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We consider a financial market where the asset prices arc driven by a multidimensional Brownian motion 

process and a multidimensional point process of random jumps admitting stochastic intensity. Using 

the equivalent martingale measure approach, we construct hedging portfolios for European and American 

contingent claims. We also present a valuation equation that must be satisfied by any derivative security 

and can be solved numerically to obtain option prices. 
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1. Introduction 

In this paper, we consider a financial market in which securities are allowed to have 

discontinuous returns. There is one bond and m risky stocks being traded con- 

tinuously over a finite time horizon. The security prices are driven by a d-dimensional 

Brownian motion process and an (m - d)-dimensional point process. The Brownian 

motion represents the continuous flow of information into the market, while the 

point process represents sudden shocks. The point processes are quite general, 

non-Markovian but admit stochastic intensity. The jump sizes are allowed to be 

random. The stocks are assumed to pay out a stream of dividends as well. 

Using a boundedness condition on the risk-aversion premium for jumps, we 

identify an equivalent risk-neutral probability measure, under which the total return 

on investment in any stock is equal to the riskless return on the bond. This risk-neutral 

measure is then applied to the construction of hedging portfolios for European and 

American contingent claims. We use the generalized Ito formula and the martingale 

representation theorem (e.g., Protter, 1990), as well as concepts from optimal 

stopping theory. These hedging portfolios enable us to characterize the evolution 

of the price of a contingent claim over its lifetime. 
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Finally, we focus on derivative securities, i.e., contingent claims whose payoffs 

depend on the prices of the risky stocks. Here we derive a differential-difference 

equation that is satisfied by the fair price of any derivative security. This valuation 

equation can be solved numerically to price all sorts of options. Due to the presence 

of jump uncertainty, the equation is not entirely free of investor preferences. For a 

call option under deterministic coefficients, we obtain a closed-form solution similar 

to Merton’s 1976 result. 

The equivalent martingale measure approach adopted in this paper was motivated 

by the article of Karatzas (1989). First introduced by Harrison and Kreps (1979), 

it has been extensively used in the pricing of derivative securities in models without 

jumps. Cox and Ross (1975) and Merton (1976) were the first to introduce jump- 

diffusions as models of stock price behaviour. There is now a substantial amount 

of literature on the subject of option pricing in the presence of jumps (e.g., Jarrow 

and Rudd, 1983; Jones, 1984; Bates, 1988). Most of the work, however, has been 

focussed on Poisson processes. Pontier and Picque (1990) derive a valuation equation 

for European options in the presence of non-homogeneous Poisson jumps. Xue 

(1991) considers a model with jumps coming from a compensated Poisson process. 

Our model allows for jump processes that are considerably more general, requiring 

only the existence of a stochastic intensity. A related single-dimensional model was 

studied by Aase (1988). 

The paper is organized as follows. In Sections 1 and 2, we describe the financial 

market and the equivalent risk-neutral measure that can be constructed from security 

returns. Section 4 deals with the hedging and pricing of European contingent claims 

while Section 5 does the same for American contingent claims. Finally in Section 

6, we present the valuation equation for derivative securities and simplifications for 

special cases. 

2. The financial market 

Consider a financial market subject to both diffusive uncertainty as well as jump 

uncertainty. Uncertainty enters through the components of an @-valued Brownian 

motion W(t) = ( W,(t), . . . , W,( t))T, and the components of a (M - d)-dimensional 

multivariate jump process N(I) = (N, (I) ,. . . , N,,, -J I) )T, W(t) is defined on a probability 

space (R w, .F w, P”), and N(t) is defined on a probability space (ON, 3 N, pN). 

Let (a,$, P) be the product probability space, i.e., R = 0 w x f2 N, 9 = SW 0 .FN, 

and P = PwO PN. Together, there are M sources of uncertainty present. The time 

horizon is from 0 to time T. 

