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This note contains a characterization of predictors for nonstationary ARMA processes. Moreover, we 
give the weak law of large numbers for those processes. 
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1. Introduction 

Let the complex-valued ARMA process {yk, k E Z} be given by the equation 

A(q-‘)yk = C(q-‘)e, (1) 

where { ek, k E Z} is the orthogonal-valued process such that Eek = 0,O < m s El ekl* s 

M, kEZ, and 

A(q-‘) = 1+a,q-‘+a,q-2+~ . .+a,q-“, 

C(q_‘) = 1-t c,q -‘+c2q-*+...+cc,q-“, rIEN, 

with q-’ being the backward shift operator i.e. qply, = yk-, . 

A process {yk, k E Z} given by (1) is said to be regular if the all roots of the 

polynomials A(q-‘) and C(q-‘) belong strictly inside the unit circle. In this case 

there exists the unique solution of (1) such that the linear spaces spanned by the 

processes {yk, k s I} and {ek, k 4 I}, I E Z, coincide [7]. Moreover, it has been proved 

there that the linear h-step predictor {jk+hlk, k E Z} has the similar characterization 

as in the stationary case. 

A more general model 

&(C’)y, = d;k(q-‘)ek, k E z, (2) 

with time dependent coefficients 

&(q-‘)=l+a,(k)q-I+. . *+u,(k)q-n, 

6;,(q-‘)= l+c,(k)q-‘+. . .+c,,(k)q-“, 
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ai( c,(k)E@,j=l,..., n, k E Z, and an orthogonal, stationary, or UBLS process 

{ek, kE Z} i.e. a process such that (cf. [12]) 

for some constant M>O and every Q;- EC, j= 1,2,. . . , n, k,, . . . , k,,,, h EZ, was 

discussed in several papers (cf. 12, 3, 9, lo]). To compare our results with those 

contained in the above pa.pers we need to recall their main states. 

Let G(t, s) and H(t, s) be Green functions associated with the 

&-‘XY, = 0, C(q-‘)e, = 0, 

respectively. 

Suppose that E(ek12 = u2 = const. If 

k 

C IG(k s)l<a’, kEZ, 
s=-CC 

and if there exists a constant M such that 

j=O 

(3) 

(4) 

then the MA(m) process 

y;i = ek + ; m’n(r*n) [’ 2 [G(k,k+j-r)c,(k+j-r)-G(k,k-r)] ek-r 
I 

(5) 
r=l i=l 

is a second-order, purely nondeterministic, mean zero process which is a solution 

of (2) [2, Theorem 1 and Corollary; 9, Theorem 2.11. 

Moreover, if additionally 

k 

C Iff(k, s)l< 00, kEi2, (6) 
s=--as 

then the linear spaces generated by { e,, Is k} and {y,, Is k} coincides for every 

kEZ [2, Theorem 31. 

One can see that the above results can be extended to ARMA processes with 

UBLS noise process {ek, kE Z} after using the Niemi’s method [7]. 

In [lo] there are given simpler conditions than the above ones under which there 

exists a purely nondeterministic solution of (2). Namely, it is stated that there exists 

a purely nondeterministic solution (5) of (2) if Elek12 < M < co and all zeros of the 

polynomials A(z-‘) and ?(z-‘) lie in the region Iz( <A < 1. We note that then the 

process (5) is UBLS. The above given conditions allowed to solve the prediction 

problem for the solution (5) of the ARMA equation (2). The least square linear 
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h-step predictor $k+h~k of yk+h based on the process {y,, 1s k} is as follows: 

?k+hlk = f 

min(r,n) 

1 [G(k+h, k+h+j-r)c,(k+h+j-r) 
r=l j=l 

-G(k+h, k+h-r)] e&r 1 
and can be recursively obtained from 

j~o~jCk+h).Gk+h-j\k= i cj(k+h)ek+h-,, ao(k)=co(k)=l, kg?!, 
j=h 

where ek = yk -j&r [ 10, Theorem 3.1; 9, Theorems 3.1 and 3.21. 

Necessary and sufficient conditions for invertibility of ARMA(0, q) model can 

be found in [3, Theorem 3.11. 

We give here simple sufficient conditions for the existence of a purely nondeter- 

ministic solution of (2), where we do not assume stationarity or UBLS property of 

the processes {ii(qm’)yk, kE z}, {c(qp’)ek, k E i?!} and {ek, ke ,?f}. Moreover, we have 

a simple form of that solution and we show that it is unique in the class of purely 

nondeterministic processes. Now we give sufficient conditions for the equivalence 

of the linear spaces spanned by the processes {e,, Is k} and {y,, 1 G k}, k E Z, and 

we solve the prediction problem. A simple characterization of the l-step linear 

predictor being an ARMA process useful in applications (cf. [5]) is also obtained. 

