏐⏐⏐P(T 2
εξ < T 2

0 ∧ R2ε,

⏐⏐⏐ T 2
εξ

log K
−

1
λ̃

⏐⏐⏐ ≤ f (ε)
⏐⏐⏐NK

0 =
(
mK

1 ,
1
K

, 0
))

− (1 − q)
⏐⏐⏐

= oε(1)
(19)

nd

lim sup
K→∞

⏐⏐⏐P(T 2
0 < T 2

εξ ∧ R2ε

⏐⏐⏐NK
0 =

(
mK

1 ,
1
K

, 0
))

− q
⏐⏐⏐ = oε(1), (20)

here oε(1) tends to zero as ε ↓ 0.

In order to prove the proposition, we first verify the following lemma.

emma 4.2. Under the assumptions of Proposition 4.1, there exists a positive constant ε0
uch that for any ξ ∈ [1/2, 1] and 0 < ε ≤ ε0,

lim sup
K→∞

P
(
R2ε ≤ T 2

εξ ∧ T 2
0

)
= 0.
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
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Proof. We verify this lemma via coupling the rescaled population size N K
1,t with two birth-

and-death processes, Y 1
1,t and Y 2

1,t , on time scales where the mutant population is still small
compared to K . More precisely, following [15, Section 3.1.2],

Y 1
1,t ≤ N K

1,t ≤ Y 2
1,t , a.s. ∀t ≤ T 2

0 ∧ T 2
εξ . (21)

The latter processes will also depend on K , but we omit the notation K from their nomenclature
for simplicity. In order to satisfy (21), the processes Y 1

1 = (Y 1
1,t )t≥0 and Y 2

1 = (Y 2
1,t )t≥0 can be

chosen with the following birth and death rates

Y 1
1,t :

i
K

→
i + 1

K
at rate iλ1,

i
K

→
i − 1

K
at rate i

(
µ + α

i
K

+ αεξ
)
.

and

Y 2
1,t :

i
K

→
i + 1

K
at rate iλ1,

i
K

→
i − 1

K
at rate i

(
µ + α

i
K

)
.

et us estimate the time until which the processes Y 1
1 and Y 1

2 stay close to the value n̄1. We
efine the stopping times

Ri
ε := inf

{
t ≥ 0 : Y i

1,t /∈ [n̄1 − ε, n̄1 + ε]
}
, i ∈ {1, 2}, ε > 0.

or large K , according to [19, Theorem 2.1, p. 456], the dynamics of Y 1
1,t is close to the one

f the unique solution to

ṅ = n(λ1 − µ − αn − αεξ ).

he equilibria of this ODE are 0 and n̄(ε)
1 =

λ1−µ−αεξ

α
= n̄1 − εξ . Since λ1 > µ, the latter

quilibrium is positive for all sufficiently small ε > 0. Linearizing implies that for all small
nough ε > 0 (namely, for ε such that αεξ < λ1 − µ), the equilibrium 0 is unstable and the
ne n̄(ε)

1 is asymptotically stable. A direct analysis of the sign of n(λ1 −µ−αn −αεξ ) implies
hat for such ε, any solution with a positive initial condition converges to the stable equilibrium
¯

(ε)
1 as t → ∞. These also imply that there exists ε0 > 0 such that for all 0 < ε ≤ ε0,⏐⏐n̄1 − n̄(ε)

1

⏐⏐ = εξ and 0 /∈ [n̄1 − 2ε, n̄1 + 2ε].

ow, using a result about exit of jump processes from a domain by Freidlin and Wentzell [21,
hapter 5], there exists a family (over K ) of Markov jump processes Ỹ 1

1 = (Ỹ 1
1,t )t≥0 whose

ransition rates are positive, bounded, Lipschitz continuous, and uniformly bounded away from
such that for

R̃1
ε = inf

{
t ≥ 0 : Ỹ 1

1,t /∈ [n̄1 − ε, n̄1 + ε]
}
, i ∈ {1, 2}, ε > 0,

here exists V > 0 such that

P(R1
2ε > eK V ) = P(R̃1

2ε > eK V ) −→
K→∞

0. (22)

sing similar arguments for N 2
1 , we derive that for ε > 0, V > 0 small enough, we have that

P(R1 > eK V ) −→ 0. (23)
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
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ow, on the event {R2ε ≤ T 2
0 ∧ T 2

εξ } we have R2ε ≥ R1
2ε ∧ R2

2ε. Using (22) and (23), we derive
that

lim sup
K→∞

P
(
R2ε ≤ eK V , R2ε ≤ T 2

0 ∧ T 2
εξ

)
= 0.

Moreover, using Markov’s inequality,

P(R2ε ≤ T 2
0 ∧ T 2

εξ ) ≤ P
(
R2ε ≤ eK V , R2ε ≤ T 2

0 ∧ T 2
εξ

)
+ P

(
R2ε ∧ T 2

0 ∧ T 2
εξ ≥ eK V )

≤ P
(
R2ε ≤ eK V , R2ε ≤ T 2

0 ∧ T 2
εξ

)
+ e−K VE(R2ε ∧ T 2

0 ∧ T 2
εξ ).

Since we have

E
[
R2ε ∧ T 2

0 ∧ T 2
εξ

]
≤ E

[∫ R2ε∧T 2
0 ∧T 2

εξ

0
K N K

2,t dt
]
,

it suffices to show that there exists C > 0 such that

E
[∫ R2ε∧T 2

0 ∧T 2
εξ

0
K N K

2,t dt
]

≤ Cεξ K . (24)

This can be done similarly to [15, Section 3.1.2]. Indeed, let L be the infinitesimal generator
of (NK

t )t≥0. We want to show that there exists a function g : ( 1
K N0)3

→ R defined as

g(n1, n2a, n2d ) = γ1n2a + γ2n2d (25)

uch that

Lg(NK
t ) ≥ N K

2,t . (26)

f (26) holds, then (24) follows because thanks to Dynkin’s formula,

E
[∫ R2ε∧T 2

0 ∧T 2
εξ

0
K N K

2,t dt
]

≤ E
[∫ R2ε∧T 2

0 ∧T 2
εξ

0
KLg(NK

t )dt
]

= E
[
K g(NK

R2ε∧T 2
0 ∧T 2

εξ

) − K g(NK
0 )
]

≤ (γ1 ∨ γ2)εξ K − (γ1 ∧ γ2),

hich implies (24), independently of the signs of γ1 and γ2. Let us apply the infinitesimal
enerator L to the function g defined in (25). We obtain

Lg(NK
t ) = N K

2a,t

[
(λ2 − µ − α(N K

1,t + N K
2a,t ))γ1 + pα(N K

1,t + N K
2a,t )γ2

]
+ N K

2d,t

[
σγ1 − (κµ + σ )γ2

]
.

ence, according to (26), it sufficies to show that there exists γ1, γ2 ∈ R such that the following
ystem of inequalities is satisfied:

(λ2 − µ − α(N K
1,t + N K

2a,t ))γ1 + pα(N K
1,t + N K

2a,t )γ2 > 1, (27)

σγ1 − (κµ + σ )γ2 > 1. (28)

ince N K
1,t + N K

2a,t varies in t , the system (27)–(28) of inequalities is not easy to handle.
owever, for t ∈ [0, R2ε∧T 2

0 ∧T 2
εξ ], we have αN K

t ≤ α(n̄1+2ε+εξ ) and pαN K
t ≥ pα(n̄1−2ε).

ence,

(λ2 − µ − α(N K
1,t + N K

2a,t ))γ1 + pα(N K
1,t + N K

2a,t )γ2
ξ
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which implies that (27) is satisfied as soon as

(λ2 − µ − α(n̄1 + 2ε + εξ ))γ1 + pα(n̄1 − 2ε)γ2 > 1,

which, according to the definition of n̄1, can also written as

(λ2 − λ1 − 2ε − εξ )γ1 + p(λ1 − µ − 2ε)γ2 > 1. (29)

Let us verify the existence of γ1 and γ2 satisfying (29) and (28). First of all, we can rewrite
(28) as follows

γ2 <
σγ1 − 1
κµ + σ

. (30)

Hence, let us first consider the equation

(λ2 − λ1 − 2ε − εξ )γ1 + p(λ1 − µ − 2ε)
σγ1 − 1
κµ + σ

> 1. (31)

he inequality (5) is satisfied by assumption, and hence there exists ε > 0 such that

