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Abstract

We consider the estimation of the multivariate regression function m(x,,....x,) = E
[P(Y)NX, =x,,....X;=x,], and its partial derivatives, for stationary random processes
{Y., X} usinglocal higher-order polynomial fitting. Particular cases of ¥ yield estimation of the
conditional mean, conditional moments and conditional distributions. Joint asymptotic nor-
mality is established for estimates of the regression function and its partial derivatives for
strongly mixing and p-mixing processes. Expressions for the bias and variance/covariance
matrix (of the asymptotically normal distribution) for these estimators are given.

Keywords: Multivariate regression estimation; Local polynomial fitting; Mixing processes;
Joint asymptotic normality

1. Introduction

Let {Y;, X;}i* _, be jointly stationary processes on the real line and let ¥ be an
arbitrary measurable function. Assume that E|¥(Y,)| < o¢ and define the multivari-
ate regression function

m(xlv"‘axd):E[qI(}]d)‘Xl:x11~"7Xd:xd] (1[)

where the dimension d > 1. The regression function m(x, ..., x,) plays an important
role in data analysis, filtering (X, =Y, + ¢), and prediction (Y; = X;., —- r-step
prediction) of time series. Qur goal is to estimate the regression function m(x,, ..., x,)
and its partial derivatives from the observations {Y, X;}7_,. There is fairly extensive
literature on the use of the Nadaraya (1964)-Watson (1964) estimator in connec-
tion with regression estimation. See, for example, Mack and Silverman (1982), and
Hirdle (1990) and the references therein in the ii.d. case. For dependent data, see
Rosenblatt (1969), Robinson (1983, 1986}, Collomb and Hirdle (1986), Roussas (1990),
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Truong and Stone (1992) Roussas and Tran (1992), Fan and Masry (1992) among
others.

The local polynomial fitting approach was introduced originally by Stone (1977)
and studied by Cleveland (1979), Fan (1992, 1993) and many others (see Fan (1993) for
additional references). Local polynomial fitting has significant advantages over the
Nadaraya—-Watson regression estimator: For local linear fitting in the univariate case
it has been shown to reduce the bias (see Chu and Marron, 1991, Fan, 1992); it adapts
automatically to the boundary of design points (see Fan and Gijbels, 1992; Hastie and
Loader, 1993; Ruppert and Wand, 1994); - no boundary modification is required. It is
superior to the Nadaraya-Watson estimator in the context of estimating the deriva-
tives of the regression function (see Fan and Gijbels, 1992; and Ruppert and Wand,
1994); in particular, the differentiability of the kernel is not required. All the above-
cited works consider i.i.d. setting. In a recent work, Masry and Fan (1996), established
the asymptotic normality of the univariate regression function m(x) and its derivatives
(d = 1) for dependent data using local higher-order polynomial fit.

The purpose of this paper is to formulate the multivariate regression estimation
problem in the general setting given in (1.1), in conjunction with local higher-order
polynomial fitting, and establish the joint asymptotic normality of #i(x4, ..., x,) and its
partial derivatives up to a fixed total order p. Expressions for the bias and variance/
covariance matrix (of the joint asymptotic distribution) of these estimators are given.
We remark at this point that in the case of i.i.d. setting {Y;, X;} with m(x) = E[Y;]
X, = x] where X;is R? - valued random variable, Ruppert and Wand (1994) consider
local quadratic fit and provide leading bias and variance terms for #i(x) and its
derivatives. Qur setting is completely different from Ruppert and Wand (1994) in that
e We consider regression estimation from a vector of past data as in (1.1).

e The processes {Y;, X;} are individually and jointly dependent.

e Higher-order local polynomial fit (of arbitrary order p) is considered.

e Joint asymptotic normality of the estimates of m(x) of (1.1) and its partial deriva-
tives is established along with its implications for the bias and variance/covariance
matrix of the estimators.

Before we formulate our problem we discuss potential applications. We first remark
that the function ¥ in the definition of the regression function m({x) in (1.1) is arbitrary.
Some special cases of importance in practice are: (a) ¥(y) = y corresponds to estima-
ting the condition mean of Y; and its derivatives from a vector of past data
(Xy,..., Xy (b) P(¥) = I{Y < y} corresponds to estimating the conditional distribu-
tion m(x)=P[Y; € y|X{ =xq,...,Xq = x4] and its derivatives from past data.
(c) ¥(y) = y* corresponds to estimating the conditional second moment from past
data. Prediction problems are also included in our formulation: Put Y; = X;,, for
some r>=1. Then the regression problem (1.1) reduces to estimating
E[¥Y(X4:+,)|X( = X1, ...,X4 = x4]. An important area of application of the resuits of
this paper is the estimation /identification of the functional structure of nonlinear time
series commonly encountered in econometric time series (Tjostheim, 1994). Consider,
for example, the popular ARCH time series

Xi=filXj—t, . X; )+ (X ., X e
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where the functions f; and f, > 0 are to be determined via estimation. When the ¢;s
are i.i.d. with zero mean and variance ¢ then

E[X;|X; =X, X g=x4] = fi (x1,....Xg),
var[ X1 X;oy = X, Xjog = Xg] = 67 f3(X 1, oo Xa),

and regression estimation is the natural approach (Masry and Tjostheim, 1995). The
general framework (1.1) of local polynomial fitting considered in this paper can be
used to provide estimates of f; and of ¢* 7 and of their partial derivatives and we can
thus establish their asymptotic normality.

