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Abstract

We show some Chung-type lim inf law of the iterated logarithm results at zero for a class of (pure-jump)
Feller or Lévy-type processes. This class includes all Lévy processes. The norming function is given in
terms of the symbol of the infinitesimal generator of the process. In the Lévy case, the symbol coincides
with the characteristic exponent.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

We study the short-time behaviour of a class of one-dimensional Feller processes (X;);>0.
To do so we identify suitable norming functions u, v, w such that the following Chung-type LIL
(law of the iterated logarithm) assertions hold IP*-almost surely:

sup | X — x|
lim — == =
Soul(x,t/log|logt])

C(x), )
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sup | X5 — x|
Tim 255 —0 or =400, )
—0 v(t, x)
. Xy — x|
lim — =y(x) >0 or =+o0. 3)
t—0 w(t7-x)

Assertions of this kind are classical for Brownian motion, the corresponding results for Lévy
processes are due to Dupuis [6] and Aurzada, Doring and Savov [1]. The class of Feller processes
considered in this paper includes Lévy processes and extends the results of these authors. We will
characterize the norming functions with the help of the symbol of the infinitesimal generator of
the Feller process. In the case of a Lévy process this becomes a rather simple criterion in terms
of the characteristic exponent of the process.

Lévy processes. A (real-valued) Lévy process (X;);>¢ is a stochastic process with stationary and
independent increments and cadlag (right continuous with finite left limits) sample paths. The
transition function is uniquely determined through the characteristic function which is of the
following form:

Ae(x, €)= B SX0) = FOEX — o=V E) >0, £ e R.

The characteristic exponent Y : R — C is given by the Lévy—Khintchine formula

V(&) =il + 5 o?? +/ (1 — e +iyel1(lyD) v(dy) 4

R\{0}

and the Lévy triplet (I, o2, v) where v is a measure on R \ {0} such that fy;éo(l Ay v(dy) < oo,
and/ € R, 0 > 0. The characteristic exponent is also the symbol of the infinitesimal generator
A of the Lévy process:

Au(x) = —p(Dyu(x) = —/}Re")‘sﬁ(&)w@ds, ue CO(R),

where () = 27)~! f]R u(x)e™*¢ dx denotes the Fourier transform of u.

Feller processes. The generator of a Lévy process has constant coefficients: it does not depend
on the state space variable x. This is due to the fact that a Lévy process is spatially homogeneous
which means that the transition semigroup Piu(x) = E*u(X;) = Eu(X, + x) is given by
convolution operators. We are naturally led to Feller processes if we give up spatial homogeneity.

Definition 1. A (one-dimensional) Feller process is a real-valued Markov process (X;);>0 whose
transition semigroup Pyu(x) = E*u(X,), u € Bp(R), is a Feller semigroup, i.e.

(a) Py is Markovian: if u € Bp(R), u > O then P,u > O and P;1 = 1;
(b) Py maps Coo(R) := {u € C(R) : lim}y| o0 u(x) = 0} into itself;
(c) Py is a strongly continuous contraction semigroup in (Coo (R), || - |loo)-

Every Lévy process is a Feller process.
Write (A, D(A)) for the generator of the Feller semigroup. If C2°(R) C D(A), then

Au(x) = —p(x, D)u(x) = — /}Rei"gﬁ(é) p(x,£)ds, ueCIMR),



V. Knopova, R.L. Schilling / Stochastic Processes and their Applications 124 (2014) 2249-2265 2251

see e.g. [10, Vol. 1, Theorem 4.5.21, p. 360]; this means that A is a pseudo differential operator
whose symbol p : R x R — C is such that for every fixed x the function & — p(x, &) is the
characteristic exponent of a Lévy process

p(x, &) = il(x)E + 1 o2 (x)E> + /}R\{O}(l — & iyl (IyD) vix, dy). (5)

The Lévy triplet (I(x), o2(x), v(x, dy)) now depends on the state space, i.e. the generator is
an operator with variable ‘coefficients’. A Feller process (X;);>¢ is said to be a Lévy-type pro-
cess, if the symbol of the generator admits the representation (5). Typical examples are ellip-
tic diffusions where the symbol (in one dimension) is of the form p(x,&) = %az(x)f 2 and
stable-like processes where p(x, &) = [£]*® with 0 < ag < a(x) < o) < 2 is Lipschitz
continuous, cf. [2]. For further details we refer to [10] or [11], or [4] as an up-to-date standard
reference.

The symbol p(x, &) plays very much the same role as the characteristic exponent of a Lévy
process and it is possible to use p(x, &) to describe the path behaviour of a Feller process, for
example [19,11] or [21]. Note however that, due to the lack of spatial homogeneity, p(x, &) is
not the exponent of the characteristic function, i.e.

