
Available online at www.sciencedirect.com

ScienceDirect

Stochastic Processes and their Applications 126 (2016) 1885–1900
www.elsevier.com/locate/spa

On the functional CLT for stationary Markov chains
started at a point

David Barrera, Costel Peligrad, Magda Peligrad∗

Department of Mathematical Sciences, University of Cincinnati, PO Box 210025, Cincinnati, OH 45221-0025, USA

Received 18 March 2015; received in revised form 1 December 2015; accepted 1 December 2015
Available online 17 December 2015

Dedicated to the memory of Mikhail Gordin

Abstract

We present a general functional central limit theorem started at a point also known under the name of
quenched. As a consequence, we point out several new classes of stationary processes, defined via projection
conditions, which satisfy this type of asymptotic result. One of the theorems shows that if a Markov chain
is stationary ergodic and reversible, this result holds for bounded additive functionals of the chain which
have a martingale coboundary in L1 representation. Our results are also well adapted for strongly mixing
sequences providing for this case an alternative, shorter approach to some recent results in the literature.
c⃝ 2016 Published by Elsevier B.V.
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1. Introduction and results

In this paper we address the question of the validity of functional limit theorem for processes
started at a point for almost all starting points. These types of results are also known under the
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name of quenched limit theorems or almost sure conditional invariance principles. The quenched
functional CLT is more general than the usual one and it is very important for analyzing random
processes in random environment, Markov chain Monte Carlo procedures and the discrete
Fourier transform (see [30,31,2]). On the other hand there are numerous examples of processes
satisfying the functional CLT but failing to satisfy the quenched CLT. Some examples were
constructed by Volný and Woodroofe [35] and for the discrete Fourier transforms by Barrera [1].
This is the reason why it is desirable to point out classes of processes satisfying a quenched
CLT. Special attention will be devoted to reversible Markov chains and several open problems
will be pointed out. Reversible Markov chains have applications to statistical mechanics and to
Metropolis Hastings algorithms used in Monte Carlo simulations. The methods of proof we used
are based on martingale techniques combined with results from ergodic theory.

The field of limit theorems for stationary stochastic processes is closely related to Markov
operators and dynamical systems. All the results for stationary sequences can be translated in
the language of Markov operators and vice-versa. In this paper we shall mainly use the Markov
operator language and also indicate the connection with stationary processes.

We assume that (ξn)n∈Z is a stationary Markov chain defined on a probability space (Ω , F , P)

with values in a measurable state space (S, A), with marginal distribution π(A) = P(ξ0 ∈ A)

and regular conditional distribution for ξ1 given ξ0, denoted by Q(x, A) = P(ξ1 ∈ A|ξ0 = x).
Let Q also denote the Markov operator acting via (Q f )(x) =


S f (s)Q(x, ds). Next, for p ≥ 1,

let L0
p(π) be the set of measurable functions on S such that


| f |

pdπ < ∞ and


f dπ = 0. For

some function f ∈ L0
2(π), let

X i = f (ξi ), Sn = Sn( f ) =

n
i=1

X i . (1)

Denote by Fk the σ -field generated by ξi with i ≤ k. For any integrable random variable X
we denote by Ek(X) = E(X |Fk) the conditional expectation of X given Fk . With this notation,
E0(X1) = (Q f )(ξ0) = E(X1|ξ0). We denote by ∥X∥p the norm in Lp = Lp(Ω , F , P). The
integral on the space (S, A, π) will be denoted by Eπ . So, E f (ξ0) = Eπ f .

The Markov chain is usually constructed in a canonical way on Ω = S∞ endowed with
sigma algebra A∞, and ξn is the nth projection on S. The shift T : Ω → Ω is defined by
ξn(T ω) = ξn+1(ω) for every integer n.

For any probability measure υ on A the law of (ξn)n∈Z with transition operator Q and initial
distribution υ is the probability measure Pυ on (S∞, A∞) such that

Pυ(ξn+1 ∈ A|ξn = x) = Q(x, A) and Pυ(ξ0 ∈ A) = υ(A).

