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Abstract

In 1962, Dyson (1962) introduced dynamics in random matrix models, in particular into GUE (also
for β = 1 and 4), by letting the entries evolve according to independent Ornstein–Uhlenbeck processes.
Dyson shows the spectral points of the matrix evolve according to non-intersecting Brownian motions. The
present paper shows that the interlacing spectra of two consecutive principal minors form a Markov process
(diffusion) as well. This diffusion consists of two sets of Dyson non-intersecting Brownian motions, with
a specific interaction respecting the interlacing. This is revealed in the form of the generator, the transition
probability and the invariant measure, which are provided here; this is done in all cases: β = 1, 2, 4. It is
also shown that the spectra of three consecutive minors ceases to be Markovian for β = 2, 4.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In 1962, Dyson [8] introduced dynamics in random matrix models, in particular into GUE, by
letting the entries evolve according to independent Ornstein–Uhlenbeck processes. According to
Dyson, the spectral points of the matrix evolve according to non-intersecting Brownian motions.
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The present paper addresses the question whether taking two consecutive principal minors leads
to a diffusion on the two interlacing spectra of the minors, taken together. This is so! The diffusion
is given by the Dyson diffusion for each of the spectra, augmented with a strong coupling term,
which is responsible for a very specific interaction between the two sets of spectral points, to
be explained in this paper. However the motion induced on the spectra of three consecutive
minors is non-Markovian, for generic initial conditions. A further question: is the motion of two
interlacing spectra a determinantal process? We believe this is not the case; but determinantal
processes appear upon looking at a different space–time directions. These issues are addressed
in another paper by the authors.

During the last few years, the question of interlacing spectra for GUE-minors have come up
in many different contexts. In a recent paper, Johansson and Nordenstam [15], based on domino
tilings results of Johansson [14], show that domino tilings of Aztec diamonds provide a good
discrete model for the consecutive eigenvalues of GUE-minors. In an effort to put some dynamics
in the domino tiling model, Nordenstam [23] then shows that the shuffling algorithm for domino
tilings is a discrete version of an interlacing of two Dyson Brownian motions, introduced
and investigated by Jon Warren [28]; see also [4]. Recently Gorin and Shkolnikov [11] have
introduced a new multilevel β-Dyson process, which generalizes Warren’s process, for which
the Markov property holds for k consecutive spectra. One might have suspected that the Warren
process would coincide with the diffusion on the spectra of two consecutive principal minors.
They are different!

Non-intersecting paths and interlaced processes (random walks and continuous processes)
have been investigated by several authors in many different interesting directions; see e.g.
[22,12,14,13,26,16,24,21,6,16,17,2], just to name a few. In particular, in [26,2], partial
differential equations were derived for the Dyson process and related processes.

The plan of this paper is the following. We state precisely all the results in Section 2. Some
useful matrix equalities are derived in Section 3 which are used in Section 4 to derive transition
densities for the various processes considered. Stochastic differential equations are derived in
Sections 5 and 6. The fact that the spectra of three consecutive minors are not Markovian for
generic initial conditions is demonstrated in Section 7.

There is a companion paper by the same authors aiming at determining the kernel for the point
process related to the Dyson Brownian minor process along space-like paths [1].

For RSK, percolation theory and nonintersecting paths, see Chapter 10 and for Laguerre, Ja-
cobi and tridiagonal ensembles, see Chapter 3 in [10]. In the concluding remarks of [7], M. De-
fosseux mentions, without proof, that the minor process for Hermitian matrices is not Markovian
for more than 3 consecutive minors; see also [6]. In [5], it is shown that for a discrete non-
commutative analogue of the Dyson Brownian motion (quantum random walk), Markovianess
is established for consecutive minors and non-Markovianess for three consecutive minors.

2. The Ornstein–Uhlenbeck process and Dyson’s Brownian motion

Consider the space H(β)
n of n × n matrices B, with entries Bkℓ ∈ R, C, H (β = 1, 2, 4)

satisfying the symmetry conditions

Bkℓ = B∗

ℓk . (2.1)
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Any element z ∈ R, C, H admits a decomposition z = z[0]
+
β−1

ℓ=1 z[ℓ]eℓ, with ei ’s satisfying

e2
1 = e2

2 = e2
3 = −1, e1e2 = −e2e1 = e3,

e1e3 = −e3e1 = −e2, e2e3 = −e2e3 = e1.
(2.2)

Note that the square bracket superscript [ℓ] will, throughout this paper, refer to the coordinates of
an element z ∈ R, C, H. The conjugate ∗ of an element z ∈ R, C, H and its norm are given by

z∗
= z[0]

−

β−1
ℓ=1

z[ℓ]eℓ, |z|2 = zz∗
=

β−1
ℓ=0

z[ℓ]2,

with z admitting a polar decomposition z = |z|u, with |u|
2

=
β−1

ℓ=0 u[ℓ]2
= 1. The matrices

B ∈ H(β)
n , as in (2.1), correspond to:

H(β)
n =

real symmetric n × n matrices, for β = 1
complex Hermitian n × n matrices, for β = 2
self-dual Hermitian n × n “quaternionic” matrices, for β = 4

with the compact groups of vol (U (β)
n ) = 1,

U (β)
n :=

O(n), β = 1
U (n), β = 2
Symp(n), β = 4,

(2.3)

acting on it by conjugation.
For β = 4, it is well known that the quaternionic entries z can be represented as follows

z = z[0]
+

β−1
ℓ=1

z[ℓ]eℓ −→ ẑ =


z[0]

+ i z[1] z[2]
+ i z[3]

−z[2]
+ i z[3] z[0]

− i z[1]


. (2.4)

So, the n ×n quaternionic matrices B can be turned into 2n ×2n self-dual Hermitian matrices B̂,
of which the real spectrum is doubly degenerate. Here, we shall define the n distinct eigenvalues
as the spectrum of B. Unless stated otherwise we shall be working with the n × n quaternionic
matrices, rather than the 2n × 2n Hermitian matrices. Also, when working with matrices having
quaternionic entries, the trace will be defined in the usual way, that is as the sum of the diagonal
entries of the n × n-matrix.

The determinant of a matrix B ∈ H(4)
n is given in terms of the 2n × 2n matrix B (as defined

in (2.4)), by the following procedure: first define the skew-symmetric 2n × 2n matrix B by the
following product:

B := B ·


0 1

−1 0


⊗ In


,

and then “det B” is defined as

det B := Pfaff (B) = (det(B))1/2
=


p

(−1)n−ℓ
ℓ
1

Bαβ Bβγ . . . Bδα, (2.5)
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where p is any permutation of the indices (1, 2, . . . , n) consisting of ℓ exclusive cycles of the
form (α → β → γ → · · · → α); see Mehta [19]. In particular, this means that

det(λI − B) =

n
1

(λ − λi ), spec B = {λ1, . . . , λp}, (2.6)

with the λi being the double eigenvalues of B.
The following normalization constant Z−1

n,β will come back over and over again:

Z−1
n,β := 2−

n
2


β

π

Nn,β

, with N := Nn,β :=
n

2
+

β

4
n(n − 1). (2.7)

Dyson’s idea was to let the free parameters of the matrix evolve according to the SDE of the
Ornstein–Uhlenbeck (OU) process:

d Bi i = −Bi i dt +


2
β

dbi i , i = 1, . . . , n

d B[ℓ]
i j = −B[ℓ]

i j dt +
1

√
β

db[ℓ]
i j , 1 ≤ i < j ≤ n and ℓ = 0, . . . , β − 1,

(2.8)

where dbi i , for i = 1, . . . , n, and db[ℓ]
i j , for 1 ≤ i < j ≤ n and ℓ = 0, . . . , β−1, are independent,

standard Brownian motions; for notation, see (2.2). Since the Ornstein–Uhlenbeck diffusions are
independent, the Dyson process on the matrix B has a generator, which is just the sum of the
OU-processes above:

ADys :=

n
i=1


1
β

∂2

∂ B2
i i

− Bi i
∂

∂ Bi i


+


1≤i< j≤n

β−1
ℓ=0


1

2β

∂2

∂ B[ℓ]2
i j

− B[ℓ]
i j

∂

∂ B[ℓ]
i j


, (2.9)

with transition probability, setting c := e−t and using the constant (2.7),

P[Bt ∈ d B | B0 = B̄] =: p(t, B̄, B) d B

=
Z−1

n,β

(1 − c2)Nn,β
e
−

β

2(1−c2)
Tr (B−cB̄)2

d B, (2.10)

where d B is the product measure over all the independent parameters Bi i , B[ℓ]
i j . The transition

probability (2.10) satisfies the Fokker–Planck equation

∂p

∂t
= A⊤

Dys p,

with

A⊤

Dys =
2
β


1
2

n
i=1

∂

∂ Bi i
hβ ∂

∂ Bi i

1
hβ

+
1
4


1≤i< j≤n

β−1
ℓ=0

∂

∂ B[ℓ]
i j

hβ ∂

∂ B[ℓ]
i j

1
hβ


, (2.11)

with a delta-function initial condition, p(t, B̄, B)|t=0 = δ(B̄, B), and with invariant measure
(density)

lim
t→∞

p(t, B, B) = Z−1
n,β(h(B))β , with h := h(B) := e−

1
2 Tr B2

. (2.12)
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Dyson discovered in [8] the surprising fact that the process restricted to spec (B) :=

{λ1, λ2, . . . , λn} is Markovian as well. This is the content of Dyson’s celebrated theorem
(Theorem 2.1).