We formulate our problem as follows. Let

Xi:(X.i+1’...’Xj+d) (12)
m(x) = E[P(Y)IX, = x]. (1.3)

We assume throughout the paper that derivatives of total order p + 1 of m(z) exist and
are continuous at the point x. We can approximate m(z) locally by a multivariate
polynomial of total order p:

1
miz)~ Y —D'm(y),-.(z —x)* (1.4)

!
0<Ik\<pk'

where we use the notation

d
k=(kyookg), Kl=ki!x ... xkd [kl=Y k. (1.5)

i=1

= (1.8)
d

Let K(u) be a nonnegative weight function on R? and h be a bandwidth parameter.
Given the observations { Y, X;}!_,, consider the multivariate weighted least squares

i=0

n—d

2
Y l:lll(yd+i) — Y b -~ x)k} K({X; —x)/h). (1.9)
i=0 0<|kl<p

Minimizing (1.9) with respect to each b, gives an estimate b,(x) and, by (1.4). k'h,(x)
estimates (D*m)(x) so that (D*m)'(x) = k!b,(x). The minimization of (1.9) leads to the
set of equations

= 3, HM Bk(x)sn,j-Hn O<|jl<p (1.10)

O<|k<p
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where

1 n_d Xi—‘x J
T dT1 ig,o P(Ya:) [—‘h—] K, (X; — x), (1.11)

baj =

| X —x
s"'f‘n—d+1iz[ h

=0

]j Ky (X — %), (1.12)

Ka(u) =£3K(u/h). (1.13)

The organization of the paper is as follows. Section 2 establishes the quadratic-
mean convergence of s, ; the centering of ¢, ;, the bias of the estimates Bj, and the
asymptotic covariance structure of the centered f,;. Section 3 derives the joint
asymptotic normality of the centered ¢, ; and of the regression function’s estimate #i(x)
and its partial derivatives and provides expression for their bias and vari-
ance/covariance matrix (of the asymptotic distribution). We remark that a compan-
ion paper (Masry, 1996) provides uniform rates of almost sure convergence of ri(x)
and its derivatives.

2. Mean-square convergence

We first note that the set of equations (1.10) can be cast in matrix form by using
a lexicographical order in the following manner. Let

i+d-—1
N. =
-()
be the number of distinct d-tuples j with |j| =i Arrange these N; d-tuples as
a sequence in a lexicographical order (with highest priority to last position so that
(0, ...,0,i) is the first element in the sequence and (i, 0, ...,0) the last element) and let

gi * denote this one-to-one map. Arrange the Ny, values of t,; in a column vector
7, according to the above order. Then

(T ik = tng ke (2.1)
Define
Tn,0
T, = T'":" 2.2)
Tu, p

and note that the column vector 7, is of dimension N =37 _ N;x 1. Similarly
arrange the distinct values of W*b,,0 < |k| < p, as a column vector of dimension
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N x 1 in the form

ﬂn,O
B.= ” (2.3)
B..»

Finally, arrange the possible values of s, ;.4 by a matrix §, ; x in a lexicographical
order with the (#,m) element of S, ; 4 given by

[Sn.\j\,\m]/,m = Sn,g;1(0)+ gy k1 (m)- (2.4)

The matrix S, j; ) has dimension N x N,,,. Now define the N x N matrix §, by

Sn,O,O Sn,O,l S'I,O-P
Snz \'S'n,l.O Sn,l,l ‘.S‘n,l.!J ) (25)
Sn.p,o sn,p,l S"-PJ’

Then the set of equations (1.10) can be written in the matrix form t, = S, f,. Because
of the functional form of s, ;., we have

Y GCkSnjt
O<iflspO<iklsp

_ 1 n—d ; 2
=T arl i;) [0 S%SP ¢(Xi —x)/h) } Ky(Xi —x) 2 0.
It follows that the N XN matrix whose components are {s, ;0 <I|j|<p,
0 < |k| < p} is positive-semidefinite. It would be positive-definite if there are sufficient
number of data points {X;:(X; — x)/hesupport of K}. In any case, we assume hence-
forth that the matrix S, is positive-definite and we write B, = S, ! 7, as the solution of
the set of equations (1.10).

We now introduce the mixing coefficients. Let #) be the o-algebra of events
generated by the random variables {Y X, a <j<b} and L, (¥#)) denote the
collection of all second-order random variables which are #%-measurable. The
stationary processes {Y;, X;} are called strongly mixing (Rosenblatt, 1956) if

sup |P[AB] — P[A]P[B]}|=ak)—>0 ask-—>o0,

Ae7°,
Be 7

and are called p-mixing (Kolmogorov and Rozanov, (1960) if

lcov{U, V}|

u =
1/2 1
UeLz(f?I) var'/ [U]VEII‘ IZ[V]
Ve LZ(RI,?“)

p(k) >0 ask—coc.

a(k) is the strong mixing coefficient and p(k) is the maximal correlation coefficient. It 1s
well known that a(k) < ip(k).
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2.1. Main results

We make the following assumptions on the kernel function K and on the random
processes {Y;, X;}.