For υ = π we denote P = Pπ . For υ = δx , the Dirac measure, we denote by Px and Ex the
probability and conditional expectation for the process started at x . Note that for each x fixed
Px (·) is a measure on F ∞, the sigma algebra generated by ∪k Fk . Also

P(A) =


Px (A)π(dx). (2)

We mention that any stationary sequence (Yk)k∈Z can be viewed as a function of a Markov
process ξk = (Y j ; j ≤ k) with the function g(ξk) = Yk . Therefore the theory of stationary
processes can be embedded in the theory of Markov chains. So, our results apply to any stationary
process with the corresponding interpretation. In the context of a stationary process, a fixed
starting point for a corresponding Markov chain means a fixed past trajectory for k ≤ 0.
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All along the paper we shall assume that the Markov chain is ergodic.
Below, we denote by ⇒ the convergence in distribution. By [x] we denote the integer part of x .
For a Markov chain, by the quenched CLT (or CLT started at a point) we shall understand the

following convergence: there is a positive constant σ ∈ [0, ∞) and a set S′
⊂ S with π(S′) = 1

such that for x ∈ S′ we have

Sn
√

n
⇒ σ N (0, 1) under Px , (3)

and by the quenched functional CLT (which is the same as functional CLT started at a point):
there is a set S′

⊂ S with π(S′) = 1 such that for x ∈ S′

S[nt]
√

n
⇒ σ W (t) under Px , (4)

where W (t) denotes the standard Brownian motion and the convergence in distribution is on
D(0, 1), the space of functions continuous at the right with limits at the left, endowed with the
Skorohod topology.

An important class satisfying quenched functional CLT is the stationary and ergodic martin-
gale differences, as seen in [13,14]. A natural method to prove these types of results for other
classes of processes is to use martingale approximations. This method was initiated by Gordin
[20].

One of the first results of this type is due to Gordin (published in Ch.4 Section 8 in [4]), who
proved the quenched CLT for Markov chains with normal operator (Q Q∗

= Q∗Q), f ∈ L0
2,

under the condition f ∈ (I − Q)L2(π). If the Markov chain is irreducible and aperiodic,
then the quenched CLT holds under the condition

n
j=0 Eπ ( f Q j f ) is convergent (Chen [5]).

Without assuming irreducibility conditions, various papers point out rates for convergence to
0 of ∥

n
j=0 Q j f ∥2/n needed for the quenched results. Among them, we mention papers by

Derriennic and Lin [13,14], Wu and Woodroofe [37], Cuny [6], Merlevède et al. [27], Cuny and
Peligrad [8], Cuny and Merlevède [7], Cuny and Volný [9], Volný and Woodroofe [36]. Recently,
Dedecker et al. [10] showed that the condition


∞

j=0 Eπ | f Q j f | < ∞ leads to the quenched
invariance principle.

Our study is motivated by the class considered by Gordin. What can one say about f ∈

(I − Q)Lp(π) with 1 ≤ p < 2? From the paper by Volný and Woodroofe [36] we know that
there are examples of functions, f ∈ [(I − Q)L1(π)]∩L0

2(π) such that Sn/
√

n satisfies the CLT,
but fails to satisfy the quenched CLT.

One of our results shows that for functions of reversible Markov chains one can assume that
f ∈ [(I − Q)Lq(π)] ∩ L0

p(π), with q ∈ [1, 2], 1/p + 1/q = 1, for concluding that the
quenched functional CLT holds. This result follows from several general preliminary results that
have interest in themselves. They specify sufficient conditions for the validity of the quenched
CLT and the quenched functional CLT.

Denote

fm =
1
m

(Q + · · · + Qm) f (5)

and

R̄m
k =

k
j=1

fm(ξ j ). (6)
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Theorem 1. Let (Xn)n∈Z be a stationary sequence of random variables defined by (1) and define
(R̄m

k )m≥1,k≥1 by (6). Assume that

lim
m

lim sup
n

Px


|R̄m
n |

√
n

> ε


= 0 π -a.s. (7)

Then the quenched CLT in (3) holds.

Theorem 2. Assume that (Xn)n∈Z and (R̄m
k )m≥1,k≥1 are as in Theorem 1 and

lim
m

lim sup
n

Px


max

1≤ j≤n

|R̄m
j |

√
n

> ε


= 0 π -a.s. (8)

Then the quenched functional CLT in (4) holds.