Before stating the main theorem, we define diagonal matrices X = diag (x1, . . . , xn) and
Y = diag (y1, . . . , yn), vectors w, v ∈ Rn, Cn, Hn and the inner-product ⟨w, v⟩ =

n
1 wiv

∗

i .
Then consider the integral

G(β)
n (X, Y ; w, v) :=


U (β)

n

dUe(Tr XUYU−1
+2 Re ⟨w,Uv⟩), (2.13)

and its integrand

G(β)
n (U ; X, Y ; w, v) := e(Tr XUYU−1

+2 Re ⟨w,Uv⟩). (2.14)

For w = v = 0, this is the more familiar integral

F (β)
n (X, Y ) := G(β)

n (X, Y ; 0, 0) =


U (β)

n

dUeTr XUYU−1
,

which for β = 2 gives the Harish–Chandra–Itzykson–Zuber formula:

F (2)
n (X, Y ) =

det[exi y j ]1≤i, j≤n

∆n(x)∆n(y)

n−1
r=1

r !, with ∆n(x) =


j>i

(x j − xi ). (2.15)

Does the integral (2.13) admit such a representation? This is an open problem.
For future use, we introduce the function

Φn(λ) = e−
1
2
n

1 λ2
i |∆n(λ)|. (2.16)

Also throughout the paper, λ denotes the vector λ = (λ1, . . . , λn) and sometimes the diagonal
matrix λ = diag (λ1, . . . , λn), with λ1 ≤ λ2 ≤ · · · ≤ λn . This will be clear from the context.

The main statement of the paper will be contained in Theorem 2.3. But first, we discuss
Dyson’s process; in the following theorem, formulae (2.17), (2.19) and (2.21) are due to
Dyson [8].

Theorem 2.1 (Dyson Process). The Dyson process restricted to its spectrum spec (B) = λ =

(λ1, . . . , λn) is Markovian with SDE given by:

dλi =


−λi +


j≠i

1
λi − λ j


dt +


2
β

dbi i , i = 1, . . . , n. (2.17)

Its transition probability,1 with c := e−t ,

P[λt ∈ dλ|λ0 = λ̄] = pλ(t, λ̄, λ) dλ1 · · · dλn

1 C−1
n,β is the norming constant for the Gaussian ensemble for general β, as obtained from the Selberg formula (see

Mehta [20], formula (3.3.10)), (see (2.7) for Nn,β )

C−1
n,β = (2π)−

n
2 βNn,β

n
j=1

 Γ


1 +
β
2


Γ


1 +
β j
2


 .
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=
C−1

n,β

(1 − c2)Nn,β
e
−

β

2(1−c2)

n
1(λ2

i +c2λ̄2
i )

× F (β)
n


βc

1 − c2 λ, λ̄


|∆n(λ)|β

n
1

dλi , (2.18)

satisfies the Dyson diffusion equation, with delta-function initial condition (pλ|t=0 = δ(λ, λ̄))
(forward equation)

∂pλ

∂t
= A⊤

λ pλ, with A⊤
λ :=

1
β

n
i=1

∂

∂λi
(Φn(λ))β

∂

∂λi

1
(Φn(λ))β

. (2.19)

The generator is

Aλ =

n
i=1


1
β

∂2

∂λ2
i

+


−λi +


j≠i

1
λi − λ j


∂

∂λi


, (2.20)

and the invariant measure of the Dyson process on B, projected onto spec (B), is given by the
GOE (n), GUE (n), GSE (n) measure for β = 1, 2, 4 respectively, with Φn(λ) as in (2.16):

C−1
n,β (Φn(λ))β dλ1 · · · dλn . (2.21)

For completeness we shall prove (2.18), (2.21) in Section 4 and (2.17), (2.19) in Section 5.
Throughout the paper, B(n−1), B(n−2), . . . will denote the principal minors of B of sizes

n − 1, n − 2, . . . . Note that this superscript is different from the square bracket superscripts
referred to in (2.2). It is remarkable that the Dyson process is not only Markovian upon restriction
to the spectrum of any single principal minor B, B(n−1), B(n−2), . . . , of sizes n, n−1, n−2, . . . ,
but also upon restriction to any two consecutive principal minors, in particular,

(spec B, spec B(n−1)) := (λ, µ) := ((λ1, . . . , λn), (µ1, . . . , µn−1)),

with intertwining property

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ λn−1 ≤ µn−1 ≤ λn .

We denote by Aλ and Aµ the generators of the consecutive spectra spec B and spec B(n−1),
as defined in (2.19). Define the characteristic polynomials of the two consecutive minors B and
B(n−1),

Pn(z) =

n
α=1

(z − λα), Pn−1(z) =

n−1
β=1

(z − µβ), (2.22)

and the Vandermonde determinants

∆n(λ) :=


j>i

(λ j − λi ) ≥ 0,

∆n(λ, µ) :=

n
i=1

n−1
j=1

(λi − µ j ) =

n
1

Pn−1(λi ) =

n−1
1

Pn(µi ),
(2.23)

with ∆n(λ, µ)(−1)
n(n−1)

2 ≥ 0 because of the intertwining.
In order to state Theorem 2.3, we need the following property of any matrix B ∈ H(β)

n :
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Lemma 2.2 (Conjugation to Bordered Matrices). Not only can B be conjugated by a matrix
U (n)

∈ U (β)
n (see (2.3)), in the standard way, such that

(U (n))−1 BU (n)
= diag(λ1, . . . , λn),

but also by a matrix of the form


U (n−1) 0
0 1


, with U (n−1)

∈ U (β)

n−1, to yield a bordered matrix

Bbord:
U (n−1) 0

0 1


B


U (n−1) 0

0 1

−1

=


µ1 0 · · · 0 r1u1
0 µ2 · · · 0 r2u2
...

...
. . .

...
...

0 0 · · · µn−1 rn−1un−1
r1u∗

1 r2u∗

2 · · · rn−1u∗

n−1 rn

 =: Bbord

(2.24)

with |ui | = 1 (angular variables) and with ri ≥ 0 for 1 ≤ i ≤ n − 1 and rn , given by

r2
k := −

Pn(µk)

P ′

n−1(µk)
≥ 0, 1 ≤ k ≤ n − 1, rn :=

n
1

λi −

n−1
1

µi . (2.25)

The conjugation in (2.24) transforms the last column v of B into the last column of the bordered
matrix Bbord (except for the last entry); i.e.,

U (n−1)v = (r1u1, . . . , rn−1un−1)
⊤, and Bnn = rn,

with v := (B1,n, . . . , Bn−1,n)⊤. (2.26)

These facts, (2.24)–(2.26), will be discussed and shown in Section 3.
The main statement of the paper is the analogue of Theorem 2.1 for the case of the spectra of

two consecutive minors.

Theorem 2.3 (Spectra of Two Consecutive Minors). The Dyson process on B restricted to

(spec B, spec B(n−1)) = (λ, µ) := ((λ1, . . . , λn), (µ1, . . . , µn−1))

is a diffusion (λ(t), µ(t)) as well, with the following SDE:

dλα =


−λα +


ε≠α

1
λα − λε


dt

+


2
β

Pn−1(λα)

P ′
n(λα)

 
1≤i< j≤n−1

√
2 rir j ˜dbi j

(λα − µi )(λα − µ j )

+

n−1
i=1

r2
i dbi i

(λα − µi )2 +

n−1
i=1

√
2 ri ˜dbin

λα − µi
+ dbnn


,

dµγ =


−µγ +


ε≠γ

1
µγ − µε


dt +


2
β

dbγ γ ,

(2.27)
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in terms of independent standard Brownian motions {dbi i , ˜dbi j }1≤i< j≤n . Its transition
probability2 is given by:

pλµ


t, (λ̄, µ̄), (λ, µ)


dλ dµ

= P[(λt , µt ) ∈ (dλ, dµ) | (λ0, µ0) = (λ̄, µ̄)]

=
Ẑ−1

n,β

(1 − c2)N
e
−

β

2(1−c2)

n
1(λ2

i +c2λ̄2
i )


(Sβ−1)2(n−1)

n−1
1

dΩ (β−1)(ui )dΩ (β−1)(ūi )

× G(β)

n−1


βc

1 − c2 µ, µ̄;
βc

1 − c2 (ri ui )
n−1
1 , (r̄i ūi )

n−1
1



× e
βcrn r̄n
1−c2 |∆n(λ)∆n−1(µ)| |∆n(λ, µ)|


β
2 −1

 n
1

dλi

n−1
1

dµ j , (2.28)

where the ri ’s are given by (2.25). It is also a solution of the following forward diffusion equation,
with delta-function initial condition

∂pλµ

∂t
= A⊤ pλµ, with A⊤

:= A⊤
λ + A⊤

µ + A⊤
λµ, (2.29)

where

A⊤
λµ := −

2
β

n
i=1

n−1
j=1

∂

∂λi

∂

∂µ j


1

(λi − µ j )2

Pn−1(λi )

P ′
n(λi )

Pn(µ j )

P ′

n−1(µ j )


(2.30)

and where A⊤
λ and A⊤

µ are defined by (2.19). The Dyson process restricted to (λ, µ) has invariant
measure, (see (2.23)),

Ẑ−1
n,β


vol (Sβ−1)

2(n−1)

e−
β
2
n

1 λ2
i |∆n(λ)∆n−1(µ)||∆n(λ, µ)|

β
2 −1

n
1

dλi

n−1
1

dµi . (2.31)

The SDE (2.27) and generator (2.29) are computed in Section 6 while the expressions for
transition density (2.28) and invariant measure (2.31) are proved in Section 4.