Then we get a recursive representation of the h-step predictor. This predictor is also 

a linear combination (MA(a)) of the past observations with coefficients easily 

computable. A comparison of the approaches of [2, 3, 9, lo] and ours permits us 

to give a property of the Green functions. 

Here we treat only ARMA(n, n) models as every ARMA( p, q) model can be 

rewritten as an ARMA( n, n) one with n = max( p, q). 

2. Preliminaries 

Let (a, 5, P) denote a probability space and let H = L2(R, 9, P) be a Hilbert space 

of random variables with zero means and finite variances. Let {I&, k E Z}, Hk c 

Hkt, c H, k E if, denote a wide-sense filtration. L2-process {xk, k E Z} is said to be 

{Hk, k E 2) adapted iff xk E Hk, k E Z. By {HG, k E Z} we denote the filtration gener- 

ated by the process {&, k E ii?}. 

Now let on (0, 9, P) together with the filtration { Hk, k E Z} be defined adapted 

PrOCeSS {ek, ksZ} such that ekE Hkr eklHk_,, E]ek]2=U:, keZ’. 

Consider the nonstationary ARMA-equation 

&(q-‘)Yk = Ck(qp’)ek9 

where 

A,(q-‘) = 1 +a,(k)qp’S 

ck(q-‘)= l+c,(k)q-‘+ 

kEZ, 

. .+a,(k)q-“, 

. .+c,,(k)q-“, 

(7) 
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and a,(k), c,(k)E@, j= 1,. . . , n, kE 22, are such that there exist the limits 
limk+_as a,(k) := aj, limk,_, c,(k) := cj, j = 1, . . . , n. 

Define the following polynomials: 

A(z-‘) = 1 + a,~-’ +. . . + unz-“, 

C(z_‘) = l-tc,zP’+* . .+cnzpn, 

and let r = r(A) + E, E > 0, r(A) = max{(zjl, A(z.r’) = 0,l s j G n}, s = s(C) + E’, E’> 0, 

s(C) =max{(zjl, C(zy’) =O, 1 GjS n}. 

The model (7) is said to be AR-regular iff 

(8) 

and MA-regular it? 

(9) 

for sufficiently small kE Z. The model (7) which is AR- and MA-regular we call 

regular. 

We see that the above regularity conditions are satisfied under the classical 

restrictions of [7] for the ARMA-models considered by Niemi [7]. 

3. A nonstationary ARMA model 

The following theorem extends results by Niemi [7, Theorems 2.1 and 2.21 to a 

larger class of ARMA processes. 

Theorem 1. Suppose that ARMA-model (7) is AR-regular. Then there exists the 

unique {Hkr k E Z}-adapted, purely nondeterministic L2-solution {yk, k E Z} of (7). 

Moreover, ifthe model (7) is regular then Hi = Hz, kE Z. 

Proof. Following the results of [l, Chapter 9, (9.3.8)] we can write the model (7) 

in the form 

yk=Bxk+ekT xk+l = A(kbk +K(k)ek, kEZ, (10) 

where 

x, = [x(k), . . . ) xp]‘, 

(n-i) = 
xk i [Ci(kfj)ek-i+,-ai(k+j)Yk-i+jl. j=O, 1 , . . . > n-l, (11) 

i=j+l 
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0 

1 

A(k)= I: 
0 0.. 0 -a,,(k+ n) 
0 **. 0 -a,_,(k+n-1) 

0 1 . . . 0 -a,_,(k+n-2) , 

0 0 .-* 1 ! 1 --a,(k+ 1) 

c,(k+n)-a,(k+n) 

K(k) = [ 1 2 B=[O * .* 0 11. 

c,(k+l)-a,(k+l) 

Let 

Y(kN) = f BA(k, k-j+l)K(k-j)e,_,+e,, 
j=l 

(12) 

where A( k + 1, I) = A( k)A( k, I), A( Z, I) = I, 1 E Z, is the transition matrix of difference 

equation (10). We see that {yk , (N) N EN} L2-converges as N + ~0 iff the series 

T lBA(k, k-j+1)K(k-j)12(r~_, (13) 
j=l 

converges, and then y? = ( L2) limN+, y, (N), with 

IIYZII~=~$, lBA(k, k-j+I)K(k-j)12&j+~: 

satisfies the equation (10) and at the same time (7). We note that then the series 

(12) L’-converges also for all 1 3 k, by the ARMA equation (7), or its equivalent 

form (10). Thus it is suffice to show that (13) holds for sufficiently small k E ii?, i.e. 