For f ∈ L0
1(π) denote by

g f = sup
n≥0

 n
j=0

Q j f

 . (9)

Based on Theorem 2 we shall establish the following theorem:

Theorem 3. Let (Xn)n∈Z be defined by (1), fm by (5) and g f by (9). Assume the following
condition is satisfied:

( fm g f )m≥1 is uniformly integrable. (10)

Then the quenched functional CLT in (4) holds.

From the proof of Theorem 3 we easily deduce several corollaries. The first corollary is well
adapted for strongly mixing sequences:

Corollary 4. Assume

lim
m→∞

∞
j=1

Eπ |(Qm f )(Q j f )| = 0. (11)

Then the quenched functional CLT in (4) holds.

Remark 5. Condition (11) can be verified in terms of strong mixing coefficients. Practically,
we deduce that any strongly mixing sequence satisfying the CLT also satisfies the quenched
functional CLT. Therefore our approach also provides a shorter, alternative proof of Corollary 3.5
in [10]. The proof of this remark is postponed to the end of the paper.

Also, as an application to the proof of Theorem 3 we obtain the following:

Corollary 6. Let (Xn)n∈Z, fm , and g f defined as in Theorem 3. Assume f ∈ L0
p(π) and

g f ∈ Lq(π) with p ∈ [2, ∞], 1/p + 1/q = 1. Then the quenched functional CLT holds.

We say that a Markov chain is reversible if Q is self-adjoint; equivalently (X0, X1) and
(X1, X0) are identically distributed. If the Markov chain is reversible then the following corollary
holds.
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Corollary 7. Assume the Markov chain is reversible and

f ∈ [(I − Q)Lq(π)] ∩ L0
p(π). (12)

for p ∈ [2, ∞), 1/p + 1/q = 1. Then the quenched functional CLT holds.

Let us mention that the class we consider here is of independent interest when compared to the
projective condition used in [10], namely


∞

j=0 E|X0 E(X j |F0)| < ∞. For instance there are
examples which satisfy the conditions of Corollary 6 without satisfying the condition from [10].

Remark 8. There is a stationary and ergodic process of bounded random variables (Xk)k∈Z
adapted to a filtration (Fk)k∈Z , such that supn≥0 |

n
j=0 E(X j |F0)| ∈ L1 and

∞

j=0 E|X0E(X j |F0)| = ∞.

We end this section by mentioning two conjectures which deserve further investigation. The
results in the paper by Dedecker et al. [10] and the results in this paper suggest the following
conjecture, which is a quenched form of the functional CLT in [11].

Conjecture 9. In the context of Theorem 3 assume f
n

j=0

Q j f

 is convergent in L1(π). (13)

Then the quenched functional CLT holds.

For reversible Markov chains we would like to mention the Kipnis and Varadhan [24] conjec-
ture, asking if their functional CLT is quenched. This conjecture is still unsolved.

Conjecture 10. In the context of Corollary 7 assume

Eπ


f

n
j=0

Q j f


is convergent. (14)

Then the quenched functional CLT holds.

Steps towards clarifying this conjecture are contained in the papers by Derriennic and Lin [13]
and Cuny and Peligrad [8].

2. Preliminary considerations

The method we shall use in our proofs is based on a martingale approximation depending on
a certain parameter which is fixed at the beginning and after that we let it grow to ∞. To deal
with this parameter, we start by pointing out several preliminary considerations for convergence
in distribution. From Theorem 3.2 in [3], it is well-known the following result:

Lemma 11. Assume that the elements (Xn,m, Xn) are defined on the same probability space with
values in S × S, where S is a metric space. Assume that

Xn,m ⇒n Ym ⇒m X

and

lim
m

lim sup
n

P(d(Xn,m, Xn) ≥ ε) = 0. (15)
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Then

Xn ⇒ X.

If the metric space is separable and complete, then one does not have to assume Ym ⇒ X . This
result (see for instance Theorem 2 in [12]) is given in the following lemma where the variables
are denoted as in Lemma 11.