(λ2 − λ1 − 2ε − εξ ) + p(λ1 − µ − 2ε)
σ

κµ + σ
> 0.

ence, (λ2 −λ1 − 2ε − εξ )γ1 + p(λ1 −µ− 2ε) σγ1
κµ+σ

tends to infinity as γ1 → ∞, in particular,
for all sufficiently large γ1 it is strictly larger than 1 +

p(λ1−µ−2ε)
κµ+σ

, and thus (31) holds. By
continuity of the function x ↦→ p(λ1 − µ − 2ε)x , this implies that for any γ1 satisfying (31)
here exists γ2 satisfying (30) such that (29) holds. We conclude the lemma. □

roof of Proposition 4.1. In what follows, we consider our population process on the event

Aε := {T 2
0 ∧ T 2

εξ < R2ε}

or sufficiently small ε > 0. On this event, the invasion or extinction of the mutant population
ill happen before the resident population substantially deviates from its equilibrium size. We

ouple on Aε the process (K N K
2a,t , K N K

2d,t ) with two bi-type branching processes (Z ε,−
2a,t , Z ε,−

2d,t )
and (Z ε,+

2a,t , Z ε,+
2d,t ) on N2

0 (these processes again depend on K , but we omit that from the notation
for readability) such that almost surely, for any t < tε := T 2

0 ∧ T 2
εξ ∧ R2ε and υ ∈ {a, d},

Z ε,−
2υ,t ≤ Ẑ2υ(t) ≤ Z ε,+

2υ,t ,

Z ε,−
2υ,t ≤ K N K

2υ,t ≤ Z ε,+
2υ,t ,

(32)

where we recall the approximating branching process (Ẑ2a(t), Ẑ2d (t)) defined in Section 2.2.
We claim that in order to satisfy (32), these processes can be defined with the following jump
rates:

(Z ε,−
2a,t , Z ε,−

2d,t ) :

(i, j) → (i + 1, j) at rate iλ2,

(i, j) → (i − 1, j) at rate i(µ + (1 − p)α(εξ
+ n̄1 + 2ε) + pα(4ε + εξ )),

(i, j) → (i − 1, j + 1) at rate i pα(n̄1 − 2ε),
(i, j) → (i + 1, j − 1) at rate jσ,
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
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(Z ε,+
2a,t , Z ε,+

2d,t ) :

(i, j) → (i + 1, j) at rate iλ2,

(i, j) → (i − 1, j) at rate i(µ + (1 − p)α(n̄1 − 2ε) − pα(4ε + εξ )),

(i, j) → (i − 1, j + 1) at rate i pα(n̄1 + 2ε + εξ ),
(i, j) → (i + 1, j − 1) at rate jσ,

(i, j) → (i, j − 1) at rate jκµ.

nformally speaking, (32) holds thanks to the fact that for branching processes having the same
ind of transitions as (K N K

2a,t , K N K
2d,t )t≥0, competition-induced switching to dormancy is more

avourable for an active mutant individual than immediate death by competition, but not better,
nd for κ > 0 strictly worse, than not being hit by a competitive event at all.

Now, for ⋄ ∈ {+, −} and for a fixed initial condition (i, j), the total competitive event rate
f (Z ε,⋄

2a,t , Z ε,⋄
2d,t ) is given as the sum of the (i, j) → (i − 1, j) and the (i, j) → (i − 1, j + 1)

ump rate corresponding to the process. Given that a competitive event has happened, the ratio
f the probability of death by competition and the one of switching to dormancy is equal to
he ratio of the (i, j) → (i − 1, j) rate and the (i, j) → (i − 1, j + 1) rate. Further, for any
xed initial condition, (Z ε,−

2a,t , Z ε,−
2d,t ) has higher death rate, higher total competitive event rate,

ut lower rate for active→dormant switching rate than (Ẑ2a(t), Ẑ2d (t)) for any t ≥ 0 or than
K N K

2a,t , K N K
2d,t ) for t < tε on the event Aε, while all other rates are the same for all these

rocesses. Birth-and-death processes are coordinatewise nonincreasing (for κ > 0 decreasing)
n the rate of competitive events. Indeed, after a competitive event the affected active mutant
ndividual either dies immediately or moves to the seed bank, where it dies with probability
ess than one (but for κ > 0 more than zero) before ever becoming active again. On the other
and, the (i, j) → (i − 1, j + 1) switching rates are the lowest for (Z ε,−

2a,t , Z ε,−
2d,t ), which ensures

hat less individuals enter the seed bank and the couplings (32) hold also for υ = d . The
orresponding inequalities for (Z ε,+

2a,t , Z ε,+
2d,t ) in (32) follow similarly since this process has the

owest rate for death and for competitive events in total but the highest rate for active→dormant
witching.

For ⋄ ∈ {+, −}, let q (ε,⋄) denote the extinction probability of the process (Z ε,⋄
2a,t , Z ε,⋄

2d,t )
tarted from (1, 0). The extinction probability of a supercritical branching process is continuous
ith respect to all kinds of transitions that the mutant population in our model has. Given

he total competitive event rate, this probability increases with the rate of active death by
ompetition. Further, given the ratio between the rate of death by competition and the one of
ctive→dormant switching, it increases with the total competitive event rate. These assertions
an be proven using the methods of [15, Sections A.3]. Hence, by the first line of (32), we
ave q (ε,+)

≤ q ≤ q (ε,−) for fixed ε > 0 and

0 ≤ lim inf
ε↓0

⏐⏐q (ε,⋄)
− q

⏐⏐ ≤ lim sup
ε↓0

⏐⏐q (ε,⋄)
− q

⏐⏐ ≤ lim sup
ε↓0

⏐⏐q (ε,−)
− q (ε,+)

⏐⏐ = 0, (33)

or all ⋄ ∈ {+, −}, where we recall the extinction probability q defined in (7).
Next, we prove that the probabilities of extinction and invasion of the actual process

N K
2a,t , N K

2d,t ) also tend to q and 1 − q, respectively, with high probability as K → ∞. We
efine the stopping times

(ε,⋄),2 (ε,⋄) (ε,⋄)
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
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Thanks to the coupling in the second line of (32), which is valid on Aε, we have

P
(
T (ε,−),2

εξ ≤ T (ε,−),2
0 , Aε

)
≤ P

(
T 2

εξ ≤ T 2
0 , Aε

)
≤ P

(
T (ε,+),2

εξ ≤ T (ε,+),2
0 , Aε

)
(34)

ndeed, if a process reaches the size K εξ before dying out, then the same holds for a larger
rocess. However, Aε is independent of (Z ε,⋄

2a,t , Z ε,⋄
2d,t ) for both ⋄ = + and ⋄ = −, and hence

lim inf
K→∞

P
(
T (ε,−),2

εξ ≤ T (ε,−),2
0 , Aε

)
= lim inf

K→∞

P(Aε)P
(
T (ε,−),2

εξ ≤ T (ε,−),2
0

)
≥ (1 − q (ε,−))(1 − oε(1))

(35)

and

lim sup
K→∞

P
(
T (ε,+),2

εξ ≤ T (ε,+),2
0 , Aε

)
= lim sup

K→∞

P(Aε)P
(
T (ε,+),2

εξ ≤ T (ε,+),2
0

)
≤ (1 − q (ε,+))(1 + oε(1)).

(36)

etting K → ∞ in (34) and applying (35) and (36) yields that

lim sup
K→∞

⏐⏐P(T 2
εξ ≤ T 2

0 , Aε) − (1 − q)
⏐⏐ = oε(1),

s required. Eq. (20) can be derived similarly.
It remains to show that in the case of invasion, the time before reaching size K εξ is of order

og K /̃λ, where λ̃ was defined in (12) as the maximal eigenvalue of the matrix J defined in
4), which is positive under our assumptions.