Each jump process is a point process {ti”; n 2 l}, where jkk’ is the time of the 

nth jump. We denote 

TV,(t) = sup{n: tLk’s t}. (2.1) 
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as the number of type k random jumps to the market by time t. Nk will represent 

both the kth point process, as well as the term in (2.1). The kth jump process is 

assumed to admit a (P, S,)-stochastic intensity A”“(t). Put simply, ACk’(t) is the rate 

of the jump process at time t. The process ACk’ is {%,)-predictable, positive and 

uniformly bounded over [0, T]. For further details on point processes, see Bremaud 

(1981). 

There are m + 1 securities being traded continuously. One of these is a risk-free 

asset, with price P”(t) given by 

dP,,(t) = fi,(t)r(t) dt, P,(O) = 1. (2.2) 

The other m securities are risky assets, called stocks, subject to the uncertainty in 

the market. The price of the ith stock Pi(t) is governed by a linear stochastic 

differential equation 

bi(t)dt+ $ ~!j(t)dW,(r)+m~dPik(t)d9k(t) 
> 

, (2.3) 
,=I k=l 

where 

J 
I 

Qk(c)=Nk(t)- hCk’(s)ds 
0 

(2.4) 

represents the contribution of the jumps to the security returns. r(t) is the instan- 

taneous rate of interest. b(t) = (b,(t), . . . , b,(t))’ is the vector of the instantaneous 

appreciation rates on the stocks. G(t) “[c(t), p(t)] is the m x m volatility matrix 

process. All these processes are assumed to be predictable with respect to {F,}, and 

are bounded uniformly in (t, w) E [0, T] x R. In addition, pik(t) > -1 for all i, k and 

TV [0, T], to ensure limited liability of the stock. Finally, the covuriunce matrix 

process u(t) 4 G( t)G’(t) is assumed to be strongly nondegenerate. 

Note that the sizes of the jumps in the security returns are random, with the 

randomness coming from the process p. However, the effect of a jump is predictable, 

given that p itself is predictable. This means that, at time t--, the effect of a possible 

jump at t is known. 

In addition, each stock pays out a continuous stream of dividends determined 

by a dividend rate process si (t), 0 6 t s T, i.e., the dividend paid out for each dollar 

invested in the stock. The 6 process is assumed to be predictable and bounded, like 

the b and r processes. 

From point process theory, the QL processes of (2.3) are actually P-martingales. 

Since W is a P-martingale too, the price process of stock i, P,, is a semimartingale 

with drift rate b;(t), while the instantaneous expected return from investment in 

stock i is b,(t)+&(t). 

Define the discount factor as 

PW^, (c) 
+=exp( - Jc: r(s) ds}. (2.5) 
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It represents the riskless appreciation rate in the market. The next section introduces 

a new risk-neutral measure on the sample space. Under this measure, the discounted 

value of investment in any stock is a martingale, i.e., the expected total instantaneous 

return on investment in stock i-including dividend return as well as price appreci- 

ation-is equal to the riskless interest rate r. 

3. Risk-neutral measure and admissible policies 

The R”-valued process of relative risk is defined as 

e(t)~:(~.(t))~‘[b(t)+6(t)-r(t)l= 
&v(t) 

[ I e (t) , 

Q 
(3.1) 

where O,(t) is an lRd-valued process and O,(t) is an R”‘-d-valued process. The 

process 0 is bounded, measurable and predictable w.r.t. {S,}, by the assumptions 

on h, 6, r and 6. It represents the relative risk-premium as implied by stock returns and 

stock volatilities. Define the following processes: 

i 

I 
G(t)& W(t)+ &w(s) ds, &t)&:(t)+ 

s 
’ tiQ(S)ds. (3.2) 

0 0 

Then (2.3) can be written as 

dP;(s)=P;(s)[r(s) ds_6i(s) ds+ i V,,(S) d6’;(s)+y<: P,~(s) dQk(s)]. 
j=l 

(3.3) 

We now introduce the boundedness condition on the relative-risk of the jumps. For 

the kth jump process, we require the following inequality: 

O:‘(t) <A’“‘(t), (3.4) 

where f3$’ is the kth element of 0,. The relative risk-premium process is bounded 

from above. This condition will be required to construct the risk-neutral measure. 

