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Abstract

We provide new deviation inequalities in the large deviations bandwidth for suprema of empirical
processes indexed by classes of uniformly bounded functions associated with independent and identically
distributed random variables. The improvements we get concern the rate function which is, as expected,
the Legendre transform of the suprema of the log-Laplace transform of the pushforward measure by
the functions of the considered class (up to an additional corrective term). Our approach is based on a
decomposition in martingale together with some comparison inequalities.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Let X1, . . . , Xn be a sequence of independent random variables valued in some measurable
space (X ,F), and identically distributed according to a law P . Let Pn denote the empirical
probability measure Pn := n−1(δX1 + · · · + δXn ). Let F be a countable class of measurable
functions f : X → R such that P( f ) = 0 and | f (x)| ≤ 1 for all x ∈ X and all f ∈ F .
We are concerned with exponential deviation inequalities with precise rate functions in the large
deviations bandwidth for the random variable

Z := sup{n Pn( f ) : f ∈ F }, (1.1)
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around its mean. First, let us briefly recall known results on concentration of Z around its
mean for uniform bounded classes F . Talagrand [23] obtains a Bennett-type inequality by
means of isoperimetric inequalities for product measures. Ledoux [13] introduces a new method
based on entropic inequalities to recover more directly Talagrand’s inequalities. This method,
which allows to bound above the Laplace transform of Z , is the starting point of a series of
papers, mainly to reach optimal constants in Talagrand’s inequalities. Let us cite, among others,
Massart [15], Rio [18–20], Bousquet [7], Klein [11], Klein and Rio [12]. In the large deviations
bandwidth, as rate function, we expect the Legendre transform of t ↦→ sup f ∈F ℓ f (t), denoted
by ℓ∗

F , where ℓ f is the log-Laplace transform ℓ f (t) := log P(et f ) for all t ≥ 0 and all f ∈ F .
Indeed, one has

1
n

logE[et Z ] ≥ sup
f ∈F

ℓ f (t) =: ℓF (t), (1.2)

which implies
1
n

logE[et(Z−E[Z ])] ≥ ℓF (t) − t
E[Z ]

n
. (1.3)

Now, if E[Z ]/n tends to 0 (for example, this condition is satisfied when F is a Glivenko–Cantelli
class), then

lim inf
n→∞

1
n

logE[eZ−E[Z ]] ≥ ℓF (t). (1.4)

This elementary lower bound shows that the large deviations rate function ℓ∗

F cannot be
improved. To the best of our knowledge, the only result in this direction is obtained in Rio [18]
and concerns the particular case of set-indexed empirical processes. Rio gets as rate function,
for the right-hand side deviations for sets with large measure under P and for the left-hand side
deviations, that of a Bernoulli random variable which actually corresponds to ℓ∗

F . In this paper,
we obtain as rate function for the general case, the function ℓ∗

F with an additional corrective
term which tends to 0 as n tends to infinity as soon as F is a weak Glivenko–Cantelli class (see
Remark 3.3). Our methods are only based on martingale techniques and comparison inequalities.

The paper is organized as follows. First, in Section 2 we recall some definitions and
preliminary results on the Conditional Value-At-Risk and some comparison inequalities. In
Section 3 we state the main results of this paper. We study the rate function ℓ∗

F in Section 4.
Finally, we provide detailed proofs in Section 5.

2. Notation and preliminary results

In this section, we give notation and definitions which we will use all along the paper. Let us
start by the definition of the Conditional Value-at-Risk (CVaR for short).

Definition 2.1. Let X be a real-valued integrable random variable. Let the function Q X be the
càdlàg inverse of x ↦→ P(X > x). The Conditional Value-at-Risk is defined by

Q̃ X (u) := u−1
∫ u

0
Q X (s)ds for any u ∈]0, 1]. (2.1)

Let us now recall the definition of the Legendre transform of a convex function.

Definition 2.2. Let φ : [0,∞[→ [0,∞[ be a convex, nondecreasing and càdlàg function such
that φ(0) = 0. The Legendre transform φ∗ of the function φ is defined by

φ∗(λ) := sup{λt − φ(t) : t > 0} for any λ ≥ 0. (2.2)
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The inverse function of φ∗ admits the following variational expression (see, for instance,
Rio [21, Lemma A.2]).

