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Abstract 

We consider the estimation of the multivariate regression function m(x~, . . . ,x~)= E 
[tP(Yd)tX ~ = x~, ... ,Xa = xa], and its partial derivatives, for stationary random processes 
[ Yi, Xi} using local higher-order polynomial fitting. Particular cases of 7 ~ yield estimation of the 
conditional mean, conditional moments and conditional distributions. Joint asymptotic nor- 
mality is established for estimates of the regression function and its partial derivatives for 
strongly mixing and p-mixing processes. Expressions for the bias and variance/covariance 
matrix (of the asymptotically normal distribution) for these estimators are given. 

Keywords:  Multivariate regression estimation; Local polynomial fitting; Mixing processes; 
Joint asymptotic normality 

I. Introduction 

Let ~ v ~ ~ be joint ly s ta t ionary  processes on the real line and let tp be an ( * i , x ,  i j i= ~.j 

arbi t ra ry  measurab le  function. Assume that  E[ ~ ( Y I ) I  < 3c and define the mult ivari-  
ate regression function 

m(Xl . . . . .  Xa) = E [ ~ ( Y a ) { X 1  = xl . . . .  ,Xa = x~J (1.l) 

where the d imension d >~ 1. The  regression function m ( x t  . . . . .  xa) plays an impor t an t  

role in da ta  analysis, filtering (Xi  = Yi + el), and predict ion (Yi  = X i . ~  r-step 
prediction) of t ime series. O u r  goal is to es t imate  the regression function re(x1 . . . . .  xa) 

and its part ial  derivatives f rom the observat ions  { Yi, Xi}~= j. There  is fairly extensive 
l i terature on the use of the N a d a r a y a  (1964)-Watson  (1964) es t imator  in connec- 
tion with regression est imation.  See, for example,  Mack  and Si lverman (1982), and 
H/irdle (1990) and the references therein in the i.i.d, case. For  dependent  data,  see 
Rosenbla t t  (1969), Robinson  (1983, 1986), Co l l omb  and H/irdle (1986), Roussas  (1990), 
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Truong and Stone (1992) Roussas and Tran (1992), Fan and Masry (1992) among 
others. 

The local polynomial fitting approach was introduced originally by Stone (1977) 
and studied by Cleveland (1979), Fan (1992, 1993) and many others (see Fan (1993) for 
additional references). Local polynomial fitting has significant advantages over the 
Nadaraya-Watson regression estimator: For local linear fitting in the univariate case 
it has been shown to reduce the bias (see Chu and Marron, 1991, Fan, 1992); it adapts 
automatically to the boundary of design points (see Fan and Gijbels, 1992; Hastie and 
Loader, 1993; Ruppert and Wand, 1994); - no boundary modification is required. It is 
superior to the Nadaraya-Watson estimator in the context of estimating the deriva- 
tives of the regression function (see Fan and Gijbels, 1992; and Ruppert and Wand, 
1994); in particular, the differentiability of the kernel is not required. All the above- 
cited works consider i.i.d, setting. In a recent work, Masry and Fan (1996), established 
the asymptotic normality of the univariate regression function re(x) and its derivatives 
(d = 1) for dependent data using local higher-order polynomial fit. 

The purpose of this paper is to formulate the multivariate regression estimation 
problem in the general setting given in (I.1), in conjunction with local higher-order 
polynomial fitting, and establish the joint asymptotic normality of rh(x~, ..., Xd) and its 
partial derivatives up to a fixed total order p. Expressions for the bias and variance/ 
covariance matrix (of the joint asymptotic distribution) of these estimators are given. 
We remark at this point that in the case of i.i.d, setting { Yi, Xi} with re(x) = E[Y1f 
X1 = x]  where Xi is R e - valued random variable, Ruppert and Wand (1994) consider 
local quadratic fit and provide leading bias and variance terms for rh(x) and its 
derivatives. Our setting is completely different from Ruppert and Wand (1994) in that 
• We consider regression estimation from a vector of past data as in (1.1). 
• The processes { Yi, X~} are individually and jointly dependent. 
• Higher-order local polynomial fit (of arbitrary order p) is considered. 
• Joint asymptotic normality of the estimates of re(x) of (1.1) and its partial deriva- 
tives is established along with its implications for the bias and variance/covariance 
matrix of the estimators. 

Before we formulate our problem we discuss potential applications. We first remark 
that the function T in the definition of the regression function m(x) in (1.1) is arbitrary. 
Some special cases of importance in practice are: (a) T(y) = y corresponds to estima- 
ting the condition mean of Ye and its derivatives from a vector of past data 
(XI, . . . ,  Xd). (b) 'P(y) = I{ Y ~< y} corresponds to estimating the conditional distribu- 
tion m(x)=P[Yd <~yJX1 =Xl , . . . ,Xd  =Xd] and its derivatives from past data. 
(c) T(y) = yZ corresponds to estimating the conditional second moment from past 
data. Prediction problems are also included in our formulation: Put Yi = Xi . r  for 
some r ~> 1. Then the regression problem (1.1) reduces to estimating 
E[TJ(Xd+r) J X~ = xl . . . .  , Xe = xd]. An important area of application of the results of 
this paper is the estimation/identification of the functional structure of nonlinear time 
series commonly encountered in econometric time series (Tjostheim, 1994). Consider, 
for example, the popular ARCH time series 

X j  = f l  ( X j - 1  . . . .  , X j - d )  -~ f 2 ( X j - 1  . . . .  , X j - d ) C j  
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where the functionsf~ and f2 >~ 0 are to be determined via estimation. When the ei's 
are i.i.d, with zero mean and variance a 2 then 

E[Xi[ Xj_ 1 = x 1  . . . . .  X j  d = Xd] = J l  (X1 . . . .  ,Xd ) ,  

var[Xil  Xa 1 = xl, . . . ,  Xj-d = Xa] =: cr:f22(Xl . . . . .  Xd), 

and regression estimation is the natural approach (Masry and Tjostheim, 1995). The 
general framework (1.1) of local polynomial fitting considered in this paper can be 
used to provide estimates off1 and of az f~  and of their partial derivatives and we can 
thus establish their asymptotic normality. 