Intuitively speaking, the risk-neutral measure changes the drift in the stock prices 

to r- 6,. If the risk-premium is positive, then in a sense, the drift b, is greater than r- 6, 

and must be brought down by the new measure. In this case, if the risk-premium 

is higher than the rate at which jumps are contributing to the upward drift, we 

cannot get a measure to bring the stock price drift down to the level we want. 

Consider the processes 

P”)(s)~‘~)(s) ds ; (3.6) 
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where 

/_P’( t) h - e$‘( t)/P( t). (3.7) 

Note that p’k) is well defined since the denominator of (3.7) is bounded away from 

0. 

The next lemma describes the risk-neutral measure. The claims in the lemma have 

been proved in Section 4 of Bardhan and Chao (1991). 

Lemma 3.1. The process Z dejined by 

Z(t) L Zw(j)Z,(t), (3.8) 

is a P-martingale with E[Z( T)] = 1. Dejine an auxiliary probability measure on 

(0, TT) as 

&A) A E[Z( T)l,], A E ST. (3.9) 

Then @ and 0 are martingales under l? In particular, the jump process Nk admits 

(P, %,)-stochastic intensity i”“(t) = (~~“(f)+l)h(~)(t). 0 

We obtain the following explicit expression for the discounted stock prices: 

x exp (~,r(s) d l%‘(s) -f [(; Il~Arl12 ds), (3.10) 

where u, denotes the ith row of u. The expected appreciation rate is exactly r-6; 

for the ith stock. Thus, under F, the total expected return from investment in any 

stock is exactly equal to the interest rate r. 

Consider now a small investor, with initial capital x > 0, who uses his wealth for 

consumption and investment in the financial market. His investment policy is 

described by a portfolio process rr( t), 0 s t G T, an Rd-valued process that represents 

the dollar investment that the investor maintains in the d stocks. It is assumed to 

be $,-predictable and I,: (1 rr( t)ll’ dt < CO as. On the other hand, C(t), 0s t G T, is 

a non-negative consumption process, assumed to be non-decreasing and predictable 

w.r.t. {g,}. with C(0) = 0 and C(T) < co a.s. The investor’s wealth process X satisfies 

dX(r)=r(t)X(t) dt-dC(r)+7rT(f)[6(r)+S(r)-r(r)11 dt 

+nT(r)a(t) dW(t)+rT(f)p(r) dQ(r), 

=r(t)X(t)dt-dC(t)+rrT(t)a(t)d%‘(t)+7rT(f)~(r)d~(t). 

(3.11) 
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A solution to this differential equation that satisfies X(0) = x > 0 is 

P(t)X(r)=x- ‘P(s)dC(s)+ ‘p(s)~T(+(.s)dI+(s) 
I 0 I 0 

+ 
I 

’ LJ(s)~‘(s)ds) d&.4. 
0 

(3.12) 

so 

M(t) L P(t)X(t) + I ’ P(s) dC(s), (3.13) 
0 

is a local martingale under p, by Lemma 3.1. This is because j,’ 11 r(t) )I2 dt <co a.s., 

and the processes /? and 6 are bounded. For later use, define the process 

5(j) k:P(r)Z(r). (3.14) 

A portfolio and consumption processes pair (rr, C) is considered admissible for 

initial capital x ~0 if the associated wealth process X satisfies X(T) 3 0 and 

X(t) 2 -K VO G t 4 T a.s., for some non-negative and P-integrable random variable 

K = K(r, C). Denote the class of admissible pairs as a(x). 

