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Abstract

We show some Chung-type lim inf law of the iterated logarithm results at zero for a class of (pure-jump)
Feller or Lévy-type processes. This class includes all Lévy processes. The norming function is given in
terms of the symbol of the infinitesimal generator of the process. In the Lévy case, the symbol coincides
with the characteristic exponent.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

We study the short-time behaviour of a class of one-dimensional Feller processes (X t )t>0.
To do so we identify suitable norming functions u, v, w such that the following Chung-type LIL
(law of the iterated logarithm) assertions hold Px -almost surely:

lim
t→0

sup
06s6t

|Xs − x |

u−1(x, t/ log | log t |)
= C(x), (1)
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lim
t→0

sup
06s6t

|Xs − x |

v(t, x)
= 0 or = +∞, (2)

lim
t→0

|X t − x |

w(t, x)
= γ (x) > 0 or = +∞. (3)

Assertions of this kind are classical for Brownian motion, the corresponding results for Lévy
processes are due to Dupuis [6] and Aurzada, Döring and Savov [1]. The class of Feller processes
considered in this paper includes Lévy processes and extends the results of these authors. We will
characterize the norming functions with the help of the symbol of the infinitesimal generator of
the Feller process. In the case of a Lévy process this becomes a rather simple criterion in terms
of the characteristic exponent of the process.

Lévy processes. A (real-valued) Lévy process (X t )t>0 is a stochastic process with stationary and
independent increments and càdlàg (right continuous with finite left limits) sample paths. The
transition function is uniquely determined through the characteristic function which is of the
following form:

λt (x, ξ) := Ex eiξ(X t −x)
= E0eiξ X t = e−tψ(ξ), t > 0, ξ ∈ R.

The characteristic exponent ψ : R → C is given by the Lévy–Khintchine formula

ψ(ξ) = ilξ +
1
2 σ

2ξ2
+


R\{0}


1 − eiyξ

+ iyξ1(0,1](|y|)

ν(dy) (4)

and the Lévy triplet (l, σ 2, ν)where ν is a measure onR\{0} such that


y≠0(1∧ y2) ν(dy) < ∞,
and l ∈ R, σ > 0. The characteristic exponent is also the symbol of the infinitesimal generator
A of the Lévy process:

Au(x) = −ψ(D)u(x) := −


R

ei xξ û(ξ) ψ(ξ) dξ, u ∈ C∞
c (R),

where û(ξ) = (2π)−1

R u(x)e−i xξ dx denotes the Fourier transform of u.

Feller processes. The generator of a Lévy process has constant coefficients: it does not depend
on the state space variable x . This is due to the fact that a Lévy process is spatially homogeneous
which means that the transition semigroup Pt u(x) = Ex u(X t ) = Eu(X t + x) is given by
convolution operators. We are naturally led to Feller processes if we give up spatial homogeneity.

Definition 1. A (one-dimensional) Feller process is a real-valued Markov process (X t )t>0 whose
transition semigroup Pt u(x) := Ex u(X t ), u ∈ Bb(R), is a Feller semigroup, i.e.

(a) Pt is Markovian: if u ∈ Bb(R), u > 0 then Pt u > 0 and Pt 1 = 1;
(b) Pt maps C∞(R) :=


u ∈ C(R) : lim|x |→∞ u(x) = 0


into itself;

(c) Pt is a strongly continuous contraction semigroup in (C∞(R), ∥ · ∥∞).

Every Lévy process is a Feller process.
Write (A, D(A)) for the generator of the Feller semigroup. If C∞

c (R) ⊂ D(A), then

Au(x) = −p(x, D)u(x) := −


R

ei xξ û(ξ) p(x, ξ) dξ, u ∈ C∞
c (R),
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see e.g. [10, Vol. 1, Theorem 4.5.21, p. 360]; this means that A is a pseudo differential operator
whose symbol p : R × R → C is such that for every fixed x the function ξ → p(x, ξ) is the
characteristic exponent of a Lévy process

p(x, ξ) = il(x)ξ +
1
2 σ

2(x)ξ2
+


R\{0}


1 − eiξ y

+ iξ y1(0,1](|y|)

ν(x, dy). (5)

The Lévy triplet (l(x), σ 2(x), ν(x, dy)) now depends on the state space, i.e. the generator is
an operator with variable ‘coefficients’. A Feller process (X t )t>0 is said to be a Lévy-type pro-
cess, if the symbol of the generator admits the representation (5). Typical examples are ellip-
tic diffusions where the symbol (in one dimension) is of the form p(x, ξ) =

1
2σ

2(x)ξ2 and
stable-like processes where p(x, ξ) = |ξ |α(x) with 0 < α0 6 α(x) 6 α1 < 2 is Lipschitz
continuous, cf. [2]. For further details we refer to [10] or [11], or [4] as an up-to-date standard
reference.

The symbol p(x, ξ) plays very much the same role as the characteristic exponent of a Lévy
process and it is possible to use p(x, ξ) to describe the path behaviour of a Feller process, for
example [19,11] or [21]. Note however that, due to the lack of spatial homogeneity, p(x, ξ) is
not the exponent of the characteristic function, i.e.

λt (x, ξ) = Ex ei(X t −x)ξ
≠ e−tp(x,ξ).

A brief overview of LIL-type results. For a general Lévy process the first result is due to
Khintchine [13], cf. [12] for the Brownian LIL. Khintchine provides a necessary and sufficient
criterion for a positive increasing function u : (0, ϵ) → (0,∞) to be the upper function for a
one-dimensional Lévy process (X t )t>0 without Gaussian component:

lim
t→0

|X t |

u(t)
6 c P0-a.s. if, and only if,


0+

P0
{|X t | > cu(t)}

t
dt < ∞. (6)

As usual, we indicate by


0+
. . . that the integral converges at the origin. For a Brownian motion

this result is sharp with u(t) =


t log | log t |.