Lemma 12. Assume the metric space S is separable and complete. Assume that for every m

Xn,m ⇒ Ym as n → ∞

and condition (15) is satisfied. Then there is a S-valued random variable X such that

Yn ⇒ X and Xn ⇒ X as n → ∞.

These considerations suggest that the conditions of Lemma 11 are too strong. Indeed, we can
formulate the following lemma.

Lemma 13. In Lemma 11 condition (15) can be replaced by

lim inf
m

lim sup
n

P(d(Xn,m, Xn) ≥ ε) = 0. (16)

Proof of Lemma 13. Let F be a closed set. Define Fε = {x : d(x, F) ≤ ε}. Then, by
Portmanteau theorem (Theorem 2.1 in [3]),

lim sup
n

P(Xn,m ∈ Fε) ≤ P(Ym ∈ Fε).

Since

P(Xn ∈ F) ≤ P(Xn,m ∈ Fε) + P(d(Xn,m, Xn) ≥ ε),

by combining these results, we deduce that

lim sup
n

P(Xn ∈ F) ≤ lim sup
n

P(Xn,m ∈ Fε) + lim sup
n

P(d(Xn,m, Xn) ≥ ε)

≤ P(Ym ∈ Fε) + lim sup
n

P(d(Xn,m, Xn) ≥ ε).

Therefore taking the limit inferior when m → ∞ we obtain by (16) and Portmanteau Theorem
that

lim sup
n

P(Xn ∈ F) ≤ lim inf
m

[P(Ym ∈ Fε) + lim sup
n

P(d(Xn,m, Xn) ≥ ε)]

≤ lim sup
m

P(Ym ∈ Fε) + lim inf
m

lim sup
n

P(d(Xn,m, Xn) ≥ ε)

≤ P(X ∈ Fε).

Now we take a sequence Fε ↓ F as ε ↓ 0, the result follows by applying again the Portmanteau
theorem. �

One of the difficulties in proving quenched results is the fact that, under Px , the Markov chain
is no longer strictly stationary. Since we are interested in proving quenched results which are
almost sure results, and also the quenched functional form of the CLT, we need to use maximal
inequalities. There are not too many maximal inequalities available in the nonstationary context.
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A useful maximal inequality is an easy consequence of inequality (3.9) given in the book by
Rio [32] (see also [11]).

Lemma 14. Assume that (Xk) is a sequence of real valued centered random variables in
L2(Ω , K, P), adapted to an increasing filtration of sub-sigma fields of K, (Fn). Then

E( max
1≤k≤n

S2
k ) ≤ 8

n
k=1

E(X2
k ) + 16

n
k=1

E|XkE(Sn − Sk |Fk)|.

One of the basic results used in our proofs is the functional CLT for martingales in the
following form:

Theorem 15. Assume that (Dn) is a sequence of martingale differences on a probability space
(Ω , K, P) adapted to an increasing filtration of sub-sigma fields of K, (Fn). Assume that the
following two conditions hold

1
√

n
max

0≤k≤n
|Dk |


n≥1

is uniformly integrable (17)

and for each t, 0 ≤ t ≤ 1

1
n

[nt]
k=0

D2
k → tσ 2 in probability. (18)

Then
[nt]
k=0

Dk

√
n

⇒ |σ |W (t).

This theorem follows from Theorem 2.3 in [19] combined with the commentaries on pages
316–317 of this paper. Indeed, according to the sequence of implications on page 316 of this
book, the conditions (Aa) and (Ra,t ) of their Theorem 2.3 are verified under (18) and

1
√

n
max

0≤k≤n
|Dk | → 0 in L1. (19)

Then, by arguments on page 317 both conditions (17) and (18) imply condition (19).

3. Proofs

Proof of Theorems 1 and 2. We start with a martingale construction. The construction of the
martingale decomposition is inspired by works of Gordin [20], Heyde [23], Gordin–Lifshitz
[21]; see also Theorem 8.1 in [4,24,25]. The form we use here was initiated by Wu and
Woodroofe [37], and further exploited by Zhao and Woodroofe [38], Peligrad [29], Gordin and
Peligrad [22] among others. We briefly give it here for completeness.