We formulate our problem as follows. Let 

mix)  : E [ q ' ( z . ) [ X o  : x ] .  

(1.2) 

(1.3) 

We assume throughout the paper that derivatives of total order p + 1 of m(z) exist and 
are continuous at the point x. We can approximate re(z) locally by a multivariate 
polynomial of total order p: 

m(z) ~ ~ ~ Dkm(y)l ,=x(Z -- x) k (1.4) 
O~<]kl~<p 

where we use the notation 

d 

k = ( k l  . . . . .  kd), k ! = k l ! ×  . . .  × k d ! ,  Ik l  = }"  k i. 
i = l  

X k ~- Xkl I X ),(X ka 
" ' "  d ~ 

p J J 

E : E  E . Y ,  
0 .<_ Ikl ~< p j = O  k l ~ O  ka=O 

kl + ,.. +k,j=j 

(l.S) 

(1.6) 

(1.7) 

8*m(y)  
(Dkm)(y) -- e),]l ... cqyk . (1.81) 

Let K(u) be a nonnegative weight function on R d and h be a bandwidth parameter. 
Given the observations { Y~, X~}~=~,, consider the multivariate weighted least squares 

tP(Yd+,) -- ~ bk(x)(X, - x)  k K( (X ,  -- x l /h ) .  
i O < ~ ] k l ~ p  

(1 9) 

Minimizing (1.9) with respect to each bk gives an estimate bk(x) and, by (1.4), k!bk(x) 
estimates (Dkm)(x) so that (D~m)^(x) = k! bk(x). The minimization of (1.9) leads to the 
set of equations 

r. 4 : ~, h~"l~k(x)s..y+,, 0 ~ IJl ~ P (1.10) 
O~<Lkl~<p 
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where 

t . , j -  ~ ~'(Y~+i) K~(X~-x) ,  (1.11) 
n - d + l i =  o 

s. a - ~ Kh (Xi -- x), (1.12) 
n - d + l i =  

Kh(u  ) = ~K(u/h). (1.13) 

The organization of the paper is as follows. Section 2 establishes the quadratic- 
mean convergence of s.,j,  the centering of t , j ,  the bias of the estimates ~j, and the 
asymptotic covariance structure of the centered t , , j .  Section 3 derives the joint 
asymptotic normality of the centered t , j  and of the regression function's estimate rh(x) 
and its partial derivatives and provides expression for their bias and vari- 
ance/covariance matrix (of the asymptotic distribution). We remark that a compan- 
ion paper (Masry, 1996) provides uniform rates of almost sure convergence of n~(x) 
and its derivatives. 

2. M e a n - s q u a r e  c o n v e r g e n c e  

We first note that the set of equations (1.10) can be cast in matrix form by using 
a lexicographical order in the following manner. Let 

N i  = d -  1 

be the number of distinct d-tuples j with [j] = i. Arrange these N i  d-tuples as 
a sequence in a lexicographical order (with highest priority to last position so that 
(0 . . . .  ,0, i) is the first element in the sequence and (i, 0 . . . . .  0) the last element) and let 
g/- ~ denote this one-to-one map. Arrange the NIj r values of t , , j  in a column vector 
z, , i j l  according to the above order. Then 

(z , , i j t )  k = t,,o~j, k. (2.1) 

Define 

[Tn, 0 ~ 
"l~n" 1 ] 

~, = . (2.2)  

L~.,pJ 

and note that the column vector T, is of dimension N - - ~ f = o N i x  1. Similarly 
arrange the distinct values of hlklb,,0 ~< ]kl ~< p, as a column vector of dimension 
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N x 1 in the form 

I ~n,O 1 

Finally, arrange the possible values of s.4+k by a matrix S.,LjI,L, I in a lexicographical 
order with the ((, m) element of S.,I~I ,I*1 given by 

[S , , i j l , l~ , ] l .~  = s , ,~L , ,~ )+o~ , ,~  ). (2.4) 

The matrix S.,ijl,lkl has dimension Njj I × Nik I. Now define the N × N matrix S,, by 

-S.,o,o S.,o,1 .. S . ,o , .  

Sn, l,O Sn, l ,1 .. Sn, l. p 
S. = (2.5) 

Sn.p, 0 S . ,p ,  1 "" Sn,p,p 

Then the set of equations (1.10) can be written in the matrix form ~. = S./].. Because 
of the functional form of s.,~+, we have 

E Z 

-- E cj(Xi -- x) /h)  i Kn(Xi - x) >~ O. 
n - d + l i = o  o~<ljl~p 

It follows that the N x N  matrix whose components are {s,,j,k:0~< Ijl ~<P, 
0 ~ I k] ~< p } is positive-semidefinite. It would be positive-definite if there are sufficient 
number of data points {Xi'(Xi - x ) / h  ~ support of K}. In any case, we assume hence- 
forth that the matrix S, is positive-definite and we write ft, = S~- 1 z,, as the solution of 
the set of equations (l.10). 

We now introduce the mixing coefficients. Let o~-] be the a-algebra of events 
generated by the random variables {Yj, X), a <~j <% b} and L2 ( f f ] )  denote the 
collection of all second-order random variables which are o~-~-measurable. The 
stationary processes { Y j, X2} are called strongly mixing (Rosenblatt, 1956) if 

sup ] P [ A B ] - P [ A ] P [ B ] [ = a ( k ) ~ O  a s k ~ o c ,  AE~°~ 
and are called p-mixing (Kolmogorov and Rozanov, (1960) if 

Icov{U,V}l sup = WL2(~o_~) var l /2[U]var l /2[V  ] p ( k ) ~ O  as k ~ .  
V~ L2(.~ ~) 

e(k) is the strong mixing coefficient and p(k) is the maximal correlation coefficient. It is 
well known that e(k) ~ ¼p(k). 
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2.1. Main results 

We make the following assumptions on the kernel function K and on the random 
processes { Y. X~}. 

Condition 1. (a) The kernel K e L 1  is bounded  and [lull 4p K(u)eL1 and I[ull 4v+d 
K ( u ) ~ O  as I lu l{~oo .  (b) [f~ . . . .  (u , v ; ( ) -Lo (U)L , ( v ) l<~Al<  Go for all (>~1  
wheref (u)  and f (u ,  v; f )  denote,  respectively, the probabil i ty  density of Xo and (Xo,XA. 