2 In the formula (2.28), Sβ−1
⊂ Rβ is the β − 1-dimensional sphere with induced uniform measure dΩ (β−1). The

constant reads

Ẑ−1
n,β =

βNn,β


Γ


1 +
β
2

n−1

(2π)
n
2 π

β
2 (n−1)

n−1
j=1

Γ


1 +
β j
2


(vol (Sβ−1))n−1

,

and vol (Sk ) = 2π
k−1

i=1


2
 π/2

0 (cos θ)i dθ


for k ≥ 2, vol (S0) = 1 and vol (S1) = 2π , which is proved by induction

on k; so vol (S2) = 4π and vol (S3) = 2π2.
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Note that it is an immediate consequence of Theorem 2.1 that the generator ADys, defined in
(2.9), acting on the λi and µi , has the form

ADys(λi ) = Aλ(λi ) and ADys(µi ) = Aµ(µi ), (2.32)

where Aλ and Aµ are defined by (2.20).
Whereas all statements in this paper hold for β = 1, 2, 4, a part of it can be extended to

general β > 0, as will be shown in Section 6, after the proof of Theorem 2.3:

Corollary 2.4. For general β > 0, the SDE (2.27), in terms of the independent standard
Brownian motions {dbi i , ˜dbi j }1≤i< j≤n , defines a diffusion, whose generator is given by the same
Eqs. (2.29), and whose invariant measure is given by (2.31). Moreover, this diffusion restricted
to the λi ’s (or to the µi ’s) is the standard Dyson Brownian motion (2.17).

The following corollary shows that the µi ’s in λi ≤ µi ≤ λi+1 are repelled by the boundary
and fluctuate in unison with the boundary points, when they get close.

Corollary 2.5 (Gap Behavior). The nonnegative gaps µi − λi and λi+1 − µi for 1 ≤ i ≤ n − 1
satisfy, in the notation of (2.27),

d(µi − λi ) = Fi (λ, µ)dt +


µi − λi


1≤k≤ℓ≤n

αkℓdb̃kℓ

d(λi+1 − µi ) = F̂i (λ, µ)dt +


λi+1 − µi


1≤k≤ℓ≤n

α̂kℓdb̃kℓ

(2.33)

with 
some αkℓ = O(1) for µi ≃ λi and some α̂i j = O(1) for µi ≃ λi+1.

Fi (λ, µ)|µi =λi > 0, F̂i (λ, µ)|µi =λi+1 > 0.

This is to be compared with the Warren process [28], which also describes two intertwined
Dyson processes λ and µ, but with an entirely different interaction: namely the µi ’s near
the boundaries of the intervals [λi , λi+1] behave like the absolute value of one-dimensional
Brownian motion near the origin.

As we saw, the Dyson process on B, restricted to the spectrum of one principal minor or the
spectra of two consecutive minors leads to two Markov processes. Opposed to that, we prove the
spectra of three consecutive minors is not Markovian, at least for β = 2 and 4; we suspect it is
true for β = 1 as well; that would require a different proof.

Theorem 2.6 (Spectra of Three Consecutive Minors). For β = 2 and 4, the restriction of the
Dyson process restricted to the following data

(spec B, spec B(n−1), spec B(n−2)) := (λ, µ, ν)

is not Markovian for generic initial conditions on B, i.e., the joint spectra of any three
neighboring set of minors of B are not Markovian.

This statement will be proved in Section 7.

3. Some matrix identities

This section will be devoted to proving Lemma 2.2; in the course of doing so we shall also
prove Lemma 3.1:
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Lemma 3.1.

n−1
1

r2
i +

r2
n

2
=

1
2


n
1

λ2
i −

n−1
1

µ2
i


and

n−1
1

r2
i =

|∆n(λ, µ)|

∆2
n−1(µ)

. (3.1)

One also has the (often used) identities

n−1
i=1

r2
i

λℓ − µi
+ rn − λℓ = 0 and

P ′
n(λℓ)

Pn−1(λℓ)
=

n−1
i=1


ri

λℓ − µi

2

+ 1. (3.2)

Finally, one has, for fixed (µ1, . . . , µn−1) and fixed (u1, . . . , un−1),

n−1
1

dr2
j drn = (−1)n−1 ∆n(λ)

∆n−1(µ)

n
1

dλi . (3.3)

Proof of Lemma’s 2.2 and 3.1. From the form of the matrix Bbord as in (2.24), one checks (see
(2.23) and also the formula (2.5) for the determinant in the quaternionic case)

n
1

(λi − z) = det(Bbord − z I ) =

n−1
1

(µi − z)


n−1
i=1

r2
i

z − µi
+ rn − z


,

from which it follows that3

−

n−1
i=1

r2
i

z − µi
− rn + z =

Pn(z)

Pn−1(z)

= z − (σ1(λ) − σ1(µ)) −
1
z


σ1(λ)σ1(µ) + σ2(µ)

− σ2(λ) − σ 2
1 (µ)


+ O


1

z2


. (3.4)

Then taking residues in formula (3.4) yields the first formulae (2.25) and thus the formula forn−1
1 r2

i in (3.1). Comparing the coefficients of z0 and the z−1 on both sides of (3.4) yields
the first formula of (3.1). Setting z = λℓ in the expression (3.4) and its derivative with regard
to z implies the two sets of n identities (3.2), in view of the definition (2.22) of Pn . Formula
(3.3) amounts to computing the Jacobian determinant of the transformation from λ1, . . . , λn to
r1, . . . , rn ; to do this, take the differential of the first of the n expressions appearing in (3.2)
(as functions of λ1, . . . , λn and r1, . . . , rn), keeping the µi ’s fixed and use the second of the
expressions (3.2):

0 =

n−1
i=1

dr2
i

λℓ − µi
+ drn −


1 +

n−1
i=1

r2
i

(λℓ − µi )2


dλℓ

=

n−1
i=1

dr2
i

λℓ − µi
+ drn −

P ′
n(λ)

Pn−1(λ)
dλℓ,

3 The σk (λ) are the k-th symmetric polynomials: σ1(λ) =


i λi , σ2(λ) =


i< j λi λ j , etc. . . ; the same for σk (µ).
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which in matrix form reads

Γ


dr2

1
dr2

2
...

dr2
n−1

drn

 = diag


P ′
n(λ1)

Pn−1(λ1)
, . . . ,

P ′
n(λn)

Pn−1(λn)


dλ1
dλ2
...

dλn−1
dλn

 ,

where (by Cauchy’s determinantal formula)

Γ :=



1
λ1 − µ1

1
λ1 − µ2

· · ·
1

λ1 − µn−1
1

1
λ2 − µ1

1
λ2 − µ2

· · ·
1

λ2 − µn−1
1

...
...

...
...

1
λn − µ1

1
λn − µ2

· · ·
1

λn − µn−1
1


,

with det Γ = (−1)(n−1)( n
2 +1)∆n(λ)∆n−1(µ)

∆n(λ, µ)
. (3.5)

Formula (3.5) for the determinant follows from the observation that det Γ has homogeneous
degree 1 − n and vanishes when ∆n(λ)∆n−1(µ) does and blows up (simply) when and only
when ∆n(λ, µ) vanishes. Thus we have

∂(r2
1 , . . . , r2

n−1, rn)

∂(λ1, . . . , λn)
=

n
1

P ′
n(λi )

Pn−1(λi )
(det Γ )−1

= (−1)n−1 ∆n(λ)

∆n−1(µ)
.

This concludes the proof of Lemma’s 2.2 and 3.1. �

4. Transition probabilities

A quick review of the Ornstein–Uhlenbeck process (see Feller [9] and Uhlenbeck–Ornstein
[27]): it is a diffusion on R, given by the one-dimensional SDE,

dx = −ρx dt +
1

√
β

db, (4.1)

and it has transition probability (c := e−ρt )

P[xt ∈ dx | x0 = x̄] =: pOU(t; x̄, x) dx

=


ρβ

π(1 − c2)

1/2

exp


−
ρβ(x − cx̄)2

1 − c2


dx .

