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Abstract

We construct a two-dimensional diffusion process with rank-dependent local drift and dispersion
coëfficients, and with a full range of patterns of behavior upon collision that range from totally friction-
less interaction, to elastic collision, to perfect reflection of one particle on the other. These interactions
are governed by the left- and right-local times at the origin for the distance between the two particles. We
realize this diffusion in terms of appropriate, apparently novel systems of stochastic differential equations
involving local times, which we show are well posed. Questions of pathwise uniqueness and strength are
also discussed for these systems.

The analysis depends crucially on properties of a skew Brownian motion with two-valued drift of the
bang–bang type, which we also discuss in some detail. These properties allow us to compute the transition
probabilities of the original planar diffusion, and to study its behavior under time reversal.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

We construct a planar diffusion (X1(·), X2(·)) according to the following recipe: each of its
component particles X1(·) and X2(·) behaves locally like Brownian motion. The characteristics
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of these random motions are assigned not by name, but by rank: the leader is assigned drift
−h ≤ 0 and dispersion ρ ≥ 0, whereas the laggard is assigned drift g ≥ 0 and dispersion σ ≥ 0.
One of the dispersions is allowed to vanish, but not both; similarly for the drifts. In the interest
of concreteness and simplicity, we shall set

λ := g + h > 0, ρ2
+ σ 2

= 1. (1.1)

A bit more precisely, we shall construct a complete probability space (Ω , F, P) endowed with a
filtration F = {F(t)}0≤t<∞ that satisfies the “usual conditions” of right continuity and of augmen-
tation by P-negligible sets, and on it two pairs (B1(·), B2(·)) and (X1(·), X2(·)) of continuous,
F-adapted processes, such that (B1(·), B2(·)) is planar Brownian motion and (X1(·), X2(·)) a
continuous planar semimartingale that starts at some given site (X1(0), X2(0)) = (x1, x2) ∈ R2

on the plane and satisfies the dynamics

dX1(t) =


g 1{X1(t)≤X2(t)} − h 1{X1(t)>X2(t)}


dt

+


ρ 1{X1(t)>X2(t)} + σ 1{X1(t)≤X2(t)}


dB1(t)

+
1 − ζ1

2
dL X1−X2(t) +

1 − η1

2
dL X2−X1(t), (1.2)

dX2(t) =


g 1{X1(t)>X2(t)} − h 1{X1(t)≤X2(t)}


dt

+


ρ 1{X1(t)≤X2(t)} + σ 1{X1(t)>X2(t)}


dB2(t)

+
1 − ζ2

2
dL X1−X2(t) +

1 − η2

2
dL X2−X1(t). (1.3)

Here and in the sequel we denote by L X (·) ≡ L X (· ; 0) the right-continuous local time accumu-
lated at the origin by a generic continuous semimartingale X (·), and by

L X
−(·) := L−X (· ; 0), L X (·) :=

L X (·) + L X
−(·)

2

its left-continuous and symmetric versions, respectively; we collect in Section 2 the necessary
reminders from the theory of semimartingale local time.

Each time the particles collide, their trajectories are “dragged” by amounts proportional to the
right local times, L X1−X2(t) and L X2−X1(t), respectively, that have been accumulated up to that
instant t at the origin by the differences X1(·) − X2(·) and X2(·) − X1(·); this is the significance
of the last two terms in each of (1.2), (1.3). With the notation

ζ := 1 +
ζ1 − ζ2

2
, η := 1 −

η1 − η2

2
, (1.4)

the proportionality constants of these interactions, ζi and ηi for X i (·) (i = 1, 2), will be assumed
to satisfy the conditions

ζ + η ≠ 0, 0 ≤ α :=
η

η + ζ
≤ 1. (1.5)

We shall discuss in detail the significance of these conditions for the system of equations
(1.2), (1.3); in particular, the fact that they are not only sufficient but also necessary for the well-
posedness of the above system of stochastic equations. For the time being, let us note that in the
special case ζ1 = η1 = 1, the trajectory X1(·) of the first particle crosses the trajectory X2(·) of
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the second particle without “feeling” it, that is, without being subjected to any local time drag;
as we shall see in Section 5.2, we obtain this same effect under the more general condition (5.5).
Likewise, the second particle does not “feel” the first, when ζ2 = η2 = 1 or, more generally,
under the condition (5.6). When ζi = ηi = 1 (i = 1, 2), the local times vanish completely from
(1.2), (1.3) and we are in the situation studied in detail by FERNHOLZ ET AL. [10]. In this case,
the collisions of the particles are totally frictionless.

At the other extreme ζ = 0 ≠ η (respectively, η = 0 ≠ ζ ) the trajectory X1(·) of the first
particle bounces off the trajectory X2(·) of the second particle (resp., the other way round), as
if the latter trajectory were a perfectly reflecting boundary; cf. Section 5.1. Think of the second
(resp., the first) particle as being “heavy”, so that in collisions with the “light” first (resp., second)
particle its motion is unaffected, while the light particle undergoes perfect reflection.

For other values of the parameters, we have collisions that are neither totally frictionless
(without local time drag), nor perfectly reflecting, but “elastic”: the particles are subjected in
general to local time drag, and this kind of friction manifests itself in an asymmetric fashion—
due to the presence of both right- and left-local times at the origin LY (·) ≡ LY (· ; 0+) and
LY

−(·) ≡ LY (· ; 0−) in (1.2), (1.3) for the difference Y (·) = X1(·)−X2(·). We call such collisions
“skew-elastic”.

1.1. Preview

Under the conditions of (1.5), the system of equations (1.2), (1.3) will be shown in Section 4
to admit a weak solution, which is unique in the sense of the probability distribution; cf.
Theorem 4.1. Using a common terminology: under the conditions of (1.5), the system of
equations (1.2), (1.3) is well posed.