Let λ̃(ε,⋄), ⋄ ∈ {+, −}, denote the maximal eigenvalue of the mean matrix of the process
Z ε,⋄

2a,t , Z ε,⋄
2d,t ). This eigenvalue is positive for all small enough ε > 0 and converges to λ̃ as

↓ 0. Hence, there exists a function f : (0, ∞) → (0, ∞) with limε↓0 f (ε) = 0 such that for
ll ε > 0 sufficiently small,⏐⏐⏐ λ̃(ε,⋄)

λ̃
− 1

⏐⏐⏐ ≤
f (ε)
2

. (37)

Let us fix ε small enough such that (37) holds. Then from the second line of (32) we deduce
that

P
(
T (ε,−),2

εξ ≤ T (ε,−),2
0 ∧

log K
λ̃

(1 + f (ε)), Aε

)
≤ P

(
T 2

εξ ≤ T 2
0 ∧

log K
λ̃

(1 + f (ε)), Aε

)
.

sing this together with the independence between Aε and (Z ε,⋄
2a,t , Z ε,⋄

2d,t ) and employing
[1, Section 7.5], we obtain for ε > 0 small enough (in particular such that f (ε) < 1)

lim inf
K→∞

P
(

T (ε,−),2
εξ ≤ T (ε,−),2

0 ∧
log K

λ̃
(1 + f (ε)), Aε

)
≥ (1 − q (ε,−))(1 − oε(1)).

This inequality follows from computations that are analogous to [15, Section 3.1.3, first display
below (3.41)]. Similarly, using the second line of (32), we derive that for all sufficiently small
ε > 0

lim inf
K→∞

P
(

T (ε,+),2
εξ ≥ T (ε,+),2

0 ∧
log K

λ̃
(1 + f (ε)), Aε

)
≥ (1 − q (ε,+))(1 + oε(1)).

hese together imply (19), hence the proof of the proposition is finished. □

.2. The second phase of invasion: Lotka–Volterra phase

.2.1. Convergence to a dynamical system for large population size
Now we rigorously state in what sense our population process (NK

t )t≥0 is close to the
olution (n ) = (n (t), n (t), n (t)) of the system of ODEs (6) for large K given that the
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
and their Applications (2020), https://doi.org/10.1016/j.spa.2020.07.018.
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orresponding initial conditions are close to each other. As for (6), note that the vector field
s locally Lipschitz and solutions do not explode in finite time, which guarantees existence
nd uniqueness for a given initial condition. Let n0

= (n0
1, n0

2a, n0
2d ) ∈ [0, ∞)3 be an initial

ondition, and let (n(n0)(t))t≥0 be the unique solution of the ODE started from the initial
ondition n0. Then, [19, Theorem 2.1, p. 456] implies the following.

emma 4.3. Let T > 0. Assume that (NK
0 )K≥1 converge in probability to some deterministic

ector n0
= (n0

1, n0
2a, n0

2d ) ∈ [0, ∞)3 as K tends to infinity. Then

lim
K→∞

sup
0≤s≤T

⏐⏐NK (s) − n(n0)(s)
⏐⏐ = 0

n probability, where | · | denotes the Euclidean norm on R3.

.2.2. Mutant active–dormant proportions
On the event {T 2√

ε
< T 2

0 ∧ R2ε} ⊂ Aε, after time T 2
ε the total mutant population has size

lose to εK . Note that Proposition 4.1 provides us no coordinatewise information about the
utant population at this point in time. However, in order to guarantee convergence of the

escaled population process (NK
t )t≥0 to a corresponding solution of the system of ODEs (6),

e have to guarantee convergence of the initial conditions. We will thus show that with high
robability, there exists a point in time in the interval [T 2

ε , T 2√
ε
] such that at this time, the

resident population is still close to equilibrium, the total mutant population size is still at least
of order εK and the proportion of active and dormant mutants is close to the equilibrium
proportion of the approximating branching process ((Ẑ2a(t), Ẑ2d (t)))t≥0. The present section is

evoted to this problem. Next, in Section 4.2.3, we show that the ODE system (6) started from
he limiting initial condition converges to (0, n̄2a, n̄2d ) as t → ∞.

Since λ̃ is positive, the Kesten–Stigum theorem (see e.g. [22, Theorem 2.1]) ensures that
e have( Ẑ2a(t)

Ẑ2a(t) + Ẑ2d (t)
,

Ẑ2d (t)
Ẑ2a(t) + Ẑ2d (t)

)
−→
K→∞

(π2a, π2d )

on the event of survival of the branching process ((Ẑ2a,t , Ẑ2d,t ))t≥0, where (π2a, π2d ) is the
ositive left eigenvector of J defined in (4) associated to λ̃ such that π2a + π2d = 1, which

can be computed explicitly according to (12). We verify the next proposition, employing some
arguments of [15, Proposition 3.2].

Proposition 4.4. There exists C > 0 sufficiently large such that for δ > 0 such that
π2a ± δ ∈ (0, 1), under the same assumptions as Proposition 4.1,

lim inf
K→∞

P
(

∃t ∈
[
T 2

ε , T 2√
ε

]
,
εK
C

≤ K N K
2,t ≤

√
εK ,

π2a − δ <
N K

2a,t

N K
2a,t + N K

2d,t
< π2a + δ

⏐⏐⏐T 2√
ε
< T 2

0 ∧ R2ε

)
≥ 1 − oε(1).

(38)

Proof. If π2a − δ <
N K

2a,T 2
ε

N K
2a,T 2

ε
+N K

2d,T 2
ε

< π2a + δ, then there is nothing to show. Let us assume that

N K
2a,T 2

ε

N K
+ N K ≤ π2a − δ,
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the symmetric case
N

2a,T 2
ε

N
2a,T 2

ε
+N

2d,T 2
ε

≥ π2a + δ can be treated similarly. Let us introduce the
vent

Ãε := {T 2√
ε
< T 2

0 ∧ R2ε}

n which we conditioned in (38). Our first goal is to show that for ε > 0 small, with high
probability, once the total mutant population size reaches εK , for sufficiently large C > 0 it

ill not decrease to a level lower than εK/C again before it reaches
√

εK . To be more precise,
for C > 0 we introduce the stopping time

Tε,ε/C = inf
{
t ≥ T 2

ε : N K
2,t ≤

εK
C

}
.

Then our goal is to show that if C is large enough, then T 2√
ε

is larger than T 2
ε + log log(1/ε)

and smaller than Tε,ε/C . First of all, for all ε > 0 sufficiently small, since the coupling (32)
is satisfied on Ãε and the branching processes (Z ε,−

2a,t , Z ε,−
2d,t ) is supercritical, [15, Lemma A.1]

implies that for C large enough,

lim
K→∞

P
(
Tε,ε/C < T 2√

ε

⏐⏐ Ãε

)
= 0. (39)

On the other hand, note that the total size of mutant individuals is stochastically dominated
from above by a Yule process with birth rate λ2. Thus, by [15, Lemma A.2], we have

lim
K→∞

P
(
T 2√

ε
≤ T 2

ε + log log(1/ε)
⏐⏐ Ãε

)
≤

√
ε(log(1/ε))λ2 . (40)

Using these, we want to show that the fraction
N K

2a,t
N K

2a,t +N K
2d,t

cannot stay below π2a−δ on [T 2
ε , T 2√

ε
]

with probability close to one. Let us define the following five independent Poisson random
measures on [0, ∞]2 with intensity dsdθ :

• Pb
2a(ds, dθ ) representing the birth events of the active mutant individuals,

• Pd
2a(ds, dθ ) representing the death events of the active mutant individuals,

• P s
2a→2d (ds, dθ ) representing the active→dormant switching events,

• Pd
2d (ds, dθ ) representing the death events of the dormant mutant individuals (for κ = 0

this measure can be omitted),
• P s

2d→2a(dsdθ ) representing the dormant→active switching events.

The reason why competitive death events can be assumed as independent of active→dormant
switches is that the corresponding Poisson random measures can be obtained as an independent
thinning of a Poisson random measure with survival probability 1 − p respectively the
complementary thinning (with survival probability p), which are independent Poisson random
measures according to [25, Section 5.1]. Let

P̃b
2a(ds, dθ ) := Pb

2a(ds, dθ ) − dsdθ, . . . , P̃ s
2d→2a(ds, dθ ) := P s

2d→2a(ds, dθ ) − dsdθ

be the associated compensated measures.