Khintchine’s result is generalized by the following integral test due to Savov [18]. Let
N (t) :=


|x |>t ν(dx) and b(t) be a function which satisfies some mild growth assumptions.

Then  1

0
N (b(t))dt < ∞ or = +∞ =⇒ lim

t→0

|X t |

b(t)
= λ(b) or = +∞.

The first Chung-type LIL for (n-dimensional α-stable) Lévy processes is due to Taylor [22]. If
0 < α < n and if the transition density satisfies pt (0) > 0, then (1) holds with u−1(x, t) = t1/α

and C(x) = C . Pruitt and Taylor [17] extended this result for Lévy processes with indepen-
dent stable components. Based on [9], Fristedt and Pruitt [7,8] prove a LIL for subordinators
(one-sided increasing Lévy processes), where the upper function is determined by the Laplace
exponent of the process. Dupuis [6] extends these results for symmetric Lévy processes, with
u−1(t) := 1/ψU (1/t), where ψU (ξ) =


y≠0 min{1, |ξu|

2
}ν(du). Using a different approach,

this result was independently rediscovered by Aurzada–Döring–Savov [1]. Further, more refined
results of type (1) for (non-symmetric) Lévy processes are due to Wee [23,24].
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2. A Chung-type lim inf LIL for Feller processes

Consider a one-dimensional Feller process (X t )t>0 with symbol p(x, ξ) of the form (5).
Throughout we assume:

C∞
c (R) is in the domain of the infinitesimal generator;

x → p(x, ξ) is continuous and has no diffusion part : σ 2
≡ 0;

sector condition : ∃c0 ∈ (0,∞) ∀x, ξ ∈ R : |Imp(x, ξ)| 6 c0Rep(x, ξ).

(A1)

Define the function

pU(x, ξ) :=


y≠0

min{|ξ y|
2, 1} ν(x, dy); (7)

this is a natural generalization of a typical ‘truncated second moments’ function which appears
naturally in the context of limit theorems, see e.g. [6, p. 46] and [16]. It is not hard to see that
|p(x, ξ)| 6 2pU(x, ξ) and pU(x, 2ξ) 6 4pU(x, ξ) for all x, ξ ∈ R. We will also need the
following regularity assumptions:

∃κ(x) > 1 ∀R 6 1 : sup
|x−y|62R

pUy, 1
R


6 κ(x) inf

|x−y|63R
pUy, 1

R


; (A2)

∃t0 ∈ (0, 1) ∃q = q(x) ∈ (0, 1) ∀R ∈ (0, 1], y ∈ B(x, R),

t ∈ [0, t0] : Py(X t < y) 6 q. (A3)

For example (A3) holds (even with equality) with q = 1/2 if λt (x, ξ) = Ex eiξ(X t −x) is real-
valued. For Lévy processes which are not compound Poisson processes (A3) follows from
limt→0P(X t > 0) = ρ ∈ (0, 1) (Spitzer’s condition); see [5, Chapter 7] for the necessary and
sufficient conditions in the Lévy case. Set

u ≡ u(x, R) :=
1

inf
|x−y|63R

pU

y, 1

R

 , R ∈ (0, 1], (8)

and denote by u−1(x, ρ) := inf{r : u(x, r) > ρ} the generalized inverse of R → u(x, R).
We can now state the main result of this section.

Theorem 2. Let (X t )t>0 be a one-dimensional Feller process with symbol p(x, ξ) satisfying
(A1)–(A3). Then there exists a constant C(x) > 0 such that

lim
t→0

sup
06s6t

|Xs − x |

u−1(x, t/ log | log t |)
= C(x) (Px -a.s.) (9)

where u−1 is the generalized inverse of the function R → u(x, R) defined in (8).

Before we prove Theorem 2 let us consider an example.

Example 3. Take ν(x, dy) =
1
4 α(x)(2−α(x)) |y|

−1−α(x) dy, where α : R → [α0, α1] ⊂ (0, 2)
is continuously differentiable, with uniformly bounded derivative. Clearly, (A1) holds. A direct
calculation shows that pU(x, ξ) = |ξ |α(x).
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We will now check (A2). Pick R ∈ (0, 1]. Since α is continuously differentiable, we have

sup
|x−y|63R

α(y)− inf
|x−y|63R

α(y) = max
z,y∈B(x,3R)

|α(y)− α(z)| 6 6R max
y∈B(x,3R)

|α′(y)|,

implying

sup
|x−y|62R

pU(y, 1/R)

inf
|x−y|63R

pU(y, 1/R)
6

sup
|x−y|63R

pU(y, 1/R)

inf
|x−y|63R

pU(y, 1/R)
6
 1

R

6R max
y∈B(x,3R)

|α′(y)|

=

 1
R R

6 max
y∈B(x,3R)

|α′(y)|

for all R ∈ (0, 1]. Thus, (A2) holds with any function κ(x) > 64maxy∈B(x,1) |α
′(y)|.