Condition 1. (a) The kernel KeL,; is bounded and ||u|[*’ K(u)eL, and ||u|[*?*¢
Ku)—-0 as |lul| >c0. (D) |fs,@vd) —fo (@) f, ()| <A< oo for all /21
where f(u) and f(u, v; /) denote, respectively, the probability density of X, and (Xq, X,).

(c) Either the processes { Y, X;} are p-mixing with 32 | p(j) < oo; or are strongly
mixing with Y22, j*[«(j)]' "> < oo forsome v > 2and a > 1 — 2/v. In the latter case
we assume further that ||u||>*? ¢ K(u) —» 0 as ||u|| - co.

Remark 1. Note that for 1 </ < d — 1 the components of X, and X, overlap. The
joint density fy, x, in Condition 1(b) is then the density (X, ..., X4/).

Theorem 1. Under Condition 1 and the assumption that h,, — 0, nh? — o0 asn — oo, we
have at every point of continuity of

Elsn;] > /), nhy var [sn;] = f ()72 (2.6)
for each j with 0 < |j| < 2p, where
p;= [ WK@du, 7= (/K u)du. (2.7)
R? R?

Define the N x N dimensional matrices M and I' by

MO,O MO,I Tt Mo,p FO,O FO,I rO,p
M= MI,O Ml,l Ml,p I = 'I—VI,O Fl,l -I—‘l,p (28)
Mp,O Mp,l Mp,p rp,o Fp,l Fp,p

where M; ; and I';; are N;x N; dimensional matrices whose (£,m) element are,
respectively, fy, ¢y +g,om a0d Y4,y +4,0m- Note that the elements of the matrices M and
I' are simply multivariate moments of the kernel K and K?, respectively.

Corollary 1. Under the conditions of Theorem 1 we have
S, — M f(x) as n — oo

at points of continuity of fin the sense that each element of the matrix 8, converges in the
mean-square sense to a constant multiple of f(x).

We now center ¢, ; of (1.11) as follows. Let

th; “’——ﬁ-l Z [P(Y,e) — (X)][ ] K, (X; —x). 2.9
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With the help of Theorem 1 we can now determine the bias contribution of the
coefficients estimates {,}. We have

1
n—d+1

t,,yj - tj:‘-’ -

n—d . j
Y. m(X) [X—hi‘] K (X — x). (2.10)
i=0

Expanding m(X;) in a Taylor series around x for ||X; — x|| < h and since m(x) has
continuous derivatives of total order p + 1, we have

1
m(X)) = Y —'(D"m)(x) X; —x\ + 0,(h"" ). (2.11)
O<|kjsptl ™
Substituting in (2.10) and using (1.12) we find
baj— l:.' =
! ’ 0< Ucé p+1 k!

Using (1.10) and D*m = kb, we obtain
th;= Y W9 [By(x) — be(X)]Sn 4

O<|ki<p

1
- hlkl(ka)(x) Spj+u T Up(hp+1)5m,‘+o~

-ty %(D"m)(x) Suj ok T 0ph? IS0 50 (2.12)
i=p+1H
By Theorem 1, the last term on the right-hand side is 0,(h"" ) since s, ;4 CONVErges in
quadratic mean to f(x)y. Now arrange the N,.; elements of the derivatives
(1/iND m)x) for |[jl=p+1asa column vector m, . (x) using the lexicographical
order introduced earlier. Similarly let the N x N, matrix B, be defined by

Sn.O,p+ 1

Suipe
B,=| "7

S ppti
where the matrix S, ; ,+ is defined in (2.4). Then we can write (2.12), using (2.3) and
the centered version of (2.2), in the matrix form
= Su(Bo— B) — W By (x) + 0, (771).
Thus
B,— B=5;"cf +h* 1S, Bym,, (x) + 0, (W7 ).
By Corollary 1 we have S, converges in mean square to f(x)M and, similarly. B,

converges in mean square to f(x)B where the matrix B is given by

MO,p+1

Ml.p+1

B= (2.14)

M

pptl
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It follows that
ﬁn—pzs,,‘lr,’f+h"“M‘lepH(x)+op(h”“). (2.15)

It is seen from (2.15) that the bias term of §, — Bis of order h”** and is proportional to
a linear combinations of the derivatives of m{x) of total order p + 1. Also note that the
i-th element of B, represents an estimate of the derivative of m(x) via the relationship
g _WDmre U
(B = D gljll(.l) + Z Ny (2.16)
J: k=0
We next derive the asymptotic covariance of the centered ¢ ;. Consider an arbitrary
linear combination of the ¢,

. 1 n—d
0., = . <|§_‘7<pcjtn,j = n_d+1 i=zo [P(Yii) — mX)ICuX; — x) (2.17)
where
. 1
Cy(u) = Z c;u/h) K,(u) = Iz C(u/h) (2.18a)
o<ljlsp
with
C(u) = Z cjqu(u). (2.18b)
O<ljl€p
Put
Z;=[P(Y4+) — mX)]Cp(X; — x) (2.19)
Then
1 n—d
On = migo Z;. (2.20)

We find the asymptotic variance of Q, from which the covariance of the ¢} /s is
obtained. We make the following assumption on the kernel K and on the random
processes {Y;, X.}.