A crucial rôle in establishing this result will be played by the properties of the difference
Y (·) = X1(·) − X2(·), for which we show that

W (t) := Y (t) − (x1 − x2) + λ

 t

0
sgn


Y (s)


ds − 2


2 α − 1

LY (t), 0 ≤ t < ∞

is standard Brownian motion W (·) in the notation of (1.1), (1.5). To put a little differently:
we identify this difference Y (·) = X1(·) − X2(·) as a so-called skew Brownian motion with
bang–bang drift, a process studied in Section 6.

Similarly, recalling the notation of (1.4) and setting

β :=
η (ζ1 + ζ2) + ζ(η1 + η2)

2 (η + ζ )
,

we identify the process

V (t) := X1(t) + X2(t) − (x1 + x2) − (g − h) t − 2 (1 − β)LY (t), 0 ≤ t < ∞

as another standard Brownian motion, whose cross-variation with the Brownian motion W (·) is

⟨V, W ⟩(·) = ⟨V, Y ⟩(·) = γ


·

0
sgn


Y (t)


dt, γ := ρ2

− σ 2.

These identifications allow us then to represent the motions X1(·), X2(·) of the individual
particles in the form

X1(t) = x1 + µ t + ρ2Y +(t) − y+

− σ 2Y −(t) − y−


+

1 − β − γ

LY (t) + ρ σ Q(t),
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X2(t) = x2 + µ t − σ 2 Y +(t) − y+

+ ρ2Y −(t) − y−


+

1 − β − γ

LY (t) + ρ σ Q(t);

here Q(·) is yet another standard Brownian motion, independent of the difference Y (·) =

X1(·) − X2(·), and

µ = g ρ2
− h σ 2.

This way we construct a weak solution to the system of equations (1.2), (1.3), and also show that
uniqueness in distribution holds for it.

Always under the conditions of (1.5), the system of equations (1.2), (1.3) is shown in Section 4
actually to admit a pathwise unique, strong solution; cf. Theorem 4.2. Here we refine the LE

GALL [21,22] methodology, that we used in the recent work FERNHOLZ ET AL. [10] to establish
pathwise uniqueness for a generalization of the perturbed TANAKA equation of PROKAJ [33].

In fact, the conditions in (1.5) turn out to be not just sufficient but also necessary for the
well-posedness of the system (1.2), (1.3); cf. Proposition 6.1. As we shall see in Remarks 3.1 and
3.2, this system admits no solution in the case η = −ζ ≠ 0; whereas it has lots of solutions,
i.e., uniqueness in distribution fails for the system of equations (1.2) and (1.3), when η = ζ = 0.
Finally, if we do have η + ζ ≠ 0 yet (1.5) fails because α ∉ [0, 1], it is seen in Remark 6.1 that
the system (1.2), (1.3) once again fails to admit a solution.

Section 5 discusses some special configurations of the parameters ηi , ζi (i = 1, 2) in (1.2),
(1.3) that give rise to some rather interesting structure. We see, in particular in the non-degenerate
case ρ σ > 0, that when β = 0 (respectively, β = 2), the trajectory X1(·) ∨ X2(·) of the
“leader” (respectively, X1(·)∧X2(·) of the “laggard”) is Brownian motion with drift, with perfect
reflection on the trajectory X1(·) ∧ X2(·) of the “laggard” (respectively, X1(·) ∨ X2(·) of the
“leader”), which is then another, independent Brownian motion with drift.

Section 6 develops the theory and properties of the skew Brownian motion with bang–bang
drift. Finally, Section 7 uses these properties to compute the transition probabilities and the time-
reversal of the planar diffusion (X1(·), X2(·)).

1.2. Extant work and open questions

The study of multidimensional stochastic differential equations that involve a local time
supported on a smooth hypersurface starts with the work of ANULOVA [1], PORTENKO [29–
32], and TOMISAKI [38], followed by OSHIMA [25], TAKANOBU [37] and others. The work
is related to the study of semimartingale reflected Brownian motions in orthants, wedges or
polyhedra carried out by HARRISON AND REIMAN [13], VARADHAN AND WILLIAMS [39],
WILLIAMS [41] and others. To the best of our knowledge, systems of stochastic equations of the
type

X i (·) = xi + Bi (·) +


j≠i

qi j L X i −X j (·), i = 1, . . . , n (1.6)

for a suitable array of real constants (qi j )1≤i, j≤n , with B1(·), . . . , Bn(·) independent standard
Brownian motions, were studied first by SZNITMAN AND VARADHAN [36]. In fact, these authors
consider the more general model

X(t) = x + B(t) +

N
k=1

qk Lnk ·X(t), 0 ≤ t < ∞, (1.7)
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where X(·) := (X1(·), . . . , Xn(·))′, B(·) := (B1(·), . . . , Bn(·))′ is Brownian motion in Rn ,
x ∈ Rn , the unit column vectors nk generate pairwise distinct hyperplanes, and the column
vectors qk satisfy the orthogonality conditions qk · nk = 0 for k = 1, . . . , N . When g = h = 0
and σ = ρ, it can be verified – using the relationships (3.16) between the symmetric local time
and the right local time in our context – that the system (1.2)–(1.3) is equivalent to (1.7) with
parameters n = 2, N = 1 and

n1 := (1, −1)′/
√

2,

q1 :=

α(1 − ζ1) + (1 − η1)(1 − α), α(1 − ζ2) + (1 − η2)(1 − α)

′
.