)"[(x’ E) = ]Exei(xrix)é # eitp(xss)‘

A brief overview of LIL-type results. For a general Lévy process the first result is due to
Khintchine [13], cf. [12] for the Brownian LIL. Khintchine provides a necessary and sufficient
criterion for a positive increasing function u# : (0, €) — (0, 00) to be the upper function for a
one-dimensional Lévy process (X;);>0 without Gaussian component:

— X PO X t
im l—t| <c Plas. if, and only if, / M dt

< < 00. (6)
t—0 u(t) 0+ t

As usual, we indicate by fo , - - - that the integral converges at the origin. For a Brownian motion

this result is sharp with u(¢) = \/t log | log¢|.

Khintchine’s result is generalized by the following integral test due to Savov [18]. Let

N(@) = fl x|>t v(dx) and b(¢) be a function which satisfies some mild growth assumptions.
Then
' — | X
/ N(b(t))dt < oo or =400 = lim — = A(b) or = +4o0.
0 1—0 b(t)

The first Chung-type LIL for (n-dimensional «c-stable) Lévy processes is due to Taylor [22]. If
0 < a < n and if the transition density satisfies p;(0) > 0, then (1) holds with u~!(x, ) = ¢1/¢
and C(x) = C. Pruitt and Taylor [17] extended this result for Lévy processes with indepen-
dent stable components. Based on [9], Fristedt and Pruitt [7,8] prove a LIL for subordinators
(one-sided increasing Lévy processes), where the upper function is determined by the Laplace
exponent of the process. Dupuis [6] extends these results for symmetric Lévy processes, with
u () = 1/9Y /1), where ¢V (&) = fy#) min{1, |Eu|*}v(du). Using a different approach,
this result was independently rediscovered by Aurzada—Doring—Savov [1]. Further, more refined
results of type (1) for (non-symmetric) Lévy processes are due to Wee [23,24].
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2. A Chung-type lim inf LIL for Feller processes

Consider a one-dimensional Feller process (X;);>0 with symbol p(x, &) of the form (5).
Throughout we assume:

CZ°(R) is in the domain of the infinitesimal generator;

x > p(x, &) is continuous and has no diffusion part : 0> = 0; (A1)
sector condition : Jcp € (0,00) Vx,& € R: |Imp(x, )| < coRep(x, §).
Define the function
pYx, &) 1=/ min{|§y[*, 1}v(x, dy); @)
y#0

this is a natural generalization of a typical ‘truncated second moments’ function which appears
naturally in the context of limit theorems, see e.g. [6, p. 46] and [16]. It is not hard to see that
Ip(x, &) < 2pY(x, &) and pY(x,28) < 4pY(x, &) for all x, & € R. We will also need the
following regularity assumptions:

Jk(x)>1 VR<L1: sup pU(y, %) <k(x) inf pU(y, %); (A2)
lx—y|<2R lx—y|<3R
€ (0,1)3g =qx) € (0,1) VR € (0, 1], y € B(x, R),
te[0,50]: PY(X; <y) <gq. (A3)

For example (A3) holds (even with equality) with ¢ = 1/2 if A;(x, &) = E*e’6X1=9) s real-
valued. For Lévy processes which are not compound Poisson processes (A3) follows from
lim;—,o P(X; > 0) = p € (0, 1) (Spitzer’s condition); see [5, Chapter 7] for the necessary and
sufficient conditions in the Lévy case. Set

u=u(x,R) = R e (0,1], ®)

inf  pY(y, L)’

lx—y|<3R P 7)

and denote by u=tx, p) = inf{r : u(x,r) > p} the generalized inverse of R +— u(x, R).
We can now state the main result of this section.

Theorem 2. Let (X;);>0 be a one-dimensional Feller process with symbol p(x, &) satisfying
(A1)—(A3). Then there exists a constant C(x) > O such that

sup | X5 — x|
0<s <t

b e e/ og gz — €& (F-as) ©

where u™" is the generalized inverse of the function R — u(x, R) defined in (8).

Before we prove Theorem 2 let us consider an example.

Example 3. Take v(x, dy) = %a(x)(Z—oe(x)) ly| 717%™ dy, where o : R — [ag, a1] C (0, 2)
is continuously differentiable, with uniformly bounded derivative. Clearly, (A1) holds. A direct
calculation shows that pU(x, £) = g9,
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We will now check (A2). Pick R € (0, 1]. Since « is continuously differentiable, we have

sup a(y)— inf «a(y)= max |a(y) —a@)| <6R max |d'(y)],

|x—y|23R ) P 6D Z’yeB(X’ml ) —a(@)| < yeB(x,SR)| (631
implying

sup pU(y. 1/R) sup pY(y. 1/R) ,
lx—y|<2R |x—y|<3R 1\6R max lo" ()]

i UGy, 1/R) S Tf pU( 1/R) S E) e

nf , ,
woyi<ar? Py L

_ (L)%Eg}%m lo" ()]
RR
for all R € (0, 1]. Thus, (A2) holds with any function « (x) > 64™M¥yeBk.1) o'
Let us check (A3). In [15, Theorem 5.1], see also [14], it is proved that for « € C ,1 (R),
there exists a Feller process (X;);>0 corresponding to the characteristic triplet (0, 0, % a(x)2 —
a(x)) |y|~1-e®) dy). Moreover, this process has a transition density p(, y, z), and

P(t,y,2) = Paty(t, y — D1+ Oy min{1, (1 + [logtDly — 2} + 0 ()]
O(1)
14|y — z|@ot!
for the symmetric «(y)-stable transition density pg(y)(f, y — z) and some § € (0, 1); the big-O

terms refer to t+ — 0 and do not depend on y, z. Using the scaling property we have the equality
Pa(y)(t,y —2) = t‘l/"‘(Y)pa(y)(l, t~1¢O(y — 7)) and the unimodality of the stable law we get

+

PY(X; > y) > f p(t,y,2)dz = €payy(1, )1 + 0(1)) + Ot/
y<z<y+er! /oM
which proves (A3).