The transition probability is a solution of the forward (diffusion) equation, with δ-function initial
condition4

∂pOU

∂t
=


1

2β

∂2

∂x2 −
∂

∂x
(−ρx)


pOU =

1
2β


∂

∂x
φρβ(x)

∂

∂x

1
φρβ(x)


pOU, (4.2)

4 The backward equation becomes the heat equation with (x, t) → (xeρt , 1−e2ρt

2ρ
).
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and invariant measure (density)

φρβ(x) =


ρβ

π
e−ρβx2

= lim
t→∞

pOU(t; x̄, x).

Proof of Transition Probabilities (2.10), (2.18) and (2.28). (i) The Fokker–Planck equation
for the transition probability of the Dyson process. The Dyson process consists of running the free
parameters of the matrix B ∈ H(β)

n , as in (2.1), according to independent Ornstein–Uhlenbeck
processes, with ρ = 1, the diagonal with β → β/2 and the off-diagonal parameters with β → β.
Remembering the definition (2.7) of N = Nn,β and the definition of the trace (after (2.4)), one
has, setting c = e−t , and using (2.8), (4.1) and (4.2), the transition probability for the Dyson
process is given by5

p(t, B̄, B) =

n
i=1

pOU(t; B̄i i , Bi i )


1≤i< j≤n

β−1
ℓ=0

pOU(t; B̄[ℓ]
i j , B[ℓ]

i j )

=

n
i=1

 e
−β

(Bii −cB̄ii )
2

2(1−c2)

(2π(1 − c2)/β)
1
2

 
1≤i< j≤n

β−1
ℓ=0

 e
−β

(B[ℓ]
i j −cB̄[ℓ]

i j )2

(1−c2)

(π(1 − c2)/β)
1
2


=

1

2n/2


π
β
(1 − c2)

Nn,β
e
−

β

2(1−c2)
Tr (B−cB)2

=
Z−1

n,β

(1 − c2)Nn,β
e
−

β

2(1−c2)
Tr (B−cB)2

, (4.3)

yielding (2.10), while limt→∞ p(t, B, B) = Z−1
n,β(h(B))β is immediate, showing (2.12).

Moreover, from (4.2), one computes for p(t; B̄, B),

∂

∂t
p(t; B̄, B) =

2
β


1
2

n
i=1

∂

∂ Bi i
φβ/2(Bi i )

∂

∂ Bi i

1
φβ/2(Bi i )

+
1
4


1≤i< j≤n

β−1
ℓ=0

∂

∂ B[ℓ]
i j

φβ(B[ℓ]
i j )

∂

∂ B[ℓ]
i j

1

φβ(B[ℓ]
i j )


p(t; B̄, B)

=
2
β


1
2

n
i=1

∂

∂ Bi i
h(B)

∂

∂ Bi i

1
h(B)

+
1
4


1≤i< j≤n

β−1
ℓ=0

∂

∂ B[ℓ]
i j

h(B)
∂

∂ B[ℓ]
i j

1
h(B)


p(t; B̄, B)

with

h(B) = constant ×

n
i=1

φβ/2(Bi i )


1≤i< j≤n
0≤ℓ≤β−1

φβ(B[ℓ]
i j ),

proving (2.11).

5 With constant Z−1
n,β = 2−n/2(π

β
)−Nn,β .
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(ii) The transition probability (2.18) and the invariant measure for the λt process. Set

λ = (λ1, . . . , λn) and λ̄ = (λ̄1, . . . , λ̄n).

By the Weyl integration formula, given B = UλU−1 and initial condition B̄ = Ū λ̄Ū−1,
express d B = d(UλU−1) in formula (2.10) in terms of spectral and angular variables
d B = Zn,βC−1

n,β |∆n(λ)|βdU
n

1 dλi , with Haar measure dU on U (β)
n normalized such that

vol(U (β)
n ) = 1, with C−1

n,β defined in footnote 1. This yields, using the transition probability
(4.3),

P[Bt ∈ d B | B0 = B̄] = p(t; B̄, B)d B

=
C−1

n,β

(1 − c2)N
e
−

β

2(1−c2)

n
1(λ2

i +c2λ̄2
i )

e
βc

1−c2 Tr UλU−1Ū λ̄Ū−1

× |∆n(λ)|βdU
n
1

dλi . (4.4)

Note that the constant C−1
n,β is compatible with the fact that for t → ∞ this transition probability

tends to the GUE-probability; see below.
We now compute the transition probability pλ(t; λ̄, λ)dλ for the spectrum of the Dyson

process; this will be a model to compute the transition probability for the (λt , µt )-process. So,
defining

H(β)
n (λ) :=


B ∈ H(β)

n | spec B = λ

,

consider

pλ(t; λ̄, λ)dλ = P(λt ∈ dλ|λ0 = λ̄)

=


Bt ∈H(β)

n (λ)


B̄∈H(β)

n (λ̄)

P

Bt ∈ d B | B0 = B̄


× P


B0 ∈ d B̄|spec(B0) = λ̄


=




U (β)
n

2

C−1
n,β

(1 − c2)N
e
−

β

2(1−c2)

n
1(λ2

i +c2λ̄2
i )

e
βc

1−c2 Tr UλU−1Ū λ̄Ū−1

× |∆n(λ)|βdUdŪ
n
1

dλi

=
C−1

n,β

(1 − c2)Nn,β
e
−

β

2(1−c2)

n
1(λ2

i +c2λ̄2
i )

F (β)
n


βc

1 − c2 λ, λ̄


|∆n(λ)|β

n
1

dλi ,

using (4.4) above, using the following conditional probability formula:

P

B0 ∈ d B̄|spec(B0) = λ̄


=

P

B0 ∈ d B̄, spec(B0) ∈ dλ̄


P

spec(B0) ∈ dλ̄

 = dŪ

and finally using the integration (2.13),
U (β)

n

e
βc

1−c2 Tr UλU−1Ū λ̄Ū−1

dU =


U (β)

n

e
βc

1−c2 Tr λU λ̄U−1

dU = F (β)
n


βc

1 − c2 λ, λ̄


,

thus yielding (2.18).
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Letting t → ∞, (equivalently c → 0) in (4.4) proves formula (2.21) for the invariant measure,
taking into account that F (β)

n (0, Y ) = vol(U β
n ) = 1.

(iii) Proof of the transition probability (2.28) and the invariant measure for the (λt , µt ) process.
The proof of (2.28) in Theorem 2.3 proceed along similar lines. First observe the identity

P[Bt ∈ d B | (spec(B0), spec(B(n−1)
0 )) = (λ̄, µ̄)]

=


B̄∈H(β)

n (λ̄,µ̄)

P

Bt ∈ d B | B0 = B̄


× P


B0 ∈ d B̄|(spec(B0), spec(B(n−1)

0 )) = (λ̄, µ̄)


(4.5)

with

H(β)
n (λ̄, µ̄) = H(β)

n ∩


spec(B), spec(B(n−1))


= (λ̄, µ̄)


.

Next we compute the two probabilities in the integrand of the integral (4.5):

(a) The first integrand equals p(t; B̄, B)d B, as in (4.3). Since Lebesgue measure d B is the
product measure over all the free parameters, one will express d B as the product of Lebesgue
measure d B(n−1) on the (n − 1) × (n − 1) minor and the measure


1≤i≤n−1
0≤ℓ≤β−1

d B[ℓ]
in d Bnn on the

last row and column, remembering the expression (2.7) for Nn,β , thus giving,

P[Bt ∈ d B|B0 = B̄] =
Z−1

n,β

(1 − c2)Nn,β
e
−

β

2(1−c2)
Tr (B−cB)2

d B

=
Z−1

n−1,β

(1 − c2)Nn−1,β
e
−

β

2(1−c2)
Tr (B(n−1)

−cB̄(n−1))2

d B(n−1)

×
Z−1

n,β Zn−1,β

(1 − c2)(Nn,β−Nn−1,β )
e
−

β

(1−c2)


1≤i≤n−1
0≤ℓ≤β−1

(B[ℓ]
in −cB̄[ℓ]

in )2
+

1
2 (Bnn−cB̄nn)2



×

n−1
i=1

β−1
ℓ=0

d B[ℓ]
in d Bnn . (4.6)

As mentioned prior to (4.4), one can set in (4.6),

d B(n−1)
= Zn−1,βC−1

n−1,β |∆n−1(µ)|βdU (n−1)
n−1
i=1

dµi . (4.7)

In (2.24), it was shown that upon conjugation by an appropriate matrix U (n−1)
∈ U (β)

n−1, the
matrix B could be transformed into the bordered matrix Bbord, as in (2.24) and (2.26), with
(r1u1, . . . , rn−1un−1)

⊤
= U (n−1)v and |ui | = 1. Using the same inner-product as in the formula

just preceding (2.13), but for n − 1-vectors, and using the associated norm ∥ ∥, one finds, using
the above,

1≤i≤n−1
0≤ℓ≤β−1


B[ℓ]

in − cB̄[ℓ]
in

2
= ∥v − cv̄∥

2

= ∥U (n−1)(v − cv̄)∥2

= ∥U (n−1)v∥
2
+ c2

∥U (n−1)v̄∥
2
− 2cRe ⟨U (n−1)v, U (n−1)v̄⟩
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= ∥U (n−1)v∥
2
+ c2