The orthogonality conditions amount then to η = ζ . Thus, we can apply the results of SZNITMAN

AND VARADHAN [36], if g = h = 0, σ = ρ, η = ζ in our system (1.2)–(1.3).
There are rather obvious similarities, as well as differences, between the system (1.6) and that

of (1.2), (1.3). In particular, it would be very interesting to extend the results of this paper to the
system of stochastic differential equations of the type

X i (·) = xi +

n
k=1


·

0
δk 1{X i (t)=X(k)(t)} dt +

n
k=1


·

0
σk 1{X i (t)=X(k)(t)} dBi (t)

+


j≠i


q+

i j L X i −X j (·) + q−

i j L X j −X i (·)

, i = 1, . . . , n (1.8)

for an arbitrary number n ∈ N of particles, with x1, . . . , xn and δ1, . . . , δn given real constants,
with σ1, . . . , σn given positive constants, with suitable arrays (q±

i j )1≤i, j≤n of real constants, the
“descending order statistics” notation

max
1≤ j≤n

X j (t) =: X(1)(t) ≥ X(2)(t) ≥ · · · ≥ X(n−1)(t) ≥ X(n)(t) := min
1≤ j≤n

X j (t),

and lexicographic breaking of ties. This system (1.8) exhibits both features of rank-dependent
characteristics and skew-elastic collisions that are manifest in (1.2), (1.3), but involves several
particles rather than just two.

The recent work by KARATZAS, PAL AND SHKOLNIKOV [17] studies systems of the form

X i (·) = xi +

n
k=1


·

0
δk 1{X i (t)=X(k)(t)} dt +

n
k=1


·

0
σk 1{X i (t)=X(k)(t)} dBi (t)

+

n
k=1


·

0
1{X i (t)=X(k)(t)}


p−

k − (1/2)


dL X(k)−X(k+1)(·)

+


p+

k − (1/2)


dL X(k−1)−X(k)(·)

, (1.9)

for nonnegative constants p±

k , k = 1, . . . , n that satisfy p−

k + p+

k+1 = 1, k = 1, . . . , n − 1, i =

1, . . . , n. This system is a special case of (1.8); here not only the local characteristics (drifts
and dispersions) of the individual diffusive motions, but also the (nearest-neighbor) local time
interactions among particles, are decided based on their ranks.

Equations of the form (1.9) arise as universal scaling limits of systems of jump processes
on the integer lattice with local interactions. They also generalize the so-called “Atlas” and
“first-order” models introduced by BANNER, FERNHOLZ AND KARATZAS [3] in the context of
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Stochastic Portfolio Theory (FERNHOLZ [8], FERNHOLZ AND KARATZAS [11]). These models
have stability properties that agree with the actual behavior of the capital distribution in large
equity markets; however, in order to construct a model that also captures the ergodic properties
of these markets, it is necessary to move to “second-order” models. The concept of second-order
models for equity markets is developed by FERNHOLZ, ICHIBA AND KARATZAS [9], and it is
shown there that parameter estimation for these models depends on time reversal. Time reversal
introduces local time through equations such as (1.2) and (1.3) (see also FERNHOLZ, ICHIBA,
KARATZAS AND PROKAJ [10]), so increased understanding of general systems of this type is
desirable for the purpose of developing more accurate models for the long-term stability of actual
equity markets.

2. On semimartingale local time

Let us recall the notion of a continuous, real-valued semimartingale

X (·) = X (0) + M(·) + C(·), (2.1)

where M(·) is a continuous local martingale and C(·) a continuous process of finite first variation
such that M(0) = C(0) = 0. The local time L X (t; ξ) accumulated at a given “site” ξ ∈ R over
the time-interval [0, t] by this process, is

L X (t; ξ) := lim
ε↓0

1
2 ε

 t

0
1{ξ≤X (s)<ξ+ε} d⟨X⟩(s)

=

X (t) − ξ

+
−

X (0) − ξ

+
−

 t

0
1{X (s)>ξ} dX (s), (2.2)

where ⟨X⟩(·) ≡ ⟨M⟩(·). For every fixed ξ ∈ R this defines a nondecreasing, continuous and
adapted process L X (· ; ξ) which is flat off the set {t ≥ 0 : X (t) = ξ}, namely

∞

0
1{X (t)≠ξ} dL X (t; ξ) = 0; and we have also the property

∞

0
1{X (t)=ξ} d⟨X⟩(t) = 0.

(2.3)

On the other hand, for each fixed T ∈ (0, ∞) the mapping ξ → L X (T ; ξ) is almost surely
RCLL (Right-Continuous on [0, ∞), with Limits from the Left on (0, ∞)), and has jumps of size

L X (T ; ξ) − L X (T ; ξ−) =

 T

0
1{X (t)=ξ} dX (t) =

 T

0
1{X (t)=ξ} dC(t). (2.4)

We shall employ also the notation

L X (T ; ξ) :=
1
2


L X (T ; ξ) + L X (T ; ξ−)


(2.5)

for the so-called “symmetric local time” accumulated at the site ξ over the time interval [0, T ].
For these local times we prefer to use the simpler notation

L X (·) ≡ L X (· ; 0), L X
−(·) ≡ L X (· ; 0−), L X (·) ≡ L X (· ; 0) (2.6)
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when we evaluate them at the origin ξ = 0, and note

L X
−(·) = L−X (·) = lim

ε↓0

1
2 ε


·

0
1{0≥X (t)>−ε} d⟨X⟩(t). (2.7)

Finally, we recall the occupation time density formulas
·

0
h(X (t)) d⟨X⟩(t) = 2


R

L X (· ; ξ) h(ξ) dξ = 2


R
L X (· ; ξ) h(ξ) dξ

for every Borel measurable h : R → [0, ∞), as well as the ITÔ–TANAKA–MEYER formulas

f (X (·)) = f (X (0)) +


·

0
D− f (X (t)) dX (t) +


R

L X (· ; ξ) f ′′(dξ), (2.8)

f (X (·)) = f (X (0)) +
1
2


·

0


D+ f (X (t)) + D− f (X (t))


dX (t)

+


R
L X (· ; ξ) f ′′(dξ). (2.9)

Here f : R → R is the difference of two convex functions, D± f (·) denote its derivatives from
left and right, and f ′′(·) denotes its second derivative measure. For the theory that undergirds
these results we refer the reader, for instance, to KARATZAS AND SHREVE [19, Section 3.7].