(c) Either  the processes {Yi, Xi} are p-mixing with ~ :  ~p(j) < ~ ;  or are strongly 
mixing with 5~= ~j" [~(j)]  1 - 2/~ < oo for some v > 2 and a > 1 - 2/v. In the latter case 
we assume further that  Ilu[]ZvP+ag(u) ~ 0  as [lu][ ~ o v .  

R e m a r k  1. Note  that  for 1 ~ ~ ~< d - 1 the components  of Xo and X~ overlap. The 
joint  densityfxo,X, in Condi t ion l(b) is then the density (X~ . . . . .  Xa+A. 

Theorem 1. Under Condition 1 and the assumption that h, --* 0, nhd, ~ oo as n --* oc , we 

have at every point of continuity o f f  

E[s ,  a] ~f(x)lJj ,  nh~, v a r [ s , j ]  ~f(x)vz j  (2.6) 

for each j with 0 <~ Ijl <~ 2p, where 

t~j = ~ uJK(u) du, 7j = ~ uJK2(u)du. (2.7) 
~a ~n 

Define 

M =  

the N × N dimensional  matrices M and F by 

Mo, o Mo,1 "'" MO,p 
Ml,o M, , I  "'" Ml.p 

M~,o Ms., -.. M~.~ 

' i o ,o  Fo, 1 
F = i,o FI,1 

Lrp, o G,, 

-" FO, p 
• . r ,  p] 

(2.8) 

where Mi.j. and Fi, j are N i x N ~  dimensional  matrices whose ((,,m) element are, 
respectively, #o,~) + g jr,,) and ?o,t:) + ojtm)" Note  that  the elements of the matrices M and 
F are simply multivariate moments  of the kernel K and K 2, respectively. 

Corollary 1. Under the conditions of Theorem 1 we have 

m.s 
S, , Mf(x)  as n --* oo 

at points of continuity of f i n  the sense that each element of the matrix S, converges in the 
mean-square sense to a constant multiple off(x). 

We now center t, 4 of (1.11) as follows. Let 

t*,j 1 "-a  [X~ - x l J  
n - d + 1  ~" [TJ(Yd+3--m(Xi)] T Kh(Xi- -x) .  (2.9) 

i=O 
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With the help of Theorem 1 we can now determine the bias contribution of the 

coefficients' estimates {bk}. We have 

" ~  [Xi - x ]  j K 1 m(xi)L - ] a ( X i -  x). (2.10) 
tnj -- tn*,j -- n -- d + 1 i=o 

Expanding m(Xi) in a Taylor  series around x for I[Xi - x l [  ~< h and since re(x) has 

continuous derivatives of total order p + 1, we have 

l (Dkm) (x )  (Xi _ x)k + ov(hp+ ' ). (2.1 l) m(Xi) 2 
O ~ < l k L ~ p +  1 

Substituting in (2.10) and using (1.12) we find 

1 hlkt (Dkm)(x) s, j+k + Op( hp+ 1)s.,j+o" 
O ~ < l k l ~ < p + l  

Using (1.10) and Dkm = k!b, we obtain 

t * j  = ~ h I*1 [b , (x )  - bk(x)]  s . j + ,  

hp+, ~, l (Dkm)(x)s , , j+  ' + op(hP+l)s,,j+o" (2.12} 
i k l = p +  1 

By Theorem 1, the last term on the right-hand side i s  op(h p+ 1) since s,j+o converges in 
quadratic mean to f(x)pj.  Now arrange the Np+ 1 elements of the derivatives 
(1/j!)(DJm)(x) for IJl = P + 1 as a column vector rap+ t(x) using the lexicographical 

order introduced earlier. Similarly let the N × Nv+ ~ matrix B, be defined by 

Sn.o,p+ l- 
B,, = S , , l f + l  (2.13) 

Sn,p,p+ 1 

where the matrix S,.i,v+ 1 is defined in (2.4). Then we can write (2.12), using (2.3) and 

the centered version of (2.2), in the matrix form 

r* = S , (~ ,  - fl) - h p+ 1B, mp+ ,ix) -F ov(hV+ 1). 

Thus 
^ / L p ~  IX ~ , , -  ~ = S ~ l z  * + hP+lS~lB ,  mp+t(x) + ovtn ~. 

By Corollary 1 we have S, converges in mean square to f ( x ) M  and, similarly, B, 

converges in mean square to f ( x )B  where the matrix B is given by 

IM0,p + ~] 
B = / MI':p+ 1 / 

[_np,p + 1~ 

(2.141t 



88 E. Masry/Stochastic Processes and their Applications 65 (1996) 81-101 

It follows that  

-- [J = S ~  1 z* + M + a M -  1 B m p +  1 (X) Jr- op(h p+ 1). (2.15) 

It is seen from (2.15) that the bias term of ft. - fl is of  order  h p+ 1 and is propor t iona l  to 

a linear combinat ions  of  the derivatives of  re(x) of  total order  p + 1. Also note that  the 

i-th element of ft, represents an estimate of the derivative of  re(x) via the relationship 

(fl,)i - hlJl(Dim)^(x) IJl- 1 
j !  , i = g l j l ' ( j )  + ~ Nk.  (2.16) 

k=O 

We next derive the asymptot ic  covariance of  the centered t.*j. Consider  an arbi t rary 

linear combina t ion  of  the t.*j, 

1 n - d  

O, = y '  cjt,*j = Y, [~(Ya+i )  - m(Xi)]Ch(Xi  - x)  (2.17) 
0~<111~< p n - d  + 1 /=o 

where 

C.(u) = Y, c j (u/h/K.(u)  =_-~ C(. /h)  
O<~lj]<~p 

with 

C(u)= Y, cjuJK(u). 
O~<lJl~p 

Put  

Zi  = [7'(Ya+i) -- m(Xi)]Ch(Xi  --  x )  

Then 

(2.18a) 

(2.18b) 

(2.19) 

1 n d 

Q" n - d + 1 ~ Z,. (2.20) 
i = 0  

We find the asymptot ic  variance of Q, from which the covariance of  the * ' tn, j S i s  

obtained. We make the following assumpt ion on the kernel K and on the r andom 

processes { Yi, Xi} .  