The fraction
N K

2a,t
N K

2a,t +N K
2d,t

is a semimartingale and can be decomposed as follows

N K
2a,t

N K
2a,t + N K

2d,t
=

N K
2a,T 2

ε

N K
2 + N K

2

+ M2(t) + V2(t), t ≥ T 2
ε ,
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ith M2 being a martingale and V2 a finite variation process such that

M2(t) =

∫ t

T 2
ε

∫
[0,∞)

1{θ ≤ λ2 N K
2a,s−}

N K
2d,s−

N K
2,s−(N K

2,s− + 1)
P̃b

2a(ds, dθ )

−

∫ t

T 2
ε

∫
[0,∞)

1{θ ≤ N K
2a,s−(µ + α(1 − p)(N K

1,s− + N K
2a,s−))}

×
N K

2d,s−

N K
2,s−(N K

2,s− − 1)
P̃d

2a(ds, dθ )

−

∫ t

T 2
ε

∫
[0,∞)

1{θ ≤ N K
2a,s−(αp(N K

1,s− + N K
2a,s−))}

1
N K

2,s−
P̃ s

2a→2d (ds, dθ )

+

∫ t

T 2
ε

∫
[0,∞)

1{θ ≤ κµN K
2d,s−}

N K
2a,s−

N K
2,s−(N K

2,s− − 1)
P̃d

2d (ds, dθ )

+

∫ t

T 2
ε

∫
[0,∞)

1{θ ≤ σ N K
2d,s−}

1
N K

2,s−
P̃ s

2d→2a(ds, dθ )

nd

V2(t) =

∫ t

T 2
ε

{
λ2 N K

2a,s

N K
2d,s

N K
2,s(N K

2,s + 1)

− N K
2a,s(µ + α(1 − p)(N K

1,s + N K
2a,s))

N K
2d,s

N K
2,s(N K

2,s − 1)

− N K
2a,s(αp(N K

1,s + N K
2a,s))

1
N K

2,s
ds + κµN K

2d,s

N K
2a,s

N K
2,s(N K

2,s − 1)
+ σ N K

2d,s
1

N K
2,s

}
ds.

urther, the predictable quadratic variation of the martingale M2 is given as follows

⟨M2⟩t =

∫ t

T 2
ε

λ2 N K
2a,s

(N K
2d,s)2

(N K
2,s)2(N K

2,s + 1)2
ds

+

∫ t

T 2
ε

µN K
2a,s(µ + α(1 − p)(N K

1,s− + N K
2a,s−))

(N K
2d,s)2

(N K
2,s)2(N K

2,s − 1)2

+ N K
2a,sαp(N K

1,s− + N K
2a,s−)

1
(N K

2,s)2
ds + κµN K

2d,s

(N K
2a,s)2

(N K
2,s(N K

2,s − 1))2

+ σ N K
2d,s

1
(N K

2,s)2
ds.

his yields that there exists C0 > 0 such that for all t ≥ T 2
ε ,

⟨M2⟩t ≤ C0(t − T 2
ε ) sup

T 2
ε ≤s≤t

1
N K

2,s − 1
.

his implies

⟨M2⟩(T 2
ε +log log(1/ε))∧Tε,ε/C

≤
C0 log log(1/ε)

εK (41)
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and

lim sup
K→∞

P
(

sup
T 2
ε ≤t≤T 2

ε +log log(1/ε)

|M2(t)| ≥ ε

⏐⏐⏐ Ãε

)
≤ lim sup

K→∞

(
P
(

sup
T 2
ε ≤t≤(T 2

ε +log log(1/ε))∧Tε,ε/C

|M2(t)| ≥ ε

⏐⏐⏐ Ãε

)
+ P

(
Tε,ε/C < T 2

ε + log log(1/ε)
⏐⏐ Ãε

) )
≤ lim sup

K→∞

1
ε2 E

[
⟨M2⟩(T 2

ε +log log(1/ε))∧Tε,ε/C

⏐⏐⏐ Ãε

]
+

√
ε(log 1/ε)λ2

=
√

ε(log 1/ε)λ2 ,

(42)

where in the first inequality of the last line we used Doob’s martingale inequality for the first
term and (39) together with (40) for the second term, and the last inequality of the last line is
due to (41).

Let us now consider the finite variation process V2. This can be written as

V2(t) =

∫ t

T 2
ε

P
(N K

2a,s

N K
2,s

) N K
2,s

N K
2,s + 1

+ Q(s)
(N K

2a,s

N K
2,s

) N K
2,s

N K
2,s − 1

+ R(s)
(N K

2a,s

N K
2,s

)
ds, (43)

with

P(x) = λ2x(1 − x), Q(s)(x) = (κµ − µ − α(1 − p)(N K
1,s + N K

2a,s))x(1 − x),

R(s)(x) = σ (1 − x) − pα
(
N K

1,s + N K
2a,s

)
x .

For ε > 0 small, on [T 2
ε , T 2√

ε
], Q(s) and R(s) are close on [0, 1], respectively, to the polynomial

unctions Q, R given as follows

Q(x) = (κµ − µ − α(1 − p)n̄1)x(1 − x) = (κµ − µ − (1 − p)(λ1 − µ))x(1 − x),

R(x) = σ (1 − x) − pαn̄1x = σ (1 − x) − p(λ1 − µ)x .

hus, for given ε > 0, for all sufficiently large K , the integrand in (43) is close to the
olynomial function

S(x) = (λ2 + κµ − µ − (1 − p)(λ1 − µ))x(1 − x) + σ (1 − x) − p(λ1 − µ)x .

ince S(0) > 0 and S(1) < 0, further, S is of degree 2, the equation ẋ = S(x) has a unique
quilibrium in (0, 1). Now, let (π2a, π2d ) be the left eigenvector of the matrix J defined in (4)
orresponding to the eigenvalue λ̃ such that π2a + π2d = 1. A direct computation implies that
2a is a root of S and thus equal to this equilibrium. Thus, we can choose δ > 0 and θ > 0
uch that π2a − δ > 0 and for all x < π2a − δ, S(x) > θ/2. By continuity, this implies that for
ll sufficiently small ε > 0 and accordingly chosen sufficiently large K > 0, on the event Ãε

he following relation holds for all s ∈
[
T 2

ε , T 2√
ε

]
and x ∈ (0, π2a − δ):

P(x)
N K

2,s + 1

N K
2,s

+ Q(s)(x)
N K

2,s − 1

N K
2,s

+ R(s)(x) ≥
θ

2
> 0. (44)

Let us define

t(ε)
2a := inf

{
t ≥ T 2

ε :
N K

2a,t
K ≥ π2a − δ

}
.
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rom (42) and (44) we obtain that on the event Ãε, for any t ∈ [T 2
ε , (T 2

ε + log log(1/ε)) ∧ t(ε)
2a ],

π2a − δ ≥
N K

2a,t

N K
2,t

≥
θ

2

(
log log(1/ε) ∧ (t(ε)

2a − T 2
ε )
)

− ε

ith a probability higher than 1 −
√

ε(log(1/ε))λ2 . Since θ
2 log log(1/ε) tends to ∞ as ε ↓ 0, it

follows that for ε > 0 small, t(ε)
2a is smaller than T 2

ε + log log(1/ε) and thus smaller than T 2√
ε

with a probability close to 1 on the event Ãε, where we also used (40).
Lastly, note that each jump of the process N K

2a,t/N K
2,t is smaller than (εK/C + 1)−1, and

hence smaller than δ for all K sufficiently large (given ε). Thus, after the time t(ε)
2a , the process

ill be contained in the interval [π2a − δ, π2a + δ] for some positive amount of time. Hence,
e conclude the proposition. □

.2.3. Convergence of the dynamical system for large times
In this section, we first investigate the stability of the equilibria of the system of ODEs (6)

ia linearization. Then we show convergence of the solution of the system to (0, n̄2a, n̄2d ) for
nitial conditions corresponding to Proposition 4.4, and for the two-dimensional projection of
he system even for any nonnegative initial condition that has at least one nonzero coordinate.
s mentioned before, the behaviour of the dynamical system is rather different from the ones
escribed in [15,16].

roposition 4.5. Assume that (5) holds. Then the system of ODEs (6) admits precisely three
quilibria: (0, 0, 0), (n̄1, 0, 0) and (0, n̄2a, n̄2d ), the first two of which are unstable, whereas the
hird one is asymptotically stable.