For any (rr, C) E d(x), the local martingale M of (3.13) is bounded from below, 

and is hence a super-martingale. We then get the inequality 

i p(~)X(r)+ 
[ I 

‘P(s)dC(s) G-X, 1 (3.15) 
0 

for all {%,}-stopping times r which are less than T. Here, ,!? denotes expectation 

under the measure fi 

4. Valuation of European contingent claims 

In this section, the risk-neutral measure is used to value European contingent claims. 
A European contingent claim is a financial instrument that has a dividend payoff 

of v(t), t E [0, T], and a liquidation value of S. Here, v is non-negative bounded 

and progressively measurable w.r.t. {9,}, while S is a nonnegative srmeasurable 

random variable. In addition, v and S are assumed to satisfy 

&[p(T)S+jOT ] p(s)u(s) ds (~0. (4.1) 

We denote the arbitrage value or fair value of the claim as e(t). To determine the 

fair value of the claim, we will find a portfolio-consumption pair (n, C) such that the 

consumption process is equal a.s. to the dividend of the claim, and the terminal wealth of 

the pair is equal a.s. to the liquidation value of the claim. This pair can then be used to hedge 

the claim’s payoff. The claim must be valued at the minimum initial capital required to 

finance such a hedging portfolio-consumption strategy. 
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To this end, let H,(x) denote the class of (r, C) E M’(X) such that C(t) > I:, V(S) ds as. 

andX( T) =S a.s. Clearly, e(0) =inf{x: 3( 7~, C) ~kf,(x)}. 

Theorem 4.1. The fair price of the European contingent claim is given by 

e(o)=i.[P(T)S+ J,j’P(~~~~~~d~]. (4.2) 

There exists a unique (up to equivalence) portfolio-consumption pair (7r, C) E H,( e(0)) 

that hedges the claim’s pay& The evolution of the claim’s price process is given by 

e(r) = P(r) +(r-,S+ j)(s)u(s) ds,./,], (4.3) 

Proof. Let 2 = I?[p( T)S+j: Pi ds] and C(t) =I,: Y(S) ds. First, we show that 

there exists a unique (up to equivalence) portfolio process rr such that (rr, C) E d(P) 

and the corresponding wealth process satisfies X(T) = S a.s. Since by (3.15) any 

other hedging portfolio is bound to cost at least as much as i, we have e(0) = 2. 

The associated wealth process provides the evolution of the claim’s arbitrage value. 

To this end, consider the grmeasurable r.v. D~~(T)S+~~p(s)~(s)ds, and 

the (P, %,)-martingale 

u(f) %@(Ol.~J -ED, O,<r<T. (4.4) 

u can be represented as a stochastic integral w.r.t. (IV, Q) because the family of 

martingales { W, ; 1 sj < d} and { Qk ; 1 G k G m - d} has the predictable representa- 

tion property on the product space (e.g. Protter, 1990; and Bremaud, 1981). We can 

then write u as a stochastic integral w.r.t. (I@, Q) (Bardhan and Chao, 1991). Thus 

u(t) = 
I 

’ q,,(s) d@(s) + 
0 1 

,; no(s) d&s), (4.5) 

for some {g,}-predictable lRd-valued process nw and some {s,}-predictable R”l--d- 

valued process no, with jt ((1 r]w( s) (1’ + 11 no(s) (( ‘) ds < co as. Define the portfolio 

process to be 

%-(t) = P()( t)(Z( t))-’ 
WV(t) 

[ 1 v?(t) . 
(4.6) 

This process is {%,}-predictable, and satisfies 1: 11 rr( t)ll* dt <co a.s. The correspond- 

ing wealth process X is 

P(t)x(t) PP- 
I 

,; /3(s) dC(s) +u(t) =+(T)S+ rp(s) dC(s) ,.>F,] 

(4.7) 