Let us check (A3). In [15, Theorem 5.1], see also [14], it is proved that for α ∈ C1
b(R),

there exists a Feller process (X t )t>0 corresponding to the characteristic triplet

0, 0, 1

4 α(x)(2 −

α(x)) |y|
−1−α(x) dy


. Moreover, this process has a transition density p(t, y, z), and

p(t, y, z) = pα(y)(t, y − z)[1 + O(1)min{1, (1 + | log t |)|y − z|} + O(tδ)]

+
O(t)

1 + |y − z|α0+1

for the symmetric α(y)-stable transition density pα(y)(t, y − z) and some δ ∈ (0, 1); the big-O
terms refer to t → 0 and do not depend on y, z. Using the scaling property we have the equality
pα(y)(t, y − z) = t−1/α(y) pα(y)(1, t−1/α(y)(y − z)) and the unimodality of the stable law we get

Py(X t > y) >


y6z6y+ϵt1/α(y)
p(t, y, z) dz > ϵpα(y)(1, ϵ)(1 + O(1))+ O(t1/α(y))

which proves (A3).
Next we calculate the rate of convergence. Since α(y) is continuously differentiable, we may

assume that on (x − 3R, x + 3R) there is a local minimum at x , say. Then for R small enough
min|x−y|63R α(y) = α(x), and so

u(x, R) =


inf

|x−y|63R
pU(y, R−1)

−1

= sup
|x−y|63R

Rα(y) = R
min

|x−y|63R
α(y)

= Rα(x).

Consequently, u−1(x, ρ) = ρ1/α(x).
Assume now that x is not a local minimum of α. Then x is either a local maximum, or α is

decreasing (respectively, increasing) on [x − 3R, x + 3R]. In both cases the minimum is attained
at one of the endpoints. Without loss of generality we assume that the minimum is attained at the
point x − 3R. Thus,

u(x, R) = Rα(x−3R)

and as α0 6 α(x) 6 α1, we have

c0ρ
1/α0 6 u−1(x, ρ) 6 c1ρ

1/α1 . (10)

Since α is continuously differentiable we get, using a Taylor expansion,

α(x − R) = α(x)− Rα′(x − θR), (11)
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where θ = θ(x, R) ∈ (0, 1). Note that the function R → Rα(x−3R) is continuous and tends to 0
as R → 0, implying that for sufficiently small ρ the equation Rα(x−3R)

= ρ admits a solution;
thus,

u−1(x, ρ) = min{R : Rα(x−3R)
= ρ}.

By (11) the function u−1(x, ρ) satisfies the equation

u−1(x, ρ) = ρ1/(α(x)−3u−1(x,ρ)α′(x−3θu−1(x,ρ))). (12)

Therefore, by (12) we have

lim
ρ→0

ρ1/α(x)

u−1(x, ρ)
= lim

ρ→0
exp

 1
α(x)

−
1

α(x)− 3u−1(x, ρ)α′(x − 3θu−1(x, ρ))


ln ρ


= 1,

where we used the fact that α(x) ∈ [α0, α1] and, because of (10), u−1(x, ρ) ln ρ → 0 as ρ → 0.
This gives (9) with u−1(x, ρ) = ρ1/α(x).

For the proof of Theorem 2 we need several auxiliary results in order to estimate the
probability that (X t )t>0 exits a ball of radius r > 0 within time t > 0.

Lemma 4 is the key to derive the LIL. We record it in a form which is convenient for
our purposes, and refer to [19] for the original version, as well as to its improvement (with a
simplified proof) [21, Proposition 4.3]. A close inspection of the arguments in [21] reveals that
one does not need the ‘bounded coefficients’ assumption supx∈R,|ξ |61 |p(x, ξ)| < ∞.

Lemma 4. Let (X t )t>0 be a one-dimensional Feller process with symbol p(x, ξ) satisfying (A1).
Then for all t > 0 and R > 0 we have

Px


sup
06s6t

|Xs − x | > R


6 c t sup
|x−y|6R

pUy, 1
R


, (13)

Px


sup
06s6t

|Xs − x | < R


6 c


t inf

|x−y|6R
pUy, 1

R

−1

. (14)

The constant c > 1 depends only on the sector constant c0, but not on x.

First we extend (14).

Lemma 5. Under the assumptions of Lemma 4, we find for n > 2 and all t, R > 0

Px


sup
s6nt

|Xs − x | < R


6 (4c)n


t inf
|x−y|63R

pUy, 1
R

−n

. (15)

Proof. Set, for simplicity, X∗
t := sup06s6t |Xs − x |. We use induction and the Markov property.

Px (X∗
nt < R) 6 Ex


1{X∗

(n−1)t<R}1{ sup
06s6t

|X(n−1)t+s−X(n−1)t |<2R}


= Ex


1{X∗

(n−1)t<R}E
X(n−1)t


1{X∗

t <2R}


6 sup

|x−y|6R
Ey1{X∗

t <2R}


Px (X∗

(n−1)t < R).
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Using induction and the fact that pU(x, 2ξ) 6 4pU(x, ξ), we derive

Px (X∗
nt < R) 6 c sup

|x−y|6R


t inf

|z−y|62R
pUz, 1

2R

−1

(4c)n−1

×


t inf

|x−z|63R
pUz, 1

R

−n+1

6 (4c)n


t inf
|x−y|63R

pUy, 1
R

−n

. �

Remark 6. Let u(x, R) be as in (8). Then (15) becomes for any γ > 1

Px


sup
s6n·(4γ c)u(x,R)

|Xs − x | < R


6 γ−n, R > 0.

Lemma 7. Suppose that the assumptions of Theorem 2 are satisfied. Denote by c the constant
appearing in Lemma 4, by κ(x) the constant from (A2), and γ = γ (x) > max


1, κ(x)

4(1−q)


, where

q = q(x) is the constant from (A3). Then there exist constants p1,γ (x), p2,γ (x) ∈ (0, 1) such
that for all m > 1

p2,γ (x)
m+1 6 Px


sup

s6mu(x,R)
|Xs − x | 6 R


6 p1,γ (x)

m . (16)

Proof. Set X∗
t := supr6t |Xr − x | and X∗

s,t := sups6r6t |Xr − Xs |. First we prove

Cn
2 6 Px (X∗

nu(x,R)/(16κ(x)γ c) 6 R) and Px (X∗

n·(4γ c)u(x,R) 6 R) 6 Cn
1 , (17)

where n > 1 and C1,C2 > 0 are some constants. The upper bound follows from Lemma 5 and
Remark 6 with C1 = 1/γ , where γ > 1 is arbitrary, independent of x .