Condition 2. (a) K(u) is bounded with compact support (say K(u) = O for ||u]] > 1).
(b) The conditional density f,, . v.v, (@ VIy,y:) <Ay <o forall £ = 1.
(c) For p-mixing processes we assume

E[¥(Y)P <o, ¥ pli) < oo

i=1
For strongly mixing processes we assume that for some v > 2 and a > 1 — 2/v,
Y ile(N] " <o, E[P(Y)|Xo=u] <A;< oo for uin a neighbor-

j=1
hood of x.
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Put

a?(x) = var[P(Y )| X, = x]. (2.21)

Theorem 2. Under Condition 2 and the assumption that h, — 0, nhi — oc asn — o, we
have the following convergence results at every continuity point x of {o*.f }:

(a) h var[Z,] —»az(x)f(x)J C*(u)du.

n—d
®) K'Y cov(Zo.Z,) = o(1).
=1
(©) nhyvar[Q,] - o> (x)f(x) | C*(u)du.
Rd
(d) covi(nhi)'? ¢} . (nh3) 26k} — 0%(x) f(x);+4. Where y; is defined in (2.7).

2.2. Proofs

Proof of Theorem 1. By (1.12) we have
Elins] = | (0 =0/ Kyt — 2 .
Rd
Under Condition 1, the function K;, = (1/h)K; (u/h) with K;(u) =u'K(u) is an
approximation of the identity as h — 0 (note that |u’| < ||u]|""). Hence by Bochner’s

lemma (Wheeden and Zygmund, 1977, Theorem 9.9) we have E[s, ;] - f(x)y; at
continuity points of f. For the variance, let

X, —x}
Ui :[ h x:l Ku(X; — x). (2.

Then by stationarity,

[
2
o

—d

1 " 14 i
var[s, ;] =———|var[Uo ;] +2Y (1 —~——— Jeov{Uy; U,
n—d+1 ; n—d+1

=1

:J1+J2. (

o
o]
(98]

For J; we have (n —d + 1)J, = E[U{ ;] + O(1) so that
|1
(n—d+ Dhyd, = j (e — x)/h)¥ [FKZ((M —x)/h)}f(u)du + O(hn).
Rd
By Bochner’s lemma we then have

nhiJ, —>f(x)j u¥ K*(u)du = f(x)y, (2.24)

R
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at continuity points of f. It remains to show that nhi.J, = o(1). We decompose the sum
in J, in three sums
1 —d
——dT'l— Z ICOV{UO s U/j}l

1 n—d

1 a1 1

Y o+

:n—d—f—lle n—d+ 1,7, n—d+1(:§+l
=hy+ s+ s (2.25)

where 7, — co such that n,h¢ - 0asn— oo. For J,; there is an overlap between the
components of X, and X,. Let f(#',u”",u’"") be the joint density of the d + ¢ distinct
random variables in (X,, X,), where #', &', and #'"" are of dimensions 7, d — ¢, and
¢ respectively. Then

cov{ly,;, U; j} = F}—,L @) ) (W) K@ )Kwu' u')
x[f(x' — hu',x" — hu”",x"" — hu'")
— f(x' — hu',x" — hu")f(x" — hu" X" — hu'")]
du' du” du'.
By Condition 1(b) we have
h = cov{Us. ;, Us j} |

d+¢
SAIJ ]—[IuI’ H [ ) T lwliK ', u")K (e, 0’ )du' du” du'”.
Rd

i=/+1 i=d+1

Hence
nhi| J,;| < const. Zh/ O(h,) = 0. (2.26a)

For J;,, there is no overlap between the components of X, and X, so that by
Condition 1(b) we have

d 2
lcov{Us,;, U ;}| < Al[ I—[Iu,-lij(u)duj' < 0.
RYi=1
Hence
nhilJ,,| < const. Z h=0(m,hl) -0 (2.26b)
=

by the choice of n,. For J,5; we distinguish between p-mixing and strongly mixing
processes. For p-mixing processes we have [cov{U, ;, U ;}| < p(¢ —d + 1)var[U, ;]
and by (2.24)

W Josl <f@yy(1 +0(1) Y pll —d + 1) =0 (2.260)

f=n,+1
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by Condition 1(c). For strongly mixing processes, we have by Davydov’s lemma (Hall
and Heyde, 1980, Corollary A2)

covi{Uy , U, I < 8[aft —d + )] LE| Uy 17"

It is easily seen that

1 :
ElU ;" <f (e —x)/hll"”‘WK“((u —x)/h)f(u)du
R4 n

so that

1 . i
By~ E Uy 1 < f [Wnu/hnv‘”K"(u/h)}f(u)du =) LJ‘"H”‘”K"(")‘“‘

By Bochner’s lemma. Thus,

const. 2 const. X .
nhiidss| < hdu—zm Z [a(f —d + D] W g m Z Lo 2.