So X(t) >O, Vt E [0, T] and X(T) = S a.s. Thus (v, C) is an admissible pair, and 

is the desired hedging strategy, proving (4.2) and (4.3). 
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As for uniqueness, let n-, , rz be two portfolios such that (n-, , C) and ( rr2, C) are 

both in d(2), let X,, X2 be the corresponding wealth processes and M,, M2 the 

corresponding martingales from (3.13). Then 

(Ml-Mz)(t)=p(t)(X,(t)-XX,(~)) = 
I 

‘P(S)(n,(s)-rJ#&)dCt(S) 
0 

+ ’ P(s)(n,(s) - rds))Tds) d&s), (4.8) 

is a martingale also. Moreover, since M,(T) = M2( T) = D, this martingale must be 

identically zero, whereby its predictable quadratic variations process must be zero. 

Using Protter (1990, p. 64), 

(M, -M2)(t) = 

+ I (: ~‘(s)(~,(s)-~J~~(.~))‘P(s) diag(h(s))p’r(s)(~,(s)-~~(s)) d.r=O, 

O<t<T, (4.9) 

where diag(h”( s) ) is an (m - d)-dimensional diagonal matrix with i’“‘(s) as the diagonal 

elements. Thus 7r,, rz are equivalent. 0 

5. Valuation of American contingent claims 

This section discusses American contingent claims. An American contingent claim 

is a financial instrument that allows the holder the choice of an exercise time r E .Y0,7, 

where T is the expiration date of the claim and Yu,, is the set of {S,}-stopping 

times that take values in the interval [u, v]. The claim guarantees the investor a 

dividend of v(t), t E [0, T] and a payment off(r) upon exercise. Here, v is a dividend 

process as in the last section, and {f(t); t E [0, T]} is a right-continuous, non-negative 

{ S,}-adapted process satisfying 

E(,s;pr,(flf)+l(: V()ds))“<m for some a>l. (5.1) 

As in the previous section, we wish to compute a(O), the price of such a claim at 

time 0, and also a(t), the evolution of this price over the life of the claim. Once 

again, this is achieved by finding a portfolio-consumption pair (rr, C) that hedges 

the claim’s payoff. 

The hedging strategy (rr, C) should satisfy 

(i) C(t)zJi v(s) ds, 

(ii) X(t)af(t), tE [O, Tl; X(T) =fUL 
almost surely, where X is the wealth process associated with (7~, C). 

Let H,(x) be the class of hedging strategies that are financible with initial capital 

x. Then the fair price (current price) of the claim is given by 

a(0) = inf{x: 3(~, C) E H,(x)}. (5.2) 



I. Bardhan, X. Chao / Pricing options 

Theorem 5.1. The fair price of the American contingent claim is given by 

u(O)=~9~p~i[ii(r)f(7)+1:i0(r)u(r)ds]. 

13 

(5.3 ) 

There exists u hedging sfrntegy ( 7~, C) E H,,( a(0) ), und the eLwlution of the claim’s price 

at any time is 

a(t) = -!-esssupE Pi’+ 
P(r) TE /,T L I 

,‘/3(s)~(s)dsI.:~, 
I 

U.S. vr E [ 0, T] 

(5.4) 

The optimal time to exercise the claim is given by 

T*=inf{tE[O, T]: a(t)=,f(t)}. (5.5) 

Proof. Define 

Q(t)AP(t)f(t)+ ‘H+(s) ds, 
I 0 

(5.6) 

and 

(5.7) 

From the definition of hedging strategies and (3.15), any hedging strategy has to 

start out with a level of initial capital that is at least as great as 2. We show that it 

is possible to hedge using initial capital of 1, thereby implying that the fair value 

of the claim is indeed i. 