3. Analysis

Let us suppose that such a probability space as stipulated in Section 1 has been constructed,
and on it a pair B1(·), B2(·) of independent standard Brownian motions, as well as two continuous
semimartingales X1(·), X2(·) so that the dynamics (1.2)–(1.3) are satisfied. We import the
notation of FERNHOLZ ET AL. [10]: in addition to (1.1), we set

ν = g − h, y = x1 − x2, z := x1 + x2 > 0,

r1 = x1 ∨ x2, r2 = x1 ∧ x2,
(3.1)

and introduce the difference and the sum of the two component processes, namely

Y (·) := X1(·) − X2(·), Z(·) := X1(·) + X2(·). (3.2)

3.1. Auxiliary Brownian motions

We introduce also the two planar Brownian motions

W1(·), W2(·)


and


V1(·), V2(·)


, given

respectively by

W1(·) :=


·

0
1{Y (t)>0} dB1(t) −


·

0
1{Y (t)≤0} dB2(t), (3.3)

W2(·) :=


·

0
1{Y (t)≤0} dB1(t) −


·

0
1{Y (t)>0} dB2(t) (3.4)

and

V1(·) :=


·

0
1{Y (t)>0} dB1(t) +


·

0
1{Y (t)≤0} dB2(t), (3.5)
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V2(·) :=


·

0
1{Y (t)≤0} dB1(t) +


·

0
1{Y (t)>0} dB2(t). (3.6)

Finally, we construct the Brownian motions W (·), V (·), Q(·) and W ♭(·), V ♭(·), U ♭(·) as

W (·) := ρ W1(·) + σ W2(·), V (·) := ρ V1(·) + σ V2(·),

Q(·) := σ V1(·) + ρ V2(·),
(3.7)

W ♭(·) := ρ W1(·) − σ W2(·), V ♭(·) := ρ V1(·) − σ V2(·),

U ♭(·) := σ W1(·) − ρ W2(·);
(3.8)

we note the independence of Q(·) and W (·), the independence of Q(·) and V ♭(·), as well as the
intertwinements

V j (·) = (−1) j+1


·

0
sgn


Y (t)


dW j (t) ( j = 1, 2),

V ♭(·) =


·

0
sgn


Y (t)


dW (t)

(3.9)

and

V (·) =


·

0
sgn


Y (t)


dW ♭(t), Q(·) =


·

0
sgn


Y (t)


dU ♭(t), (3.10)

where sgn (x) := 1(0,∞)(x) − 1(−∞,0](x), for x ∈ R.

3.2. The difference and the sum

After this preparation, we observe that the difference Y (·) and the sum Z(·) from (3.2) satisfy,
respectively, the stochastic integral equation

Y (·) = y − λ


·

0
sgn


Y (t)


dt + (1 − ζ ) LY (·) − (1 − η) LY

−(·) + W (·) (3.11)

which involves both the right- and the left-local time at the origin of its solution process Y (·),
and the identity

Z(t) = z + ν t + V (t) +

1 − ζ


LY (t) +


1 − η


LY

−(t), 0 ≤ t < ∞. (3.12)

We have used here the notation of (1.1), (3.1), (1.4), as well as

ζ :=
ζ1 + ζ2

2
, η :=

η1 + η2

2
. (3.13)

We note from (2.3) and (3.11) that Y (·) is a continuous semimartingale with
∞

0
1{Y (t)=0} dt =


∞

0
1{Y (t)=0} d⟨Y ⟩(t) = 0, a.s., (3.14)

and that on the strength of (2.4), (2.3) we have

LY (· ; 0) − LY (· ; 0−) =


·

0
1{Y (t)=0}


(1 − ζ ) dLY (t; 0) − (1 − η) dLY (t; 0−)


= (1 − ζ ) LY (· ; 0) − (1 − η) LY (· ; 0−)
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or equivalently

ζ LY (·) = η LY
−(· ). (3.15)

From this relationship and (2.3)–(2.5), we obtain

2LY (·) = L |Y |(·) and LY (·) = α L |Y |(·), LY
−(·) = (1 − α) L |Y |(·), (3.16)

where we introduce as in (1.5) the “skewness parameter”

α :=
η

η + ζ
. (3.17)

• With this notation, and recalling (3.14) and (3.16), we see that (3.11) takes the form

Y (·) = y − λ


·

0
sgn


Y (t)


dt + 2


2 α − 1

LY (·) + W (·) (3.18)

of the equation for a skew Brownian motion with bang–bang drift (skew bang–bang Brownian
motion, or SBBBM for short). Here sgn (x) := 1(0,∞)(x) − 1(−∞,0)(x) for x ∈ R. This is a very
close relative of the skew Brownian motion, that was introduced by ITÔ AND MCKEAN [15,16]
and was further studied by WALSH [40], and HARRISON AND SHEPP [14]; see LEJAY [23] for a
comprehensive survey.

The diffusion process Y (·) of (3.18) is studied in Section 6. It is a strong MARKOV and
FELLER process, whose transition probabilities can be computed explicitly; see (6.8)–(6.10). In
particular, it is shown in Section 6 that, for 0 ≤ α ≤ 1, the stochastic equation (3.18) has a
pathwise unique, strong solution, and that the filtration identities

FY (t) = FW (t), ∀ t ∈ [0, ∞) (3.19)

hold. Here and in what follows, given a process Ξ : [0, ∞) × Ω → Rd with values in some
Euclidean space and RCLL paths, we shall use the convention FΞ

= {FΞ (t)}0≤t<∞ for the
smallest filtration to which Ξ (·) is adapted that satisfies the “usual conditions” of right continuity
and augmentation by sets of measure zero.