roof. We easily identify the equilibria (0, 0, 0), (n̄1, 0, 0) and (0, n̄2a, n̄2d ), and we claim that
urther equilibria do not exist. Indeed, it is easy to see that apart from (0, 0, 0), the only possible
oordinatewise nonnegative equilibrium of the form (0, ·, ·) is (0, n̄2a, n̄2d ) and the only possible
ne of the form (·, 0, ·) or (·, ·, 0) is (n̄1, 0, 0). Hence, it remains to exclude the existence of
quilibria with three positive coordinates. For such equilibria (n1, n2a, n2d ), expressing n1 from
he first line of (6) and substituting it into the second and third line divided by n2a yields

n2d

n2a
=

λ1 − λ2

σ
=

1
κµ + σ

p(λ1 − µ),

ut the last inequality contradicts with (5). We conclude the claim.
We continue with checking stability of the three equilibria. At any equilibrium (n1, n2a, n2d ),

he Jacobian matrix is given as

B(n1, n2a, n2d ) =

(
λ1 − µ − 2αn1 − αn2a −αn1 0

−αn2a λ2 − µ − 2αn2a − αn1 σ

pαn2a 2pαn2a + pαn1 −(κµ + σ )

)
.

s for the origin, B takes the block diagonal form

B(0, 0, 0) =

⎛⎝λ1 − µ 0 0
0 λ2 − µ σ

0 0 −(κµ + σ )

⎞⎠ .

ts spectrum is the union of the spectra of the two blocks, hence λ1 −µ is an eigenvalue (with
igenvector (1, 0, 0)). Since this eigenvalue is positive, the origin is unstable. At (n̄ , 0, 0), since
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
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αn̄1 = λ1 − µ, the Jacobian matrix is

B(n̄1, 0, 0) =

⎛⎝−λ1 + µ −λ1 + µ 0
0 λ2 − λ1 σ

0 p(λ1 − µ) −(κµ + σ )

⎞⎠ . (45)

The determinant of this matrix is

det B(n̄1, 0, 0) = −(λ1 − µ)((λ2 − λ1)(−κµ − σ ) − p(λ1 − µ)σ ).

Now, since λ1 > µ, further, thanks to (5),

(λ1 − λ2)(κµ + σ ) − p(λ1 − µ)σ < 0,

the determinant is positive. Hence, in order to conclude that the equilibrium is unstable,
it suffices to show that all eigenvalues are real. This follows from the fact that by (45),
det B(n̄1, 0, 0)/(µ − λ1) is negative. Since this quotient equals the product of the two other
eigenvalues of the matrix, it is impossible that these eigenvalues are complex (and thus
conjugate). Finally, let us consider the equilibrium (0, n̄2a, n̄2d ). We have

B(0, n̄2a, n̄2d ) =

⎛⎝λ1 − µ − αn̄2a 0 0
0 λ2 − µ − 2αn̄2a σ

pαn̄2a 2pαn̄2a −(κµ + σ )

⎞⎠ .

e have already seen in Section 2.2 that λ1−µ−αn̄2a < 0 under condition (5), and this quantity
s clearly an eigenvalue of the matrix B(0, n̄2a, n̄2d ). The other two ones are the eigenvalues
f the matrix A(n̄2a, n̄2d ) (cf. (2)), which are negative since λ2 > µ, see also Section 2.2.

We conclude that B(0, n̄2a, n̄2d ) is negative definite and hence the equilibrium (0, n̄2a, n̄2d ) is
symptotically stable under condition (5). □

Now, for the two-dimensional variant

ṅ2a(t) = n2a(t)(λ2 − µ − αn2a(t)) + σn2d (t),

ṅ2d (t) = pαn2
2a(t) − (κµ + σ )n2d (t), (46)

f the system, introduced in (1), which corresponds to starting the system (6) from {0}×[0, ∞)2

nd ignoring the invariant first coordinate, (n̄2a, n̄2d ) turns out to be the limit of the solution
tarted from any nonnegative initial condition apart from (0, 0). Let us recall that this system has
n asymptotically stable equilibrium (n̄2a, n̄2d ) and an unstable one (0, 0) under the assumption
hat λ2 > µ.

emma 4.6. In case (n2a(0), n2d (0)) ∈ [0, ∞)2
\ {(0, 0)}, we have

lim
t→∞

(n2a(t), n2d (t)) = (n̄2a, n̄2d ).

roof. Observe that the active coordinate of the stable equilibrium,

n̄2a =
(λ2 − µ)(κµ + σ )
α(κµ + (1 − p)σ )

> 0

atisfies
λ2 − µ

< n̄2a ≤
λ2 − µ

, (47)
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
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here the second inequality is an equality if and only if κ = 0. Further, the dormant coordinate
¯2d is positive. Note further that the divergence of the system is given as

λ2 − µ − 2αn2a(t) − (κµ + σ ).

This is certainly negative if n2a ≥
λ2−µ

2α
, n2d ≥ 0, and at least one of the latter two inequalities

s strict. In particular, the Bendixson criterion [18, Theorem 7.10] implies that there is no
ontrivial periodic solution in the open and simply connected set

U =
{
(n2a, n2d ) ∈ R2

: n2a >
λ2−µ

2α
, n2d > 0

}
.

ince this is a two-dimensional system and all solutions of the system with coordinatewise
onnegative initial conditions are bounded, this implies that any solution starting from U

converges to the equilibrium (n̄2a, n̄2d ) ∈ U . It remains to show that any solution started from
[0, ∞)2

\ ({(0, 0)} ∪ U ) will enter the open set U after finite time.
Now, observe that if n2a(0) > 0 and n2d (0) ≥ 0, then ṅ2a is positive and bounded away

rom zero until n2a reaches λ2−µ

2α
, hence n2a will reach this level. If n2d (0) > 0 and n2a(0) = 0,

hen there exists δ > 0 such that n2a(δ) > 0 and n2d (δ) > 0, and hence n2a will also reach the
evel λ2−µ

2α
in finite time. Further, for t > 0, if n2a(t) =

λ2−µ

2α
and n2d (t) ≥ 0, then plugging

n the first inequality of (47) to the first equation of (46) implies that ṅ2a(t) > 0. This implies
hat if n2d (t) > 0, then

(n2a(t + ε), n2d (t + ε)) ∈ U, ∀ε > 0 sufficiently small. (48)

lse, ṅ2a(t) = 0 but ṅ2d (t) > 0, and hence the observations of the previous case imply that
˙2a(t + ε) > 0 for all sufficiently small ε > 0, thus (48) also holds. □

Finally, we show convergence of the original 3-dimensional system to the equilibrium
0, n̄2a, n̄2d ) as t → ∞ for initial conditions corresponding to Proposition 4.4. In other words,

we verify some global attractor properties of this equilibrium, which are not as general as for
the two-dimensional system but sufficient for the goals of the present paper.

Lemma 4.7. Let us consider the system of ODEs (6). If the initial condition (n1, n2a, n2d ) =

n1(0), n2a(0), n2d (0)) satisfies
pα(n1 + n2a)

κµ + σ
>

n2d

n2a
>

µ − λ2 + α(n1 + n2a)
σ

, n1 ≥ 0, n2a, n2d > 0, (49)

hen

lim
t→∞

(n1(t), n2a(t), n2d (t)) = (0, n̄2a, n̄2d ). (50)

Note that in the two-dimensional case n1(0) = 0, Lemma 4.7 is weaker than Lemma 4.6. We
ill use the stronger assertion (more precisely, an approximative version of it) when handling

he third phase of invasion in Section 4.3, where perturbations of the system (16) need to be
reated.

roof. Let us assume that for some t ≥ 0, (n1(t), n2a(t), n2d (t)) = (n1, n2a, n2d ). Then the first
nequality in (49) is equivalent to the statement that ṅ2d (t) > 0 and the second one is equivalent
o the statement that ṅ2a(t) > 0. Hence, as long as (49) holds, t ↦→ n2a(t) and t ↦→ n2d (t) are
trictly increasing.

Let us assume that condition (49) is satisfied for

(n , n , n ) = (n (0), n (0), n (0)).
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
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We claim that this implies that the condition also holds for all t > 0 with (n1, n2a, n2d ) =

n1(t), n2a(t), n2d (t)), unless (n2a(t), n2d (t)) = (n̄2a, n̄2d ) holds eventually. Indeed, let us assume
that for some t > 0, (n1(t), n2a(t), n2d (t)) lies on the boundary of the set

{(n1, n2a, n2d ) ∈ [0, ∞) × (0, ∞) × (0, ∞) : (n1, n2a, n2d ) satisfies (49)} (51)

ith n2a, n2d ≥ 0, in such a way that (n1(s), n2a(s), n2d (s)) is contained in the set (51) for
ll 0 ≤ s < t . Then n2a, n2d > 0 holds because n2a(0), n2d > 0 by assumption, moreover,
↦→ n2a(s) and s ↦→ n2d (s) are increasing on [0, t). Hence, one of the following conditions

olds:

(i) ṅ2d (t) = 0, ṅ2a(t) > 0,
(ii) ṅ2a(t) = 0, ṅ2d (t) > 0,

(iii) ṅ2a(t) = ṅ2d (t) = 0.

n case (i) we have

˙
( n2d

n2a

)
(t) =

−ṅ2a(t)n2d (t)
n2a(t)2 < 0.

he case (ii) yields

˙
( n2d

n2a

)
(t) =

ṅ2d (t)n2a(t)
n2a(t)2 > 0.