Let us establish the lower bound. The crux of the matter is now the behaviour of pU(x, 1/R)
with respect to the variable x . Recall that pU(x, ξ) satisfies (A2) with some constant κ(x). Then
we get from (13) and (A2) for any z such that |z − x | < R

Pz(X∗

u(x,R)/(4cγ ) > R) 6
1

4γ
u(x, R) sup

|z−y|6R
pUy, 1

R


6

1
4γ

u(x, R) sup
|x−y|62R

pUy, 1
R


6
κ(x)

4γ
.

Taking γ ≡ γ (x) > max

1, κ(x)

4(1−q)


, we find for all z with |z − x | < R

Pz(X∗

u(x,R)/(4cγ ) < R) > 1 −
κ(x)

4γ
> q, R > 0. (18)

Let T := u(x, R)/(4γ c) be fixed. Observe that {X∗

nT 6 2R} ⊃
n−1

k=0 Ak, where

Ak :=


X∗

kT,(k+1)T 6 R, X(k+1)T − XkT ∈


[0, R], if XkT < x,
[−R, 0], if XkT > x .


In other words, if XkT < x , then at the next end-point (k + 1)T the process is above XkT , but
within the ball B(XkT , R), and if XkT > x , then at time (k + 1)T the process is below XkT but
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still in the ball B(XkT , R). Denote Fk := σ {Xs, s 6 T k}. Then

Ex 1An−1 |Fn−1


= PX(n−1)T (A0)

= PX(n−1)T

X∗

T 6 R, XT − X0 ∈ [0, R]

1{X(n−1)T<x}

+PX(n−1)T

X∗

T 6 R, XT − X0 ∈ [−R, 0]

1{X(n−1)T >x}

> inf
x−R6z<x

Pz X∗

T 6 R, XT − X0 ∈ [0, R]

.

Without loss of generality we may assume that (A3) holds with t0 = 1; otherwise we would just
get a further multiplicative factor. By (A3) we have

Pz X∗

T 6 R, XT − X0 ∈ [−R, 0]


6 Pz (XT − X0 < 0) 6 q,

uniformly in z ∈ B(x, R) and T ∈ [0, 1]. Using (18) with z ∈ B(x, R) we get

Pz X∗

T 6 R, XT − X0 ∈ [0, R]


= Pz X∗

T 6 R

− Pz X∗

T 6 R, XT − X0 ∈ [−R, 0]


> Pz X∗

T 6 R

− q > C2,

where C2 := 1 −
κ(x)
4γ − q > 0 by our choice of γ . Thus,

Ex 1An−1 |Fn−1


> C2.

Note that
n−2

k=0 1Ak is Fn−1-measurable, and by the Markov property,

Ex
n−1

k=0

1Ak


= Ex


Ex
n−1

k=0

1Ak

Fn−1


= Ex

n−2
k=0

1AkE
x

1An−1

Fn−1



= Ex
n−2

k=0

1AkP
X(n−1)T (An−1)


> C2E

x
n−2

k=0

1Ak


.

With (A2) and the fact that pU(x, 2ξ) 6 4pU(x, ξ) we see

inf
|x−y|63R

pU(y, 1/R) 6 inf
|x−y|62R

pU(y, 1/R) 6 sup
|x−y|62R

pU(y, 1/R)

6 κ(x) inf
|x−y|66R

pU(y, 1/R) 6 4κ(x) inf
|x−y|66R

pU(y, 1/(2R)),

which implies

u(x, 2R) 6 4κ(x)u(x, R). (19)

Thus, by induction (recall that T = u(x, R)/(4γ c))

Px (X∗

nu(x,2R)/(16κ(x)γ c) 6 2R) > Px (X∗

nu(x,R)/(4γ c) 6 2R) = Px (X∗

nT 6 2R)

> Ex


n−1
k=0

1Ak


> Cn

2 .

Finally, we show how (16) follows from (17). Put m := ⌊n(4γ c)⌋+1 (⌊x⌋ denotes the largest
integer smaller or equal to x ∈ R); then n · (4γ c) 6 m 6 n · (4γ c)+ 1, implying

Px (X∗

mu(x,R) 6 R) 6 Px (X∗

n(4γ c)u(x,R) 6 R) 6 Cn
1 =


C

n
m
1

m
6 C

m
4γ c+1
1 =: pm

1,γ (x).
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For the lower bound we set m := ⌊n/(16γ κ(x)c)⌋. Then n
16γ κ(x)c − 1 6 m 6 n

16γ κ(x)c , and

Px (X∗

mu(x,R) 6 R) > Px (X∗

nu(x,R)/(16γ κ(x)c) 6 R) > Cn
2 =


C

n
m+1
2

m+1

> C (m+1)16γ κ(x)c
2 =: pm+1

2,γ (x). �

Remark 8. Note that the constants p1,γ , p2,γ in Lemma 7 depend on the variable x through

κ(x) and γ (x) > max


1, κ(x)
4(1−q(x))


. Without loss of generality we can choose the function γ (x)

such that infx γ (x) > max


1, supx κ(x)
infx (1−q(x))


; under this condition we have infx p2,γ (x) > 0.

Proof of Theorem 2. Fix x ∈ R and write τ x (a) := inf{s > 0 : Xs − x ∉ [−a, a]} for the first
exit time of the process (X t )t>0 with X0 = x . Then we can follow the arguments from [6].