Choose 7, = hi' 2™/ and note that since a > (1 — 2/v) we indeed have m,hd — 0 as
required. Then

nhi)Jy5| < const. 2 o)) 2 -0 (2.26d)

f=n,

as n — s¢ by Condition 1(c). Thus be (2.23), (2.25). and (2.26) we have nhdJ, — 0 as
n— oo and the result follows by (2.24).

Proof of Theorem 2. We provide an outline of the proof taking into account the fact
that some steps are similar to those in the proof of Theorem 1. First note that
E[Z;] = 0. Next by conditioning on Xj,
varlZo} = EZ2] = E[a*(Xo)CHXo 1) = | 0?10 C (1 )/ )l
Rd
and by Condition 2(a) and Bochner’s lemma

hivar [Zo] — ¢*(x) f(x) J C2(w)du (2.27)

at continuity points of 62 f. Next

1 2 n_d 14
=— — ! - {Z6.2,}.
var[Q,] n~d+1var[20]+n¢d+1 /;1[ n_dr I]COV{ 0- Ly

(2.28)

Let m, » oo such that m, h% — 0. Write

J = Z lcov{Zo, Z,}| = 2 + 2 + Z =J, +J, + J. (2.29)

/=1 f=m,+ 1
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We show that J = o(h, ?) from which Part (c) of the theorem follows. Part (d) follows
from Part (c) and (2.18b). It remains to prove Part (b) of the theorem. For J; we note
that since the kernel K has compact support, m(X;) is bounded in the neighborhood of
[IX; —x|| < h. Let Ay = supx—,; <» |m(X)|. Conditioning on (Y, Ys+,) and using
Condition 2(b) we have for 1 </ <d — 1,

lcov{Zo, Z,}| < A E{[1P(Ya)l + AJ[1¥(Yasr)l + Aal}
Xj lch(ul __x/’ u' — x”)HCh (u// _ xu’um __xm Idu/ du’ du’”
Rd+f

as in the proof of Theorem 1. Thus
[cov{Z,, Z,}| < const. k=@~

and

1

d
hi|Ji] < comst Y. hy = O(h,) >0 (2.30)
=1

as n — oo . For J, we find similarly

lcov{Zo,Z,}| < AE{[|¥(Ya)| + AP (Yasr)l + Ad}l:J‘R"lCh(u -x)ldu:|

= const. for all £ > d.
Thus
hJ, =0Mhin,)—0 (2.31)

by the choice of n,. For J; under p-mixing we proceed as in the proof of Theorem 1 to
obtain

15l < var[Zo] 3 p(¢)

t=mn,
and by (2.27) and Condition 2(c)
L -0 asn— oo. (2.32a)
For strongly mixing processes, using Davydov’s lemma, we have
[cov{Zo,Z,}| < 8[af —d + 1)]' "*/[E|Zo|"]*".
Conditioning on X, and using the second part of Condition 2(b) we have

ElZ]" < [“Xf_‘iﬁg,,Etlv’m) + A4I%J]Ench(xo ~ )7

<274y + AX][,,uff,‘;,, on(u)]j |Col))” das < const. k40D,
Rd
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It follows that

const. X o
1) Js Sm Z [a()]' ~%
n rf=n,

and this tends to zero as n » oo under Condition 2(c) in the manner of the proof of
Theorem 1 (for the term J,5). [

3. Joint asymptotic normality
3.1. Main results

We first obtain the asymptotic normality of Q, of (2.17). Recall that Q,
is an arbitrary linear combination of /s and Q, can be written in the form
(2.20). Let

0% (x) = az(x)f(x)J C*(u)du (3.1)

where C(u) is defined in (2.18b). We make the following assumption on the mixing
coefficients,

Condition 3. Let h, —» 0 and nh? — o as n —» oc. For p-mixing and strongly mixing
processes, we assume that there exists a sequence {v,} of positive integers satisfying
v, — oo and v, = o((nh%)"/?) such that

(/B2 p(v,) >0, (n/hY?a(v,) >0, asn-— oc.

Condition 4. The conditional distribution G{y|u) of Y, given X, = u is continuous at
the point u = x.

By dominated convergence, Condition 4 implies that for each L > 0, the functions
E[¥(Y)I(|P(Y,)| < L)|(Xo = u], E[P(Y*I(¥(Y,)| < L)| X, = u], are continuous
at the point x. Hence for each L >0, 67 (u) = var[W(Y)I(|P(Yy)] > L)\ X, = u] is
continuous at the point x provided m(-) and o(-) are continuous at the point x.
Condition 4 is needed in the proof of Theorem 3 where a truncation argument is
employed and the continuity of 57 (u) at # = x is required in (3.31).