Condi t ion 2. (a) K ( u )  is bounded  with compac t  support  (say K ( u )  = 0 for Ilull > 1). 
(b) The condit ional  densi tyf~ . . . .  iy , ,v ,+,(u,v[y~,yz)  ~< A2 < oo for all ( ~> 1. 
(c) For  p-mixing processes we assume 

EISu(Y0[ 2 < oo, ~ p(i) < oo .  
i=1  

For  strongly mixing processes we assume that  for some v > 2 and a > 1 - 2/v, 

oo 

~ j a [ ~ ( j ) ] l - 2 / ~  < o0, 
j = l  

h o o d  o fx .  

E l l  ~(Ya) lVlXo  = u] <~ A 3 < o(3 for u in a neighbor-  
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P u t  

a2(x) = varEq~(Ye)lXo = x].  (2.21} 

Theorem 2. Under Condition 2 and the assumption that h, --+ O, nha, ~ oc as n ~ oc, we 
have the following convergence results at every continuity point x of  {az , f  }: 

{a) he. varEZo] ~ a2{x) f (x )~  C2(u)du. 
dR a 

n-d 
(b) tfl. ~ cov(Zo, Z~)= o(1). 

/ - - 1  

(c) nhd~ var[Q.]  ~ a2(x)f(x) ~ C2(u)du. 
~d 

{d) cov{(nha,,} 1/2 * a 1/2 , t,4,(nh,) t,,k} --* a2(x)f(x)Tj+k, where ),1 is defined in (2.7). 

2.2. Pro@ 

Proof of Theorem I. By (1.12) we have 

[Sn'J] = f~d ((U --  x ) / h )  j Kh(N -- E x) f (u)du.  

Under Condition 1, the function Kj, h = (1/hd)Kj (u/h) with Kj(u)= uJK(u) is an 
approximation of the identity as h -~ 0 (note that [uJl <. Iluil~J~). Hence by Bochner's 
lemma (Wheeden and Zygmund, 1977, Theorem 9.9) we have E[sn4] ~ f ( x ) l ~  at 
continuity points of f For  the variance, let 

~ X  i -- x ~ J  
Ui'j  : L J|~-h---[ K h ( X i - - X ) .  

Then by stationarity, 

_ 1 var[Uo,j]  + 2 ~ 1 var Is,,4] n - d + 1 
f = l  

= J 1  + J 2 .  

[:'or J1 we have (n - d + 1)J1 = E[U~,j] + O(1) so that 

( n - d + l ) h d j l = f ~  ( (u -x ) /h )a i [~- -~K2( (u - -x ) /h ) ] f (u )du+O(h~) .  

By Bochner's lemma we then have 

h~d l --* J'(x) ,)~( u2J K 2 (u)du = f{x) ,,~j n 

n - d +  1 cov{Uod, U/4 

{2.22) 

(2.23) 

(2.24) 
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at continuity points off .  It remains to show that nha, Jz = o(1). We decompose the sum 
in -/2 in three sums 

l n - d  X~ Icov{~oj, Ue,j}[ 
n - d + lr~=l 

1 a - ~  1 ~" 1 . - a  

L + n - d + l r  n - d + l  n - d + l  = = ( =  rrn + 1 

= J21 + J22 + J23 (2.25) 

where z,  ~ ~ such that z~,h, a ~ 0 as n ~ ~ .  For  J2~ there is an overlap between the 
components of Xo and X:. L e t f ( u ' , u " , u ' " )  be the joint density of the d + ( distinct 
random variables in (Xo, X~), where u', u", and u'" are of dimensions (, d - #, and 
d respectively. Then 

cov{ Uoj, U~.j} = ~ - 7  ~+~(u')J'(u') j'' ( u " ) J "  K (u' ,u") g ( u ' , u "  ) 

x [ f ( x '  -- hu ' ,x"  - hu",x '"  - hu'")  
- f ( x '  - hu ' ,x"  - h u " ) f ( x "  - hu",x '"  - hu"')]  

du' du" du'". 

By Condition l(b) we have 

h~-~lcov{Uoj, U~,Ar 

<~ A1 lull J` H [Ui[2Ji 
a+~ i=f  + 1 

Hence 

d - 1  

nh~,[Jz~l <~ const. ~ h~ = O ( h , ) - 0 .  
g = l  

d + E  

[uil , K ( u , u  ) g ( u ,  I~ J . . . . . .  u '" )du '  du" du'". 
i = d + l  

(2.26a) 

For J22, there is no overlap between the components of Xo and X~ so that by 
Condition l(b) we have 

Icov{go,j, ge,j}[ ~ A1 ~l]uilJ, g ( u ) d u  < oo. 
ai= 1 

Hence 

~n 

nh~lJ221 <-% const. ~ ha = O(n,h~) --* 0 (2.26b) 
, ~ = d  

by the choice of n,. For  J23 we distinguish between p-mixing and strongly mixing 
processes. For p-mixing processes we have [cov{Uo,j, Ue, i} ] ~ p(( - d + 1)var[Uo,j] 
and by (2.24) 

nh~,[J23J<~f(x)~zj(l +o(1 ) )  ~, p ( f - d + l ) - - * 0  (2.26c) 
d = rr,, + 1 



E. Masry/Stochastic  Processes and their Applications 65 (1996) 81 lOl 91 

by Condi t ion l(c). Fo r  strongly mixing processes, we have by Davydov 's  lemma (Hall 
and Heyde,  1980, Corol lary  A2) 

cov{Uoo, G,j}l  <~ 8[~(d - d + I)]I-2/"[EIUo4I~]2"L 

It is easily seen that  

EIUo,jI" <~ f~ II(u - x)/hlP 'lJI 1 ~ K ((u - x ) /h ) f (u)du  

so that 

EI,,o41 ~< ~ ~llu/hll~lJIK"(u/h) f (u)du--+f(x)  dltul[VtJlK"(u)du 

By Bochner 's  lemma, Thus, 

const. ~ const. ~ 
nha"lJ231 ~ ha(l_2/v~ ) [~({~ -- d + 1)] 1 2/~ ~< h d(l-2/v) a ~'a[,3~(/;)]1 2.,. 