∥U (n−1)v̄∥
2

− 2cRe ⟨U (n−1)v, (U (n−1)(Ū (n−1))−1)(Ū (n−1)v̄)⟩

=

n−1
1

r2
i + c2

n−1
1

r̄2
i − 2cRe ⟨(r1u1, . . . , rn−1un−1)

⊤,

(U (n−1)(Ū (n−1))−1)(r̄1ū1, . . . , r̄n−1ūn−1)
⊤
⟩. (4.8)

Given that U (n−1) is fixed and that det(U (n−1)) = 1, and since the expressions ui in (2.24) have
|ui | = 1, the differential below can be written in terms of a product of differentials d(ri ui ) along
Sβ−1

⊂ Rβ , expressed in polar coordinates, thus yielding differentials involving the ri ’s and
volume elements on the unit sphere Sβ−1:

n−1
i=1

β−1
ℓ=0

d B[ℓ]
in =

n−1
i=1

dvi =

n−1
i=1

d((U (n−1))−1(r1u1, . . . , rn−1un−1)
⊤)i

= | det(U (n−1))−β
|

n−1
1

d(ri ui )

=

n−1
1

rβ−1
i dri dΩ (β−1)

i (ui ) and d Bnn = drn . (4.9)

Thus all together, setting (4.7)–(4.9) in (4.6), we have shown that

P[Bt ∈ d B|B0 = B̄]

=
C−1

n−1,β

(1 − c2)Nn−1,β
e
−

β

2(1−c2)

n−1
i=1 (µ2

i +c2µ̄2
i )

× |∆n−1(µ)|βe
βc

1−c2 Tr

(U (n−1)(Ū (n−1))−1)−1µU (n−1)(Ū (n−1))−1µ̄


dU (n−1)

n−1
1

dµi

×
Z−1

n,β Zn−1,β

(1 − c2)(Nn,β−Nn−1,β )
e
−

β

(1−c2)

n−1
1 r2

i +
1
2 r2

n


+c2

n−1
1 r̄2

i +
1
2 r̄2

n



× e
2βc

1−c2 Re ⟨(ri ui )
n−1
1 ,U (n−1)(Ū (n−1))−1(r̄i ūi )

n−1
1 ⟩

e
βc

1−c2 rn r̄n drn

n−1
1

rβ−1
i dri dΩ (β−1)

i (ui )

=
Z−1

n,β Zn−1,β

(1 − c2)Nn,β Cn−1,β

e
−

β

2(1−c2)

n
1(λ2

i +c2λ̄2
i )

× e
βc

1−c2 rn r̄n
|∆n(λ)∆n−1(µ)| |∆n−1(λ, µ)|

β
2 −1

× G(β)

n−1


U (n−1)(Ū (n−1))−1

;
βc

1 − c2 µ, µ̄;
βc

1 − c2 (ri ui )
n−1
1 , (r̄i ūi )

n−1
1



× dU (n−1)
n−1

1

dΩ (β−1)
i (ui )

n−1
1

dµi

n
1

dλi . (4.10)

In the last equality we have used identities (3.1) and (3.3) and the definition (2.14) of G(β)

n−1.
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(b) The second probability in (4.5) takes on the following value:

P


B0 ∈ d B̄|(spec(B0), spec(B(n−1)
0 )) = (λ̄, µ̄)


= dŪ (n−1)

n−1
1

dΩ (β−1)
i (ūi )

(vol (Sβ−1))n−1 . (4.11)

Indeed, the probability (4.10), when t → ∞ (which amounts to letting c → 0), tends to
the invariant measure for the Dyson Brownian motion; instead of the usual representation
in the variables (λi , U (n)), this gives the expression of the GUE-probability in the variables
(λi , µ j , uk, U (n−1)):

P[B ∈ d B] = Z−1
n,βe−

β
2 Tr B2

d B

= lim
t→∞

P[Bt ∈ d B|B0 = B̄]

= fn,β(λ, µ)dU (n−1)
n−1

1

dΩ (β−1)
i (ui )

n−1
1

dµi

n
1

dλi (4.12)

with (using G(β)

n−1(U ; 0, µ̄; 0, (r̄i ūi )
n−1
1 ) = 1)

fn,β(λ, µ) :=
Z−1

n,β Zn−1,β

Cn−1,β

e−
β
2
n

1 λ2
i |∆n(λ)∆n−1(µ)| |∆n−1(λ, µ)|

β
2 −1. (4.13)

This also shows that H(β)
n (λ, µ) ≃ U (β)

n−1 ×

S(β−1)

n−1
. Using (4.12), one checks that the

conditional probability equals

P


B0 ∈ d B̄|(spec(B0), spec(B(n−1)
0 )) = (λ̄, µ̄)


=

P


B0 ∈ d B̄, (spec(B0), spec(B(n−1)
0 )) ∈ (dλ̄, dµ̄)


P

(spec(B0), spec(B(n−1)

0 )) ∈ (dλ̄, dµ̄)


=

fn,β(λ̄, µ̄)dŪ (n−1)
n−1

1
dΩ (β−1)

i (ūi )
n−1

1
dµ̄i

n
1

dλ̄i

fn,β(λ̄, µ̄)
n−1

1
dµ̄i

n
1

dλ̄i


U (β)
n−1×(S(β−1))

n−1 dŪ (n−1)
n−1

1
dΩ (β−1)

i (ūi )

=

dŪ (n−1)
n−1

1
dΩ (β−1)

i (ūi )
vol (S(β−1))

n−1 , (4.14)

confirming expression (4.11). Setting (4.10) and (4.11) in (4.5) and using the integral (2.13) and
the identification just after (4.13), one computes:

pλ,µ(t; (λ̄, µ̄), (λ, µ))dλdµ

=


Bt ∈H(β)

n (λ,µ)


B̄∈H(β)

n (λ̄,µ̄)

P

Bt ∈ d B | B0 = B̄


× P


B0 ∈ d B̄|(spec(B0), spec(B(n−1)

0 )) = (λ̄, µ̄)

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=




U (β)
n−1×(S(β−1))

n−1
2

Z−1
n,β Zn−1,βC−1

n−1,β

(1 − c2)Nn,β vol (S(β−1))n−1
e
−

β

2(1−c2)

n−1
i=1 (λ2

i +c2λ̄2
i )

e
βc

1−c2 rn r̄n

× G(β)

n−1


U (n−1)(Ū (n−1))−1

;
βc

1 − c2 µ, µ̄;
βc

1 − c2 (ri ui )
n−1
1 , (r̄i ūi )

n−1
1


× dU (n−1)dŪ (n−1)

|∆n(λ)∆n−1(µ)||∆n−1(λ, µ)|
β
2 −1

×

n−1
1

dΩ (β−1)
i (ui )

n−1
1

dΩ (β−1)
i (ūi )

n−1
1

dµi

n
1

dλi

=
Ẑ−1

n,β

(1 − c2)Nn,β
e
−

β

2(1−c2)

n−1
i=1 (λ2

i +c2λ̄2
i )

e
βc

1−c2 rn r̄n
|∆n(λ)∆n−1(µ)||∆n−1(λ, µ)|

β
2 −1dµdλ

×


(S(β−1))

2n−2
G(β)

n−1


βc

1 − c2 µ, µ̄;
βc

1 − c2 (ri ui )
n−1
1 , (r̄i ūi )

n−1
1


n−1

1

dΩ (β−1)
i (ui )dΩ (β−1)

i (ūi ), (4.15)

where we used the translation invariance of dU (n−1) and vol (U (β)

n−1) = 1; also one checks the

value of the constant Ẑ−1
n,β to be the one given in footnote 2. This establishes formula (2.28) for

the transition probability of the (λt , µt )-process.
The statements concerning the invariant measures, (2.21) and (2.31) follow immediately from

(2.18), (2.13), (2.28), by letting t → ∞ in the transition probability. This concludes the proof of
the formulae for the transition probabilities (2.10), (2.18) and invariant measure (2.31), appearing
in Theorems 2.1 and 2.3. �

Remark 4.1. The diffusion Eq. (2.29), which will be established in Section 5, can also be used
to confirm the form of the invariant measure, at least for β = 2. On general grounds, the density
of the invariant measure, namely

Iλµ(λ, µ) := Ce−
β
2
n

1 λ2
i |∆n(λ)∆n−1(µ)| |∆n(λ, µ)|

β
2 −1, (4.16)

is a null vector of the forward equation, i.e.

A⊤ Iλµ(λ, µ) =


A⊤
λ + A⊤

µ + A⊤
λµ


Iλµ(λ, µ) = 0,

with A defined in (2.29). For β = 2, more is true; namely

A⊤
λ (λ)Iλµ =

n(n − 1)

2
Iλµ, A⊤

µ (µ)Iλµ =
n(n − 1)

2
Iλµ. (4.17)

Once this is shown, it follows that

A⊤
λµ Iλµ(λ, µ) = −n(n − 1)Iλµ(λ, µ).