φ∗−1(x) = inf{t−1(φ(t) + x) : t > 0} for any x ≥ 0. (2.3)

A particular function φ satisfying conditions in Definition 2.2 is the log-Laplace transform of a
random variable:

Notation 2.3. Let X be a real-valued integrable random variable with a finite Laplace transform
on a right neighborhood of 0. The log-Laplace transform of X, denoted by ℓX , is defined by

ℓX (t) := logE[exp(t X )] for any t ≥ 0. (2.4)

The function Q X and the CVaR satisfy the following elementary properties, which are given
and proved in Pinelis [16, Theorem 3.4].

Proposition 2.4. Let X and Y be real-valued and integrable random variables. Then, for any
u ∈]0, 1],

(i) P(X > Q X (u)) ≤ u,
(ii) Q X (u) ≤ Q̃ X (u),

(iii) Q̃ X+Y (u) ≤ Q̃ X (u) + Q̃Y (u).
(iv) Assume that X has a finite Laplace transform on a right neighborhood of 0. Then

Q̃ X (u) ≤ ℓ∗−1
X (log(1/u)).

Remark 2.5. Since we use different notation from that in Pinelis [16], let us mention that
his notation Q0(X; u), Q1(X; u) and Q∞(X; u) correspond respectively to Q X (u), Q̃ X (u) and
ℓ∗−1

X (log(1/u)).

We now recall comparison inequalities which will be used in the proof of the main result. Let
us first give a notation for a family of distribution probability.

Notation 2.6. Let α, β be two reals such that α < β. We say that a random variable θ follows a
Bernoulli distribution if it assumes exactly two values and we write θ ∼ Bm(α, β) if

P(θ = β) = 1 − P(θ = α) ∈]0, 1[, and E[θ ] = m. (2.5)

Notice that

Var(θ ) = (m − α)(β − m). (2.6)

The following classical convex comparison inequality between a bounded random variable X
and a Bernoulli random variable with values of the bounds of X was first proved by Hoeffding
(see Inequalities (4.1) and (4.2) in [10]); it straight follows by the property of convexity.

Proposition 2.7. Let a, b be two positive reals and let X be a bounded random variable such that
−a ≤ X ≤ b and E[X ] = m. Let θ ∼ Bm(−a, b). Then, for any convex function ϕ : R → R,

E[ϕ(X )] ≤ E[ϕ(θ )].

In particular, since E[θ ] = m, Var(X ) ≤ Var(θ ) = (a + m)(b − m).
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Next, Bentkus (see Lemmas 4.4 and 4.5 in [3]) proved that a martingale with bounded from
above increments is more concentrate with respect to a certain class of convex functions than a
sum of independent and identically distributed Bernoulli random variables.

Proposition 2.8. Let b, s2
1 , . . . , s2

n be positive reals. Let Mn :=
∑n

k=1 Xk be a martingale with
respect to a nondecreasing filtration (Fk) such that M0 = 0,

Xk ≤ b, and E[X2
k | Fk−1] ≤ s2

k a.s. (2.7)

Let s2
:= n−1(s2

1 + · · · + s2
n ) and Sn := ϑ1 + · · · + ϑn be a sum of n independent copies of a

random variable ϑ with distribution B0(−s2/b, b). Then, for any convex nondecreasing function
ϕ : R → R, differentiable and with convex derivative,

E[ϕ(Mn)] ≤ E[ϕ(Sn)].

Remark 2.9. Actually Bentkus obtains the above inequality in a smaller class of functions. This
generalization is due to Pinelis (see Corollary 5.8 in [17]).

3. Main results

Let us first introduce one more notation. We denote for any k = 1, . . . , n the expectations

Ek := E sup
f ∈F

Pk( f ). (3.1)

The main result of the paper is the following theorem:

Theorem 3.1. Let F be a countable class of measurable functions from X into [−1, 1] such
that P( f ) = 0 for all f ∈ F . Let Z be defined by (1.1). For any f ∈ F , let ℓ f and ℓF be the
functions defined by

ℓ f (t) := log P(et f ) and ℓF (t) := sup
f ∈F

ℓ f (t) for any t ≥ 0. (3.2)

Denote Ēn := n−1(E1 + · · · + En) and define

vn :=
Ēn

2

(
1 −

Ēn

2

)
. (3.3)

Let θ (n) be a Bernoulli random variable with distribution B0(−vn, 1). We denote by ℓvn the log-
Laplace transform of θ (n). Then, for any x ≥ 0,

n−1 Q̃ Z−E[Z ](e−nx ) ≤ ℓ∗−1
F (x) + 2 ℓ∗−1

vn
(x). (a)

Consequently, for any x ≥ 0,

P(Z − E[Z ] > n(ℓ∗−1
F (x) + 2 ℓ∗−1

vn
(x))) ≤ e−nx . (b)

The inverse function of ℓ∗
vn

cannot be explicitly computed. For this reason we provide below
a tractable bound.