"tZ d = rt n " i t  7~'?1 / = ~r n 

Choose 72, = ha" (1-z''1'" and note  that  since a > (1 - 2/v) we indeed have Gha" --, 0 as 
required. Then 

nha"lJ231 <~ const. ~ ( , [~ ( ( ) ]1  2.,,.-~0 (2.26d) 
d = ~ n  

as n -~ oc, by Condi t ion l(c). Thus be (2.23), (2.25). and (2.26) we have nha"J2 ~ 0 as 
n--~ oc and the result follows by (2.24). [ ]  

P roo f  of Theorem 2. We provide an outline of the proof  taking into account  the fact 
that some steps are similar to those in the proof  of Theorem 1. First note that 
E[Z~] = 0. Next  by condit ioning on Xo, 

var[Zo} = E [ Z  2] = E[a2(Xo)C2(Xo - x)]  = ~Ta d rr2(u)C2( ( u - x)/  h) f (u)du 

and by Condi t ion 2(a) and Bochner 's  lemma 

ha, var [Zo] --+ c r2 (x)f(x) f~, C 2 (u) du (2.27) 

at cont inui ty points of r; 2 f Next  

var [Q, ]  - 1 + 2 "~a I 1 / 1 n d + 1 vat  [Z°]  c o v { Z o , Z / I  . 
- -  n - - d +  1 / = 1  n - d +  1 

Let zt~ --+ oo such that ~z. ha" -+ 0. Write 

n - d  d -  1 rc n n - d  

J=  Z Icov{Zo, Z }h= Z + Z + Z 
/ = 1  ( = 1  d=d d = r c . +  1 

(2.28) 

~--- J 1  -~  J 2  -~- J 3 .  ( 2 . 2 9 )  



9 2  E. Masry/ Stochastic Processes and their Applications 65 (1996) 81-101 

We show that 3 = o (h~ d) from which Part (c) of the theorem follows. Part (d) follows 
from Part (c) and (2.18b). It remains to prove Part (b) of the theorem. For J~ we note 
that since the kernel K has compact support, m(Xi) is bounded in the neighborhood of 
IJXi-xJ[ <~ h. Let A4 = supj0r-xll.<h Im(X)l. Conditioning on (Yd, Yd+E) and using 
Condition 2(b) we have for 1 ~< { ~< d - 1, 

[cov {Zo, Ze}[ ~< A2E{[[W(Ya)[ + A4][ITJ(Ya+e)[ + A4]} 

x ~ [Ch(u'--x' ,u"--x")[lCh(u"--x",u'"-x'")ldu'du"du'" 
~d+g 

as in the proof of Theorem 1. Thus 

and 

[cov{Zo, Ze}l ~< const, h -ca-e) 

d - 1  

hdnlJll <~ const ~ h, t = O ( h , ) ~ 0  (2.30) 

as n ~ ~ .  For J2 we find similarly 

Y [cov {Zo,Zt}l ~< A2E{[[TJ(Ya)[ + A4][l~(ra+t)[ + A4]} JCh(u - x ) l d u  

= const, for all ( />  d. 

Thus 

ha, J2 = O (h,dz,) ~ 0 (2.31) 

by the choice of re,. For J3 under p-mixing we proceed as in the proof of Theorem 1 to 
obtain 

I,]31 ~ var[Zo] ~ p(() 
g'=~z n 

and by (2.27) and Condition 2(c) 

h,dlJ3l~0 a s n ~  ~ .  (2.32a) 

For strongly mixing processes, using Davydov's lemma, we have 

Icov{Zo,ZA[ ~< 8[c~(~ - d + 1)]l- 2/~[ElZol~]2/~. 

Conditioning on Xo and using the second part of Condition 2(b) we have 

F sup ] EIZol ~ ~< LHXo_xH<~hE[I~t'(Ya) + A,I~IXo] E[ICh(Xo - x ) l  ~] 

v [- sup ]fR ~< 2~-l[A3 + A4]Lif~-~ll~hfxo(U) JCh(u)l ~du ~< const.h -n~-~) 
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It  follows that  

const. 
h~lJ31 <~ h ~ :  ffG) [~(~)]1--2Iv 

and this tends to zero as n -~ Go under  Condi t ion  2(c) in the manner  of the p roof  of 

Theorem 1 (for the term J23). [ ]  

3. Joint asymptotic normality 

3.1. Main results 

We first obtain the asymptot ic  normali ty  of Q, of (2.17). Recall that  Q, 
is an arbi t rary linear combina t ion  of t , j s  and Qn can be written in the form 
(2.20). Let 

OZ(x) =- aZ(x)f(x)fR CZ(u ) du (3.1) 

where C(u) is defined in (2.18b). We make  the following assumption on the mixing 
coefficients. 

Condition 3. Let h, ~ 0 and nh~ --* o~ as n ~ oc. For  p-mixing and strongly mixing 

processes, we assume that  there exists a sequence {v,} of positive integers satisfying 
vn --, ~ and v, = o((nhan) x/z) such that  

(n/h~)l/2p(v,) ~ 0 ,  (n/ha.)x/zc~(v,)--*O, as n--,  oc. 

Condition 4. The condit ional  distr ibution G(ylu) of Ya given X0 = u is cont inuous  at 

the point  u = x. 

By domina ted  convergence, Condi t ion  4 implies that for each L > 0, the functions 

E [ ~ (  Ya)I(I ~( Ya)l < L)I(Xo = u] ,  E [ q ' (  Ya)2I(lgJ( Ya)] < L)[Xo = u],  are cont inuous  
at the point  x. Hence for each L > 0, b~(u) = var[TqYa)l(lgqYa)] > L)IX0 = u] is 
cont inuous  at the point  x provided m(') and a(-)  are cont inuous  at the point  x, 

Condi t ion  4 is needed in the p roof  of Theorem 3 where a t runcat ion argument  is 

employed and the continuity of 62(u) at u = x is required in (3.31). 