We introduce a parameter, an integer m ≥ 1 (kept fixed for the moment), and introduce the
functions

vk = (I + Q + · · · + Qk−1) f. (20)
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Define the stationary sequence of random variables:

θm
0 =

1
m

m
k=1

vk(ξ0), θm
k = θm

0 ◦ T k .

Denote by

Dm
k = Dm

k (ξk, ξk+1) = θm
k+1 − Ek(θ

m
k+1); Mm

n =

n
k=1

Dm
k . (21)

Then, (Dm
k )k∈Z is a martingale difference sequence which is stationary and ergodic and (Mm

n )n≥0
is a martingale. So we have

Xk = Dm
k + θm

k − θm
k+1 + fm(ξk),

with fm defined by (5). Therefore

Sk = Mm
k + θm

1 − θm
k+1 + R

m
k , (22)

where we implemented the notation

R̄m
k =

k
j=1

fm(ξ j ).

With the notation

Rm
k = θm

1 − θm
k+1 + R̄m

k , (23)

we have the following martingale decomposition

Sk = Mm
k + Rm

k . (24)

We shall prove now the quenched functional CLT for the martingale Mm
n . We shall verify the

conditions of the functional CLT given in Theorem 15.
We start by noticing that (Mm

n )n is also a martingale under Px (since Ex (Dm
k |Fk−1) =

E(Dm
k |Fk−1) by the fact that the Markov chain has the same transitions under P and Px ). We

verify first condition (18). Since Mm
n is a martingale with stationary and ergodic increments, by

Birkhoff’s ergodic theorem, for every 0 ≤ t ≤ 1,

1
n

[nt]
k=1

(Dm
k )2

→ tE(Dm
0 )2 P-a.s.

and therefore for every 0 ≤ t ≤ 1 and π -almost all x

1
n

[nt]
k=1

(Dm
k )2

→ tE(Dm
0 )2 Px -a.s. (25)

In order to verify (17), for proving uniform integrability it is enough to show that for π -almost
all x , for some constant Cx we have

sup
n

1
n

Ex ( max
1≤k≤n

(Dm
k )2) ≤ Cx . (26)
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Clearly

1
n

Ex ( max
1≤k≤n

(Dm
k )2) ≤

1
n

n
k=1

Ex (Dm
k )2.

Note that Dm
0 = Dm

0 (ξ1, ξ0) and then, denoting by h(y) = E((Dm
0 (ξ1, ξ0))

2
|ξ0 = y), by the

Markov property it follows that Ex (Dm
k )2

= Qkh(x). By Hopf’s ergodic theorem for Markov
operators (see Theorem 11.4 in [18]) we obtain

lim sup
n

1
n

Ex ( max
1≤k≤n

(Dm
k )2) ≤ lim sup

n

1
n

n
k=1

Qkh(x) = E(Dm
0 )2 π -a.s.

and (26) follows.
By Theorem 15 it follows that for π -almost all x we have

Mm
[nt]

√
n

⇒ |σm |W (t) under Px , (27)

where W (t) is the standard Brownian motion and

σ 2
m = E(Dm

0 )2. (28)

By stationarity, by the fact that θm
0 is in L2 we have

max
1≤k≤n

|θm
k |

√
n

→ 0 P-a.s.

To see it, just start from


n P(|θm
0 |

2 > εn) < ∞ and apply the Borel–Cantelli lemma (see also
page 171 in [4]).

Therefore, for π -almost all x

max
1≤k≤n

|θm
k |

√
n

→ 0 Px -a.s. (29)

If we assume (7) then clearly by (29) we obtain

lim
m

lim sup
n

Px


|Sn − Mm
n |

√
n

> ε


= 0 π -a.s.

Clearly (27) implies that for each m ≥ 1

Mm
n

√
n

⇒ |σm |Z under Px

where Z has a standard normal distribution. By applying Lemma 12 we obtain that |σm |Z con-
verges in distribution to a random variable Y , which is also the limiting distribution of Sn/

√
n

under Px . Clearly Y has a normal distribution with variance σ 2
= limm σ 2

m , where σ ∈ [0, ∞).
Now, by taking into account (8), we have

lim
m

lim sup
n

Px


max
1≤ j≤n

|Sn − Mm
n |

√
n

> ε


= 0 π -a.s.

and, by Lemma 12, as explained before, we get both that E(Dm
0 )2

→ σ 2 and that the quenched
functional CLT holds with the limit σ W (t). �
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Remark 16. We point out that the proofs of Theorems 1 and 2 also indicate how to identify the
constant σ 2 which appears in the limit as

σ 2
= lim

m→∞
lim

n→∞
E(Dm

n )2,

where Dm
n was defined in (21).