• Similarly, and with the notation of (3.17), the expression (3.12) takes the form

X1(t) + X2(t) = Z(t) = z + ν t + V (t) + 2

1 − β

LY (t), 0 ≤ t < ∞ (3.20)

where, as in Section 1.1, we set

β :=
η ζ + ζ η

η + ζ
. (3.21)

Remark 3.1. It is clear from (3.15) that Eq. (3.11) can be written as

Y (·) = y − λ


·

0
sgn


Y (t)


dt + LY (·) − LY

−(·) + W (·). (3.22)

To wit: skew Brownian motion with bang–bang drift solves Eq. (3.22), for any value α ∈ [0, 1]

of its skewness parameter. We conclude that uniqueness in distribution fails for this Eq. (3.22),
thus also for Eq. (3.11) that governs the difference Y (·) = X1(·) − X2(·) when η = ζ = 0.

In particular, uniqueness in distribution fails for the system (1.2), (1.3) when η = ζ = 0.



3008 E.R. Fernholz et al. / Stochastic Processes and their Applications 123 (2013) 2999–3026

Remark 3.2. When η = −ζ ≠ 0 we get LY (·) + LY
−(·) ≡ 0 from (3.15), thus

LY (·) ≡ LY
−(·) ≡ 0, (3.23)

and Eq. (3.11) takes the form of Brownian motion with bang–bang drift

Y (·) = y − λ


·

0
sgn


Y (t)


dt + W (·), (3.24)

a diffusion studied in detail by KARATZAS AND SHREVE [18]. This process does accumulate
local time at the origin: indeed, on the strength of (2.4), (2.3), we have

LY (·) − LY
−(·) =


·

0
1{Y (t)=0} dY (t) = λ


·

0
1{Y (t)=0} dt = λ


·

0
1{Y (t)=0} d⟨W ⟩(t) = 0

almost surely, but also P(LY (t) = LY
−(t) > 0) > 0 for every t ∈ (0, ∞); this contradicts (3.23).

In fact, we have P(LY (t) = LY
−(t) > 0) = 1 for y = 0.

We conclude that Eq. (3.11) for the difference Y (·) = X1(·) − X2(·) has no solution in the
case η = −ζ ≠ 0. Thus, the system (1.2), (1.3) cannot possibly have a solution in this case.

3.3. Auxiliary systems

From the equations (3.11), (3.12) and using the notation in (3.2)–(3.7), we obtain a system of
stochastic differential equations

dX1(t) =


g 1{X1(t)≤X2(t)} − h 1{X1(t)>X2(t)}


dt + ρ 1{X1(t)>X2(t)} dW1(t)

+ σ 1{X1(t)≤X2(t)} dW2(t) +
1 − ζ1

2
dL X1−X2(t) +

1 − η1

2
dL X2−X1(t), (3.25)

dX2(t) =


g 1{X1(t)>X2(t)} − h 1{X1(t)≤X2(t)}


dt − ρ 1{X1(t)≤X2(t)} dW1(t)

− σ 1{X1(t)>X2(t)} dW2(t) +
1 − ζ2

2
dL X1−X2(t) +

1 − η2

2
dL X2−X1(t), (3.26)

quite similar to that of (1.2), (1.3), but now driven by the planar Brownian motion (W1(·), W2(·)).
In a totally analogous manner, we obtain also the system

dX1(t) =


g 1{X1(t)≤X2(t)} − h 1{X1(t)>X2(t)}


dt + ρ 1{X1(t)>X2(t)} dV1(t)

+ σ 1{X1(t)≤X2(t)} dV2(t) +
1 − ζ1

2
dL X1−X2(t) +

1 − η1

2
dL X2−X1(t), (3.27)

dX2(t) =


g 1{X1(t)>X2(t)} − h 1{X1(t)≤X2(t)}


dt + ρ 1{X1(t)≤X2(t)} dV1(t)

+ σ 1{X1(t)>X2(t)} dV2(t) +
1 − ζ2

2
dL X1−X2(t) +

1 − η2

2
dL X2−X1(t), (3.28)

now driven by the planar Brownian motion (V1(·), V2(·)).

3.4. Skew representations

In light of the TANAKA formula, of Eq. (3.18) for the semimartingale Y (·), and of the last
intertwinement in (3.9), we represent the size of the “gap” between X1(t) and X2(t) as
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|Y (t)| = |y| − λ t + V ♭(t) + 2LY (t)

= |y| − λ t + V ♭(t) + L |Y |(t), 0 ≤ t < ∞. (3.29)

With the help of (3.9), (3.16), let us write the first Brownian motion in (3.8) as

W ♭(·) = γ W (·) + δ U ♭(·), where γ := ρ2
− σ 2, δ :=


1 − γ 2 = 2 ρ σ.

With this notation, and with the help of (3.10), the Brownian motion V (·) in (3.7) takes the form

V (t) = γ V ♭(t) + δ Q(t) = γ

|Y (t)| − |y| + λ t − 2LY (t)


+ δ Q(t), 0 ≤ t < ∞.

We recall here from (3.10) the standard Brownian motion Q(·) which, being independent of
W (·), is also independent of the process Y (·) in light of (3.19).

In conjunction with X1(t) − X2(t) = Y (t) and the representation (3.20) for X1(t) + X2(t),
and with the notation

µ :=
1
2


ν + λ γ


= g ρ2

− h σ 2,

we obtain from this expression the skew representations for the component processes themselves

X1(t) = x1 + µ t + ρ2Y +(t) − y+

− σ 2Y −(t) − y−


+

1 − β − γ

LY (t) + ρσ Q(t) (3.30)

X2(t) = x2 + µ t − σ 2 Y +(t) − y+

+ ρ2Y −(t) − y−


+

1 − β − γ

LY (t) + ρσ Q(t) (3.31)

in terms of the paths of the skew Brownian motion process Y (·) with bang–bang drift, and of
the independent Brownian motion Q(·). In particular, this shows that uniqueness in distribution
holds for the system of stochastic differential equations (1.2), (1.3).

Similar reasoning shows that uniqueness in distribution holds also for each of the systems
(3.25), (3.26) and (3.27), (3.28).