From the theory of optimal stopping (for references, see Karatzas, 1989), there 

exists a nonnegative, right-continuous with left-hand limits, ksupermartingale Y 

which satisfies 

s 
,;/~(,,v(s) dsl.7, 

1 
a.s. (5.8) 

The process Y admits the unique Doob-Meyer decomposition 

Y(t)= Y(O)+M(t)-A(t), 0s ts T, (5.9) 

where {M(t), S,} is a p-martingale and A is a non-decreasing process of finite 

variation, with M(0) = A(0) = 0. Of course, from (5.6), 

Y(O)=~~~~~i[P(?)~(T)+~~:Pir)v(r)dn]=i. (5.10) 

As in Theorem 4.1, M can be represented as 

M(r)= 
I 

‘~(s)~‘(s)~(s)d~(r)+ ‘p(s)7r’(s)p!s)dCj(s), OsrsT, 
0 

(5.11) 
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where rr is an {9,}-predictable process with j,’ ]I rr( t) ]I2 dt < 03 as. Now defining 

C(r) k 

(5.12) 

(5.13) 

it is possible to verify that X is the wealth process associated with (7~, C). Also, 

C(r) 3s: v(s) ds and X(t) if for all t E [0, T], with X(T) =f( T), all of these 

almost surely. Thus (7~, C) is a hedging strategy financible with 2, which proves the 

claim. Since (v, C) provides the minimum cost hedging strategy for the American 

contingent claim, the wealth process X gives the arbitrage value a(t) of the claim 

at any time t before it is exercised. That the optimal exercise time is given by (SS), 

is a simple consequence of the theory of optimal stopping. 0 

Clearly, if the process Q is a p-submartingale, the claim will not be exercised 

before expiration. Assume that a specific stock i does not pay any dividends. An 

American stock option written on this stock has the payoff 

f(f)=(S(t)-K)+, (5.14) 

where K is the exercise price. Since the stock pays no dividend, (3.10) says that 

the discounted stock price process BP, is a martingale. By Jensen’s inequality for 

convex functions, the process p ( t)f( t) . IS a submartingale. Since the dividend stream 

is non-negative, the process Q of (5.6) is a submartingale, too. This is Met-ton’s 

result that an American option on a stock without dividends should not be exercised 

before maturity. This result holds true even though the other stocks do pay dividends. 

Sometimes the American feature of the claim is restricted to a set of stopping 

times 9:; = .YO,r. For example, a deferred American option does not allow the 

bearer to exercise the option before a stipulated date. Many warrants and convertible 

bonds issued by companies have this feature as well. As long as -I/‘:,::. is stable under the 

supremum operator, the results of this section are still valid with the only change of replacing 

c/‘il,,, by S:,:: everywhere. 

6. The valuation equation for derivative securities 

In this section, we use hedging arguments to derive a valuation equation that must 

be satisfied by option prices, and indicate how this equation can be used numerically 

to solve for option prices in the presence of jump uncertainty. We consider derivative 

securities, viz., contingent claims whose payo$s depend on the prices of the securities 

(P, , . . . , I’,,,). In these cases, the price of the claim can be expressed as a function 

of time f and the vector of security prices P = (P, , . . . , Pm). 

Consider an European option which offers a dividend v and a terminal payoff 

G. The dividend stream and the terminal payoff both depend on the values of the 

securities being traded, i.e., v is a measurable function [0, T] x Rd + R, and G is a 
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measurable function Rd +R. Note that v and G depend only on the current prices 

on the stock and not the path of the price process (e.g., look-back options). 

The results of Section 4 indicate that there exists a replicating portfolio for the 

derivative security. We would like to relate the price of the derivative and the 

composition of replicating portfolio to the price of the underlying securities. 

Assume that all market coefficients are deterministic. Then the price of the derivative 

security is a function of time and the security prices. i.e., there exists a function V:[ 0. 