In case (iii) we have (thanks to the condition that n2a, n2d > 0) that (n2a, n2d ) = (n̄2a, n̄2d ). We
onclude that if (n1, n2a, n2d ) = (n1(0), n2a(0), n2d (0)) satisfies (49), then t ↦→ (n1(t), n2a(t),
2d (t)) never enters the complement of the closure of the set (51) apart from (n̄2a, n̄2d ), which

mplies the claim.
Now, given that condition (49) is satisfied for (n1, n2a, n2d ) = (n1(0), n2a(0), n2d (0)),
↦→ n2a(t) and t ↦→ n2d (t) are nonnegative, bounded, increasing, and strictly increasing

nless (n2a(t), n2d (t)) = (n̄2a, n̄2d ) eventually, in which case both coordinates would im-
ediately become constant. Further, t ↦→ n1(t) is also bounded and nonnegative. Hence,

n1(t), n2a(t), n2d (t)) converges along a subsequence to (n∗

1, n̄2a, n̄2d ) for some n∗

1 ≥ 0. Now
e argue that n∗

1 must be equal to zero. Indeed, taking limits of (49) implies that

pα(n∗

1 + n̄2a)
κµ + σ

≥
n̄2d

n̄2a
≥

µ − λ2 + α(n∗

1 + n̄2a)
σ

. (52)

Observe that both inequalities in (52) holds with equality for n∗

1 = 0 thanks to (3). Taking this
nto account, any subsequential limit n∗

1 has to satisfy

pαn∗

1

κµ + σ
≥ 0 ≥

αn∗

1

σ
.

Since by our assumptions, p
κµ+σ

< 1
σ

, we conclude that n∗

1 = 0. Hence, (50) follows. □

The last auxiliary result corresponding to the second phase of invasion states that the state
f the population process reached thanks to Proposition 4.4 belongs to the domain of attraction
f the stable equilibrium (0, n̄2a, n̄2d ).

emma 4.8. Let C be chosen according to Proposition 4.4, further, n1, n2a, n2d positive such
hat n1 ∈ (n̄1 −2ε, n̄1 +2ε), n2a +n2d ∈ (ε/C,

√
ε), and n2d

n2a
=

π2d
π2a

. Then, if ε > 0 is sufficiently
small, then (n1, n2a, n2d ) satisfies (49).
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
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roof. Since (π2a, π2d ) is a left eigenvector of J corresponding to the eigenvalue λ̃, we have

(λ2 − λ1) + σ
π2d

π2a
= λ̃ = p(λ1 − µ)

π2a

π2d
− (κµ + σ ).

ence, since λ̃ > 0, given that ε > 0 is small enough, we obtain

π2d

π2a
=

λ̃ − λ2 + λ1

σ
=

λ̃ − λ2 + µ + α
(

λ1−µ

α

)
σ

>
−λ2 + µ + α

(
λ1−µ

α
+ 3

√
ε
)

σ

≥
µ − λ2 + α(n1 + n2a)

σ

and

π2d

π2a
=

pα
(

λ1−µ

α

)
λ̃ + κµ + σ

<
pα
(

λ1−µ

α
− 2ε

)
κµ + σ

≤
pα(n1 + n2a)

κµ + σ
,

as asserted. □

4.3. The third phase of invasion: extinction of the resident population

At the end of the second phase, the rescaled process NK
t is close to the state (0, n̄2a, n̄2d ).

In particular, N K
1,t is at most εK for some ε > 0 small. In this subsection, we estimate the time

of the extinction of the resident population. We also need to check that the mutant population
stays close to (n̄2a, n̄2d ) during its time. We recall the set Sβ (9) and the time TSβ

(10). We
have the following proposition.

Proposition 4.9. There exist ε0, C0 > 0 such that for all ε ∈ (0, ε0), under condition (5) with
λ1 > λ2 > µ, if there exists η ∈ (0, 1/2) that satisfies⏐⏐N K

2a(0) − n̄2a
⏐⏐ ≤ ε and

⏐⏐N K
2d (0) − n̄2d | ≤ ε and ηε/2 ≤ N K

1 (0) ≤ ε/2,

then

∀C̃ > (µ + αn̄2a − λ1)−1
+ C0ε, P(TSε ≤ C̃ log K ) −→

K→∞

1,

∀0 ≤ C̃ < (µ + αn̄2a − λ1)−1
− C0ε, P(TSε ≤ C̃ log K ) −→

K→∞

0.

Proof. We first show that the rescaled population size vector (N K
2a,t , N K

2d,t ) stays close to its
equilibrium (n̄2a, n̄2d ) for long times, given that the resident population is small. To this aim,
we employ arguments similar to the ones of [16, Proof of Proposition 4.1, Step 1]. For ε > 0
we define the stopping times

Rε,i = inf
{
t ≥ 0 :

⏐⏐N K
2i,t − n̄2i

⏐⏐ > ε
}
, i ∈ {a, d},

T 1
0 = inf{t ≥ 0 : N K

1,t = 0},

and

T 1
ε = inf{t ≥ 0 : N K

1,t ≥ ε}.

These stopping times depend on K , but we omit the K -dependence from the notation for
Please cite this article as: J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes
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We couple (N K
2a,t , N K

2d,t ) with two bi-type birth-and-death processes, denoted by (Y ε,≤
2a,t , Y ε,≤

2d,t )
nd (Y ε,≥

2a,t , Y ε,≥
2d,t ), such that

Y ε,≤
2υ,t ≤ N K

2υ,t ≤ Y ε,≥
2υ,t , a.s. ∀υ ∈ {a, d}, ∀0 ≤ t ≤ T 1

ε . (53)

n order to satisfy (53), these processes can be defined with the following rates:

(Y ε,≤
2a,t , Y ε,≤

2d,t ) :
( i

K
,

j
K

)
→

( i + 1
K

,
j

K

)
at rate iλ2,( i

K
,

j
K

)
→

( i − 1
K

,
j

K

)
at rate i(µ + α((1 − p) i

K + ε)),( i
K

,
j

K

)
→

( i − 1
K

,
j + 1

K

)
at rate pαi2

K ,( i
K

,
j

K

)
→

( i + 1
K

,
j − 1

K

)
at rate jσ,( i

K
,

j
K

)
→

( i
K

,
j − 1

K

)
at rate jκµ.

nd

(Y ε,≥
2a,t , Y ε,≥

2d,t ) :
( i

K
,

j
K

)
→

( i + 1
K

,
j

K

)
at rate iλ2,( i

K
,

j
K

)
→

( i − 1
K

,
j

K

)
at rate i(µ + α(1 − p) i

K − pαε),( i
K

,
j

K

)
→

( i − 1
K

,
j + 1

K

)
at rate pα(i2

+ε)
K ,( i

K
,

j
K

)
→

( i + 1
K

,
j − 1

K

)
at rate jσ,( i

K
,

j
K

)
→

( i
K

,
j − 1

K

)
at rate jκµ.

he idea of this coupling is similar to the one in the proof of Proposition 4.1: in order to
ecrease (increase) the process, one needs higher (lower) total competition event rate and rate
f death by competition for the actives and lower (higher) active→dormant switching rate.