Theorem 3. Under Conditions 1-4, we have the following asymptotic normality as
n— oo

(nhd)'2Q, 5 N(0,0%(x))

at continuity points x of {¢*, f}.

Proof of Theorem 3 is given in Section 3.2. We first remark on the mixing
conditions required by Conditions 1-3.
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Remark 2. If h, = An"* (0 < A < 1/d, A > 0), a sufficient condition for the mixing
coefficients in Condition3 is «(j)=0("% and p(j)=0("% with
a> (1 + Ad)/(1 — id) [with v, = (nh%)'/?/logn]. A sufficient condition for the mixing
coefficients in Conditions 1(¢) and 2(c) is «(j) = O(j %) with @ > (2v — 2)/(v — 2) and
p(j) = O(j~%) with a > 1. Thus for p-mixing processes it suffices that p(j) = O(j %)
with @ > (1 + Ad)/(1 — Ad) and E|¥(Y;)|* < oo . For strongly mixing processes with
E|P(Y)|' < oo for some v > 2 it suffices that

a(j) = O™ a > max[(1 + Ad)/(1 — Ad), 2v — 2)/(v — 2)]

and it is seen that there is a trade-off between the order of the moment of ¥(Y;) and
the decay rate of the strong mixing coefficient: the larger the order v, the weaker is the
decay rate of a(j).

Corollary 2. Under the assumptions of Theorem 3 we have that the {(nhs)'t},}, for
distinct j’s, are jointly asymptotically normal with zero means and covariance

cov[(nhy)'? t¥ ;. (nhp)' 2 1% ] — 0% (x) [(X)7; 44
at continuity points x of {c>, f} where y; is given in (2.7).

Since Theorem 3 holds for all linear combinations of ¢} ;, we immediately have for
the N x 1 lexicographically ordered vector ¥ that (nh?)!?t* % N(0,62(x) f(x)I') at
continuity points x of {¢*, f} where the N x N matrix I is given in (2.8). It now follows
from Theorem 1 that

(nhHV28 0 I N©O,c2() M~ ' IM~1/f(x)] (3.2)

at continuity points x of {¢2,f } whenever f(x) > 0, where the N x N matrix M is given
by (2.8). By (2.15) we have

Bo—B=S;'tt+ "M 'Bm,, (x) + 0,(h*" ).

This and (3.2) gives the following asymptotic normality result for the estimate §,.

Theorem 4. Under Conditions 1-4 and h, = O(n~ V4" 2P*2) e have
(nh)'2 (B, — Bl —h*"'M " 'Bm,. (x)] = N[0,c*()M ' TM ' /f(x)]
at continuity points x of {a?, f} whenever f(x) > 0.

Recall from (2.3) that B, is the N x 1 lexicographically ordered vector of the scaled
partial derivatives estimates of the regression function m (x) of all orders up to a total
order p: Specifically, the ith element of g, is equal to

B W)
B == withi= gt )+ Y N
J: k=0
Thus Theorem 4 establishes the joint asymptotic normality of the estimates of the
regression function m(x) and its derivatives up to a total order p. In addition, the bias
and variance/covariance matrix (of the asymptotic normal distribution) of these
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estimators can be read from the theorem. For the individual partial derivatives of the
regression function m(x) we have, in particular,

Theorem 5. Under Conditions 1-4 and h, = O(n™*/“*2P*2 ywe have
(ﬁnh‘i*z‘f')l"z[[(D’m)“(x) —(D’m)(x)] —j (M~ Bm,, (x));h2 " 'ﬂ] L,

2 *1\2
N[o,w“ ()Y (M“FM“)U:I
/)
at continuity points x of {a?, f} whenever f(x) > 0. Here the relationship between i and
J is given by
-1

i= 9|;|1(j) + z Ny,
K=0

(M~'TM™ '), is the (i,i) diagonal element of the matrix M 'TM~' and
(M~ 'Bm,.. (x)); is the ith element of the vector M~ *Bm,, ., (x)).

Theorem 5 shows that the local higher-order polynomial fit of the partial derivative
(D’/m)(x) has the following expressions for the bias and “variance™

bias[D/m)"(x)] =j'M "' Bm, ., (x))hi ",

al(x)( in? o _ 1
—f(xTJ—(M ‘M I)MWW

The optimal bandwidth for estimating the jth derivative (D/m)(x) can be defined as
the one which minimizes the sum of the squared bias and “variance” above. One finds

[oz(x)(d + 2lj|)(M“‘FM‘I)i,,-/f(x)]lﬂﬂuwm 1
2(p + 1= iDL *Bm, . 101 PRCSEE

With h, ;= O(n™ " *2®*1) and using the above expressions for the bias and
“variance” for the estimate of D/m(x) it is seen that the rate of “mean-square conver-
gence” is O(n 2P+ 17U+ 20+ 1)y which matches the optimal rate given by Stone
(1982) in the vector-valued 1.i.d. regression setting.

variance[ Vm) (x)] =

n.j

Remark 3. We note that, in the context of local polynomial regression estimation, the
issue of selecting the bandwidth in a data-driven fashion has recently been addressed
in the literature (see Fan and Gijbels, 1995; Ruppert et al., (1995)). In particular, in the
context of one-dimensional regression with i.1.d. data, Fan and Gijbels (1995) pro-
posed a variable bandwidth selection procedure (a two-stage approach) and showed
via examples that the results are comparable to those based on nonlinear wavelet
estimators.