Next we calculate the rate of convergence. Since «(y) is continuously differentiable, we may
assume that on (x — 3R, x + 3R) there is a local minimum at x, say. Then for R small enough
minj,y|<3g ®(y) = a(x), and so
(

-1 min  a(y)
u(x,R):( inf pU(y,R—l)) = sup R*V) = RrISR T = RO,

[x—y|<3R lx—yI<3R

Consequently, u_l(x, p) = pl/“(x).

Assume now that x is not a local minimum of «. Then x is either a local maximum, or « is
decreasing (respectively, increasing) on [x — 3R, x 4+ 3R]. In both cases the minimum is attained
at one of the endpoints. Without loss of generality we assume that the minimum is attained at the
point x — 3R. Thus,

u(x, R) = R¥30
and as g < a(x) < ap, we have

cop'/® <ul(x, p) < erp!/. (10)
Since « is continuously differentiable we get, using a Taylor expansion,

a(x — R) =a(x) — Ra'(x —6R), (11D
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where 6 = 6(x, R) € (0, 1). Note that the function R — R**~3R) i5 continuous and tends to 0
as R — 0, implying that for sufficiently small p the equation R** 3% = 5 admits a solution;
thus,

u_l(x, 0) = min{R : RYG=3R) _ o}
By (11) the function u! (x, p) satisfies the equation
u—l(x’ p) = pl/(ol(x)—3u_1(x,p)oz’(x—?»@u_l(x,p))). (12)

Therefore, by (12) we have

m ——— = lim eXx — n
b0, ) om0 PG T at) —3u-lx, p)a'(x — 30u—(x, p)))

=1,

where we used the fact that a(x) € [, @1] and, because of (10), u~'(x, p)Inp — O as p — 0.
This gives (9) with u~!(x, p) = p'/*™,

For the proof of Theorem 2 we need several auxiliary results in order to estimate the
probability that (X;),>0 exits a ball of radius » > 0 within time ¢ > 0.

Lemma 4 is the key to derive the LIL. We record it in a form which is convenient for
our purposes, and refer to [19] for the original version, as well as to its improvement (with a
simplified proof) [21, Proposition 4.3]. A close inspection of the arguments in [21] reveals that
one does not need the ‘bounded coefficients” assumption sup, g <1 [P(x, §)| < co.

Lemma 4. Let (X;),>0 be a one-dimensional Feller process with symbol p(x, £) satisfying (A1).
Then for all t > 0 and R > 0 we have

IPx< sup | Xy —x| > R) <ct sup pU(y, %) (13)
0<s <t [x—y|<R
U -1
IPx< sup |X —x|<R><c(t inf ,l> . (14)
Ogszt s \x—y\éRp (y R)

The constant ¢ > 1 depends only on the sector constant co, but not on x.

First we extend (14).

Lemma 5. Under the assumptions of Lemma 4, we find forn > 2 and allt, R > 0

IPx<sup | Xs — x| < R) < (4o)? <t inf pU(y, %))_ . (15)

s<nt lx—yI<3R

Proof. Set, for simplicity, X; = supy<,<, | X5 — x|. We use induction and the Markov property.

PY(X,, < R) < E* (H{X* <R}]1{0sup X<n_.>,+s—x(n_1),|<2R}>

(n—1)t <5<t
X0
=E (]1{x;‘n71)t<R}E ( 1)’[]1{x;‘<21e}]>

< sup IE/V[]I{XRZR}]IPX(XZ‘W]), < R).
[x=yI<R
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Using induction and the fact that pU(x, 28) < 4pU(x, &), we derive

-1
P*(X* <R)<c su t inf Uz, L ) (4c)"!
Xy <Ry <e sup R( L nf P (2 2x) )

—n+1
x(t inf pU(Z,%))

|x—z|<3R

<(4c)”(t inf pU(y,%)> . O

[x—y|<3R

Remark 6. Let u(x, R) be as in (8). Then (15) becomes for any y > 1

IPX( sup | X5 — x| <R) <y, R>0.
s<n-(4yc)u(x,R)

Lemma 7. Suppose that the assumptions of Theorem 2 are satisfied. Denote by c the constant
appearing in Lemma 4, by k (x) the constant from (A2), and y = y (x) > max{ 1, 4"1(x ) } where
q = q(x) is the constant from (A3). Then there exist constants py ,(x), p2,,(x) € ZO 1) such

that for allm > 1

Pay " <P sup (X — x| < R) < pry ()™, (16)

s<mu(x,R)

Proof. Set X[ := sup,, |X, — x| and X}, := sup,,, | X, — X;|. First we prove

C;y < IP(Xnu(xR)/(l@c(x)yc) R) and IP(Xn(4yc)u(xR) R) < a7)

where n > 1 and C1, C2 > 0 are some constants. The upper bound follows from Lemma 5 and
Remark 6 with C; = 1/y, where y > 1 is arbitrary, independent of x.