Corollary 3.2. Let ψ be the function defined by ψ(0) = 0 and for any positive x by

ψ(x) :=

√
2x + 4x/3

log(1 + x/3 +
√

2x)
− 1. (3.4)
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Then

ℓ∗−1
vn

(x) ≤ vnψ
( x
vn

)
for any x ≥ 0. (a)

Consequently, for any x ≥ 0,

P
(

Z − E[Z ] > n
(
ℓ∗−1

F (x) + 2 vnψ
( x
vn

)))
≤ e−nx . (b)

Remark 3.3. If the class F is a weak Glivenko–Cantelli class, that is sup f ∈F |Pn( f )| converges
to 0 in probability, then En decreases to 0 (see, for instance, Section 2.4 of van der Vaart and
Wellner [24]) and so vn also decreases to 0 (we recall that Ēn ≤ 1). Consequently, recalling that
ℓvn (t) = log(vnet

+ e−tvn ) − log(1 + vn), we assert by the variational formula (2.3) that

lim
n→∞

ℓ∗−1
vn

(x) = 0 for all x ≥ 0. (3.5)

Therefrom 2 ℓ∗−1
vn

(x) is just a correctional term. Moreover, note that ψ(x)/x tends to 0 as x tends
to infinity and thus,

lim
n→∞

vnψ
( x
vn

)
= 0 for all x ≥ 0. (3.6)

Hence, the bound given in Corollary 3.2 is still relevant in the large deviations bandwidth.
Consider now the classical bound ℓvn (t) ≤ vn t2/(2 − 2t/3) for any t ∈ [0, 3[, which follows

from the domination by a centered Poisson distribution. This leads to

ℓ∗−1
vn

(x) ≤

√
2vn x +

x
3
. (3.7)

Note that the right-hand side does not tend to 0 contrary to the other bounds which makes (3.7)
non efficient in the large deviations bandwidth.

Remark 3.4. Let us mention another possibly upper bound for ℓ∗−1
vn

which is more reader
friendly than Inequality (a) of Corollary 3.2 and still relevant in the large deviations bandwidth.
Lemma 2.26 of Bercu, Delyon and Rio [4] gives that ℓ∗

vn
(x) ≥ x2/ϕ(vn) where ϕ(v) =

(1 − v2)/|log(v)| for any v ∈]0, 1[ (recall that vn ≤ 1/4). Hence, this yields the upper bound

ℓ∗−1
vn

(x) ≤
√

xϕ(vn) for any x ≥ 0. (3.8)

Notice that
√

xϕ(vn) ≤ vnψ(x/vn) only for large values of x .

Remark 3.5 (On the large deviations on the left). Assume that F is a Glivenko–Cantelli class
and that the identically zero function belongs to F . Then E[Z ] is small with respect to n and
Z ≥ 0. Thus for any x > 0, P(Z − E[Z ] ≤ −nx) = 0 for n large enough.

Remark 3.6 (Explicit Bound for vn). In view of (3.3), since the function x ↦→ x(1 − x) is
increasing between 0 and 1/2, in order to provide a more explicit bound for vn , we only have to
provide a bound for Ēn (which is lower than 1 and tends to 0 as n tends to infinity). To this end,
we shall use the recent results of Baraud [1] who provides (see his Theorems 2.1 and 2.2) upper
bounds with explicit constants for the expectations of suprema of empirical processes, under the
hypothesis that F is a weak VC-major class.

Assume then that F is a weak VC-major class with dimension d . Let σ 2
:= sup f ∈F P( f 2)

denote the wimpy variance. Then Inequality (2.8) in [1] implies the following proposition (the
proof is postponed to Section 5).
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Proposition 3.7. Assume that n ≥ d. Then

Ēn ≤ 2
√

2 σ log(e/σ )n−1/2(√C1(d) +

√
C2(n, d)

)
+ 8 n−1(C1(d) + C2(n, d)

)
, (a)

where

C1(d) := log(2)
d∑

k=1

(1 + 1/k) and

C2(n, d) := (d/2) log
(n + 1/2

d + 1/2

)
log

(
4

e2

d2 (n + 1/2)(d + 1/2)
)
.

As n tends to infinity, the right-hand side of (a) admits the following behavior

2
√

2 σ log(e/σ )n−1/2 log(n) + 4 d n−1 log2(n). (b)

We end this section by giving a simple example where the function ℓF is explicit.