Theorem 3. Under Conditions 1-4, we have the following asymptotic normality as 
H---+ ~ :  

(nhdn)UZQn L~ N(O,  O2(x)) 

at continuity points x of {a 2, f} .  

P roo f  of Theorem 3 is given in Section 3.2. We first remark on the mixing 
condit ions required by Condi t ions  1-3. 
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R e m a r k  2. If h.  = An - z  (0 < 2 < l/d, A > 0), a sufficient condit ion for the mixing 
coefficients in Condi t ion 3 is a( j )  = O ( j  -a) and p( j )  = O ( j  -a) with 
d > (1 + 2d)/(1 - 2d) [with v, = (nhd)l/Z/logn]. A sufficient condit ion for the mixing 
coefficients in Condi t ions  l(c) and 2(c) is ~(j) = O ( j  ") with d > (2v - 2)/(v - 2) and 
p( j )  = O ( j  -~) with d > 1. Thus for p-mixing processes it suffices that p(j)  = O ( j - a )  
with d > (1 + 2d)/(1 - 2d) and E[ 7~(Y1)] 2 < ~ .  For  strongly mixing processes with 
E[ 7J( I+1)1 ~ < ~ for some v > 2 it suffices that  

~( j )  = O ( j - a ) ; d  > max[(1 + 2d)/(1 - 2d), (2v - 2)/(v - 2)] 

and it is seen that there is a t rade-off  between the order  of the moment  of ~(I+1) and 
the decay rate of the strong mixing coefficient: the larger the order  v, the weaker is the 
decay rate of 7( j ) .  

Corollary 2. Under the assumptions of  Theorem 3 we have that the ~ 1/2 , {(nh,) t , , j} , for 
distinct j '  s, are jointly asymptotically normal with zero means and covariance 

cov[(nhd) 1/2 t*.,,,, (nhd) 1/2 t**] - -  tr2(x)f(x)yj+k 

at continuity points x of  {tr2,f} where 7j is 9iven in (2.7). 

Since Theorem 3 holds for all linear combinat ions  of t,*j, we immediately have for 
the N x 1 lexicographically ordered vector ~* that  (nnni" LdxX/2_*,% L N(0, o.2(x) f ( x )F )  at 
cont inui ty po in t sx  of {a 2, f }  where the N x N matr ix F is given in (2.8). It now follows 
from Theorem 1 that  

(nhd)~/2S; x~, G N(0, a 2 ( x ) M -  l r M  I / f (x)]  (3.2) 

at cont inui ty  points x of {o'2,f } wheneverf (x)  > 0, where the N x N matr ix M i s  given 
by (2.8). By (2.15) we have 

ft, fl - '  , 1M= --  = a n  "~n + hp+ 1 B m p + l ( x ) + o p ( h P + l )  • 

This and (3.2) gives the following asymptot ic  normal i ty  result for the estimate ft.. 

Theorem 4. Under Conditions 1-4 and h, = O(n 1/<n+Zp+2) we have 

(nhd)l/2[fl, _ ~3 _ hP+ l M i Bmp+ s(X) 3 L N[O, a Z ( x ) M -  i F M - 1 / f ( x ) ]  

at continuity points x of  {a2 , f }  whenever f (x)  > O. 

Recall from (2.3) that ft, is the N x 1 lexicographically ordered vector of the scaled 
partial  derivatives estimates of the regression function m (x) of all orders up to a total 
order  p: Specifically, the ith element of ft, is equal to 

h~l(DJm)^(x) Jjl x 
( ~ n ) i  - -  j !  with i = gl~ll(j) + ~ N k. 

k=0 

Thus Theorem 4 establishes the joint  asymptot ic  normal i ty  of the estimates of the 
regression function m (x) and its derivatives up to a total order  p. In addition, the bias 
and var iance/covar iance  matrix (of the asymptot ic  normal  distribution) of these 
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estimators can be read from the theorem. F'or the individual partial derivatives of the 
regression function re(x) we have, in particular, 

Theorem 5. Under Conditions 1-4 and h, = O(n-1/(d + 2p+ 2) we have 

(nhan+ 21ji) 1'2 [(Dim) (x) - (/Ym)(x)] - j ! ( M -  1Bmp+ l(X))ihPn +1 -!Jl L+ 

N ~ ~2(x)(J!)2 FM-')~, ,]  [u, 7( (M 
at continuity points x of{a2,f}  wheneverf(x) > 0. Here the relationship between i and 
j is given by 

IJl- 1 

i = glTix(j) + ~ Nk, 
k=0  

( M - 1 F M  1)i,i is the (i,i) diagonal element of the matrix M - ~ F M  -1 and 
( M - l  Bmp+ 1 (x))i is the ith element of the vector M 1Bmp+l (x)). 

Theorem 5 shows that the local higher-order polynomial fit of the partial derivative 
(DJm)(x) has the following expressions for the bias and "variance": 

bias[OJm)^(x)] =j !  M -  1Bmp+ l(x))ihP, + 1 lil, 

variance [/Ym)~(x)] - a2(x)(j!)2 (M-  1FM- 1 )c i 1 
f(x) n hen + 2 lit' 

The optimal bandwidth for estimating the j th  derivative (lYm)(x) can be defined as 
the one which minimizes the sum of the squared bias and "variance" above. One finds 

~a2(x)(d + 2[j l )(M-'CM-X)i , i / f (x)~ 1/1~+2(p+1') 1 
h", ,= L 7 + j p+l,, ' 

With h.,j = O(n -1/~e+2~p+*))) and using the above expressions for the bias and 
"variance" for the estimate of Dim(x) it is seen that the rate of "mean-square conver- 
gence" is O(n -2{p+I ljl)/(d+2(p+',))) which matches the optimal rate given by Stone 
(1982) in the vector-valued i.i.d, regression setting. 

Remark 3. We note that, in the context of local polynomial regression estimation, the 
issue of selecting the bandwidth in a data-driven fashion has recently been addressed 
in the literature (see Fan and Gijbels, 1995; Ruppert et al., (1995)). In particular, in the 
context of one-dimensional regression with i.i.d, data, Fan and Gijbels (1995) pro- 
posed a variable bandwidth selection procedure (a two-stage approach) and showed 
via examples that the results are comparable to those based on nonlinear wavelet 
estimators. 