Let us establish the lower bound. The crux of the matter is now the behaviour of pU(x, 1/R)
with respect to the variable x. Recall that pU(x, &) satisfies (A2) with some constant « (x). Then
we get from (13) and (A2) for any z such that |z — x| < R

1
IPZ(XZ(X,R)/(ALC),) =2 R) < —u(x,R) sup PU()’, %)

4y l=—yI<R

1 K(x)
< —ux,R) sup pY(y, &)< ==

4y v—y|<2R 0- ) 4y

Taking y = y(x) > max{l, 4("1(—21)}, we find for all z with [z — x| < R

IPZ(X;‘(X’R)/@C},) <R)>1-——F>¢q, R>O0. (18)

Let T := u(x, R)/(4yc) be fixed. Observe that {XZT < 2R} D ﬂz;é Ay, where

| [0, R], if Xpr < x,
Aj = {Xifr,(kwr SR Xy = Xir < <[—R’ 0l if Xir > x.

In other words, if X7 < x, then at the next end-point (k + 1)T the process is above X7, but
within the ball B(Xyr, R), and if X7 > x, then at time (k 4+ 1)T the process is below Xy but
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still in the ball B(Xgr, R). Denote F := o{X;, s < Tk}. Then
E* [T, | Fa1] = P07 (Ag)
= PXo-07 (X5 < R, X7 — X0 € [0, R]) L{x(0_ 17 <x)
+PXo-07 (X5 < R, X7 — X0 € [—R,0]) Lix, 1))
> inf P*(X; <R Xr—Xo€l[0,R]).

x—R<z<x

Without loss of generality we may assume that (A3) holds with 7y = 1; otherwise we would just
get a further multiplicative factor. By (A3) we have

P* (X7 <R, X7 —Xo€[-R,0]) <P* (X7 — X0 <0)<gq
uniformly in z € B(x, R) and T € [0, 1]. Using (18) with z € B(x, R) we get
P (X} <R, X7 —Xo€[0,R]) =P (X; <R)—P*(X; <R, Xr—Xo€[-R,0])
> P (X7 <R)—q >C,

K(x)

where Cp == 1 — — g > 0 by our choice of y. Thus,

E* [14,_, |~7:n—1] > Ca.

Note that [T} 5 214 . 1s F,—1-measurable, and by the Markov property,

n—1 n—1 n—2
E* (]‘[ ]1Ak> = E* (E*[]‘[ T4, ]-‘,,_1:|) = IE’“(H 14, B []unl JT"_ID
k=0 k=0 k=0
n—2 n—2
= IEX(]_[ ]lAkIPXw—l)T(An])) > CEF (H 11Ak>.

k=0 k=0
With (A2) and the fact that pU(x, 2¢&) < 4pU(x, &) we see

inf pY(y,1/R) < inf pY(,1/R) < su YUy, 1/R)
|)HKSRP v, 1/ ‘Hy‘ngp 1/ . y|I<)sz y. 1/

; u
<keo inf pP0n1/R) <A inf pU(y 1/CR)),

—yI<6 I<

which implies
u(x,2R) <4k (x)u(x, R). (19)
Thus, by induction (recall that T = u(x, R)/(4yc))

]PX(X;lkM(X,zR)/(IGK(x)]/C) 2R) IPX(Xnu(x R)/(4yc) 2R) = ]PX(X:T < ZR)

n—1
x []‘[ nAk} > Cl
k=0

Finally, we show how (16) follows from (17). Putm := |n(4yc)] + 1 (|x] denotes the largest
integer smaller or equal to x € R); thenn - (4yc) <m < n - (4yc) + 1, implying

n\m _m__
P X k) S B S PUXC 4y 0puiery) S B) < CF = (Cf"> S C14W+1 = pi, (x).
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For the lower bound we set m := |n/(16yk (x)c)|. Then 16}’/’:—()5)0 —1<m« 16}’/?—(95)0’ and
no\ m+1
m+1
PY Xy < B 2 PY X pyjaeyene S B 2 6 = <C2 : )
> C§m+1)l6yk(x)c — pgf)—i—l ()C) O

Remark 8. Note that the constants p; ,, p2,, in Lemma 7 depend on the variable x through
K (x)

> 4(1=q(x))
sup, K (x)

» infy (I—¢ (x))

k(x)and y(x) > max{ 1 } Without loss of generality we can choose the function y (x)

such that infy y (x) > max{l }; under this condition we have infy p; ,, (x) > 0.