So it suffices to prove (4.17). First observe that ∆n(λ) and ∆n−1(µ) are harmonic functions, i.e.

n
1


∂

∂λi

2

∆n(λ) = 0,

n−1
1


∂

∂µi

2

∆n−1(µ) = 0,
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and also homogeneous functions so that acted upon by the Euler operators,
n
1

λi
∂

∂λi
∆n(λ) =

n(n − 1)

2
∆n(λ),

n−1
1

µi
∂

∂µi
∆n−1(µ) =

(n − 1)(n − 2)

2
∆n−1(µ).

Now compute from (2.19) and (4.16) that (remember Φn(λ) := e−
1
2
n

1 λ2
i |∆n(λ)|)

A⊤
λ (λ)Iλµ =

1
2

n
1

∂

∂λi
(Φn(λ))2 ∂

∂λi

∆n(λ)∆n−1(µ)e−
n

1 λ2
j

(Φn(λ))2

= −
∆n−1(µ)

2

n
1

∂

∂λi
e−

n
1 λ2

j
∂

∂λi
∆n(λ)

= −
1
2

e−
n

1 λ2
j ∆n−1(µ)

n
i=1


∂2

∂λ2
i

− 2λi
∂

∂λi


∆n(λ)

=
n(n − 1)

2
Iλµ

and also that

A⊤
µ (µ)Iλµ =

1
2

n−1
1

∂

∂µi
(Φn−1(µ))2 ∂

∂µi

∆n(λ)∆n−1(µ)e−
n

1 λ2
j

(Φn−1(µ))2

= −
1
2
∆n(λ)e−

n
1 λ2

i

n−1
1

∂

∂µi
e
n−1

1 µ2
i

∂

∂µi


∆n−1(µ)e−

n−1
1 µ2

i


= −

1
2
∆n(λ)e−

n
1 λ2

i


n−1

1


∂2

∂µ2
i

− 2µi
∂

∂µi


∆n−1(µ)

− 2(n − 1)∆n−1(µ)



=
1
2
∆n(λ)e−

n
1 λ2

i ((n − 1)(n − 2) + 2(n − 1))∆n−1(µ)

=
n(n − 1)

2
Iλµ.

This ends the proof of identities (4.17).

5. Itō’s lemma and Dyson’s theorem

To fix notation we repeat some well known facts from stochastic calculus in a way that will
be useful later. Given a diffusion X t ∈ Rn , given by the SDE6

d X t = σ(X t )dbt + a(X t )dt, (5.1)

6 The subscript t in X t and Bt will often be omitted, as it has in previous sections.
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where dbt is a vector of independent standard Brownian motions, where x, a(x) ∈ Rn and σ(x)

an n × n matrix. Then the generator of this diffusion is given by

A =
1
2


i, j

(σσ⊤)i j (x)
∂2

∂xi∂x j
+


i

ai (x)
∂

∂xi
,

and, by straight forward verification,

(σσ⊤)i j (x) = A(xi x j ) − xi A(x j ) − x j A(xi ) =


d X i d X j

dt


(x)

ai (x) = Axi .

(5.2)

The transition density p(t, x̄, x) is a solution of the forward equation (in x)

∂p

∂t
= A⊤ p. (5.3)

Moreover for a function g : Rn
→ Rp with g ∈ C 2, the SDE for Yt = g(X t ) has the form

dYk =


i

∂gk

∂xi
d X i +

1
2


i, j

∂2gk

∂xi∂x j
d X i d X j =


j


i

∂gk

∂xi
σi j


db j + hkdt, (5.4)

for k = 1, . . . , p and for some function hk ; i.e., the local martingale part only depends on
first derivatives of g. This follows from the standard multiplication rules of stochastic calculus
(dtdt = 0, dtdb = 0 and dbi db j = δi j dt):

d X i d X j =


ai dt +

n
ℓ=1

σiℓ dbℓ


a j dt +

n
k=1

σ jk dbk


(5.5)

=


n

ℓ=1

σiℓ dbℓ


n

k=1

σ jk dbk


= (σσ⊤)i j dt. (5.6)

More details can be found in any book on stochastic calculus, for example [18] or [25]. As a
warm-up exercise, we first prove Dyson’s original result, namely the formulae for the SDE and
for the generator of Theorem 2.1, including some consequences.

Proof of (2.17) and (2.19) in Theorem 2.1. The Dyson process is invariant under conjugation
by U ∈ U (β)

n ; to be precise from (2.10),

p(t; U B̄U−1, U BU−1) = p(t; B̄, B).

Therefore, we are free, at any fixed choice of t , to reset

B(t) → U B(t)U−1, for any U ∈ U (β)
n .

At any given time t , diagonalize the matrix B to yield diag (λ1, . . . , λn) and consider the
perturbation

diag (λ1, . . . , λn) + [d Bi j ],
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where one defines the n × n matrix, for 1 ≤ i < j ≤ n,

[d Bi j ] :=



. . .

0 · · · d B[0]

i j +

β−1
1

d B[ℓ]
i j eℓ

...
. . .

...

d B[0]

i j −

β−1
1

d B[ℓ]
i j eℓ · · · 0

. . .


(5.7)

and, for i = 1, . . . , n,

[d Bi i ] := diag (0, . . . , d Bi i , . . . , 0),

with, by (2.8),

d B[ℓ]
i j d B[ℓ′

]

i ′ j ′ = δi i ′δ j j ′δℓℓ′

dt

β
d Bi i d B j j = 2δi j

dt
β

d B[ℓ]
i j d Bkk = 0. (5.8)

Remember by Ito’s formula (5.4), one only needs to keep track of at most second order changes
of the arguments.

Thus for non-diagonal perturbations (i ≠ j), one checks7

0 = det(diag (λ1, . . . , λn) + [d Bi j ] − λI )|λ→λα+dλα

=

n
ℓ=1

ℓ≠i, j

(λℓ − λ)


(λ − λi )(λ − λ j ) −

β−1
ℓ=0

(d B[ℓ]
i j )2


λ→λα+dλα

=



(non-zero function) × dλα, for α ≠ i, j ,

(non-zero function) ×


(λi − λ j )dλi −

β−1
ℓ=0

(d B[ℓ]
i j )2


for α = i ,

(non-zero function) ×


(λ j − λi )dλ j −

β−1
ℓ=0

(d B[ℓ]
i j )2


for α = j ,

showing that an off-diagonal perturbation of the diagonal matrix B(t) = diag (λ1(t), . . . , λn(t))
yields

dλi =

β−1
ℓ=0

(d B[ℓ]
i j )2

λi − λ j
, dλ j =

β−1
ℓ=0

(d B[ℓ]
i j )2

λ j − λi
, and dλα = 0 for α ≠ i, j.

7 Remember, for β = 4, the determinant is defined in (2.6).
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For diagonal perturbations (i = j), one finds

det(diag (λ1, . . . , λn) + [d Bi i ] − λI )|λ→λα+dλα

=

n
ℓ=1
ℓ≠i

(λℓ − λ) (λi + d Bi i − λ) |λ→λα+dλα

=


(non-zero function) × dλα, for α ≠ i
(non-zero function) × (d Bαα − dλα), for α = i ,

and thus

dλα = 0 for α ≠ i and dλα = d Bαα for α = i.

Then summing up all the perturbations, one finds the SDE (2.17) announced in Theorem 2.1,

using d Bi i = −Bi i dt +


2
β

dbi i = −λi dt +


2
β

dbi i and formula (5.8),

dλi =

d Bi i +


j≠i

β−1
ℓ=0

(d B[ℓ]
i j )2

λi − λ j


=


−λi +


j≠i

1
λi − λ j


dt +


2
β

dbi i , for i = 1, . . . , n.

This ends the formal part of the proof of the SDE. A rigorous approach uses the ideas of
Section 4.3 in Anderson, Guionnet and Zeitouni [3]. Indeed to prove the existence of a strong
solution to the SDE (2.17), one introduces a cut-off of the polar part; i.e., one replaces the polar
part in SDE (2.17), namely

j≠i

1
λi − λ j


dt, (5.9)

by an expression containing a uniformly Lipschitz function φR ,
j≠i

φR(λR
i − λR

j )


dt, with φR(x) =


x−1 if |x | ≥ R−1

R2x otherwise.
(5.10)

The resulting SDE then admits a unique strong solution, which coincides with the solution of the
SDE containing (5.9), for

t < τR := inf


t such that min
i≠ j

|λR
i (t) − λR

i (t)| < R−1


;

note this first hitting time τR of the cut-off is monotone increasing in R. One then shows
by introducing an appropriate Lyapunov function f (x1, . . . , xn) to control the (stopping) time
TM = inf{t ≥ 0 | f (λR(t)) ≥ M}, where M is a function of R. Before that stopping time TM , the
solution of the SDE with the polar part (5.9) agrees with the one containing the cut-off function.
This enables one to show that TM → ∞ a.s. for M → ∞. This then shows the existence and
uniqueness of a strong (and weak) solution to the SDE (2.17), with initial condition in the space
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{λ1 < · · · < λn}. It then requires further argumentation to show rigorously that this solution is
the same as the one of the spectral problem.