Example 3.8. Let S be a countable class of sets. Let ε1, . . . , εn be a sequence of independent
Rademacher random variables and independent of X1, . . . , Xn . Define

Z := sup
S∈S

n∑
k=1

εk1S(Xk). (3.9)

For any S ∈ S and any k = 1, . . . , n, we get by a straightforward calculation

ℓS(t) := logE[etεk1S (Xk )] = log(1 + P(S)(cosh(t) − 1)) for any t ≥ 0. (3.10)

Clearly the right-hand side is increasing with respect to P(S). Then

ℓS (t) := sup
S∈S

ℓS(t) = log(1 + p(cosh(t) − 1)) for any t ≥ 0, (3.11)

where p := sup{P(S) : S ∈ S }. By (2.3), ℓ∗−1
S is then given by the variational formula

ℓ∗−1
S (x) = inf

t>0

{
t−1(x + log(1 + p(cosh(t) − 1))

)}
for any x ≥ 0. (3.12)

We also refer the reader to Bennett [2], p. 532, for an explicit formula of ℓ∗

S .

4. About the rate function ℓ∗

F

4.1. Comments on large deviation principle

In this subsection we explain how the rate function ℓ∗

F arises in the large deviations theory
for suprema of bounded empirical processes.

Throughout this section, we assume that for all f ∈ F , 0 ≤ f ≤ 1. We denote by l∞(F )
the space of all bounded real functions on F equipped with the norm ∥F∥F := sup f ∈F |F( f )|,
making (l∞(F ), ∥.∥∞) a Banach space. For each finite measure ν on (X ,F) corresponds to an
element νF

∈ l∞(F ) defined by νF ( f ) := ν( f ) =
∫

f dν for any f ∈ F . With a slight abuse
of notation, we will keep the notation ν instead of νF . Wu [25] gives necessary and sufficient
conditions with respect to F which ensure that Pn satisfies the Large Deviation Principle (LDP
for short) in l∞(F ). We refer the reader to the paper of Wu for these conditions (for example,



A. Marchina / Stochastic Processes and their Applications 129 (2019) 3967–3980 3973

if F is a Donsker class then the required conditions are satisfied). The (good) rate function is
given by

hF (F) := inf{H (ν | P) : ν is a probability and ν = F on F }, (4.1)

where H (ν | P) is the relative entropy of ν with respect to P given, as soon as ν is absolutely
continuous with respect to P , by

H (ν, P) :=

∫
dν
d P

log
( dν

d P

)
d P. (4.2)

Therefrom, a direct application of the contraction principle (see, for instance, Theorem 4.2.1 in
Dembo and Zeitouni [9]) ensures that ∥Pn∥F satisfies the LDP with rate function given by

J (y) := inf{H (ν | P) : ν is a probability and ∥ν∥F = y} for any y ∈ [0, 1[. (4.3)

We prove the following lemma which gives a better understanding of the rate function J :

Lemma 4.1. J (y) = inf f ∈F ℓ∗

f (y), where ℓ f (t) := log P(et f ) for any t ≥ 0.

The important remark is that if we can invert the infimum and the supremum in inf f ∈F supt>0
{t y − ℓ f (y)}, we get that inf f ∈F ℓ∗

f (y) = ℓ∗

F (y). It seems not possible to invert the infimum
and the supremum in general. However, note that we always have the inequality inf f ∈F ℓ∗

f (y) ≥

ℓ∗

F (y). In the following proposition, we describe a particular case in which the inversion is valid,
which then simplifies the calculation of ℓ∗

F . Since it directly follows from a minimax theorem
(see, for instance, Corollary 3.3 in Sion [22]), we omit the proof.

Proposition 4.2. Let X be a random variable valued in (X ,F) with distribution P. Let F be a
countable class of measurable functions from X into [−1, 1] such that P( f ) = 0 for all f ∈ F .
Let Θ be a convex compact subset of a vector space. Let {µθ : θ ∈ Θ} be a family of probability
distribution on [−1, 1] such that, for any t ≥ 0, θ ↦→ ℓµθ (t) := log

∫
et zµθ (dz) is concave and

upper semi-continuous. We assume that for all f ∈ F , there exists θ ∈ Θ such that f (X ) has
the distribution µθ . Then,

ℓ∗

F (x) ≥ inf
θ∈Θ

ℓ∗

µθ
(x) for any x ≥ 0.