Proof of Theorem 2. Fix x € R and write 7*(a) := inf{s > 0 : X; — x & [—a, a]} for the first
exit time of the process (X;);>0 with Xo = x. Then we can follow the arguments from [6].

Step 1. Using (16) we can prove, similar to [6], that there exists a constant £ € (0, co) such
that

X
P* sup v @ <€)< exp(—m1/4), m>1, (20)
Dy, <a<a, W(X,a)log|logu(x,a)l

. . 2 .
where a,, = a,,(x) is the solution to u(x, a,,) = e~ ; clearly, lim,,_, o @, = 0. Indeed: let

-1
c1 = (3supllog pa,, (X)), Am = 2cy logm, ug = Mu(x, ag),
X
o0
Of = Zui,
i=k
and consider the sets
Gy = {X:kﬁk—l > ag}, H; = {X;k > ag}, Dy = {X:k—l > 2ay},

where X} = sup, <, | Xy — X, [, and k > 2. By Remark 8 we can assume that ¢; > 0. By our
choice of the sequence (ax)r>1 = (ax(x))i>1, there exists a constant ¢c; > 0 such that

o0

o0 , . )y & e~ (k+i)?

<c ei
) X 2
j 1 Uk ] 1 “ku(-xvak) / 1 logke k

Uk

2n

Using the Markov property and the lower bound in Lemma 7, we get

P*(Gy) < sgpIPZ( sup | X5 —z| > ak) = sgp(l - ]PZ( sup | Xs —z| < ak)>

0<s<ug 0<s<Apu(x,ax)
Me+1
< sup(1 — pa,y (™)
b4
<1- iIZIf P2y (Z)e—ch sup, | log p2,,, (z)|-logm

—2/3

=1 —c3m™ 3 <exp(—esm™3), (22)
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where c3 = inf; ps , (z) > 0, cf. Remark 8. Now (13), (A2) and (21) yield

A
PY(X;, > ax) = Px<x* o k) <e kK(x)ox CK()C) KOk

wGnap 4O-ak) u(x,ar) ug
< ea(x) logke %, (23)
where c4(x) = 2ccicok (x).
Define A, = z’zm Dy. Since Dy C Gy U Hi, k > 1, we have
2m 2m 2m 2m
A, C (m Gk> U <ﬂ Hk) C <m Gk) U (U Hk>.
k=m k=m k=m k=m

Therefore, by (22), m applications of the Markov property, and (23) we have

2m 2m
P (Am) < IPX(ﬂ Gk) +1PX(U Hk)

k=m k=m
2m 2m
< 1_[ exp(—czk_2/3) + c4(x) Z ek logk
k=m k=m

m
< exp(—c3m@m) ") + ca(x)e > log(2m) D e
k=0
< exp(—c3272m!'3) + es(x)e™*" log(2m),

where ¢5(x) = ca(x)e/(e — 1). Therefore, there is some mo = mq(x) such that IP(A,;) < e

for all m > my. Finally,
2m X* X*
P A = P (12 > 1) =P inf S%L s
Zak m<k<2m 2ak

k=m
*(2
:]Px< sup v (2ar) < 1)
m<k<2m Ok—1

where we used the definition of the first exit time t* (a) introduced at the beginning of the proof.
As op_1 = Z?ik_l uj = up = 2ciu(x, ai)logk, from the very definition of u(x, ay) we see
that for m > mgq, where my is large enough,

*(2
exp(—m1/4) > P*| sup _ TG <1
m<k<2m 2c1u(x, ai)logk

*(2
:]Px< sup v (2ar) < 1)

m<k<am C1u(x, ar) log|logu(x, ay)|

X
2 PX( Sup T (a) < 1>
2ay, <a<2apy cru(x,a/2) IOg | logu(x, a/2)|
X
> ]Px< sup (@) < é),
202111

<a<2a, u(x,a) 10g [logu(x, a)|

with & = 4KC—(IX). In the last inequality we used (19), the fact that in the above inequalities a > 0
is small enough, and that by monotonicity of the function a +~ u(x,a/2) we have

log|logu(x,a)| <log|logu(x,a/2)|.
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Step 2. From (20) we conclude with the Borel-Cantelli lemma that
— " (a)

im > & (P'-as).
a—0 u(x, a)log|logu(x, a)|

Let £; be given by u(x, {;) = e * k> 1,and set b = —4/log p1,y, cf. (16). By definition,
the functions u(x, a) and t*(a) are monotone increasing in the variable a, and we have that
u(x, ly1) = e 'u(x, £). Therefore,

By = { sup ™ (a)

tesi<a<t, U(x,a)log|logu(x,a)| ~
C {* () = bu(x, €g1) log | logu(x, L)}
= {t* () > be 'u(x, &) log|logu(x, &4 1)1},
implying, by the upper estimate in (16), that P(By) < exp(—4€’1 log(k + l)) = (k + 1),
Thus,

— )

1}1—% u(x, £) log |logu(x, £)| €501 @4

The expression on the left-hand side of (24) belongs to F(.. By the Blumenthal 0-1 law the
o-algebra Fq is trivial, implying that there exists a constant C such that
— *(a)