Then translating the SDE into the generator of the diffusion on (λ1, . . . , λn), one finds, by
(5.2), that

Aλ =

n
1


1
β

∂2

∂λ2
i

+


−λi +


j≠i

1
λi − λ j


∂

∂λi


,

and thus

A⊤
λ =

n
1


1
β

∂2

∂λ2
i

−
∂

∂λi


−λi +


j≠i

1
λi − λ j



=
1
β

n
i=1

∂

∂λi
(Φn(λ))β

∂

∂λi

1
(Φn(λ))β

,

with Φn(λ) as in (2.21), confirming formula (2.19) in Theorem 2.1. Finally ADysλi = Aλλi ,
mentioned in (2.32), follows from the fact that the generator ADys restricted to the functions
(λ1, . . . , λn) equals Aλ, as a consequence of (5.1) to (5.3); of course, this holds for the spectrum
of every principal minor of the matrix B. �

6. SDE for the Dyson process on the spectra of two consecutive minors

In this section we prove the formulas (2.27) for the λ- and µ-SDE’s, together with the
generator (2.29).

Proof of SDE (2.27) and Generator (2.29) in Theorem 2.3. Using the same idea as in the
proof of (2.17) and (2.19) in the Section 5, we choose, at time t , to conjugate the matrix B
so as to have the form Bbord of (2.24) and let the matrix Bbord evolve according to the Dyson
process. We will consider only the first order effects on the λ’s and ignore second order effects.
We will again restrict ourselves to the formal part of the argument, as in Section 5. Here again, a
totally rigorous proof would require introducing a cut-off as in (5.9).

At first, we need to compute the (first order) variation of the λα’s as a function of the (first
order) variation of the entries:
Case 1: Consider the perturbation of Bbord, using the notation (5.7) for [d Bi j ], namely

Bbord + [d Bi j ], for 1 ≤ i < j ≤ n − 1.

Up to first order, one must compute the effect of the perturbation on each of the eigenvalues
λα , by explicitly computing the characteristic polynomial of the bordered matrix (2.24) with the
extra non-diagonal perturbation; then, by neglecting the second order terms in d B, one finds8:

0 = det(Bbord + [d Bi j ] − λI )|λ→λα+dλα =

n−1
ℓ=1

(µℓ − λ)

×


n−1

1

r2
ℓ

λ − µℓ

+ rn − λ +
2rir j

(λ − µi )(λ − µ j )

β−1
ℓ=0

d B[ℓ]
i j (ui u

∗

j )
[ℓ]

 
λ→λα+dλα

.

8 Notice that 2 Re d B∗
i j ui u∗

j = d B∗
i j ui u∗

j + (d B∗
i j ui u∗

j )
∗

= 2
β−1

ℓ=0 d B[ℓ]
i j (ui u∗

j )
[ℓ], using (ab)∗ = b∗a∗.

Remember, for β = 4, quaternion multiplication does not commute and for the determinant of a matrix, use formula (2.5).
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Setting λ → λα + dλα in this expression, shows that the product
n−1

ℓ=1(µℓ −λα − dλα) is of the
form (non-zero-function)+(function)×dλα , whereas for the second part, upon Taylor expanding
in λα , keeping in the expression first order terms only, evaluated by (3.2), and upon noticing that
the 0th-order term vanishes (again using (3.2)), we find

−
P ′

n(λα)

Pn−1(λα)
dλα +

2rir j

(λα − µi )(λα − µ j )

β−1
ℓ=0

d B[ℓ]
i j (ui u

∗

j )
[ℓ]

= 0.

Finally, adding up the first order contributions from all the perturbations d B[0]

i j +
β−1

1 d B[ℓ]
i j ,

with 1 ≤ i < j ≤ n − 1, yields

dλα =
Pn−1(λα)

P ′
n(λα)


1≤i< j≤n−1

2rir j

(λα − µi )(λα − µ j )

β−1
ℓ=0

d B[ℓ]
i j (ui u

∗

j )
[ℓ]. (6.1)

Case 2: For the perturbation [d Bi i ], with i = 1, . . . , n − 1, again neglecting the second order
terms,

0 = det(Bbord + [d Bi i ] − λI )|λ→λα+dλα

=

n−1
ℓ=1

(µℓ + δℓi d Bi i − λα − dλα)

×


n−1
ℓ=1

r2
ℓ

λα + dλα − µℓ − δℓi d Bi i
+ (rn + δind Bi i ) − λα − dλα


.

Upon expanding this expression as a function of λα, µi up to first order, noticing as before that
the first part does not matter, and using again (3.2), this leads to

−
P ′

n(λα)

Pn−1(λα)
dλα +

r2
i

(λα − µi )2 d Bi i = 0 for i = 1, . . . , n − 1,

−
P ′

n(λα)

Pn−1(λα)
dλα + d Bnn = 0 for i = n,

and thus summing up all the contributions coming from the d Bi i for i = 1, . . . , n, one finds

dλα =
Pn−1(λα)

P ′
n(λα)


n−1
i=1

r2
i

(λα − µi )2 d Bi i + d Bnn


. (6.2)

Case 3: For the perturbation [d Bin], i = 1, . . . , n − 1,

0 = det(Bbord + [d Bin] − λI )|λ→λα+dλα

=

n−1
ℓ=1

(µℓ − λ)


n−1
k=1

r2
k + ri (ui d B∗

in + u∗

i d Bin)δik

λ − µk
+ rn − λ

 
λ→λα+dλα

.

Then, using ui d B∗

in + d Binu∗

i = 2
β−1

ℓ=0 u[ℓ]
i d B[ℓ]

in , using formula (3.2) and finally summing up
over all perturbations of the last row and column (1 ≤ i ≤ n − 1) yields

dλα =
Pn−1(λα)

P ′
n(λα)

n−1
i=1

2ri

β−1
ℓ=0

u[ℓ]
i d B[ℓ]

in

λα − µi
. (6.3)
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Then summing up the three contributions (6.1)–(6.3) gives us the total first order contribution to
dλα:

dλα =
Pn−1(λα)

P ′
n(λα)

 
1≤i< j≤n−1

2rir j

(λα − µi )(λα − µ j )

β−1
ℓ=0

d B[ℓ]
i j (ui u

∗

j )
[ℓ]

+

n−1
i=1

r2
i

(λα − µi )2 d Bi i + d Bnn +

n−1
i=1

2ri

β−1
ℓ=0

u[ℓ]
i d B[ℓ]

in

λα − µi

 .

We now set the SDE’s (2.8) for the d Bi i , d B[ℓ]
i j into the equation obtained above, thus yielding,

by (5.4),

dλα = F (n)
α (λ) dt +


2
β

Pn−1(λα)

P ′
n(λα)

 
1≤i< j≤n−1

√
2 rir j

(λα − µi )(λα − µ j )

β−1
ℓ=0

(ui u
∗

j )
[ℓ]db[ℓ]

i j

+

n−1
i=1


ri

λα − µi

2

dbi i + dbnn +
√

2
n−1
i=1

ri

λα − µi

β−1
ℓ=0

u[ℓ]
i db[ℓ]

in


,

for some function F (n)
α (λ) to be determined later. Notice that in R, C and H, the norm |v| satisfies

|vw| = |v|. |w| and |v| = |v∗
|. Therefore, when |ui | = 1, we also have |ui u∗

j | = 1, implying that

db̃in :=

β−1
ℓ=0

u[ℓ]
i db[ℓ]

in and db̃i j :=

β−1
ℓ=0

(ui u
∗

j )
[ℓ]db[ℓ]

i j

are both standard Brownian motions on the sphere Sβ−1; since they are different linear combi-
nations, they are independent standard Brownian motions, and independent of dbi i , 1 ≤ i ≤ n.
This is precisely formula (2.27) of Theorem 2.3, namely

dλα = F (n)
α (λ)dt +


2
β

Pn−1(λα)

P ′
n(λα)

 
1≤i< j≤n−1

√
2 rir j ˜dbi j

(λα − µi )(λα − µ j )

+

n−1
i=1

r2
i dbi i

(λα − µi )2 +

n−1
i=1

√
2 ri ˜dbin

λα − µi
+ dbnn


. (6.4)

The SDE for the Dyson process induced on the (n − 1) × (n − 1) upper-left minor is given by
the first formula of Theorem 2.1 with n → n − 1 and λ → µ, yielding the formula in (2.27).
Therefore the product of the SDEs in (2.27), together with identity (2.25) yields

dλi dµ j

dt
=

2
β

Pn−1(λi )

P ′
n(λi )


r j

λi − µ j

2

= −
2
β

1

(λi − µ j )2

Pn−1(λi )Pn(µ j )

P ′
n(λi )P ′

n−1(µ j )
. (6.5)

Moreover,

dλαdλγ

dt
= ADys(λαλγ ) − λα ADys(λγ ) − λγ ADys(λα)



M. Adler et al. / Stochastic Processes and their Applications 124 (2014) 2023–2051 2047

= Aλ(λαλγ ) − λα Aλ(λγ ) − λγ Aλ(λα)

= 2


coefficient of
∂2

∂λαλβ

in Aλ


=

2
β

δαγ

and similarly,

dµi dµ j

dt
=

2
β

δi j . (6.6)