Example 4.3 (Set-indexed Empirical Processes). Let X be a random variable valued in (X ,F)
with distribution P and let S be a countable class of measurable sets of X . We consider the
class of functions F := {1S − P(S) : S ∈ S }. Define p := sup{P(S) : S ∈ S } and assume
that p < 1/2. For any θ ∈ [0, p], let us define the function ℓθ (t) := log(1 + θ (et

− 1)) − θ t for
any t ≥ 0. Then Proposition 4.2 yields

ℓ∗

F (x) ≥ inf
θ∈[0,p]

ℓ∗

θ (x) for any x ≥ 0. (4.4)

The computation of the right-hand side of (4.4) is performed by Rio (see p. 175 in [18]): for any
x ≤ 1 − 2p,

inf
θ∈[0,p]

ℓ∗

θ (x) = ℓ∗

p(x) = (p + x) log(1 + x/p) + (1 − p − x) log(1 − x/(1 − p)). (4.5)



3974 A. Marchina / Stochastic Processes and their Applications 129 (2019) 3967–3980

Furthermore, for any x ≥ 1 − 2p,

inf
θ∈[0,p]

ℓ∗

θ (x) ≥ℓ∗

p(1 − 2p) +

∫ x

1−2p
(ℓ∗

(1−y)/2)′(y)dy

=2(1 + x) log(1 + x) + 2(1 − x) log(1 − x)

− (1 + 2p) log(2p) − (3 − 2p) log(2 − 2p). (4.6)

Remark 4.4. Proceeding as in the proof of Theorem 4.2 in Rio [18], one can derive from
Theorem 6.3 in Bousquet [7] that, if p0 := p + En satisfies p0 < 1/2, then for any t > 0
such that p0 < (tet

− et
+ 1)(et

− 1)−2,

n−1 logE[exp(t(Z − E[Z ]))] ≤ log(1 + p0(et
− 1)) − tp0. (4.7)

Now (4.7) and the usual Cramér–Chernoff calculation, imply that P(Z − E[Z ] ≥ nx) ≤

exp(−nℓ∗
p0

(x)), for any x > 0 such that

x ≤ (x + p0)(1 − x − p0) log
( (1 − p0)

p0

(t + p0)
(1 − t − p0)

)
. (4.8)

Bousquet [7] tells without proof that (4.8) holds for any x ≤ (3/4)(1−2p0). If x = x0 := 1−2p0,
(4.8) is equivalent to

p0(1 − p0) ≥ (1 − 2p0)/2 log(1/p0 − 1),

which is wrong (see Hoeffding [10] p. 19). Recall now that Bousquet’s results are derived from
the entropy method introduced by Ledoux [13] on the context of concentration inequalities. It
appears here that this method does not provide the exact rate function for large values of x ,
including x = 1 − 2p0.

4.2. The case of nondecreasing 1-Lipschitz functions

Here we study the special case of F included in the set of nondecreasing 1-Lipschitz
functions. We can then bound above ℓ∗−1

F by a more tractable quantity.

Corollary 4.5. Let X be a random variable valued in (X ,F) with distribution P and X1, . . . , Xn

be n independent copies of X. Let F be a countable class of measurable functions from X into
[−1, 1], nondecreasing, 1-Lipschitz and such that P( f ) = 0 for all f ∈ F . Let Z be defined by
(1.1). Moreover, we assume that the distribution P satisfies that for any t ∈ R,

∫
et x P(dx) < ∞.

Then

ℓ∗−1
F (x) ≤ ℓ∗−1

X−E[X ](x) for any x ≥ 0. (a)

Consequently, for any x ≥ 0,

P
(
Z − E[Z ] > n(ℓ∗−1

X−E[X ](x) + 2 ℓ∗−1
vn

(x))
)

≤ e−nx . (b)

Example 4.6. Let P be the uniform distribution on [−1, 1]. Then, by (2.3), ℓ∗−1
X is given by the

following variational formula whose values in every point is computable:

ℓ∗−1
X (x) = inf

t>0

{1
t

(
x + log

( sinh(t)
t

))}
for any x ≥ 0. (4.9)
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Let us also provide a bound of ℓ∗−1
X which is relevant for large values of x . Since sinh(t) ≤ et/2

for any t > 0, one has

ℓ∗−1
X (x) ≤ 1 + inf

t>0

{1
t

(x − log(2t))
}

for any x ≥ 0. (4.10)

Then, for each x ≥ 0, the infimum in (4.10) is reached at tx := ex+1/2, which leads to

ℓ∗−1
X (x) ≤ 1 −

2
e

e−x for any x ≥ 0. (4.11)

Furthermore, one can prove that ℓ∗−1
X (x) is equivalent to 1 −

2
e e−x as x tends to infinity.