We will show that the processes (Y ε,≤
2a,t , Y ε,≤

2d,t ) and (Y ε,≥
2a,t , Y ε,≥

2d,t ) will stay close to (n̄2a, n̄2d )
or at least an exponential (in K ) time with a probability close to 1 for large K . To do so, we
ill study the stopping times

R⋄

η,υ = inf
{
t ≥ 0 : N ε,⋄

2υ,t /∈ [xυ − η, xυ + η]
}

or η > 0, υ ∈ {a, d} and ⋄ ∈ {≤, ≥}. Let us first study the process (Y ε,≤
2a,t , Y ε,≤

2d,t ). According
o [19, Theorem 2.1, p. 456], the dynamics of this process is close to the dynamics of the
nique solution to

ṅ2a = n2a(λ2 − µ − αε − αn2a) + σn2d ,

ṅ2d = pαn2
2a − (κµ + σ )n2d .

imilar to point (2) in Section 2.2, we have that for all sufficiently small ε > 0, this system has
unique positive equilibrium, which we denote by (n̄ε,≤

2a , n̄ε,≤
2d ). Here, analogously to n̄2a , we

ave n̄ε,≤
2a =

(λ2−µ−αε)(κµ+σ )
α(κµ+(1−p)σ ) , whereas n̄ε,≤

2d depends on ε in a more involved way, but it tends
o n̄2d as ε ↓ 0. For ε > 0 small enough, the equilibrium (0, 0) is unstable and (n̄ε,≤

2a , n̄ε,≤
2d ) is

ε,≤
, n̄ε,≤) for any
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oordinatewise nonnegative initial condition but (0, 0), as t → ∞, using similar arguments as
n the proof of Lemma 4.6. Thus, we can find constants c0 and ε′

0 such that for any ε ∈ (0, ε0),

∀i ∈ {a, d} :
⏐⏐n̄ε,≤

2i − n̄2i
⏐⏐ ≤ (c0 − 1)ε and 0 /∈ [n̄2i − c0ε, n̄2i + c0ε].

Now, similarly to the proof of Lemma 4.2, we can use results by Freidlin–Wentzell about
xit of jump processes from a domain [21, Section 5] in order to construct a family (over K )
f Markov processes (Ỹ2a,t , Ỹ2d,t )t≥0 whose transition rates are positive, bounded, Lipschitz
ontinuous and uniformly bounded away from 0 such that for

R̃≤

ε,i = inf
{
t ≥ 0 :

⏐⏐Ỹ K
2i,t − n̄2i

⏐⏐ > ε
}
, i ∈ {a, d},

here exists V > 0 such that for all i ∈ {a, d} we have

P
(
R≤

c0ε,a > eK V , R≤

c0ε,d > eK V )
= P

(
R̃≤

c0ε,a > eK V , R̃≤

c0ε,d > eK V )
−→
K→∞

1. (54)

imilarly, we obtain

P
(
R≥

c0ε,a > eK V , R≥

c0ε,d > eK V )
−→
K→∞

1, (55)

here without loss of generality we can assume that the constant V in (55) is the same as the
ne in (54). Now note that Rc0ε,i ≥ R≤

c0ε,i ∧ R≥

c0ε,i on the event {Rc0ε,i ≤ T 1
ε }. This together

ith (54) and (55) implies that

lim
K→∞

P
(
Rc0ε,i ≤ eK V

∧ T 1
ε

)
= 0

olds for all i ∈ {a, d}, hence

lim
K→∞

P
(
Rc0ε,a ∧ Rc0ε,d ≤ eK V

∧ T 1
ε

)
= 0. (56)

ow, we can find two branching processes Z ε,≤
1 = (Z ε,≤

1,t )t≥0 and Z ε,≥
1 = (Z ε,≥

1,t )t≥0 such that

Z ε,≤
1,t ≤ K N K

1,t ≤ Z ε,≥
1,t (57)

lmost surely on the time interval

I K
ε =

[
0, Rc0ε,a ∧ Rc0ε,d ∧ T 1

ε

]
.

ndeed, in order to satisfy (57), the processes Z ε,≥
1 and Z ε,≤

1 can be chosen with the following
ates and initial conditions:

Z ε,≤
1 : i → i + 1 at rate iλ1, i → i − 1 at rate i

(
µ + α

(
n̄2a + (c0 + 1)ε

))
,

tarted from ⌊
ηεK

2 ⌋, and

Z ε,≥
1 : i → i + 1 at rate iλ1, i → i − 1 at rate i(µ + α(n̄2a − c0ε)),

tarted from ⌊
εK
2 ⌋ + 1.

For all ε > 0 sufficiently small, both of these branching processes are subcritical according
to point (5) in Section 2.2. The growth rates of these three processes are λ1 −µ−αn̄2a ± O(ε).

rom this, analogously to [15, Section 3.3], we deduce that the extinction time of these
rocesses started from [⌊ ηK ε

2 ⌋, ⌊ εK
2 ⌋ + 1] is of order (µ − λ1 + αn̄2a ± O(ε)) log K . This

in turn follows from the general assertion that for a branching process N = (N (t))t≥0
with birth rate B > 0 and death rate D > 0 that is subcritical (i.e., B < D), given that
N (0) ∈ [⌊ ηK ε

2 ⌋, ⌊ εK
2 ⌋ + 1], defining

SN
= inf{t ≥ 0 : N (t) ≥ ⌊εK ⌋}, ε > 0,
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and

SN
ε = inf{t ≥ 0 : N (t) = 0},

he following hold according to [1, p. 202]:

∀C̃ < (D − B)−1, lim
K→∞

P(SN
0 ≤ C̃ log K ) = 0

nd

∀C̃ > (D − B)−1, lim
K→∞

P(SN
0 ≤ C̃ log K ) = 1.

urther, if N (0) = ⌊
ηK ε

2 ⌋, then for all sufficiently small ε > 0,

lim
K→∞

P
(
SN

0 > K ∧ SN
⌊εK ⌋

)
= 0. (58)

ow for C ≥ 0 we can estimate as follows

P(T 1
0 < C̃ log K ) − P

(
S Zε,≤

1
0 < C̃ log K

)
≤ P

(
T 1

0 > T 1
ε ∧ K

)
+ P

(
T 1

ε ∧ K > Rc0ε,a ∧ Rc0ε,d
)

≤ P
(
S Zε,≥

1
0 > S Zε,≥

1
⌊εK ⌋

∧ K
)
+ P

(
T 1

ε ∧ K > Rc0ε,a ∧ Rc0ε,d
)
.

(59)

ere, the first inequality can be verified as follows:

P(T 1
0 < C̃ log K ) − P

(
S Zε,≤

1
0 < C̃ log K

)
= P(T 1

0 < C̃ log K ≤ S Zε,≤
1

0 )

≤ P(Rc0ε,a ∧ Rc0ε,d < T 1
0 < C̃ log K , Rc0ε,a ∧ Rc0ε,d < T 1

ε )

+ P(T 1
ε < T 1

0 < C̃ log K , Rc0ε,a ∧ Rc0ε,d > T 1
ε )

≤ P(Rc0ε,a ∧ Rc0ε,d < T 1
ε ∧ C̃ log K ) + P(T 1

0 > T 1
ε )

≤ P(Rc0ε,a ∧ Rc0ε,d < T 1
ε ∧ K ) + P(T 1

0 > T 1
ε ∧ K ).

iven that ε > 0 is small enough, the second term in the last line of (59) tends to zero as
K → ∞ according to (56) and so does the first one according to (58). We conclude that

lim sup
K→∞

P
(
T 1

0 < C̃ log K
)

≤ lim
K→∞

P
(
S Zε,≤

1
0 ≤ C̃ log K

)
,

nd similarly, we deduce

lim inf
K→∞

P
(
T 1

0 < C̃ log K
)

≥ lim
K→∞

P
(
S Zε,≥

1
0 ≤ C̃ log K

)
,

hich implies the proposition. □

.4. Proof of Theorems 2.1, 2.2, and 2.3

Putting together Propositions 4.1, 4.4, and 4.9, we now verify our main results. The structure
f this part of our proof is similar to the one of [15, Section 3.4], the main difference lies in the
ehaviour of the corresponding dynamical systems. Our proof strongly relies on the coupling
32). More precisely, we define a Bernoulli random variable B as the indicator of nonextinction

B := 1{∀t > 0 : Ẑ2a(t) + Ẑ2d (t) > 0}

f the process (Ẑ2a(t), Ẑ2d (t))t≥0 defined in point 3 of Section 2.2, which is initially coupled
ith (K N K

2a,t , K N K
2d,t )t≥0 according to (32). Let f be the function defined in Proposition 4.1.
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Our goal is to show that

lim inf
K→∞

E(K , ε) ≥ q − o(ε) (60)

olds for

E(K , ε) := P
( T 2

0

log K
≤ f (ε), T 2

0 < TSβ
, B = 0

)
nd

lim inf
K→∞

I(K , ε) ≥ 1 − q − o(ε) (61)

olds for

I(K , ε) := P
(⏐⏐⏐TSβ

∧ T 2
0

log K
−

(1
λ̃

+
1

µ − λ1 + αn̄2a

)⏐⏐⏐ ≤ f (ε), TSβ
< T 2

0 , B = 1
)
.

hese together will imply Theorems 2.1, 2.2, and Eq. (14) in Theorem 2.3. The other assertion
f Theorem 2.3, Eq. (15), follows already from (20).