Remark 4. It is possible to extend this work by employing a symmetric positive-
definite d x d bandwidth matrix H, instead of the scalar bandwidth parameter h,. In
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this case, the kernel function (1/h)K (u/h) of this paper is replaced by |H| ' K(H 'u)
where | H| is the determinant of H. This makes the notation slightly more complex but
the analysis will go through. See Robinson (1983) and Ruppert and Wand (1994)
where a bandwidth matrix is utilized.

Remark 5. The proof of Theorem 3 employs the big block—small block procedure. It
was suggested by a referee to use instead a recent central limit theorem for stationary
strongly mixing processes {X,} (e.g. Theorem 4 of Doukhan et al., (1994)). Unfortu-
nately this does not appear to be feasible for two reasons: In Theorem 4 of Doukhan
et al. a central limit theorem is established for }/_, X; under the weak assumption

J o W) [Qx,(w]*du < (*)

0

where Qy, is the quantile function of |X4| and a~'(u) is the inverse of the mixing
function «(u) = ;. In our context we seek to establish the asymptotic normality of
the partial sums Y7_, Z, ; of a triangular array {Z, ;} where

Z,i = (YY) — mX)1Ch, (X — x).

Direct application of a central limit theorem for a single sequence {X;} to the
triangular array {Z, ;} is not feasible. Moreover, even if it were possible, one needs to
impose an integrability condition like (*) on the quantile function @z of |Z, ;|. Such
a condition is utterly unverifiable given the dependence of Z, ; on the bandwidth hy,
the regression function m (-), and the kernel K(-). Ideally, one would like to impose
a condition on the quantile functions of the underlying processes {Y;, X;} but we see
no clear way of translating it to a condition on the quantile function of |Z, ,|.

3.2. Proofs

Proof of Theorem 3. We employ the big block—small block procedure. Put

Zoi=("Z, i=0,1,...,n—d (3.32)
n—1

W,=Y Z.. (3.3b)
i=0

Then
1/2 1
dy1/2 — n
(nhn) Qn l:n —d + 1:' (n —d T 1)1/2 Wn—d+1.

If suffices to show that
1

NG

Note that by Theorem 2 we have

W, & N(0,6%(x)). (3.4)

n—1
var[Z,,0] » 0*(x); ) [cov{Z,,0,Zn }| = o(1). (3.5)
£=1
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Partition the set {0,1,...,n — 1} into 2k + 1 subsets with large blocks of size u = u,
and small blocks of size v = v, where

k=k,,=[ k J (3.6)
Un + ¥

Define the random variables

Jlutrvytu—1

m= Y Znw 0Sj<k-—1, (3.7)
i=jutv)
(j+Du+v)—1

L= Y Zyn 0<j<k-1, (3.8)
i=jf{utv)tu
n—1

L= Y Zuo (3.9)
i=k(ut+v)

Write
k-1 k-1
W, = Z n; + Z &+ G
j=o0 =0

=W, + W+ W/ (3.10)

We show that as n — oo,

1 1

E[W P ~0, —E[W;T* =0, (3.11a)
k—1

E[exp(it W,)] — ] Elexp(itn,)]]| -0, (3.11b)
=0

1 k—1

~ Y Eln1-0(), (3.11c)

1 k—1

% EDiI{In,| > e0(x)/n}] -0 (3.11d)

for every & > 0. Eq. (3.11a) implies that W, and W’ are asymptotically negligible,
(3.11b) shows that the summands {5;} in W, are asymptotically independent; and
(3.11¢c) and (3.11d) are the standard Lindeberg—Feller conditions for asymptotic
normality of W, under independence.

We now prove (3.11a)—(3.11d) focusing on the strongly mixing case (which is more
involved) and we remark on the differences for p-mixing processes. We first choose the
large block size u,. Condition 3 implies that there exist integers ¢, — oo such that for
strongly mixing processes, we have

Guvn = o((nhHY?), g, (n/ Y 2 a(v,) >0 asn—oc (3.12)

[for p-mixing processes, ¢,(n/h%)?p(v,} >0 as n— oo ]. Now define the large-
block size u, be u, =| (nh?)'’?/q, |. Then using (3.12) and simple algebra show
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that the following properties hold as n - oo

Valthe = 0, /10, u,/(nhg)'* -0, (3.13)

2 v =0 (3.14)
[for p-mixing processes (3.14) is proved via the inequality a(v,) < p(v,)/4]. We now
establish (3.11a).