Remark 17. By Lemma 13, Theorems 1 and 2 also hold if we replace in conditions (7) and (8)
the limit when m → ∞ by lim infm→∞ and we add the condition

E(Dm
0 )2 is convergent as m → ∞. (30)

Condition (30) is verified in many situations including classes of normal and reversible Markov
chains, as shown by Gordin and Lifshitz [21] and Kipnis and Varadhan [24] among others.

We shall establish next a maximal inequality needed to verify condition (8).

Proposition 18. For any h ∈ L0
2(π) such that Eπ (|hgh |) < ∞, we have the following maximal

inequality

lim sup
n

Ex ( max
1≤k≤n

S2
k (h))

n
≤ 24Eπ (|hgh |) π -a.s. (31)

Proof. We start by applying Rio’s maximal inequality given in Lemma 14 which implies that

Ex ( max
1≤k≤n

S2
k (h)) ≤ 8

n
u=1

Ex (h2(ξu)) + 16
n−1
u=1

Ex

h(ξu)

n−u
k=1

Qkh(ξu)

 .
So

Ex ( max
1≤k≤n

S2
k (h)) ≤ 24

n
j=1

Q j


sup
k≥0

 k
u=0

hQuh




(x).

By the Hopf ergodic theorem for Markov operators

1
n

n−1
j=1

Q j


sup
k≥0

 k
u=0

hQuh




(x) → Eπ sup
n≥0

 n
u=0

hQuh

 π -a.s.

which leads by the previous considerations to (31) by the definition of gh . �

Proof of Theorem 3. The proof consists in verifying condition (8) of Theorem 2.
We start by applying Proposition 18 to Sk( fm), where fm is defined by (5). Note that R̄m

k
defined by (6) is equal to Sk( fm). For all m fixed

lim sup
n

Ex ( max
1≤k≤n

(R̄m
k )2)

n
≤ 24Eπ


sup
k≥0

 k
j=0

fm Q j fm




π -a.s. (32)



D. Barrera et al. / Stochastic Processes and their Applications 126 (2016) 1885–1900 1895

Then, we have n
j=0

Q j fm

 =
1
m

 n
j=0

m
k=1

Q j+k f

 ≤
1
m

m
k=1

n+k
j=k

Q j f


≤ 2 sup

n

 n
j=0

Q j f

 ≤ 2g f ,

which, combined with (32), leads to

lim sup
n

Ex ( max
1≤k≤n

(R̄m
k )2)

n
≤ 48Eπ (| fm g f |) π -a.s.

Clearly, by using this last inequality, in order to prove (8), it remains to show

Eπ (| fm g f |) → 0 as m → ∞. (33)

By Hopf’s ergodic theorem for Markov operators (Theorem 11.4 in [18])

fm → 0 π -a.s. so fm g f → 0 π -a.s.

and also, because by condition (10), ( fm g f )m≥1 is uniformly integrable, it follows that

fm g f → 0 in L1(π). �

Proof of Corollary 4. Note that, by the triangle inequality, (11) implies (33) and the proof of
Theorem 3 applies.

Proof of Corollary 6. We start from (33) and apply Hölder’s inequality, so

Eπ (| fm g f |) ≤ E1/p
π (| fm |

p)E1/q
π (|g f |

q).

By the mean ergodic theorem for the Dunford–Schwartz operators on a Banach space (see Theo-
rem 8.18 in [18]) Eπ (| fm |

p) → 0 as m → ∞, and the result follows. Also note that we can take
p = ∞ and q = 1. �

Proof of Corollary 7. We shall verify the condition of Corollary 6. If f ∈ (I − Q)Lq(π) there
is h ∈ Lq(π) such that f = (I − Q)h.