Let us start with the case of mutant extinction in the first phase of invasion and verify (60).
learly, we have

E(K , ε) ≥ P
( T 2

0

log K
≤ f (ε), T 2

0 < TSβ
, B = 0, T 2

0 < T 2
ε ∧ R2ε

)
.

ow, considering our initial conditions, for all sufficiently small ε > 0 we have T 2
ε ∧R2ε < TSβ

,
lmost surely. Hence,

E(K , ε) ≥ P
( T 2

0

log K
≤ f (ε), B = 0, T 2

0 < T 2
ε ∧ R2ε

)
. (62)

oreover, analogously to the proof of Proposition 4.1 with ξ = 1, we obtain

lim sup
K→∞

P
(
{B = 0}∆{T 2

0 < T 2
ε ∧ R2ε}

)
+ P

(
{B = 0}∆{T (ε,+),2

0 < ∞}

)
= oε(1), (63)

here ∆ stands for symmetric difference. Together with (62), these imply

lim inf
K→∞

E(K , ε)

≥ lim inf
K→∞

P
( T 2

0

log K
≤ f (ε), B = 0, T 2

0 ≤ T 2
ε ∧ R2ε

)
≥ lim inf

K→∞

P
(T (ε,+),2

0

log K
≤ f (ε), B = 0, T 2

0 ≤ T 2
ε ∧ R2ε

)
(64)

≥ lim inf
K→∞

P
(T (ε,+),2

0

log K
≤ f (ε), T (ε,+),2

0 < ∞

)
+ oε(1),

where in (64) we used the coupling (32). Thus, using (7) and (33), we conclude (14).
Let us continue with the case of mutant survival in the first phase of invasion and verify

(61). Arguing analogously to (63) but for ξ = 1/2, we obtain

lim supP
(
{B = 1}∆{T 2√

ε
< T 2

0 ∧ R2ε}
)

= oε(1).
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Thus,

lim inf
K→∞

I(K , ε) = lim inf
K→∞

P
( ⏐⏐⏐ TSβ

log K
−

(1
λ̃

+
1

µ − λ1 + αn̄2a

)⏐⏐⏐ ≤ f (ε),

TSβ
< T 2

0 , T 2√
ε
< T 2

0 ∧ R2ε

)
+oε(1).

(65)

or ε > 0, β > 0, we introduce the sets

B1
ε := [π2a − δ, π2a + δ] × [ε/C,

√
ε] × [n̄1 − 2ε, n̄1 + 2ε],

B2
β := [0, β/2] × [n̄2a − (β/2), n̄2a + (β/2)] × [n̄2d − (β/2), n̄2d + (β/2)]

nd the stopping times

T ′

ε := inf
{

t ≥ 0 :

( N K
2a,t

N K
2a,t + N K

2d,t
, N K

2,t , N K
1,t

)
∈ B1

ε

}
,

T ′′

β := inf
{

t ≥ T ′

ε : NK
t ∈ B2

β

}
.

Informally speaking, our goal is to show that with high probability the process has to pass
through B1

ε and B2
β in order to reach Sβ . Then, thanks to the Markov property, we can estimate

TSβ
by estimating T ′

ε , T ′′

β − T ′
ε and TSβ

− T ′′

β . (65) implies that

lim inf
K→∞

I(K , ε) ≥ P
( ⏐⏐⏐ T ′

ε

log K
−

1
λ̃

⏐⏐⏐ ≤
f (ε)
3

,

⏐⏐⏐T ′′

β − T ′
ε

log K

⏐⏐⏐ ≤
f (ε)
3

,⏐⏐⏐TSβ
− T ′′

β

log K
−

1
µ − λ1 + αn̄2a

⏐⏐⏐ ≤
f (ε)
3

, T 2√
ε
< T 2

0 ∧ R2ε,

T ′′

β < TSβ
, TSβ

< T 2
0

)
+oε(1),

ee [15, display before (3.60)] for further details in a similar setting. Note that for ε > 0
ufficiently small, R2ε ≤ TSβ

almost surely, further, if T ′
ε < ∞, then T ′

ε < T ′′

β . Hence, the
trong Markov property applied at times T ′

ε and T ′′

β implies

lim inf
K→∞

I(K , ε) ≥ lim inf
K→∞

[
P
(⏐⏐⏐ T ′

ε

log K
−

1
λ̃

⏐⏐⏐ ≤
f (ε)
3

, T ′

ε < T 2
0 , T 2√

ε
< T 2

0 ∧ R2ε

)
× inf

n=(n1,n2a ,n2d ) :(
n2a

n2a+n2d
,n2a+n2d ,n1

)
∈B1

ε

P
(⏐⏐⏐T ′′

β − T ′
ε

log K

⏐⏐⏐ ≤
f (ε)
3

, T ′′

β < T 2
0

⏐⏐⏐NK
0 = n

)

× inf
n∈B2

β

P
(⏐⏐⏐TSβ

− T ′′

β

log K
−

1
µ − λ1 + αn̄2a

⏐⏐⏐ ≤
f (ε)
3

, TSβ
< T 2

0

⏐⏐⏐NK
0 = n

) ]
+oε(1).

(66)

It remains to show that the right-hand side is close to 1 − q as K → ∞ and ε is small. We
first consider the first term and verify that

lim inf
K→∞

P
(⏐⏐⏐ T ′

ε

log K
−

1
λ̃

⏐⏐⏐ ≤
f (ε)
3

, T ′

ε < T 2
0 , T 2√

ε
< T 2

0 ∧ R2ε

)
≥ 1 − q + oε(1). (67)

his can be done analogously to [15, Proof of (3.61)].
Next, we handle the second term on the right-hand side of (66). For m = (m1, m2a, m2d ) ∈

[0, ∞)3, let n(m) denote the unique solution of the dynamical system (6) with initial condition
m. Thanks to the continuity of flows of this dynamical system with respect to the initial
condition and thanks to the convergence provided by Lemma 4.7, we deduce that there exist
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0 and δ0 > 0 such that for all ε ∈ (0, ε0) and δ ∈ (0, δ0), there exists tβ,δ,ε > 0 such that for
ll t > tβ,δ,ε,⏐⏐n(n0)(t) − (0, n̄2a, n̄2d )

⏐⏐ ≤
β

4
olds for any initial condition n0

= (n0
1, n0

2a, n0
2d ) satisfying (n0

2a/(n0
2a + n0

2d ), n0
2a + n0

2d , n0
1) ∈

1
ε . Indeed, because of Lemma 4.8, n0 satisfies (49) in case n0

2a/(n0
2a + n0

2d ) is equal to π2a ,
nd for all sufficiently small ε > 0, the same follows by continuity for all n0

= (n0
1, n0

2a, n0
2d )

uch that (n0
2a/(n0

2a + n0
2d ), n0

2a + n0
2d , n0

1) ∈ B1
ε .

Now, using Lemma 4.3, we conclude that for all ε < ε0,

lim
K→∞

P
(

T ′′

β − T ′

ε ≤ tβ,δ,ε

⏐⏐⏐( N K
2a,0

N K
2a,0 + N K

2d,0
, N K

2,0, N K
1,0

)
∈ B1

ε

)
= 1 − oε(1).

hus, the second term on the right-hand side of (66) is close to 1 when K tends to ∞ and
> 0 is small.
Lastly, we investigate the third term on the right-hand side of (66). By Proposition 4.9, there

xists β0 > 0 (denoted as ε0 in Proposition 4.9) such that for all β < β0, for ε > 0 sufficiently
mall,

lim
K→∞

P
(⏐⏐⏐TSβ

− T ′′

β

log K
−

1
µ − λ1 + αn̄2a

⏐⏐⏐ ≤
f (ε)
3

⏐⏐⏐NK
0 ∈ B2

β

)
= 1 − oε(1).

urther β0 can be chosen as large as min{n̄2a, n̄2d}. Combining (67) with the convergence of
he second and the third term on the right-hand side of (66) to 1, we obtain (61), which implies
13).
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