E[W.])? = varl:ki1 fj] Z var[ ;] + ' ig: 1 cov{(, ¢l =F, +F,.  (3.15)

j=0 i=0j=0
i#]J

By stationarity and (3.5)

v,— 1 :
var[¢;] = v, var[Z, o] + 2v, Z (1 - vi> coV{Z, 0, Zni} = va0*(x)(1 + 0(1)).
(3.16)
Thus
Fy = kv, 02()(1 + o(1)) ~ ": %v— = o(n). (3.17)
Next consider the term F, in (3.15). With r; = j(u + v) 4+ u, we have
k-=1%k—-1 v—1 v—-1
=33 X Y coV{Zuniry Zuryrey ) (3.18)
i=0j=0/,=0¢,=0
i#j

since i #j, |ry —r; + ¢ — £2| 2 u so that

n-

n—u-—1
IFal<2 ) Z lcov{Zy,¢\s Zn,z, }-

£,=0 (3=(tu

Since u = u, » oo we can assume that u, > d so that the random vectors X, and
X,, (appearing in Z, ,, and Z, ,, respectively) do not have common components. By
stationarity and (3.5)

n—1
Fal <2n Y. [cov{Z, 0, Zn } = o(n). (3.19)
j=u
Hence by (3.15), (3.17), and (3.19) we have
—E[W 1> —>0 asn-—oo.

Using a similar argument, we find together with (3.5) and (3.13)

1 1 n—1
;E[Wﬁ,”]2 < ;[n — k(u + v)]var[Z, o] + 2 Z cov{Z, 0, Z, ;}|
i=1
U, + vy o
< ——;——0 x) +0o(1)>0 asn-—oo. (3.20)
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In order to establish (3.11b) we make use of the following lemma due to Volkonskii
and Rozanov (1959).

Lemma. Ler V,,...,V, be random variables measurable with respect to the g-algebras
?{: 7“ respectively with 1 <i; <j, <i, < ... <j,;<n, i;x1 —j,2zw21 and
1Vl < 1_forJ =1,....,J. Then

P{ﬁﬂ—ﬁﬂmsl

6(J — Da(w).

We note that by (2.19), (3.2) and (3.7) 5, is a function of the random variables
{Xawsn+ 15> Xawrnrurd=1 Yawevad s Yawsnrusd—1) OF Hg is Fl-measurable
with i, =au+v+ 1, j,=au+v)+u+d—1 Also i,y —j, = vwd+2 Hence
with V; = ¢ we have

k-1

'E[eXp(itW;)] — Y E[exp(it;)]

i=0

< 16k,a(v, — d +2) ~ uﬁa(vn) (321
which tends to zero by (3.14).
Next we establish (3.11c). By stationarity and (3.16), with u, replacing v,, we have

var[n;] = var[no] = u, 07 (x)}(1 + o(1))
so that

—ZE[]—”"<m+mm~mw (3.22)

since v,/u, — 0.

It remains to establish (3.11d). We employ a truncation argument since ¥ is not
necessarily a bounded function. Let

ar(y) = yI{|yl < L} (3.23)

where L is a fixed truncation point. Put

my (x) = E[a (P(Y )Xo = x], (3.24)

and
o7(x) = E[(aL(‘P(Ya)) —m(x)*1X, = x} (3.25)
x)J 2(y)dy. (3.26)

Put
ZF = lay(Y(Y 1)) — m(X:)]1Ca(X; — x); Z:;,i =hi?Z} (3.27)

n—1
Z Zn i Wﬁ - Z (Zn,i - Zﬁ,i)- (328)
i=0
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Using the fact that C(u) is bounded (since K is bounded with compact support), we
have

const
I .
lZn.iI < __hd/z .
n

This implies by (3.7) that
Un
J max I/ < const g 0

by (3.13). Hence when n is large, the set {|n}] > GL(x)sﬁ } becomes an empty set and
thus (3.11d) holds. Consequently (3.11a)—(3.11d) hold for WL so that

(nhg)' 2 Wi £ N(0,6% (x)). (3.29)

In order to complete the proof, namely to establish (3.11d) in the general case, it
suffices to show that

(nh®)var[WL] -0 asfirst n - oo and then L — co. (3.30)
Indeed,

|Eexp(it\/(nhy) W,) — exp( — t26*(x)/2)]

= |Eexp(it/nhd(WE + WL)) — exp( — 20} (x)/2) + exp( — t*0(x)/2)
— exp( — 1*60%(x)/2)|

< |Eexp(ity/nhd W) — exp( — 1263(x)/2)| + Elexp(ity/nd W) — 1]
+ lexp( — £207(x)/2) — exp( — *6*(x)/2)|.

Letting n — oc, the first term goes to zero by (3.29) for every L > 0; the second term
converges to zero by (3.30) as first n > oo and then L — oo; the third term goes to
zero as L — oo by dominated covergence. Therefore, it remains to prove (3.30). Note
that WL has the same structure as W, except that ¥(Y;) is replaced by
Y(Y){|P(Y)| > L}. Hence, as in Theorem 2,

lim nhf var[WE] = var[W(Y)I {|P(Y )] > L} X, = x]f(x)j C3*(y)dy. (3.31)
n—ow Rd
By dominated convergence the right-hand side converges to 0 as L — oo. This
establishes (3.11d) and completes the proof of Theorem 3. [
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