1 =C (P*-as.). 25
aE)I}) u(x,a)log|logu(x, a)| (P"-as.) 5

This constant is the supremum of all £ such that (20) holds. On the other hand,

1 ™ (ax)

—Cc< <2C, k= ko,
2 u(x, ar) log | logu(x, ar)|

for any sequence {ax}r>0 such that ay — 0 as k — o0o. Here ko might possibly depend on the
choice of the sequence (ax)r>0. By the very definition of the first exit time 7¥(a), the above
estimate implies

1 1~

2C > — sup Xy —x| > -C. k= ko,
Ak 0<s<u(x,az) log | log u(x,ap)| 2
where C > 0 is some constant. Thus,
. 1 / X
lim — sup |Xs —x|=C" (IP*-as.)

a—0 4 0<s<u(x,a) log|logu(x,a)|

for some constant 0 < C’ < 0o. Substituting a := ul(x, 1), we get (9). U
3. On the upper bound

In this section we prove (2), that is we give conditions which ensure that there is a norming
function v(¢, x) with lim,_,¢ SUpg<y<s | Xs — x|/v(t, x) = OP*-a.s.; for a Lévy process we also
obtain conditions ensuring lim,_0 SUpp<s< | Xs — x[/v(t, x) = o0 PY-a.s. For this we adapt
Khintchine’s criterion (6).
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Proposition 9. Let (X;);>0 be a one-dimensional Feller process with symbol p(x, &), satisfying
(A1). If v(x,t) > 0 is a function such that t — v(x, t) is monotone increasing for every x and

/(H L PY(y. sy de < oo, (26)
then
sup | X5 — x|
lim 255! =0 (P*as). 27)

t—0 v(x, 1)

Proof. Under our assumptions, the process (X;);>o satisfies the maximal inequality (13). As
before, we write X := supy<,<, | X5y — x| to simplify notation.

We will use the (easy direction of the) Borel-Cantelli lemma. Fix some 7 < 1 and set
ty = h/2k. Pick 6 € [tx+1, tx). Since v(x, ) is increasing in ¢, we have

IPx(ng > U(x,@k)) < IPX(X;‘k > v(x,tk_H)) <cH sup pU (y, m)
|y—x|<v(x,t41)

Because of 6y <t = 2t,41 we see

o0
Z]PX(ng > v(x,@k)) < 00.
k=1

By the Borel-Cantelli lemma, IP* (X;k < v(x, 6y) for finally all k > 1) = 1, implying

*

< P*-as.). 28
zl—IE(l) v(x,t) (F-as.) 28)
From the definition of pY(y, &), we find pY(y, £/4) < A7 2pY(y, &) forall 0 < A < 1. Thus,
(26) implies

1

U 1 U 1

/0 sup p (y’ Av(x,t))d[ S A2 / _ Sup 14 (y’ v(x,t))dt < o0.
+ [y—x|<iv(x,0) 0+ [y—x|<v(x,0)

Because of (28) we get

1 * *

. 3 . Xt X
— - lim = lim <1 (P*-as.).
A t=0v(x,t) 1—=0Av(x,t)

Letting A — 0 gives (27). O

Example 10. Suppose that 0 < ¢ < p(y,§)/p(x,§) < C <ooforallé e R, [x —y| < r
where r < 1 is sufficiently small. Then it is enough to check the convergence of the integral

u 1
/ P <X,m>dt < OQ.
0+

1

This integral converges, e.g., for functions v(x,t) of the type v(x,t) = —( | ), where
XX e n
x(x,) = [pU(x, 317! is the inverse of pU(x, -), and
1
Len(t) =|logt| - |log|logt|]|-...- (10g|10g|...|logt|...|) e

n

forsome € > Oandn > 1.
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Example 11. Consider the stable-like Lévy measure from Example 3. Since pY(x, &) = |g|9W,
we have an explicit representation of the function v(x, ¢) from the previous Example 10:

v(x, 1) = (e n ()" (29)

Therefore, the integral (26) becomes

()
1 a(x)
/ sup ( ) dt < oo. (30)
0+ [x—y|<v(e,r) \Flen(t)

Note that v(x, 1) — 0ast — 0. Since « is continuously differentiable, we can take ¢ so small
that in the interval (x — v(¢, x), x + v(¢, x)) there is at most one extremum of «(y). If o has a

local maximum at x, then the integrand in (30) is equal to (tﬁe,,, (t))_ . Otherwise, x may be a
local minimum, or &’(y) > 0 (respectively, < 0) on (x — v(z, x), x + v(z, x)). In both cases the
maximum of ¢ is attained at the end-points of the interval, say, at x — v(#, x). Using a Taylor
expansion, we have

alx —v(x, 1) <o)+ |d(x —0v(x, )| v, x),

where 0 = (¢, x) € (0, 1), implying

a(x—v(x,1)) \o/(x—gv)(t,x))l
o

() " < (o)
g— [
ten(t) tlen(t) \1len(r)