Remark 3.3. It is clear from (3.29) that the absolute value of the skew Brownian motion with
bang–bang drift in (3.18), for any value α ∈ [0, 1] of the skewness parameter, is Brownian
motion with drift −λ and reflection at the origin. Arguing as in WALSH [40, Proposition 1], one
can conclude that every diffusion process Y (·), for which |Y (·)| is Brownian motion with drift
−λ and reflected at the origin, is a skew Brownian motion with bang–bang drift.

4. Synthesis

Let us reverse now the steps of the analysis in Section 3. We start with a filtered probability
space (Ω , F, P), F = {F(t)}0≤t<∞ and with two independent, standard Brownian motion
W1(·), W2(·) on it; we shall assume F ≡ F(W1,W2), i.e., that F is the smallest filtration satisfying
the usual conditions, to which the planar Brownian motion (W1(·), W2(·)) is adapted.

With given real constants ζ1, ζ2, η1, η2 and nonnegative constants g, h, ρ, σ that satisfy the
conditions (1.1) and (1.5), with a given vector (x1, x2) ∈ R2, and with the notation of (3.1), we
construct the pairs of independent Brownian motions

W (·) := ρ W1(·) + σ W2(·), U ♭(·) := σ W1(·) − ρ W2(·) (4.1)
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and

U (·) := σ W1(·) + ρ W2(·), W ♭(·) := ρ W1(·) − σ W2(·) (4.2)

as in (3.8), (3.7). Clearly, F(W1,W2) ≡ F(W,U ♭)
≡ F(U,W ♭).

We construct also the pathwise unique, strong solution Y (·) of the stochastic equation (3.18)
driven by the Brownian motion W (·) of (4.1). With the process Y (·) thus in place, we introduce
by analogy with (3.9) the independent Brownian motions

V1(·) =


·

0
sgn


Y (t)


dW1(t), V2(t) = −


·

0
sgn


Y (t)


dW2(t), (4.3)

and by analogy with (3.7), (3.8) the two additional pairs of independent Brownian motions

V (·) := ρ V1(·) + σ V2(·), Q♭(·) := σ V1(·) − ρ V2(·), (4.4)

Q(·) := σ V1(·) + ρ V2(·), V ♭(·) := ρ V1(·) − σ V2(·). (4.5)

• We introduce also the continuous martingales

M1(·) :=


·

0


ρ 1{Y (t)>0} dW1(t) + σ 1{Y (t)≤0} dW2(t)


=


·

0


ρ 1{Y (t)>0} dV1(t) + σ 1{Y (t)≤0} dV2(t)


, (4.6)

M2(·) := −


·

0


ρ 1{Y (t)≤0} dW1(t) + σ 1{Y (t)>0} dW2(t)


=


·

0


ρ 1{Y (t)≤0} dV1(t) + σ 1{Y (t)>0} dV2(t)


, (4.7)

with ⟨M1, M2⟩ (·) ≡ 0 and quadratic variations

⟨M1⟩(·) =


·

0


ρ2 1{Y (t)>0} + σ 2 1{Y (t)≤0}


dt,

⟨M2⟩(·) =


·

0


ρ2 1{Y (t)≤0} + σ 2 1{Y (t)>0}


dt.

There exist then independent Brownian motions B1(·), B2(·) on our filtered probability space
(Ω , F, P), F = {F(t)}0≤t<∞, so the continuous martingales of (4.6), (4.7) are cast in their DOOB

representations as

M1(·) =


·

0


ρ 1{Y (t)>0} + σ 1{Y (t)≤0}


dB1(t),

M2(·) =


·

0


ρ 1{Y (t)≤0} + σ 1{Y (t)>0}


dB2(t)

(4.8)

in terms of independent Brownian motions B1(·), B2(·); for instance, by taking

B1(·) =


·

0


1{Y (t)>0} dW1(t) + 1{Y (t)≤0} dW2(t)


, (4.9)

B2(·) = −


·

0


1{Y (s)≤0} dW1(t) + 1{Y (t)>0} dW2(t)


. (4.10)
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• Finally, we introduce the continuous, F-adapted processes

X1(·) := x1 +


·

0


g 1{Y (t)≤0} − h 1{Y (t)>0}


dt

+ M1(·) +
1 − ζ1

2
LY (·) +

1 − η1

2
LY

−(·) (4.11)

and

X2(·) := x2 +


·

0


g 1{Y (t)>0} − h 1{Y (t)≤0}


dt

+ M2(·) +
1 − ζ2

2
LY (·) +

1 − η2

2
LY

−(·). (4.12)

It is now easy to check X1(·)−X2(·) = Y (·), and from this, that the vector process (X1(·), X2(·))

solves the system (1.2)–(1.3), as well as the systems (3.25)–(3.26), (3.27)–(3.28). It is also
straightforward to verify the skew representations of (3.30), (3.31).

Remark 4.1. We note that the vector process (X1(·), X2(·)) solves also the system of equations

dX1(t) = 1{X1(t)≤X2(t)}


g dt + σ dB1(t)


+ 1{X1(t)>X2(t)}

−h dt + ρ dB1(t)


+ κ1 dL |X1−X2|(t), (4.13)

dX2(t) = 1{X1(t)>X2(t)}


g dt + σ dB2(t)


+ 1{X1(t)≤X2(t)}

−h dt + ρ dB2(t)


+ κ2 dL |X1−X2|(t), (4.14)

where 2 κ j := α (1 − ζ j ) + (1 − α) (1 − η j ), j = 1, 2 or equivalently

κ1 = α −

β/2


, κ2 = 1 − α −


β/2


. (4.15)

4.1. Ranks

Let us introduce explicitly the ranked versions (leader and laggard, respectively)

R1(·) := X1(·) ∨ X2(·), R2(·) := X1(·) ∧ X2(·) (4.16)

of the components of the vector process (X1(·), X2(·)) constructed in (4.11), (4.12). From (3.12)
and (3.29), it is rather clear that we have