T] x KY+ R, C ‘Z on [O. 77, such that 

X(f)= V(t, f(t)), fE[O, T]. (6.1) 

Theorem 6.1. The price of any derivative security must satisfy the following diflerential- 

diflerence equation : 

[ 
g (r, of))+ ,$, 5 (f, f(t))P,(t)l~(~)--,(f)l 

I 

+; -f i)‘v (t, P(T))P,(r)P,(t)aT(t)a,(t)-_(f)V(f, P(t)) 
,,, = , a, @I 1 

,,1 ,,,-d i,v 

- ,F, kF, F ct. P(f) )W)Wd 

II, <, 

+ c h’“‘(t)[(V(r,P(t)(l+p’~‘(~)))-V(t,P(t)))l 
i:=I 

= - v(t, P(t)), tE [O. T), (6.2) 

subject to the boundary condition V( T, P(T)) = G( P( T)). The replicating portfolio is 

given by 

~,4(t,p)~:(V(t,P(l+p’~‘(t)))-V(t,P)), I<k<m-d. 

Proof. The wealth process of the hedging strategy is given as 

X(t)-X(O)= J 
, 

r(s)X(s) ds+ 
0 J 

I 
TACT d+(s) 

0 

J’ ITS d&d 0 

(6.3) 

- I’ v(s, f(s)) ds. 
0 

(6.4) 
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On the other hand, applying ItG’s lemma to the function V( t, P(t)) gives us 

V(t, p(t)) - V(f), P(O)) 

(s, P(s))P,(s)r(s) ds -6,(s) ds 

+cr:(s) d!&‘(s) 

m-d ’ 

+C I (V(s-, P(s-)(I +p’“‘(s))) - V(s-, P(s-))) dN,(s). (6.5) 
A=1 0 

Rewrite the last term on the right in terms of integrals of 0 and x and compare the 

coefficients of (6.4) and (6.5) to get 

m-d 

+ c (V(s, P(s)(l+p’ys)))- V(s, P(s)))i’“‘(s) 
k=l 

=r(s)V(s,P(s))-v(s, P(s)). (6.6) 

Rearranging terms gives (6.2). The boundary condition is merely a restatement of 

the liquidation value of the derivative security. Comparing coefficients also gives 

us the form of the replicating portfolio n in (6.3). 0 

The coefficients r, 6 and x’“’ can actually be arbitrary functions of the current 

stock prices. This equation is not free of investor preferences because evaluating 1 

involves the parameter p, which is derived from the relative risk premium 0. 

Define the total jump intensity as 

m--d 
X(t)& 1 X’“‘(t), (6.7) 

h=I 

and the probability mass distribution &( t, z) A P{AP( t)/P(t-) = zlAP( t) > 0} as 

&r, p$)%“‘(t)/&t), 1 <k<m-d. (6.8) 
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This defines a marked point process with total stochastic intensity i. The size of a 

jump at time t can take on any one of (m - d) values with the probability distribution 

$(t, . ). In terms of these parameters, (6.2) becomes 

F 5 (L P(t)) + ,g, 2 (6 P(j) )P,(j) [f-(j) -6(j) 1 
I 

+; c d'V 
~ (t, P(t))P;(t)Pj(t)~f(r)a,(r)-r(r)v(t, ‘(j)) ,., = , (Q-J, al?, 1 

+~(t)E~(,,[(V(~,~(t)(l+z))-V(t,~(r)))l=-~(t,~(t)). (6.9) 

This valuation equation is the jump-diffusion analogue of the PDE derived by 

Black-Scholes (1971) and by Merton (1973) for the pure diffusion case. This equation 

has been derived by Pontier and Picque (1990) for non-homogeneous Poisson jumps. A 

similar equation has been obtained by Aase (1988) for the one-dimensional case. 

Bates (1988) has derived a similar PDE using general equilibrium arguments. He 

restricts his attention to the case of Poisson jumps, but does not require the 

boundedness of the jump sizes. Note that it is the risk-neutral stochastic intensity 

that enters the equation, not the original one. 