Then, by Hölder’s inequality

Eπ (sup
n

|(I + Q + · · · + Qn−1) f |
q) = Eπ (sup

n
|(I − Qn)h|

q)

≤ 2q−1
[Eπ (|h|

q) + Eπ (sup
n

(|Qnh|
q))].

By the Stein Theorem (see [34]), supn |Qnh| is in Lq(π) and there is a constant K such that
Eπ supn(|Qnh|

q) ≤ KEπ (|h|
q). Therefore g f is in Lq(π) and we can apply Corollary 6 to

obtain the result. �

Proof of the Remark 8. It is convenient to specify this example in terms of a stationary process
defined by a dynamical system. The proof of this remark follows by analyzing the example given
in [17,16].

We consider an ergodic dynamical system (Ω , A, µ, T ), with µ nonatomic and strictly pos-
itive entropy. Let B and C be two independent sub-sigma algebras of A such that T −1 C = C.
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Let (ei )i∈Z be a sequence of independent identically distributed Rademacher random variables
with parameter 1/2, measurable with respect to B and denote by F0 the σ -algebra generated by
C and (ei )i≤0. We consider an increasing sequence of integers (Nk), and mutually disjoint sets
(Ak)k∈Z, Ak ∈ C such that

(1) 2
3ρk ≤ µ(Ak) ≤ ρkfor all k ∈ N∗ where ρk = ak for 0 < a ≤ 1/4.
and

(2) for all k ∈ N and all i, j ∈ {0, . . . , Nk}, µ(T −i Ak1T − j Ak) ≤ εk where (εk) will be selected
later.

The existence of the sequence (Ak)k∈Z with the above properties was explained in Lemma 2
of Durieu and Volný [17].

The function f is then defined as

f =


k≥1

e−Nk 1Ak . (34)

The function f defined in (34) is centered, F0-measurable and bounded.
For any i ∈ Z, let now X i = f ◦ T i . This sequence is adapted to the stationary and nonde-

creasing sequence of σ -algebras (Fi )i∈Z where Fi = T −i (F0). Note that the sequence (ei )i∈Z
is adapted to (Fi )i∈Z and E(ei |F0) = ei 1i≤0 almost surely. Also, for all k and i , 1Ak ◦ T i is
F0-measurable and the ei ’s and the 1Ak ’s are independent. Clearly, for any i ∈ N,

E(X i |F0) =


k≥1

e−Nk+i 1i≤Nk 1T −i (Ak )

=


k≥1

e−Nk+i 1i≤Nk 1Ak +


k≥1

e−Nk+i 1i≤Nk (1T −i (Ak )\Ak
− 1Ak\T −i (Ak )

). (35)

So, by using the fact that the e j ’s and f are bounded by one, and selecting Nk, εk such that
k≥1 Nkεk < ∞, we obtain

i≥1

E


k≥1

e−Nk+i 1i≤Nk (1T −i (Ak )\Ak
− 1Ak\T −i (Ak )

)

 ≤


i≥1


k≥1

1i≤Nk [µ(T −i (Ak)1Ak)]

≤


k≥1

Nkεk < ∞. (36)

Therefore, since f is bounded, by (35) and (36), in order to show that


i≥0 E| f E(X i |F0)| = ∞

holds, it is enough to show that


i≥1

E

 f

k≥1

e−Nk+i 1i≤Nk 1Ak

 = ∞. (37)

By the fact that (Ak) are disjoint
i≥1

E

 f

k≥1

e−Nk+i 1i≤Nk 1Ak

 =


i≥1

E


u≥1

e−Nu 1Au


k≥1

e−Nk+i 1i≤Nk 1Ak


=


i≥1

E


k≥1

e−Nk e−Nk+i 1i≤Nk 1Ak


=


i≥1


k≥1

E|e−Nk e−Nk+i 1i≤Nk 1Ak |
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=


i≥1


k≥1

1i≤Nk µ(Ak) ≥
2
3


i≥1


k≥1

1i≤Nk ρk

=
2
3


k≥1

Nkρk .