for all k s k,, for an arbitrary chosen k. E Z. 
It can be seen that the convergence of (13) follows from the AR-regularity 

condition. Indeed, taking into account that lim ,-P,(aj(k), c,(k)) := (aj, c,), we see 
that for any given &I > E, we can choose a matrix norm 1) 1) such that 11 A( k))12 5 
p(A)+&, for every k< kE, (cf. [4, p. 15]), w h ere p(A) is a spectral radius of the 

matrix A:= limk,_, A(k). It is known that the characteristic polynomial det(hl- 

A(k))=A”A,(A-‘) [6, p. 1041. Hence, p(A)=max{/A,I: det(A.,l-A)=O, lGjGn}= 

max{)zj): A(zy’) = 0, 16 j =S n} = r(A). Moreover, the stability assumption implies 

that for every ~~ > 0 there exists krz such that II K( k - j)II c K + Ed for every k s kE2. 
Therefore for k c min{ k,, , kFS}, by (8), we have 

f IBA(k, k-j+1)K(k-j)(2c&j 
,==I 

IINk - 011’ . * . IIA(k~j)I1211K(k~~)I12~~-~ 

s l)B1j2 f r2’( K + ~,)‘a’,_~ 
j=l 
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Obviously, {yf , k E Z} is {Hk, k E Z}-adapted and purely nondeterministic process 

(i.e. fjkCL Hi* = (0)) as 

y: = 2 BA(k, k-j+l)K(k-j)e,,+e, (cf.[7]). 
j=l 

(14) 

We now prove that {y:, k E Z} is the unique purely nondeterministic, {I&, k E 

Z}-adapted solution of (7). By (10) we have the following orthogonal decomposition 

y, =BA(k, rrt)~,,,+~f~ BA(k, k-j+l)K(k-j)e,-,+ek 
j=l 

for every m <k, m E Z. Letting m + --CO we get the Wold decomposition of the 

solution of (10) with y: as the purely nondeterministic part. 

The uniqueness of the Wold decomposition implies that there exists a unique 

solution of (10) in the class of purely nondeterministic processes. 

Assume now that the model (7) is regular. Then by (14) we have Hky c HZ, k E Z. 

Using (10) we get 

ek =-Bxk+ykr Xk+l=A(k)xk+R(k)yk, A(k)=A(k)-K(k)B. (1% 

Moreover, we see that equality 

k-m 

ek = -BA(k, m)x,,, - c BA(k, k-j+l)R(k-j)yk-j+yk, m<k, kEZ, 
j=l 

implies that HE s H”, u H{ z Hk u Hz for every m < k. 

To prove that HE c Hky suppose that the model (7) is MA-regular, i.e. (9) holds 

true. Since the characteristic polynomial of the matrix A(k) is equal to A “Ck(h -‘) 

(cf. [5]) then by the similar considerations concerning the process {ykr k E Z} it can 

be shown that the series 

f BA(k, k-j+l)R(k-j)y,, 
i=o 

L2-converges if (9) holds true. Letting now m + --OO we obtain HE E Hl, since 

{ek, k E Z} is purely nondeterministic process as a white noise. This completes the 

proof of the theorem. q 

Remark. Let G(k, I), I s k, k, 1 EZ, denote the Green functions associated with the 

homogeneous diflerence equation A,( q-‘)yk = 0 satisfying the AR-regularity condition. 

Thenforeueryck(j)E@, kEZ,j=l, 2 ,..., n, andrEN, 

min( r,n) 

1 [G(k,k+j-r)c,(k+j-r)-G(k,k-r)]=BA(k,k-r+l)K(k-r). 
j=l 
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Proof. Consider the ARMA(n, n) equation (2) satisfying the AR-regularity condi- 

tions with independent values stationary process {ek, k E Z}. Then, by Theorem 1 

{y$, k E Z} given by (14) is the unique solution of (7) in the class of purely 

nondeterministic processes while {Yi, k E Z} given by (4) is other purely nondeter- 

ministic solution of (7). Therefore the processes {y:, k E Z} and {Yi, k E Z} coincide 

and by the Projection Lemma [l], 

min(r,n) 

C [G(k, k+j-r)cj(k+j-r)-G(k, k-r)] 
j=1 

= E[y;&,](Ele,J*)-’ 

= (E[~:Ll(Ele,l*)-' 

=BA(k, k-r+l)K(k-r) 

as {y?, k E Z} and {YR, k E Z} are Gaussian processes such that Yz E Hi, and yR E Hi, 

kEZ. 0 

4. Linear prediction 

Let the ARMA-model (7) be regular. We give a simple characterization of the h-step 

optimal (in L2-sense) linear predictor pkk++ for the state Yk+h based on the process 

{y,, l& k}. It is well known that jkk+hlk = $ykYk+,,, where pi denotes the orthoprojector 

on the space Hi. 