Step 1. Using (16) we can prove, similar to [6], that there exists a constant ξ ∈ (0,∞) such
that

Px


sup

2a2m6a62am

τ x (a)

u(x, a) log | log u(x, a)|
< ξ


6 exp


−m1/4, m > 1, (20)

where am = am(x) is the solution to u(x, am) = e−m2
; clearly, limm→∞ am = 0. Indeed: let

c1 :=

3 sup

x
| log p2,γ (x)|

−1
, λm := 2c1 log m, uk := λku(x, ak),

σk :=

∞
i=k

ui ,

and consider the sets

Gk := {X∗
σk ,σk−1

> ak}, Hk := {X∗
σk
> ak}, Dk := {X∗

σk−1
> 2ak},

where X∗
u,v := supu6s<v |Xs − Xu |, and k > 2. By Remark 8 we can assume that c1 > 0. By our

choice of the sequence (ak)k>1 = (ak(x))k>1, there exists a constant c2 > 0 such that

σk

uk
=

∞
j=1

uk+ j

uk
=

∞
j=1

λk+ j u(x, ak+ j )

λku(x, ak)
=

∞
j=1

log(k + j)e−(k+ j)2

log ke−k2 6 c2e−2k . (21)

Using the Markov property and the lower bound in Lemma 7, we get

Px (Gk) 6 sup
z
Pz


sup
06s6uk

|Xs − z| > ak


= sup

z


1 − Pz


sup

06s6λk u(x,ak )

|Xs − z| 6 ak


6 sup

z


1 − p2,γ (z)

λk+1
6 1 − inf

z
p2,γ (z)e

−2c1 supz | log p2,γ (z)|·log m

= 1 − c3m−2/3 6 exp

−c3m−2/3, (22)
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where c3 := infz p2,γ (z) > 0, cf. Remark 8. Now (13), (A2) and (21) yield

Px (X∗
σk
> ak) = Px


X∗

σk
u(x,ak )

·u(x,ak )
> ak


6 c

κ(x)σk

u(x, ak)
= c

κ(x)λkσk

uk

6 c4(x) log ke−2k, (23)

where c4(x) = 2cc1c2κ(x).
Define Am :=

2m
k=m Dk . Since Dk ⊂ Gk ∪ Hk , k > 1, we have

Am ⊂

 2m
k=m

Gk


∪

 2m
k=m

Hk


⊂

 2m
k=m

Gk


∪

 2m
k=m

Hk


.

Therefore, by (22), m applications of the Markov property, and (23) we have

Px (Am) 6 Px
 2m

k=m

Gk


+ Px

 2m
k=m

Hk



6
2m

k=m

exp

−c2k−2/3

+ c4(x)
2m

k=m

e−2k log k

6 exp

−c3m(2m)−2/3

+ c4(x)e
−2m log(2m)

m
k=0

e−2k

6 exp

−c32−2/3m1/3

+ c5(x)e
−2m log(2m),

where c5(x) = c4(x)e/(e − 1). Therefore, there is some m0 = m0(x) such that P(Am) 6 e−m1/4

for all m > m0. Finally,

e−m1/4
> Px (Am) = Px

 2m
k=m

 X∗
σk−1

2ak
> 1


= Px


inf

m6k62m

X∗
σk−1

2ak
> 1


= Px


sup

m6k62m

τ x (2ak)

σk−1
< 1


where we used the definition of the first exit time τ x (a) introduced at the beginning of the proof.
As σk−1 =


∞

j=k−1 u j > uk = 2c1u(x, ak) log k, from the very definition of u(x, ak) we see
that for m > m0, where m0 is large enough,

exp

−m1/4 > Px


sup

m6k62m

τ x (2ak)

2c1u(x, ak) log k
< 1


= Px


sup

m6k62m

τ x (2ak)

c1u(x, ak) log | log u(x, ak)|
< 1


> Px


sup

2a2m6a62am

τ x (a)

c1u(x, a/2) log | log u(x, a/2)|
< 1


> Px


sup

2a2m6a62am

τ x (a)

u(x, a) log | log u(x, a)|
< ξ


,

with ξ =
c1

4κ(x) . In the last inequality we used (19), the fact that in the above inequalities a > 0
is small enough, and that by monotonicity of the function a → u(x, a/2) we have
log | log u(x, a)| 6 log | log u(x, a/2)|.
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Step 2. From (20) we conclude with the Borel–Cantelli lemma that

lim
a→0

τ x (a)

u(x, a) log | log u(x, a)|
> ξ (Px -a.s.).

Let ℓk be given by u(x, ℓk) = e−k , k > 1, and set b := −4/ log p1,γ , cf. (16). By definition,
the functions u(x, a) and τ x (a) are monotone increasing in the variable a, and we have that
u(x, ℓk+1) = e−1u(x, ℓk). Therefore,

Bk :=


sup

ℓk+16a6ℓk

τ x (a)

u(x, a) log | log u(x, a)|
> b


⊂

τ x (ℓk) > bu(x, ℓk+1) log | log u(x, ℓk+1)|


=

τ x (ℓk) > be−1u(x, ℓk) log | log u(x, ℓk+1)|


,

implying, by the upper estimate in (16), that P(Bk) 6 exp

−4e−1 log(k + 1)


= (k + 1)−4/e.