R1(t) + R2(t) = X1(t) + X2(t)
= r1 + r2 + ν t + V (t) +


1 − β


L |Y |(t), 0 ≤ t < ∞

R1(t) − R2(t) = |X1(t) − X2(t)| = |Y (t)| = |y| − λ t + V ♭(t) + L |Y |(t), (4.17)

and these representations lead to the expressions

R1(t) = r1 − h t + ρ V1(t) +

1 − (β/2)


L R1−R2(t), 0 ≤ t < ∞ (4.18)

R2(t) = r2 + g t + σ V2(t) − (β/2) L R1−R2(t), 0 ≤ t < ∞. (4.19)

A few remarks are in order. Eqs. (4.18), (4.19) identify the processes V1(·) and V2(·) of (3.5),
(3.6) as the independent Brownian motions associated with the diffusive motion of the ranked
particles, the “leader” R1(·) and the “laggard” R2(·), respectively; whereas the independent
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Brownian motions B1(·) in (1.2) and B2(·) in (1.3) are associated with the specific “names”
(indices, or identities) of the individual particles. On the other hand, with the help of the theory
of the SKOROKHOD reflection problem (e.g., KARATZAS AND SHREVE [19, p. 210]), we obtain
from (4.17), (2.3) the identification of the “collision local time”

L R1−R2(t) = L |Y |(t) = max
0≤s≤t


−|y| + λ s − V ♭(s)

+

, 0 ≤ t < ∞. (4.20)

Let us also observe that, in the non-degenerate case ρ σ > 0, Eqs. (4.17)–(4.20) and the second
equation in (4.5) give the filtration comparisons

F(V1,V2)(t) = F(R1,R2)(t), 0 ≤ t < ∞, (4.21)

FV ♭

(t) = F|Y |(t) $ FY (t), 0 < t < ∞. (4.22)

This last inclusion is strict, due to the fact that the process Y (·) changes its sign with positive
probability during any time-interval [0, t] with t > 0.

4.2. Filtration comparisons, weak and strong solutions

We have the following straightforward analogs of Propositions 4.1, 4.2 and of Theorems 4.1,
4.2 in FERNHOLZ ET AL. [10].

Proposition 4.1. In the degenerate case σ = 0, thus ρ = 1 in light of (1.1), we have the relations

F(R1,R2)(t) = FV (t) = F|X1−X2|(t) $ FX1−X2(t) = FW (t) = F(X1,X2)(t) (4.23)

for every 0 < t < ∞. In the special case β = 1 of (5.2) we have in addition σ (V (t)) =

σ (X1(t) + X2(t)), thus also FV (t) = FX1+X2(t), for every 0 ≤ t < ∞.

Proposition 4.2. In the non-degenerate case ρ σ > 0, we have for every 0 < t < ∞ the relations

F(V1,V2)(t) = F(R1,R2)(t) = F(|Y |,V )(t) = F(|Y |,Q)(t)

$ F(Y,Q)(t) = F(Y,V )(t) = F(W1,W2)(t) = F(X1,X2)(t). (4.24)

Theorem 4.1. The system of stochastic differential equations (1.2), (1.3) is well-posed, that is,
has a weak solution which is unique in the sense of the probability distribution. The same is true
for each of the systems of equations (3.25), (3.26) and (3.27), (3.28).

On the other hand, the system of equations (3.25), (3.26) admits a strong solution, which is
therefore pathwise unique; whereas the system (3.27), (3.28) admits no strong solution.

Theorem 4.2. The system of equations (1.2), (1.3) admits a pathwise unique, strong solution; in
particular, the filtration identity F(B1,B2)(t) = F(X1,X2)(t) holds for all 0 ≤ t < ∞.

Likewise, the system of equations (4.13), (4.14) admits a pathwise unique, strong solution.

Proof. Repeating almost verbatim the arguments in the proof of Theorem 5.1 in FERNHOLZ ET

AL. [10], the question boils down to whether the filtration comparison

FY (t) ⊆ F(B1,B2)(t), ∀ 0 ≤ t < ∞ (4.25)
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holds. To decide this issue, we write Eq. (3.18) as driven by the pair (B1(·), B2(·)); in other
words, we use (3.7) and (3.3), (3.4) to express the skew Brownian motion Y (·) with bang–bang
drift as a solution of a stochastic differential equation driven by the planar Brownian motion
(B1(·), B2(·)). Since this equation does admit a weak solution which is unique in distribution,
the issue is whether this solution is also strong, that is, whether (4.25) holds.

This question is easy to settle in the isotropic case ρ = σ = 1/
√

2; then W (·) = (B1(·)

− B2(·))/
√

2, and the comparison (4.25) follows from the strong solvability of Eq. (3.18) proved
in Section 6: FY (t) = FW (t) ⊆ F(B1,B2)(t) holds for all 0 ≤ t < ∞, by virtue of (3.19).

In the anisotropic case ρ ≠ σ , we write (3.18) as the extended skew Tanaka equation

Y (t) = y +
ρ − σ
√

2

 t

0
sgn


Y (s)


dβ(s) +

ρ + σ
√

2
ϑ(t) + 2


2 α − 1

LY (t),

0 ≤ t ≤ T (4.26)

with T ∈ (0, ∞) arbitrary but fixed. Here

β(·) :=
β1(·) + β2(·)

√
2

, ϑ(·) :=
β1(·) − β2(·)

√
2

are independent Brownian motions after an equivalent change of probability measure, and

β i (t) := Bi (t) −
λ t

ρ − σ
, 0 ≤ t ≤ T (i = 1, 2).

• Let us suppose that Y1(·) and Y2(·) are two solutions of Eq. (4.26), defined on the same proba-
bility space and with respect to the same, independent standard Brownian motions B1(·), B2(·).
Following LE GALL [21], we shall show LY1−Y2(·) ≡ 0; we shall then argue that this implies
also Y1(·) ≡ Y2(·), a.s.