1 1 |0[/(X*9U(T,X))| C(.x)
= <
tge,n([) (v(xJ)v(x,t)) tee,n(t)

for small > 0, where we used that v(x, )"®" > 1/2.
Thus, in this case Proposition 9 holds true with v(x, ¢) as in (29).

v(x,t)

Let us show the counterpart of Proposition 9, i.e. a condition for im0 | X; —x|/v(x, 1) > C.
For this we have to use the direction of the Borel-Cantelli lemma that requires independence.
Therefore, we have to restrict ourselves to Lévy processes. The following proposition appears,
with a different proof based on fluctuation identities already in [18, Proposition 2.1]; this proof
required growth assumptions on v(¢) as t — 0 and t — o0o. We refer also to [5, Chapter 10] for
further results on the asymptotic behaviour (in probability and almost surely) of X, /b(¢), where
b() > 0,b(t) > 0ast — 0.

Proposition 12. Let (X;);>0 be a pure jump Lévy process with Lévy triplet (0, 0, v) and v(t) be
a positive increasing function. If

/ v{y: [y] >2Cv(t)}dt=oo for some C > 0, (€2))
0+
then
sup | X
— 0<s — X C
m e g XSO o, (32)
=0 v(t) t—0 v(t) 3



2262 V. Knopova, R.L. Schilling / Stochastic Processes and their Applications 124 (2014) 2249-2265
Proof. Applying Etemadi’s inequality, cf. Billingsley [3, Theorem 22.5], we get

3P{1X: > Sv)} > IP{ sup |X| > cw)] > 11— i), (33)
0<s<t
Let now v(#) be such that (31) holds true. There are two possible cases.
Case 1: limy_otv{y : |y| = 2Cv(t)} = 0. Using the inequality 1 — e™ > c;x for small
x > 0, we get with (31)

1 C
—IP{lXt| 2§v(t)}dt>c1 v{y: [y] 22Cv(t)}dt=oo.
o+ I 0+

Case 2: lim, ,qtv{y : |y| = 2Cv(t)} = c2 > 0. Then

lim (1 _ efrv{y:\y@zcw)}) — ] — e limoYIZ2C00) — | _ e ¢ (0, 1],
1—0

Thus, there exists 7y small enough such that IP{lth > %v(t)} > c3 > 0forallt € (0, 1] and
we have automatically [, % P{IX;| > %v(t)} dt =oco. O

4. LIL results via the symbol of the process

In this section we obtain a Chung-type liminf LIL (3) for a Feller process (X;);>0. We will
see that the growth of the norming function w(x, ) is determined by the symbol p(x, &) of the
process. This result extends, in particular, Proposition 12 and holds for Lévy-type processes. For
Lévy processes more precise results are known, but the easy argument used in the proof and
the simple form of the norming function may nevertheless be of interest even in this case, see
Remark 17.

Throughout we assume that (A1) holds with the following stronger version of the sector
condition,

dcpe[0,1) Vx,&eR:|Imp(x,&)| <coRep(x,§).

The restriction ¢g < 1 means that we exclude the situation when the drift can dominate the
overall behaviour of the process, cf. (5). For a Lévy process this implies that a bounded variation
process has no drift at all.

We need a further assumption: there exists a monotone increasing function g such that

g(§) <Rep(x,£) <C,(1+ €1, xeR, &> 1. (Ad)

We also need the following estimate for the characteristic function A;(x, §) = E* e §(Xi=%) which
is due to [21, Proposition 2.4]:

sup A (x, §)| < exp[—3t inf Rep(x,§)], 1 € [0, 1], o =1o(§, €), (34)
xeR xeR

where § =6(c) =1 —co— € > 0,and 0 < ¢ < 1 is the sector constant.
Remark 13. (A4) ensures that the function 79(&, €) is continuous in &. This follows from the

proof of [21, Proposition 2.4]. The upper bound in (A4) means that the generator A = —p(x, D)
has bounded coefficients, cf. [20] for details; in fact, C, = 2sup, . sup,,<; |p(x, )l.
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Theorem 14. Let (X;):>0 be a Feller process such that Xo = x and with the symbol p(x, &)
satisfying the conditions (A1) and (A4) with a sector constant ¢y € [0, 1). Let w(x,t), t > 0,
x € R, be a positive function which is for all x monotone decreasing as a function of t. Then we
have P*-a.s.
o X —xl {y(x) € (0, 0]
-0 w(x,1) o0

) _ {c(x) € (0, 00)

according to 11m tg( 00

w(x,t)

Proof. Take 1 < a < b < oco. By Fubini’s theorem we find, since g(§) < infy Rep(x, &),

b . b b
§utn JE| = _& _Ste(—f
E"/a €'’ weh dE| = /a At(x, w(x’t))dg' g/a exp[ 8tg(w(x’t))]dé

< (b —a) exp[—81g(5a77)]:
where we used the monotonicity of g in the last estimate. This inequality holds for all
0 <t < tab,e),tab,e) = infeep to(§, €) where to(&, €) is the constant from (34).
Since it depends continuously on &, cf. Remark 13, we have ¢(a, b, €) > 0. Taking the Fnt_m
on both sides, we get

lim
t—0

b —x
E* / o't % dg' <(b-a) exp{—8 hﬂ[tg(m)] } (35
a t—0 ’