A crucial fact is that under the assumption of jump-diffusion, a complete system, 

i.e., as set of spanning securities, cannot be provided by only one stock and one 

bond. Yet, for derivative securities that depend only on one stock, say the 1st stock, 

some simplifications can be made. Consider the situation when there is only one 

Brownian motion and m - 1 jump sources. Furthermore, let the final payoff function depend 

only on P,(r), e.g., a call option on stock I. Since neither the payoff function x nor the 

dividends I, depend on the prices of the other m - I stocks, the valuation equation reduces 

t0 

[ 
+,im+ ~(f,P,(f))P,(r)lr(f)-6,(1)1 

I 

+ ;$o, P,(j))(P,(t)a,,(t))7-r(t)v(tr p,(t)) 
I 1 

- ~(I,P,(t))P,(l)h(f)+Ilr)E,,,,,,I(C’(r,111o(I+;))-1.(1.I)l(~))il 
I 

zz- et, p,(t) 1, (6.10) 

subject to the final condition that V( T, P,) = g( P,). Though the valuation equation 

seems to be independent of the other stocks, we must remember that 1 and 6 both 

depend on p, which is computed from the actual returns on both the stocks. Thus cotnpllting 

the coefficients of the jump terms accounts for the presence of another stock. 
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For deterministic r, CT, ii and 4, the jumps processes are non-homogeneous 

compound Poisson processes under the new measure. One can then obtain explicit 

results in some cases. For example, if the distribution of jumps sizes is time-invariant, 

in terms of the risk-neutral coefficients, we get the following expression for the value 

of a European call option on stock 1, with exercise price K and maturity 7: 

where X, is a random variable having the distribution of the product of n i.i.d. 

random variables, each of which is 1 + z and z is distributed according to 6. E, is 

expectation under the distribution of X,. BS( . ) is a generalized version of the 

celebrated Black-Scholes call option formula: 

BS(t,xK,r,r,d)=Xexp[ -{,I’d(s)ds]O(n,) 

-Kexp[ -{o’r(s)ds]@(n,), 

with 

n,= 

ln(X/K)+jb(r(s)--d(S)+$o’(.s)) ds 

(j; (T*(S) ds)“* ’ 

n,=,,-(6~*(~)d~)“*, 

(6.12) 

(6.13) 

and @( . ) is the standard normal distribution function. Simple substitution deter- 

mines that (6.11) is indeed a solution to (6.10) with deterministic coefficients (along 

the lines of Merton, 1976). Using the risk-neutral parameters i and 6, we can apply 

Merton’s analysis, which assumes that investors are risk-neutral to jump risk. 

In (6.11), the term p is the only quantity that depends on investor preferences, 

entering through i and 4. One can find implied values of p from the price of one 

option and use it to price another option on the same stock. For Poisson jumps, /.L 

is a constant and it is relatively simple to find its implied value. 

One can similarly price a European put option, using (6.11) and the put-call parity 

relationship (e.g., Merton, 1973). For a derivative security with any arbitrary payoff 

G(P), (6.11) still holds with BS replaced with the appropriate integral of G under 

a normal distribution with mean ji r(s) ds and variance 5,’ (T’(S) ds. If the derivative 

security pays out an absolute dividend v(t), then one would add the term 

5; exp(-Jh r(u) du)u(s) ds to the term in (6.11). On the other hand, if the security 

gives out a dividend yield I/I(~) then one should multiply the term in (6.11) by 

exp(j,S $(s) ds. If r, u or I/ are functions of P as well, then explicit calculations are 

not possible. 
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The valuation equation (6.2) is satisfied by all derivative securities, European as 

well as American. This integro-differential equation can be solved numerically using 

trapezoidal methods to value prices of simple European options (e.g., Bates, 1988). 

For more exotic options such as capped options or knockout options, one merely 

has to include appropriate boundary conditions during the numerical procedure (e.g., 

Bardhan, 199 1). In pricing American options, one has to check for boundary conditions of 

optimal exercise. This is a free-boundary problem, with the free-boundary being the bound- 

ary of optimal exercise. By recursively solving backwards, and comparing the holding value 

of the option against the payoff value-u(t) =f( t) condition from the last section-one 

can compute not only the current price of the option but also the optimal exercise boundary. 
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