Thus,

lim
ℓ→0

τ x (ℓ)

u(x, ℓ) log | log u(x, ℓ)|
∈ [ξ, b]. (24)

The expression on the left-hand side of (24) belongs to F0+. By the Blumenthal 0–1 law the
σ -algebra F0+ is trivial, implying that there exists a constant C such that

lim
a→0

τ x (a)

u(x, a) log | log u(x, a)|
= C (Px -a.s.). (25)

This constant is the supremum of all ξ such that (20) holds. On the other hand,

1
2

C 6
τ x (ak)

u(x, ak) log | log u(x, ak)|
6 2C, k > k0,

for any sequence {ak}k>0 such that ak → 0 as k → ∞. Here k0 might possibly depend on the
choice of the sequence (ak)k>0. By the very definition of the first exit time τ x (a), the above
estimate implies

2C̃ >
1
ak

sup
06s6u(x,ak ) log | log u(x,ak )|

|Xs − x | >
1
2

C̃, k > k0,

where C̃ > 0 is some constant. Thus,

lim
a→0

1
a

sup
06s6u(x,a) log | log u(x,a)|

|Xs − x | = C ′ (Px -a.s.)

for some constant 0 < C ′ < ∞. Substituting a := u−1(x, t), we get (9). �

3. On the upper bound

In this section we prove (2), that is we give conditions which ensure that there is a norming
function v(t, x) with limt→0 sup06s6t |Xs − x |/v(t, x) = 0Px -a.s.; for a Lévy process we also
obtain conditions ensuring limt→0 sup06s6t |Xs − x |/v(t, x) = ∞ P0-a.s. For this we adapt
Khintchine’s criterion (6).
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Proposition 9. Let (X t )t>0 be a one-dimensional Feller process with symbol p(x, ξ), satisfying
(A1). If v(x, t) > 0 is a function such that t → v(x, t) is monotone increasing for every x and

0+

sup
|y−x |6v(x,t)

pUy, 1
v(x,t)


dt < ∞, (26)

then

lim
t→0

sup
06s6t

|Xs − x |

v(x, t)
= 0 (Px -a.s.). (27)

Proof. Under our assumptions, the process (X t )t>0 satisfies the maximal inequality (13). As
before, we write X∗

t := sup06s6t |Xs − x | to simplify notation.
We will use the (easy direction of the) Borel–Cantelli lemma. Fix some h ≪ 1 and set

tk := h/2k . Pick θk ∈ [tk+1, tk). Since v(x, t) is increasing in t , we have

PxX∗
θk
> v(x, θk)


6 PxX∗

θk
> v(x, tk+1)


6 c θk sup

|y−x |6v(x,tk+1)

pU


y, 1
v(x,tk+1)


.

Because of θk 6 tk = 2tk+1 we see
∞

k=1

PxX∗
θk
> v(x, θk)


< ∞.

By the Borel–Cantelli lemma, Px

X∗
θk

6 v(x, θk) for finally all k > 1


= 1, implying

lim
t→0

X∗
t

v(x, t)
6 1 (Px -a.s.). (28)

From the definition of pU(y, ξ), we find pU(y, ξ/λ) 6 λ−2 pU(y, ξ) for all 0 < λ < 1. Thus,
(26) implies

0+

sup
|y−x |6λv(x,t)

pUy, 1
λv(x,t)


dt 6

1

λ2


0+

sup
|y−x |6v(x,t)

pUy, 1
v(x,t)


dt < ∞.

Because of (28) we get

1
λ

· lim
t→0

X∗
t

v(x, t)
= lim

t→0

X∗
t

λv(x, t)
6 1 (Px -a.s.).

Letting λ → 0 gives (27). �

Example 10. Suppose that 0 < c 6 p(y, ξ)/p(x, ξ) 6 C < ∞ for all ξ ∈ R, |x − y| 6 r
where r ≪ 1 is sufficiently small. Then it is enough to check the convergence of the integral

0+

pU


x, 1
v(x,t)


dt < ∞.

This integral converges, e.g., for functions v(x, t) of the type v(x, t) =
1

χ


x, 1
tℓϵ,n (t)

 , where

χ(x, ·) := [pU(x, ·)]−1 is the inverse of pU(x, ·), and

ℓϵ,n(t) = | log t | · | log | log t | | · . . . ·

log | log | . . . | log t | . . . |  

n

1+ϵ

for some ϵ > 0 and n > 1.
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Example 11. Consider the stable-like Lévy measure from Example 3. Since pU(x, ξ) = |ξ |α(x),
we have an explicit representation of the function v(x, t) from the previous Example 10:

v(x, t) =

tℓϵ,n(t)

1/α(x)
. (29)

Therefore, the integral (26) becomes


0+

sup
|x−y|6v(x,t)


1

tℓϵ,n(t)

 α(y)
α(x)

dt < ∞. (30)

Note that v(x, t) → 0 as t → 0. Since α is continuously differentiable, we can take t so small
that in the interval (x − v(t, x), x + v(t, x)) there is at most one extremum of α(y). If α has a
local maximum at x , then the integrand in (30) is equal to


tℓϵ,n(t)

−1. Otherwise, x may be a
local minimum, or α′(y) > 0 (respectively, < 0) on (x − v(t, x), x + v(t, x)). In both cases the
maximum of α is attained at the end-points of the interval, say, at x − v(t, x). Using a Taylor
expansion, we have

α(x − v(x, t)) 6 α(x)+ |α′(x − θv(x, t))| v(t, x),

where θ = θ(t, x) ∈ (0, 1), implying
1

tℓϵ,n(t)

 α(x−v(x,t))
α(x)

6
1

tℓϵ,n(t)


1

tℓϵ,n(t)

 |α′(x−θv(t,x))|
α(x) v(x,t)

=
1

tℓϵ,n(t)


1

v(x, t)v(x,t)

|α′(x−θv(t,x))|

6
C(x)

tℓϵ,n(t)

for small t > 0, where we used that v(x, t)v(x,t) > 1/2.
Thus, in this case Proposition 9 holds true with v(x, t) as in (29).