Case 1. Assume that lim,  ,7¢(1/w(x,?)) = c(x) > 0. Then

lim
t—0

b . —X
E* / o't wte dg' < (b —a)e %W,
a

On the other hand, using |z| > |Re z|, we derive

/beifffx_fidg > /bcos<§X ) g‘ (g X’_x)dg
a ~ (x, 1) wix. )

Suppose that the claim does not hold, and lim,_,, |Xt — x|/w(x,t) = 0. Without loss of

generality, we can choose a and b such that cos(&‘ u)f(’;f)) > 0 fora < & < b. Since cos is

bounded below by —1, we can apply Fatou’s lemma and get

b v Xp—x b X, —
]Ex/ e uten g 21@"([ h_mcos(g ! x)dg):b—a.
a a t—0 w(-xst)

Thus, we arrive at 1 < e~%¢®)_ which is wrong, since ¢(x) is strictly positive.

lim
t—0

Case 2. Assume that lim, _,7g(1/w(x, t)) = oo. From (35) and the fact that |[Rez| < |z] we see

b
/ cos (SX ) S‘ (36)
a w(x, 1)

Assume that there exists a sequence of positive real numbers (#,),>0 with lim,_~#, = 0 and
limy, 00 | X, — x|/w(x,1,) = ¢ < 00.Since 1 < a < b < oo are arbitrary, we can chose the
interval [a, b] in such a way that

b X, —

cos | & dé >e>0 foraln>1
a w(x, tn)

and some € = €(c) > 0. This contradicts (36) and the proof is finished. [

0 = lim
t—0
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Example 15. Let v(x, dy) be the kernel from Example 3. In this case the symbol p(x, &) re-
lated to the kernel v(x, dy) via (5) can be calculated explicitly, i.e. p(x,&) = b(x)|E|4™),
where b(x) > 0 is some constant. In this case g(§) = c¢|&|*0, where ®p = miny «(x). Taking
w(t) = t1/% we see that lim,_, ,2g(1/w()) = 1, implying that lim,  ,#~"/%|X, — x| € (0, oc].
On the other hand, taking w(t) = tY/8 where B < a, we arrive at lim, t‘l/ﬁ|X, — x| = o0.
Thus, Theorem 14 gives a rough picture of the behaviour of the process.

Remark 16. With a careful analysis it is possible to capture the influence of starting point x in
Example 15. Let us sketch the (very technical) argument. (13) and (A4) entail, in particular, that
infy P(te > 0) = 1, if 7. is the moment of occurrence of the first jump bigger than €. Thus,
lim, % = lim, %, where X is the Feller process which arises if we remove all
large jumps from X. For the symbol this means to replace v(x, dy) in (5) by 1, ) (y)v(x, dy).
In particular, all estimates for the symbol remain valid. This allows to localize the proof of
Theorem 14 using infyep,. . (x) Rep(y, &) instead of g(§) = infyer Rep(y, §). In Example 15
we will thus get indices ap = infyep, () @(y) and @) = SUPye B . (x) «(y), and then letting
R, € — 0 gives a local version.

Remark 17. If the constant c(x) appearing in the statement of the preceding theorem is uni-
formly bounded away from zero, i.e. infy c(x) = ¢ > 0, then infy, y(x) = y > 0. Indeed,
assume that y = 0. Taking sup, on both sides of (35) we get in the same way as above that

b Lo Xyp—x b X, —
]Ex/ e’£w<xﬂ>d§‘>]E" (/ infli_mcos(é} ! x)dé)
a a * =0 w(x,t)

=b—a,

(b —a)e™® > sup lim
x t—0

which contradicts to the assumption ¢ > 0.

Remark 18. If (X;);>0 is a symmetric Lévy process with exponent ¥ (§) > g(§) > 0 and a
monotone increasing function g, Theorem 14 reads

lim |X;] _ {y € (0, 00),
i—o w(®) oo

c >0,

according to li_mtg(#t)) = {oo

t—0

Indeed: now we can take a = 0 and b = 1 and get

i X 1 1 1

w(t) — . .
e =1 g / R gg || = E /e—'fu%ds =f V) g
X /w(t) 0 0 0

Assume in Case 1 of the proof of Theorem 14 that the lower limit
lim, ,tg(1/w(t)) = ¢ € (0, 00) and that lim, ,,|X;|/w(t) = oo. Let (#,),>0 be a sequence
decreasing to O such that lim,_, » #,8(1/w(#,;)) = c. Then
s 1 ! 3 1 3
lim [E| S || = tim [ ™G g = / lim e V) qg
n—00 X, /w(ty) n—oo J, ) n—oo

_ 1 .
> lim e "8Gm) = ¢7¢,
n— 00

From the elementary estimate |e¥ — 1| < |£| we see that the expression on the left tends to 0,
and we have reached a contradiction also in this case. The rest of the proof applies literally.
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