5. Proofs

5.1. Proofs of Section 3

Proof of Theorem 3.1. First, notice that (b) follows immediately from (a) by Proposition 2.4(i)
and (ii). Let us now prove (a). Our method is based on a martingale decomposition of Z which
we now recall. We suppose that F is a finite class of functions, that is F = { fi : i ∈ {1, . . . ,m}}.
The results in the countable case are derived from the finite case using the monotone convergence
theorem. Set F0 := {∅,Ω} and for all k = 1, . . . , n, Fk := σ (X1, . . . , Xk) and F k

n :=

σ (X1, . . . , Xk−1, Xk+1, . . . , Xn). Let Ek (respectively Ek
n) denote the conditional expectation

operator associated with Fk (resp. F k
n ). Set also

Zk := Ek[Z ], Z (k)
:= sup{n Pn( f ) − f (Xk) : f ∈ F }. (5.1)

The sequence (Zk) is an (Fk)-adapted martingale and

Z − E[Z ] =

n∑
k=1

∆k, where ∆k := Zk − Zk−1. (5.2)

Define now the random indices τ and τk , respectively Fn-measurable and F k
n -measurable, by

τ := inf{i ∈ {1, . . .,m} : n Pn( fi ) = Z}, (5.3)

τk := inf{i ∈ {1, . . .,m} : n Pn( fi ) − fi (Xk) = Z (k)
}. (5.4)

Notice first that

Z (k)
+ fτk (Xk) ≤ Z ≤ Z (k)

+ fτ (Xk).

From this, conditioning by Fk gives

Ek[ fτk (Xk)] ≤ Zk − Ek[Z (k)] ≤ Ek[ fτ (Xk)]. (5.5)

Set now ξk := Ek[ fτk (Xk)] and let εk ≥ rk ≥ 0 be random variables such that

ξk + rk = Zk − Ek[Z (k)] and ξk + εk = Ek[ fτ (Xk)].

Thus (5.5) becomes

ξk ≤ ξk + rk ≤ ξk + εk . (5.6)

Since τk is F k
n -measurable, we have by the centering assumption on the elements of F ,

Ek
n[ fτk (Xk)] = P( fτk ) = 0 a.s., (5.7)
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which ensures that Ek−1[ξk] = 0. Moreover, Ek[Z (k)] is Fk−1-measurable. Hence we get

∆k = Zk − Ek[Z (k)] − Ek−1[Zk − Ek[Z (k)]] = ξk + rk − Ek−1[rk],

which combined with (5.2) yield the decomposition of Z − E[Z ] in a sum of two martingales:

Z − E[Z ] = Ξn + Rn, (5.8)

where

Ξn :=

n∑
k=1

ξk and Rn :=

n∑
k=1

(rk − Ek−1[rk]). (5.9)

Now, we bound above separately the log-Laplace transforms of Ξn and Rn .

Lemma 5.1. We have

logE
[
exp

(
t Ξn

)]
≤ n ℓF (t) for any t ≥ 0.

Proof of Lemma 5.1. The F k
n -measurability of τk gives

Ek
n[exp(t fτk (Xk))] = P(et fτk ). (5.10)

This ensures, with an application of the conditional Jensen inequality, that

Ek−1[etξk ] = Ek−1Ek
n[etξk ] ≤ Ek−1[P(et fτk )] ≤ sup

f ∈F
P(et f ), (5.11)

almost surely. Then Lemma 5.1 follows by an immediate induction on n. □

Lemma 5.2. We have

logE
[
exp

(
t Rn

)]
≤ n ℓvn (2 t) for any t ≥ 0.

Proof of Lemma 5.2. Actually, the inequality follows by taking ϕ(x) = et x with t ≥ 0 in the
more general comparison inequality below:

Lemma 5.3. Let θ (n)
1 , . . . , θ (n)

n be a sequence of n independent copies of θ (n) with B0(−vn, 1)
distribution. Then, for any convex nondecreasing function ϕ from R into R, differentiable and
with convex derivative,

E[ϕ(Rn)] ≤ E
[
ϕ
(

2
n∑

k=1

θ
(n)
k

)]
.

Proof of Lemma 5.3. We start the proof by showing that

rk − Ek−1[rk] ≤ 2, and Var(rk | Fk−1) ≤ En−k+1(2 − En−k+1) a.s. (5.12)

The first inequality above is straightforward by (5.6) and the uniform boundedness condition on
F . Let us prove now the second inequality. We start by bounding above Var(rk | Fk−1) in terms
of Ek−1[rk]. Since 0 ≤ rk ≤ 2, Proposition 2.7, applied conditionally to Fk−1, yields

Var(rk | Fk−1) ≤ Ek−1[rk](2 − Ek−1[rk]) a.s. (5.13)

Next, we prove that Ek−1[rk] is bounded above by a deterministic constant.
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Lemma 5.4. We have 0 ≤ Ek−1[rk] ≤ En−k+1 ≤ 1 a.s.