Theorem 2. Suppose that the model (7) is regular. Then the optimal linear l-step 

predictor j&l is given by the following ARMA-equation 

Ck(q-‘&k-l = C&(4-‘)Yk, k E z, (16) 

whereGk(q-‘)=cu,(k)q-‘+*.*+cY,(k)q-”, cr,(k)=c,(k)-ai( lsi~n. 

Proof. Since the vector xk E Hl_, u HE-, = Hl-, = HE_, then by (5) we have 

j&, = hk = x’,“’ = if, [Ci(k)ek-t -ai(k)Yk-iI. (17) 

But from (10) we have ek = Yk -j&-r which with (17) proves (16) and ends the 

proof of the theorem. 0 

The MA-representation (14) of the process {Yk, k E Z} and Theorem 2 lead to the 

following characterizations of predictor for nonstationary regular ARMA-process 

(cf. [7, lo]). 
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Theorem 3. Assume that the ARMA-model [7] is regular. Then the h-step predictor 

$k+hik is given by the following equation: 

j% aj(k+h)_?k+,mji,= I? cj(k+h)ek+h-j, a,(k) = c,(k) = 1, kEZ, 
J=h 

where ek = y, - j&, and l-step predictor j&z satisfies (16). The predictor jTkthlk 

can also be represented as follows: 

$k+h,x=j!OBA(k+h, k+l)A(k+l, k-j+l)K(k-j)y,,. (18) 

The variance of the prediction error 

h-1 

Ykth-$k+hlk=ek+h+ c BA(k+h, k+h-j+l)K(k+h-j)ek,h, 
j=1 

equals to 

h-1 

Ebk-.?k+h~k12= c ~BA(k+h,k+h-j+1)K(k+h-j)]202,+h_,+o~+h. 
,=o 

Proof. The first statement of Theorem 3 follows from the ARMA equation (7). 

To prove a second part it is enough to see that (10) implies that 

h-l 

yk+h =BA(k+h, k+lbk+l f c BA(k+h, k+h-j+l)R(k+h-j)ek+h_j 
,i= 1 

+ ekth. 

Taking into account that xk+r E Hl we have 

?k+hlk = Mk+ h, k-t lbk+, . 

Now by (15) and the regularity conditions (8) and (9) we get (18). 

The variance of the predictor error can be easily calculated. 0 

5. The weak law of large numbers for nonstationary ARMA-processes. 

We investigate now some asymptotic properties of nonstationary ARMA-processes. 

Theorem 4. Let {yk, k E Z} be a nonstationary process. Suppose that max{ E]yk12, k E 

Z} =S M, M > 0, and (q*)kz + 0 (in L2-sense) as k + CO for any z E H “, where q* is 

the adjoint shzft operator. 

Then there exists a self-adjoint bounded linear operator B : H y + H y with the bounded 

inverse such that 

(19) 
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where I is the indicator function and P’(. (OB-lqB) d enotes the orthoprojector on the 

invariant subspace of the operator Bm’qB. 

Proof. If yk --$ L2 0, k + ~0, then obviously N-’ 1::; y, +Lz 0, N + ~0, and (19) holds. 

Assume now that yk+L* 0, k + CO. Since the group of shift operators {qk, k E Z} 

is uniformly bounded then, by Theorem 5.4, Chapter II of [ll], we see that there 

exists a self-adjoint bounded operator B: H” + H Y with bounded inverse BP’ such 

that U:= B-‘qB is the unitary operator. Therefore, by Von Neumann’s ‘mean’ 

ergodic theorem [8, p. 211, we have 

N-l N-l N-l 

N-’ C yk = N-’ C qky, = BN-’ C UkBP’y,- LL BP(B-‘y&), N+a. 
k=O k=O k=O 

which ends the proof of (19). 0 

For the model (7) which is AR-regular we have the following theorem. 

Theorem 5. Suppose that the process {yk, k E Z} is AR-regular, Then 

N-1 

N-’ C yk L* -0, N+co, 
k=O 

N-l 2 

N_’ CT:, B C A(k,-I+l)K(-l) +O, N+m. 0 
1=-N+, k=O 

Proof. By (10) we have 

Yk = ? bk(j)ek-j, 
j=O 

where bk(0)=l and bk(j)=BA(k,k-j+l)K(k-j),j>l. Hence 

N-1 

k;OYk= f eb(Nf’bk(k+l)) 
I=-Nfl k=O 

which completes the proof as { ek, k E Z} is an orthogonal process. 0 
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