On the another hand, by (35) and (36),

E sup
n

 n
i=1

E(X i |F0)

 ≤


k≥1

E sup
n

n∧Nk
i=1

e−Nk+i 1Ak

+
k≥1

Nkεk . (38)

By the fact that (ei )’s and (Ak)’s are independent and by Doob’s maximal inequality we obtain
k≥1

E sup
n

n∧Nk
i=1

e−Nk+i

 1Ak =


k≥1

E max
1≤ j≤Nk


j

i=1

e−Nk+i

µ(Ak)

≤


k≥1

E max
1≤ j≤Nk


j

i=1

e−Nk+i

 ρk ≤


k≥1


Nkρk .

To finish the proof of this remark we have to select sequences such that


k≥1 Nkεk < ∞,
k≥1 Nkρk = ∞ and


k≥1

√
Nkρk < ∞.

This selection is possible. For instance, we can take ρk = 4−k , Nk = 4k and εk = 8−k .

Proof of the Remark 5 (Application to Strong Mixing Sequences). We shall apply now Corol-
lary 4 to strong mixing sequences.

For the random variable X , define the “upper tail” quantile function q by

q(u) = inf {t ≥ 0 : P (|X0| > t) ≤ u} .

Relevant to this application is the following lemma.

Lemma 19. Let (Ω , A, P) be a probability space and M be a sub σ -algebra of A. Let X and
Y be two square integrable identically distributed random variables. Denote by q their common
quantile function. Then

E|XE(Y |M)| ≤ 3
 ᾱ

0
q2du,

where

ᾱ = ᾱ(Y, M) = sup
t∈R

E|P(Y ≤ t |M) − P(Y ≤ t)|.

Inspired by the proof of Lemma 2 in [28], this lemma can be obtained directly, by truncation
arguments. It can also be obtained by using Lemma 4 in [26], combined with Rio’s covariance
inequality (Theorem 1.1 in [32]). The proof is left to the reader.

Let (X i )i∈Z be a stationary sequence of real valued random variables. We shall interpret it
as a function of a Markov chain ξk = (X j , j ≤ k), f (ξk) = Xk , and define the σ -algebra
F0 = σ(X i , i ≤ 0). For any k ∈ N also define

ᾱk = ᾱ(Xk, F0).



1898 D. Barrera et al. / Stochastic Processes and their Applications 126 (2016) 1885–1900

Recall that the strong mixing coefficient of Rosenblatt [33], defined by

αk = sup
A∈σ(Yk ),B∈F0

|P(A ∩ B) − P(A)P(B)|,

is such that ᾱk ≤ 2αk . (See page 8 in [32].)
By using our Corollary 4 we shall establish the following result (see also Corollary 3.5

in [10]).
For any nonnegative random variable Z , we define the quantile function qZ of Z by q(u) =

inf{t ≥ 0 : P(|Z | > t) ≤ u}.

Proposition 20. Assume (X i )i∈Z is a stationary and ergodic sequence of random variables and
|X0| has quantile function q. Also assume

j≥1

 ᾱ j

0
q2du < ∞. (39)

Then the quenched functional CLT holds.

Proof. Note that Eπ |(Qm f )(Q j f )| ≤ min(E| f (ξm)(Q j f )(ξ0)|, E| f (ξ j )(Qm f )(ξ0)|). So, by
Lemma 19 we obtain

j≥1

E|(Qm f )(Q j f )| ≤ 3

j≥1

min
 ᾱ j

0
q2du,

 ᾱm

0
q2du


. (40)

If we impose condition (39), this condition implies ᾱm → 0 and also allows us to apply
the discrete Lebesgue dominated theorem in (40). So condition (11) is satisfied and the result
follows. �

We easily recognize condition (39) as being the usual condition, optimal in some sense, used
in the context of invariance principles for strongly mixing sequences (see [15]).

Note that X0 is distributed as q(U ) where U is a uniform random variable. Therefore we can
give sufficient conditions for the validity of (39) in terms of moments of X0 and mixing rates.

For instance if X0 is almost surely bounded by a constant, condition (39) is satisfied as soon
as


j≥1 ᾱ j < ∞. If for a δ > 0 we have E(|X0|
2+δ) < ∞, then condition (39) is satisfied

provided


j≥1 j2/δᾱ j < ∞ (see [15]).
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