Proof of Lemma 5.4. The proof is based on the following result on exchangeability of variables,
proved in Marchina [14]. Since it is the fundamental tool of the paper, we give again the proof
for sake of completeness.

Lemma 5.5. For any integer j ≥ k, Ek−1[ fτ (Xk)] = Ek−1[ fτ (X j )] a.s.

Proof of Lemma 5.5. By the definition of the random index τ , for every permutation on n
elements σ , τ (X1, . . . , Xn) = τ ◦ σ (X1, . . . , Xn) almost surely. Applying now this fact to
σ = (k j) (the transposition which exchanges k and j), it suffices to use Fubini’s theorem
(recalling that j ≥ k) to complete the proof. □

Then,

Ek−1[εk] = Ek−1[ fτ (Xk)]

= Ek−1[ fτ (Xk) + · · · + fτ (Xn)]/(n − k + 1)

≤ Ek−1 sup
f ∈F

{ f (Xk) + · · · + f (Xn)}/(n − k + 1) = En−k+1. (5.14)

Recalling that 0 ≤ rk ≤ εk , we get 0 ≤ Ek−1[rk] ≤ En−k+1. The bound En−k+1 ≤ 1 is
straightforward by the uniform boundedness condition on the elements of F , which ends the
proof of Lemma 5.4. □

Finally, (5.13) together with Lemma 5.4 and the fact that x ↦→ x(2 − x) is increasing between
0 and 1, imply

Var(rk | Fk−1) ≤ En−k+1(2 − En−k+1) a.s., (5.15)

Now, Proposition 2.8 yields that for any convex, nondecreasing function ϕ differentiable with
convex derivative,

E[ϕ(Rn)] ≤ E
[
ϕ
( n∑

k=1

ϑ
(n)
k

)]
, (5.16)

where ϑ (n)
1 , . . . , ϑ (n)

n is a sequence of i.i.d. random variables such that ϑ (n)
k has the distribution

B0(−ṽn, 2) with ṽn :=
∑n

k=1 Ek(2 − Ek). Moreover, since x ↦→ x(2 − x) is concave, ṽn ≤

Ēn(2 − Ēn). Finally Hoeffding’s convex comparison inequality (Proposition 2.7) yields that for
any convex, nondecreasing function ϕ differentiable with convex derivative,

E
[
ϕ
( n∑

k=1

ϑ
(n)
k

)]
≤ E

[
ϕ
(

2
n∑

k=1

θ
(n)
k

)]
, (5.17)

This inequality associated with (5.16) conclude the proof of Lemma 5.3. □

As mentioned at the beginning of the proof, this also concludes the proof of Lemma 5.2 by
taking ϕ(x) = et x with t ≥ 0. □

Let us now complete the proof of Theorem 3.1. From (2.3) and Lemmas 5.1–5.2 we derive
for any x ≥ 0,

ℓ∗−1
Ξn

(nx) ≤ n ℓ∗−1
F (x) and ℓ∗−1

Rn
(nx) ≤ 2n ℓ∗−1

vn
(x). (5.18)
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Furthermore, from Proposition 2.4(iii), (iv) and (5.8)

Q̃ Z−E[Z ](e−nx ) ≤ Q̃Ξn (e−nx ) + Q̃ Rn (e−nx )

≤ ℓ∗−1
Ξn

(nx) + ℓ∗−1
Rn

(nx). (5.19)

Finally, both (5.19) and (5.18) conclude the proof of Theorem 3.1(a). □

Proof of Corollary 3.2. Let Πn be a random variable with Poisson distribution with parameter
vn and let Π̃n := Πn −vn . A classical result gives ℓvn (t) ≤ ℓΠ̃n

(t) for any t ≥ 0 (see, for instance,
Theorem 2.9 of [6]). Therefore, for any x ≥ 0,

ℓ∗−1
vn

(x) ≤ ℓ∗−1
Π̃n

(x) = vn h−1( x
vn

)
, (5.20)

where h(u) := (1 + u) log(1 + u) − u for any u ≥ 0. Next, a Newton algorithm performed in
Del Moral and Rio (see Appendix A.6 in [8]) allows to derive the bound h−1(x) ≤ ψ(x), which
concludes the proof of Corollary 3.2. □

Proof of Proposition 3.7. Inequality (2.8) in Baraud [1] implies that for any k = 1, . . . , n,