Let us show the counterpart of Proposition 9, i.e. a condition for limt→0 |X t −x |/v(x, t) > C .
For this we have to use the direction of the Borel–Cantelli lemma that requires independence.
Therefore, we have to restrict ourselves to Lévy processes. The following proposition appears,
with a different proof based on fluctuation identities already in [18, Proposition 2.1]; this proof
required growth assumptions on v(t) as t → 0 and t → ∞. We refer also to [5, Chapter 10] for
further results on the asymptotic behaviour (in probability and almost surely) of X t/b(t), where
b(t) > 0, b(t) → 0 as t → 0.

Proposition 12. Let (X t )t>0 be a pure jump Lévy process with Lévy triplet (0, 0, ν) and v(t) be
a positive increasing function. If

0+

ν


y : |y| > 2Cv(t)


dt = ∞ for some C > 0, (31)

then

lim
t→0

sup
06s6t

|Xs |

v(t)
> lim

t→0

|X t |

v(t)
>

C

3
(P0-a.s.). (32)
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Proof. Applying Etemadi’s inequality, cf. Billingsley [3, Theorem 22.5], we get

3P

|X t | > C

3 v(t)


> P


sup
06s6t

|Xs | > Cv(t)


> 1 − e−tν{y:|y|>2Cv(t)}. (33)

Let now v(t) be such that (31) holds true. There are two possible cases.
Case 1: limt→0 tν{y : |y| > 2Cv(t)} = 0. Using the inequality 1 − e−x > c1x for small

x > 0, we get with (31)
0+

1
t
P

|X t | > C

3 v(t)


dt > c1


0+

ν


y : |y| > 2Cv(t)


dt = ∞.

Case 2: limt→0 tν{y : |y| > 2Cv(t)} = c2 > 0. Then

lim
t→0


1 − e−tν{y:|y|>2Cv(t)}


= 1 − e− limt→0 tν{y:|y|>2Cv(t)}

= 1 − e−c2 ∈ (0, 1].

Thus, there exists t0 small enough such that P

|X t | > C

3 v(t)


> c3 > 0 for all t ∈ (0, t0] and
we have automatically


0+

1
t P

|X t | > C

3 v(t)


dt = ∞. �

4. LIL results via the symbol of the process

In this section we obtain a Chung-type lim inf LIL (3) for a Feller process (X t )t>0. We will
see that the growth of the norming function w(x, t) is determined by the symbol p(x, ξ) of the
process. This result extends, in particular, Proposition 12 and holds for Lévy-type processes. For
Lévy processes more precise results are known, but the easy argument used in the proof and
the simple form of the norming function may nevertheless be of interest even in this case, see
Remark 17.

Throughout we assume that (A1) holds with the following stronger version of the sector
condition,

∃ c0 ∈ [0, 1) ∀x, ξ ∈ R : |Imp(x, ξ)| 6 c0 Rep(x, ξ).

The restriction c0 < 1 means that we exclude the situation when the drift can dominate the
overall behaviour of the process, cf. (5). For a Lévy process this implies that a bounded variation
process has no drift at all.

We need a further assumption: there exists a monotone increasing function g such that

g(ξ) 6 Re p(x, ξ) 6 C p(1 + |ξ |2), x ∈ R, |ξ | > 1. (A4)

We also need the following estimate for the characteristic function λt (x, ξ) = Ex eiξ(X t −x) which
is due to [21, Proposition 2.4]:

sup
x∈R

|λt (x, ξ)| 6 exp

−δt inf

x∈R
Rep(x, ξ)


, t ∈ [0, t0], t0 = t0(ξ, ϵ), (34)

where δ = δ(c) = 1 − c0 − ϵ > 0, and 0 6 c0 < 1 is the sector constant.

Remark 13. (A4) ensures that the function t0(ξ, ϵ) is continuous in ξ . This follows from the
proof of [21, Proposition 2.4]. The upper bound in (A4)means that the generator A = −p(x, D)
has bounded coefficients, cf. [20] for details; in fact, C p = 2 supx∈R sup|y|61 |p(x, η)|.
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Theorem 14. Let (X t )t>0 be a Feller process such that X0 = x and with the symbol p(x, ξ)
satisfying the conditions (A1) and (A4) with a sector constant c0 ∈ [0, 1). Let w(x, t), t > 0,
x ∈ R, be a positive function which is for all x monotone decreasing as a function of t . Then we
have Px -a.s.

lim
t→0

|X t − x |

w(x, t)
=


γ (x) ∈ (0,∞]

∞
according to lim

t→0
tg
 1
w(x,t)


=


c(x) ∈ (0,∞)

∞.

Proof. Take 1 < a < b < ∞. By Fubini’s theorem we find, since g(ξ) 6 infx Rep(x, ξ),Ex
 b

a
eiξ Xt −x

w(x,t) dξ

 =

 b

a
λt

x, ξ

w(x,t)


dξ

 6
 b

a
exp


−δtg( ξ

w(x,t) )


dξ

6 (b − a) exp

−δtg( 1

w(x,t) )

,

where we used the monotonicity of g in the last estimate. This inequality holds for all
0 6 t 6 t (a, b, ϵ), t (a, b, ϵ) = infξ∈[a,b] t0(ξ, ϵ) where t0(ξ, ϵ) is the constant from (34).
Since it depends continuously on ξ , cf. Remark 13, we have t (a, b, ϵ) > 0. Taking the limt→0
on both sides, we get

lim
t→0

Ex
 b

a
eiξ Xt −x

w(x,t) dξ

 6 (b − a) exp

−δ lim

t→0


tg
 1
w(x,t)


. (35)

Case 1. Assume that limt→0 tg(1/w(x, t)) = c(x) > 0. Then

lim
t→0

Ex
 b

a
eiξ Xt −x

w(x,t) dξ

 6 (b − a)e−δc(x).