Remark 4. It is possible to extend this work by employing a symmetric positive.- 
definite d x d bandwidth matrix H,  instead of the scalar bandwidth parameter h,. In 
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this case, the kernel function (1/h)K(u/h) of this paper is replaced by [HI- a K(H-  a u) 
where ]Hf is the determinant of H. This makes the notation slightly more complex but 
the analysis will go through. See Robinson (1983) and Ruppert and Wand (1994) 
where a bandwidth matrix is utilized. 

Remark 5. The proof of Theorem 3 employs the big block-small block procedure. It 
was suggested by a referee to use instead a recent central limit theorem for stationary 
strongly mixing processes {X~} (e.g. Theorem 4 of Doukhan et al., (1994)). Unfortu- 
nately this does not appear to be feasible for two reasons: In Theorem 4 of Doukhan 
et al. a central limit theorem is established for Y,~'= 1X~ under the weak assumption 

f :o a- ' (u) [Qxo(U) ]: du < 0(3 (,) 

where QXo is the quantile function of [Xo[ and c~ l(u) is the inverse of the mixing 
function ~(u) = c%1. In our context we seek to establish the asymptotic normality of 
the partial sums 27= 1 Z.,i of a triangular array {Z..i} where 

Z,,i = (h~ / 2) [ 7j ( rd + i) -- m (Xi) ] Cn, (Xi - x). 

Direct application of a central limit theorem for a single sequence {X~} to the 
triangular array {Z,.i} is not feasible. Moreover, even if it were possible, one needs to 
impose an integrability condition like (*) on the quantile function Qz of ]z.,~]. Such 
a condition is utterly unverifiable given the dependence of Z,,~ on th"e' bandwidth h,, 
the regression function m (.), and the kernel K(.) .  Ideally, one would like to impose 
a condition on the quantile functions of the underlying processes { Yi, X~} but we see 
no clear way of translating it to a condition on the quantile function of ]Z,,il. 

3.2. Proofs 

Proof of Theorem 3, We employ the big block-small block procedure. Put 

[ h d ~ l / 2 ~  . . .  Z,, i=~,, , ,  --i, i = 0 , 1 ,  , n - d  (3,3a) 
n 1 

W, = Z Z,,i. (3.3b) 
i = O  

Then 

[ n ] 1/2 1 W n - d + l .  
(nh~)l/2Q"= n - d  + l ( n - d +  1) t/z 

If suffices to show that 

W, L N(0,02(x)). (3.4) 

Note that by Theorem 2 we have 

n - - 1  

var[Z.,o] ~ 02(x); ~ Icov{Z.,o,Z.,e}] = o(1). (3.5) 
f = l  
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Par t i t ion  the set {0, 1, ... ,n - 1} into 2k + 1 subsets with large blocks of size u = u, 

and small blocks of size v = v, where 

Define the r a n d o m  variables 

j~u+v)+u 1 

r/J = E Zn .  i, 
i j(u+v) 

( j+l)(u+v)  1 

~j = E z , , , ,  
i=j(u+v)+u 

n - 1  

~ = ~ Z.,~. 
i -k (u+v)  

Write 

(3.6) 

0 ~ j  ~< k - 1, (3.7) 

0 <~j ~< k - 1, t3.8) 

(3.91 

k - 1  k - 1  

w,= 2 r/v+ Z ~j+~k 
j = O  j - 0  

= W', + W" + W ; ' .  (3.10) 

We show that  as n --* oo, 

-I E[Wn]2--*  0, 1E[W~"]2 ~ 0, (3.1 la) 
n n 

k 1 

E[exp(i t  W;,)] - I ]  E[exp(itr/fl] -~ O, (3.11b) 
j = O  

1 k 1 
- Z E[r/~]-~O2(x), t3.llc) 
n j o 

1 k 1 
E E[r/~t{Ir/jl > ~0(x),/~}] -,o t3.11d) 

for every c > 0, Eq. (3.11a) implies that  W~ and W;," are asymptot ica l ly  negligible, 
(3.11b) shows that  the s u m m a n d s  {r/t } in W', are asymptot ica l ly  independent:  and 
(3.11c) and (3.11d) are the s tandard  L indeberg -Fe l l e r  condit ions for asympto t ic  
normal i ty  of W', under  independence.  

We now prove  (3.1 l a)-(3.1 ld) focusing on the s trongly mixing case (which is more  
inw)lved) and we r emark  on the differences for p-mixing processes. We first choose the 
large block size u,. Condi t ion  3 implies that  there exist integers q, ~ oo such that  for 
s t rongly mixing processes, we have 

q,v, = o((nha,)l/2), q,(n/ha,)l/Z~(v,) ~ 0  as n--*oc, (3,12'1 

[for p-mixing processes, q,(n/h~,) l /2p(v,)~0 as n -~  oo ]. N o w  define the large- 
block size u, be u, =[.(nhd)~/2/q,J. Then  using (3.12) and simple algebra show 
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that  the following propert ies hold as n ~ oc • 

v , /u ,  ~ O, u , /n  ~ O, u,/(nh~) 1/z --* O, (3.13) 

n 
- -e(v . )  --, 0 (3.14) 
IA n 

[for p-mixing processes (3.14) is proved via the inequality e(v,) ~ p(v,)/4]. We now 
establish (3.1 la). 