Ek ≤ 2
√

2 σ log(e/σ )
√
Γ̃k(d) + 8 Γ̃k(d), (5.21)

where

Γ̃k(d) := k−1 log
(

2
d∧k∑
j=0

(
k
j

))
. (5.22)

We recall (see p. 1714 in [1]) that, for any d ≥ k, Γ̃k(d) = log(2)(k + 1)/k and for any d < k,

Γ̃k(d) ≤
d
k

log
(2e

d
k
)
. (5.23)

Moreover, observe that by the concavity of x ↦→
√

x , one has

1
n

n∑
k=1

√
Γ̃k(d) ≤

√1
n

n∑
k=1

Γ̃k(d). (5.24)

Then, since Ēn = n−1(E1 + · · · + En), the previous facts together with the sub-additivity of
x ↦→

√
x yield

Ēn ≤ 2
√

2 σ log(e/σ )n−1/2
(√

C1(d) +

( n∑
k=d+1

d
k

log
(2e

d
k
))1/2 )

+8 n−1
(

C1(d) +

n∑
k=d+1

d
k

log
(2e

d
k
))
. (5.25)

Observe now that the function h defined by h(x) := x−1 log((2e/d)x) is convex (at least) on
[d,+∞[. Thus for any integer k > d, h(k) ≤

∫ k+1/2
k−1/2 h(x)dx . Summing then this inequality from

d + 1 to n gives
n∑

k=d+1

h(k) ≤
1
2

log
(n + 1/2

d + 1/2

)
log

(4e2

d2 (n + 1/2)(d + 1/2)
)
. (5.26)

Finally injecting (5.26) in (5.25) concludes the proof. □
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5.2. Proofs of Section 4

Proof of Lemma 4.1. Throughout the proof, we use the notation I (y) = inf f ∈F ℓ∗

f (y).
(i) Proof of J (y) ≤ I (y).

Let y ∈ [0, 1] and let ε > 0. There exists a function f ∈ F such that ℓ∗

f (y) ≤ I (y) + ε. Now,
Cramér’s Theorem ensures that

lim
n→∞

n−1 logP(Pn( f ) ≥ y) = −ℓ∗

f (y). (5.27)

Since ∥Pn∥F satisfies the LDP with rate function J and since Pn( f ) ≤ ∥Pn∥F for all f ∈ F ,
we get

− J (y) ≥ lim sup
n→∞

n−1 logP(∥Pn∥F ≥ y)

≥ lim
n→∞

n−1 logP(Pn( f ) ≥ y) = −ℓ∗

f (y). (5.28)

Therefrom J (y) ≤ I (y) + ε. Since ε > 0 is arbitrary, we conclude the proof by letting ε tends
to 0.
(ii) Proof of J (y) ≥ I (y).

Since the infima may be written as the limit of a sequence of infima taken over finite
subsets, it is enough to prove the inequality for a finite class of functions F . Let y ∈ [0, 1]
and t > 0. Let ν be a probability measure absolutely continuous with respect to P such that
∥ν∥F = y. Let d := (dν/d P) be the Radon–Nikodym derivative of ν with respect to P and set
g f := t f − log P(et f ) for any f ∈ F . Young’s inequality (see, for instance, Equation (A.2) in
Rio [21]) implies that

tν( f ) − log P(et f ) =

∫
dg f d P ≤

∫
eg f d P +

∫
(d log d − d) d P. (5.29)

Since
∫

eg f d P = 1, (5.29) leads to

tν( f ) − log P(et f ) ≤ H (ν | P). (5.30)

In particular (5.30) is valid for the function f̃ ∈ F which satisfies y = ν( f̃ ) (recall that F is
finite) and for any t > 0. Then we have

ℓ∗

f̃
(y) ≤ H (ν | P), (5.31)

which implies I (y) ≤ J (y) and ends the proof. □

Proof of Corollary 4.5. Let X be a random variable with distribution P . Recalling that
P( f ) = 0 for any f ∈ F , Lemma 2 of Bobkov [5] states that for any convex function ϕ : R → R
and for any f ∈ F ,

E[ϕ( f (X ))] ≤ E[ϕ(X − E[X ])].

In particular with ϕ(x) = et x , t ≥ 0,

ℓF (t) = sup
f ∈F

ℓ f (t) ≤ logE[et(X−E[X ])] = ℓX−E[X ](t). (5.32)

Thus the variational formula (2.3) implies ℓ∗−1
F (x) ≤ ℓ∗−1

X−E[X ](x) for all x ≥ 0. An application of
Theorem 3.1 completes the proof. □
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