These identities can also be computed from the expressions (6.4) of dλα in terms of the λi , µ j ,
as done in the remark below. From Ito’s formula (5.4), it then follows that

(dλ1, . . . , dλn, dµ1, . . . , dµn−1)

= (ADysλ1, . . . , ADysλn, ADysµ1, . . . , ADysµn−1)dt + σ(λ, µ)dbt ,

where, according to (2.32) and (2.20),

ADys(λi ) = Aλ(λi ) = −λi +


j≠i

1
λi − λ j

,

ADys(µi ) = Aµ(µi ) = −µi +


j≠i

1
µi − µ j

,

establishing the form of F (n)
α (λ) in (6.4), thus yielding (2.27). Identities (2.27), (6.5) and (6.6),

together with Ito’s formula (5.4), then establish the formula (2.30) for Aλµ.9 �

Remark 6.1. Note that the identities (6.6) can be computed as well from the SDE (6.4), using
residue calculations:

dλαdλγ

dt
=

2
β


Pn−1(λα)

P ′
n(λα)


Pn−1(λγ )

P ′
n(λγ )


×

 
1≤i< j≤n−1

2 r2
i r2

j

(λα − µi )(λα − µ j )(λγ − µi )(λγ − µ j )

+

n−1
i=1

r4
i

(λα − µi )2(λγ − µi )2 +

n−1
i=1

2 r2
i

(λα − µi )(λγ − µi )
+ 1



=
2
β

δαγ

dµi dµ j

dt
=

2
β

δi j . (6.7)

We now turn to the proof of Corollaries 2.4 and 2.5:

9 As an alternative way, (2.32) and (6.5) suffice to establish (2.30), with (6.5) needed to establish the coupling Aλµ.
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Proof of Corollary 2.4. Note, using logarithmic derivatives, that
Invariant measure (2.31)


βA⊤


Invariant measure (2.31)

−1

is a quadratic polynomial in β, which by Theorem 2.3 vanishes for β = 1, 2, 4 and thus it
vanishes identically in β. That the process restricted to λ or µ is the standard Dyson process
follows from the form of the generator A⊤. �

Proof of Corollary 2.5. In order to study the stochastic behavior of µα − λα and λα+1 − µα

when µα gets close to λα or λα+1, one rewrites the Brownian part of d(λα − µα) as follows:
β

2
Brownian part of d(λα − µα)

=
Pn−1(λα)

P ′
n(λα)

 
1≤i< j≤n−1

√
2 rir j ˜dbi j

(λα − µi )(λα − µ j )
+

n−1
i=1
i≠α

r2
i dbi i

(λα − µi )2

+

n−1
i=1

√
2 ri ˜dbin

λα − µi
+ dbnn

+


Pn−1(λα)

P ′
n(λα)

r2
α

(λα − µα)2 − 1


dbαα. (6.8)

At first notice that for µα ≃ λα , one has, using the expression (2.25) for r2
k ,

Pn−1(λα) = O(µα − λα), rα = O(


µα − λα) and ri = O(1) for i ≠ α,

from which one deduces that the first line on the right hand side of (6.8) has order O(
√

µα − λα).
Using again (2.25), the second line of (6.8) multiplied with P ′

n(λα)P ′

n−1(µα) reads:

P ′

n−1(µα)P ′
n(λα)


Pn−1(λα)

P ′
n(λα)

r2
α

(λα − µα)2 − 1


=


Pn−1(λα) − Pn−1(µα)

λα − µα


Pn(µα) − Pn(λα)

µα − λα


− P ′

n−1(µα)P ′
n(λα)

= O(µα − λα).

Then

dt-part of d(µα − λα)

dt


µα=λα

=


λα − µα +


1≤ j≤n−1

j≠α

1
µα − µ j

−


1≤ j≤n

j≠α

1
λα − λ j


µα=λα

=


1≤ j≤n−1

j≠α

µ j − λ j

(λα − µ j )(λα − λ j )
+

1
λn − λα

> 0,

which follows from the inequalities (for 1 ≤ j ≤ n − 1),

µ j − λ j ≥ 0, (λα − µ j )(λα − λ j ) ≥ 0 and λn − λα > 0.

This proves the first relation (2.33), while the second one is done in a similar way. �
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7. The eigenvalues of three consecutive minors

In this section we shall prove Theorem 2.6, which affirms that for the Dyson process the joint
spectra of any three consecutive minors is not Markovian, although the Markovianess of the
spectra holds for any one or any two consecutive minors.

Note that given an Itô diffusion X t ∈ Rn , with stochastic differential equation d X t =

a(X t )dt+σ(X t )dbt , as in (5.1), and generator A, the process restricted to Yi = ϕi (X), 1 ≤ i ≤ ℓ

is not Markovian (at least for generic initial conditions) if the generator fails to preserve the field
of functions F (Y ) generated by the (Y1, . . . , Yℓ) := (ϕ1(X), . . . , ϕℓ(X)), i.e.

AF (Y ) ⊈ F (Y ), (7.1)

and provided the diffusion does not hit the Y -boundary of the domain.

Proof of Theorem 2.6. In order to show the non-Markovianess of

Γ := (λ, µ, ν) = (spec B, spec B(n−1), spec B(n−2))

it suffices to find a function, such that the function, obtained by applying the Dyson-generator to
it, is not a function of (λ, µ, ν). We pick a function of the product form xy = g(Γ )h(Γ ), where

x := g(Γ ) :=

n−2
i=1

Bi i and y := h(Γ ) := det B

are two independent functions. Then, according to formula (5.2)

ADysxy =
dxdy

dt
+ x ADys y + yADysx . (7.2)

Since x and ADysx are functions of ν only and since y and ADys y are functions of λ only,
x ADys y + yADysx is a function of (λ, ν) only. Therefore, to establish non-Markovianess of
(λ, µ, ν), it suffices to show that dxdy

dt is not only a function of (λ, µ, ν). Since, by Itô’s formula
(5.4),

dx dy =

n−2
1

d Bi i


n
1

∂ det B

∂ B j j
d B j j +


1≤i< j≤n

β−1
ℓ=0

∂ det B

∂ B[ℓ]
i j

d B[ℓ]
i j



=
2
β

dt
n−2

1

∂ det B

∂ Bi i
=

2
β

n−2
i=1

det(minori i (B))dt,

it suffices to show that the right hand side is not a function of (λ, µ, ν) only. Here minori i denotes
removing row i and column i of the matrix.

For example in the case β = 2, n = 3, this amounts to showing that the determinant of
the lower-right 2 × 2 principal minor of B is not a function of (λ, µ, ν) only; to do this, it is
convenient to reparametrize the matrix as

B =

 B11 ρ3eiη3 ρ2e−iη2

ρ3e−iη3 B22 ρ1eiη1

ρ2eiη2 ρ1e−iη1 B33

 .

Using the following formulae

B11 = ν1,
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B22 = µ1 + µ2 − ν1,

B33 = λ1 + λ2 + λ3 − µ1 − µ2

ρ2
3 = (µ2 − ν1)(ν1 − µ1),

the lower-right 2 × 2 principal minor of B reads

det(minor11(B)) = B22 B33 − ρ2
1

= (µ1 + µ2 − ν1)(λ1 + λ2 + λ3 − µ1 − µ2) − ρ2
1 .

One observes that

0 = det B − λ1λ2λ3

= B11 B22 B33 − λ1λ2λ3 −

3
i=1

ρ2
i Bi i + 2ρ1ρ2ρ3 cos(η1 + η2 + η3)

= F1(λ, µ, ν) − ρ2
1ν1 − ρ2

2(µ1 + µ2 − ν1)

+ 2ρ1ρ2


(µ2 − ν1)(ν1 − µ1) cos(η1 + η2 + η3)

and

0 = Tr B2
− (λ2

1 + λ2
2 + λ2

3) =

3
i=1

B2
i i + 2

3
i=1

ρ2
i − (λ2

1 + λ2
2 + λ2

3)

= F2(λ, µ, ν) + 2(ρ2
1 + ρ2

2),

where Fi (λ, µ, ν) are functions of the spectral data (λ, µ, ν). Upon solving these two equations
in ρ1 and ρ2, one notices that, in particular, ρ1 is a function of cos(η1 + η2 + η3) and the spectral
data (λ, µ, ν), hence showing that det(minor11(B)) is not a function of (λ, µ, ν) only; thus the
same is true for ADysxy. This proves that ADysxy does not belong to the field of functions
depending on (λ, µ, ν).

More generally, by a perturbation argument about B(n−1)
= diag (µ1, . . . , µn−1), one shows

similarly that

n−2
i=1

det(minori i (B)) ∉ F (λ, µ, ν),

for β = 2 and 4.
Finally, the boundary of the process (λ, µ, ν) is given by the subvariety where some of the

µi ’s hit the λ j ’s or the νk’s; that is when Pn(µi ) = 0 or Pn−1(νk) = 0 for some 1 ≤ i ≤ n − 1
or for some 1 ≤ k ≤ n − 2; r2

j (µ, ν) = 0 for 1 ≤ j ≤ n − 2. From Corollary 2.5, on sees that
the process never reaches that boundary. This ends the proof of Theorem 2.6. �
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