On the other hand, using |z| > |Re z|, we derive b

a
eiξ Xt −x

w(x,t) dξ

 >

 b

a
cos


ξ

X t − x

w(x, t)


dξ

 >
 b

a
cos


ξ

X t − x

w(x, t)


dξ.

Suppose that the claim does not hold, and limt→0 |X t − x |/w(x, t) = 0. Without loss of
generality, we can choose a and b such that cos


ξ X t −x
w(x,t)


> 0 for a < ξ < b. Since cos is

bounded below by −1, we can apply Fatou’s lemma and get

lim
t→0

Ex
 b

a
eiξ Xt −x

w(x,t) dξ

 > Ex
 b

a
lim
t→0

cos

ξ

X t − x

w(x, t)


dξ


= b − a.

Thus, we arrive at 1 6 e−δc(x), which is wrong, since c(x) is strictly positive.
Case 2. Assume that limt→0 tg(1/w(x, t)) = ∞. From (35) and the fact that |Rez| 6 |z| we see

0 = lim
t→0

 b

a
cos


ξ

X t − x

w(x, t)


dξ

 . (36)

Assume that there exists a sequence of positive real numbers (tn)n>0 with limn→∞ tn = 0 and
limn→∞ |X tn − x |/w(x, tn) = c < ∞. Since 1 < a < b < ∞ are arbitrary, we can chose the
interval [a, b] in such a way that b

a
cos


ξ

X tn − x

w(x, tn)


dξ > ϵ > 0 for all n > 1

and some ϵ = ϵ(c) > 0. This contradicts (36) and the proof is finished. �
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Example 15. Let ν(x, dy) be the kernel from Example 3. In this case the symbol p(x, ξ) re-
lated to the kernel ν(x, dy) via (5) can be calculated explicitly, i.e. p(x, ξ) = b(x)|ξ |α(x),
where b(x) > 0 is some constant. In this case g(ξ) = c|ξ |α0 , where α0 = minx α(x). Taking
w(t) = t1/α we see that limt→0 tg(1/w(t)) = 1, implying that limt→0 t−1/α

|X t − x | ∈ (0,∞].
On the other hand, taking w(t) = t1/β , where β < α, we arrive at limt→0 t−1/β

|X t − x | = ∞.
Thus, Theorem 14 gives a rough picture of the behaviour of the process.

Remark 16. With a careful analysis it is possible to capture the influence of starting point x in
Example 15. Let us sketch the (very technical) argument. (13) and (A4) entail, in particular, that
infx P(τϵ > 0) = 1, if τϵ is the moment of occurrence of the first jump bigger than ϵ. Thus,

limt→0
|X t −x |

w(x,t)
a.s.
= limt→0

|X̃ t −x |

w(x,t) , where X̃ is the Feller process which arises if we remove all
large jumps from X . For the symbol this means to replace ν(x, dy) in (5) by 1Bϵ(0)(y)ν(x, dy).
In particular, all estimates for the symbol remain valid. This allows to localize the proof of
Theorem 14 using infy∈BR+ϵ(x) Rep(y, ξ) instead of g(ξ) = infy∈R Rep(y, ξ). In Example 15
we will thus get indices α0 = infy∈BR,ϵ(x) α(y) and α1 = supy∈BR,ϵ(x) α(y), and then letting
R, ϵ → 0 gives a local version.

Remark 17. If the constant c(x) appearing in the statement of the preceding theorem is uni-
formly bounded away from zero, i.e. infx c(x) = c > 0, then infx γ (x) = γ > 0. Indeed,
assume that γ = 0. Taking supx on both sides of (35) we get in the same way as above that

(b − a)e−cδ > sup
x

lim
t→0

Ex
 b

a
eiξ Xt −x

w(x,t) dξ

 > Ex
 b

a
inf
x

lim
t→0

cos

ξ

X t − x

w(x, t)


dξ


= b − a,

which contradicts to the assumption c > 0.

Remark 18. If (X t )t>0 is a symmetric Lévy process with exponent ψ(ξ) > g(ξ) > 0 and a
monotone increasing function g, Theorem 14 reads

lim
t→0

|X t |

w(t)
=


γ ∈ (0,∞),

∞
according to lim

t→0
tg
 1
w(t)


=


c > 0,
∞.

Indeed: now we can take a = 0 and b = 1 and getE
ei Xt

w(t) − 1
X t/w(t)

 =

E
 1

0
e−iξ Xt

w(t) dξ

 = E

 1

0
e−iξ Xt

w(t) dξ


=

 1

0
e−tψ( ξ

w(t) ) dξ.

Assume in Case 1 of the proof of Theorem 14 that the lower limit
limt→0 tg(1/w(t)) = c ∈ (0,∞) and that limt→0 |X t |/w(t) = ∞. Let (tn)n>0 be a sequence
decreasing to 0 such that limn→∞ tng(1/w(tn)) = c. Then

lim
n→∞

E
ei

Xtn
w(tn ) − 1

X tn/w(tn)

 = lim
n→∞

 1

0
e−tnψ(

ξ
w(tn )

) dξ =

 1

0
lim

n→∞
e−tnψ(

ξ
w(tn )

) dξ

> lim
n→∞

e−tn g( 1
w(tn )

)
= e−c.

From the elementary estimate |eiξ
− 1| 6 |ξ | we see that the expression on the left tends to 0,

and we have reached a contradiction also in this case. The rest of the proof applies literally.
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