E [ W 2 ]  2 = var ~ = var[~i]  + 2 ~  cov{~i,~j} - F~ + F2. (3.15) 
l _ j = O  d j = O  i = O j = O  

i # j  

By stat ionari ty and (3.5) 

var[~j]  = v .var[Z . ,o]  + 2v. 1 - cov{Z . ,o ,Z . , i }  = v.O2(x)(1 + o(1)). 
i=l 

(3.16) 

Thus  

F1 = k,v, O2(x)(1 + o(1)) ~ nv. nv, = o(n). (3.17) 
V n -b U n U n 

Next  consider the term F2 in (3.15). With rj = j ( u  + v) + u, we have 

k - 1  k - 1  v - 1  v - 1  

F 2 =  Z Z Z Z cov{Z .... + t , ,Z ,  rj+~2}. (3.1S) 
i = 0 j = 0  ( 1 = 0  g 2 = 0  

iv~ j 

since i C j, Irl - rj + (1 - •2[ i> u so that 

n - u - 1  n - 1  

Ir2l ~ 2 Z Z Icov{Z.,~,,Z., t=}l.  
EI=O E2 =El +u 

Since u = u. ~ oe we can assume that u. > d so that  the r andom vectors X~ 1 and 
Xe~ (appearing in Z.,~ 1 and Z.,t~ respectively) do not  have common  components .  By 
stat ionari ty and (3.5) 

n--1 

IF2I ~< 2n ~ I cov{ / , . o ,Z . ,AI  = o(n). (3.19) 
j = u  

Hence by (3.15), (3.17), and (3.19) we have 

1 
- E [ W " ] z ~ O  as n ~ o c .  
?t 

Using a similar argument ,  we find together  with (3.5) and (3.13) 

n - 1  

1 E [ W ~ ' ] 2  < l [ n  -- k(u + v)] va r [Z , .o ]  + 2 ~ cov{Z..o,Z,,~}] 
/~ /2 j = l  

u, + V, O2(x ) + o(1) ~ 0  as n ~ o o .  (3.20) 
n 
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In order  to establish (3.1 lb) we make  use of the following l e m m a  due to Volkonski i  

and Rozanov  (1959). 

Lemma.  Le t  V~ . . . . .  Vs be random variables measurable with respect to the a-algebras 

~ J ~  ~ "  respectively with 1 <~ i I < Jl < i2 < < j j  <~ n, 0+1 --,J: >~ w >1. 1 and 

]Vii ~< I for  j = 1 . . . . .  J. T h e n  

E[j=FI1V,J- _IEeV,3 ~< 1 6 ( J -  1)~(w). 

We note  tha t  by (2.19), (3.2) and (3.7) t/, is a function of the r a n d o m  variables 

{ X a ( u + v ) + l  . . . . .  Xa(u+v)+u+d-1; Ya(u+v)+d . . . .  ,Ya(,+v~+,+d 1} or qa is ,¢-{2-measurable 
with i a = a ( u + v ) +  1, j a = a ( u + v ) + u + d -  1. Also 0 + l - J : = v - d + 2 ,  Hence 
with Vj = e i'"j we have 

E[exp( i t  k , E[exp(it t / f l]  n W'.)] -- ~ 4 16k.c~(v. - d + 2 ) ~  - -~(v . )  (3.21) 
j =  0 Un 

which tends to zero by (3.14). 
Next  we establish (3.11c). By s ta t ionar i ty  and (3.16), with u, replacing v,, we have 

var [ tb ]  = var[r/o ] = u, O2(x)(1 + o(1)) 

so that  

1 k x 
- ~ EEq~] = k"u"o2(x)( l  + o ( 1 ) ) ~  02(x) (3.22) 
n j=  o n 

since v . / u .  --+ O. 

It remains  to establish (3.11d). We employ  a t runca t ion  a rgument  since 7' is not 
necessarily a bounded  function. Let 

aL(y) = y l { l y l  <~ L }  (3.23) 

where L is a fixed t runcat ion  point.  Put  

and 

Put  

mL(x) = EEaL(7,(Yd))LXo = X], 

o (x) = (x) c2(y) dy. 

Z~" = [aL(7,(Ya+i)) -- mL(Xi)] Ch(Xi - x); 

n I n--I 
Y L - L  W ,  = Z (Z, , i  z L = Z. , i ,  - -  .,i). 

i = 0  i = 0  

(3.24) 

(3.25) 

(3.26) 

Z L h d/2 7 L  .,i . . . . .  i (3.27) 

(3.28) 
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Using the fact that  C(u) is bounded  (since K is bounded  with compact  support), we 

have 

const. Z L I .,il <~ h,----~. 
~ n  

This implies by (3.7) that  

Un 
max ]~/~[/xfn ~< const  . . . .  ~ 0  

o<.j.<k-1 "(nh~,) '/~ 

by (3.13). Hence when n is large, the set {Iq/L[ /> OL(X)~-n } becomes an empty  set and 
thus (3.11d) holds. Consequent ly  (3.1 la)-(3.1 ld) hold for W,  L so that  

(n ha") 1/2 WL, ~ N(0, 02 (x)). (3.29) 

In order  to complete the proof, namely to establish (3.11d) in the general case, it 

suffices to show that  

(nhd,)varEl~', L] --*0 as first n ~ and then L ~ o 9 .  (3.30) 

Indeed, 

I Eexp( i tx / (n  ha,) W,) - exp( - t20 z(x)/2)l 

= [ E e x p ( i t x / ~ , ( w L ,  + I~,L)) - - e x p ( -  tzOZ(x)/2) + e x p ( -  tzo2(x)/2) 

-- exp( -- t202(x)/2)[ 

~< [Eexp ( i tx /~a"  W,  L) - exp( - t202(x)/2)[ + E[exp(itx/~a" I~ ,  r) - 11 

+ [exp( - tzOZ(x)/2) - exp( - tzOZ(x)/2)f. 

Letting n ~ ~ ,  the first term goes to zero by (3.29) for every L > 0; the second term 

converges to zero by (3.30) as first n ~ ~ and then L -* ~ ;  the third term goes to 
zero as L --* ~ by domina ted  covergence. Therefore, it remains to prove (3.30). Note  
that  - L W,  has the same structure as W, except that ~(Yi)  is replaced by 

T ( Y i ) I { I T ( Y i ) I  > L}. Hence, as in Theorem 2, 

lim nh~ v a r [ W  L] = v a r [ T (  Yd)I { IT(Yd)[ > L} [Xo = x ] f ( x ) ~  C2(y)dy.  (3.31) 
3~ d 

n ~  

By domina ted  convergence the r ight-hand side converges to 0 as L ~ ~ .  This 
establishes (3.11d) and completes the p roof  of Theorem 3. [ ]  
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