To this end, we consider the difference D(·) := Y1(·) − Y2(·) and the linear combinations

Z (u)(·) := (1 − u) Y1(·) + u Y2(·) for 0 ≤ u ≤ 1;

we introduce also a sequence { fk}k∈N ⊂ C 1(R) of continuous and continuously differentiable
functions that converge to f∞(·) := sgn(·) pointwise, and satisfy supk∈N ∥ fk∥T V < ∞. Since
lim supk ∥ fk∥T V ≤ ∥ f∞∥T V obviously holds, this is only possible if f∞(·) is of bounded varia-
tion, and in this case an approximating sequence is easily obtained, e.g., by mollifiers. As in the
proof of Theorem 8.1 of FERNHOLZ ET AL. [10], for every δ > 0, T > 0, k ≥ 1, we establish
then

E

 T

0

| fk(Y1(s)) − fk(Y2(s))|

Y1(s) − Y2(s)
1{Y1(s)−Y2(s)>δ} dt


≤ c1 ∥ fk∥T V · sup

ξ,u
E

2L(u)(T, ξ)


;

hereL(u)(T, ξ) is the symmetric local time of Z (u)(·) accumulated at the site ξ ∈ R over the time
interval [0, T ], and c1 is a constant chosen independently of k, u, δ. Letting k ↑ ∞ and δ ↓ 0,
we obtain

E

 T

0

1
D(t)

1{D(t)>0} d⟨D⟩(t)


≤ 2 E

 T

0

| f∞(Y1(t)) − f∞(Y2(t))|

Y1(t) − Y2(t)
1{D(t)>0} dt


≤ 2 c1 ∥ f∞∥T V · sup

ξ,u
E


2L(u)(T, ξ)

.
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Now the CAUCHY–SCHWARTZ inequality, the ITÔ isometry, and the TANAKA formula applied
to Z (u)(·), allow us to estimate

E

2L(u)(T ; ξ)


≤ E|Z (u)(T ) − Z (u)(0)| +


E(⟨Z (u)

⟩(T ))
1/2

+ 2 (2α − 1)

u E

LY1(T )

+ (1 − u) E

LY2(T )


≤ 2


E(⟨Z (u)
⟩(T ))

1/2
+ 2 (2α − 1)


u E

LY1(T )

+ (1 − u) E

LY2(T )


.

The last term is bounded uniformly in (ξ, u), since ⟨Z (u)
⟩(t) ≤ c2 t and E

LYi (T )


≤ c3, for
i = 1, 2 and for some constants c2, c3 that do not depend on (ξ, u). Thus, we obtain

E

 T

0

1
D(t)

1{D(t)>0} d⟨D⟩(t)


< ∞, 0 < T < ∞. (4.27)

Using Lemma 1.0 of LE GALL [21] (see also Exercise 3.7.12, pp. 225–226 in KARATZAS

AND SHREVE [19]), we verify that (4.27) gives L D(·) ≡ 0. By exchanging the rôles of Y1(·) and
Y2(·), we obtain also L−D(·) = LY2−Y1(·) ≡ 0, as well as L D(·) ≡ 0. Furthermore, we note
that on the strength of Corollary 2.6 of OUKNINE AND RUTKOWSKI [26] this implies that the
symmetric local time L M (·) of the maximum M(·) := Y1(·) ∨ Y2(·) = Y1(·) +


Y2(·) − Y1(·)

+
is given as

L M (·) := LY1∨Y2(·) =


·

0
1{Y2(t)≤0} dLY1(t) +


·

0
1{Y1(t)<0} dLY2(t).

We combine now these results with the TANAKA formula, to obtain the dynamics of the maxi-
mum

M(·) = y +


·

0
1{Y1(t)≥Y2(t)} dY1(t) +


·

0
1{Y1(t)<Y2(t)} dY2(t) + LY2−Y1(·)

= y +
ρ − σ
√

2


·

0
sgn(M(t)) dβ(t) +

ρ + σ

2
ϑ(·) + 2


2α − 1

L M (·),

and observe that these are the same as those of (4.26). But uniqueness in distribution holds for
Eq. (4.26), so the distribution of the process M(·) is the same as that of Y1(·), and of course we
have M(·) ≥ Y1(·) a.s. This implies M(·) ≡ Y1(·), thus Y1(·) ≡ Y2(·) a.s.

Therefore, the solution to (4.26) is pathwise unique, hence also strong by the theory of YA-
MADA AND WATANABE (e.g., KARATZAS AND SHREVE [19, pp. 308–311]). �

5. Some special cases

When α = 1/2, that is, η = ζ ≠ 0 or equivalently

η1 − η2 = ζ2 − ζ1 ≠ 2, (5.1)

Eq. (3.18) for the difference Y (·) = X1(·) − X2(·) becomes that of Brownian motion with
bang–bang drift as in (3.24). In this special case η = ζ ≠ 0 and with σ = ρ, the existence and
uniqueness of (1.2)–(1.3) can be shown also by direct application of Theorem 3.5 of SZNITMAN

AND VARADHAN [36] and a GIRSANOV’s change-of-measure, with the aid of the local time
relationships (3.16).
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On the other hand, when β = 1 or equivalently

η

1 − ζ


= ζ


1 − η


, (5.2)

the sum X1(·) + X2(·) is just standard Brownian motion with drift ν = g − h, from (3.20).
Let us single out now, and study, some more interesting special cases.

5.1. Perfect reflection for individual particles upon collision

Suppose x1 ≥ x2 and that α = 1 holds; equivalently, ζ = 0 and η ≠ 0 from (1.5), i.e.,

ζ2 − ζ1 = 2 ≠ η1 − η2. (5.3)

We see then LY
−(·) ≡ L X2−X1(·) ≡ 0, LY (·) ≡ L |Y |(·) ≡ 2LY (·) from (3.16), and that (3.18)

becomes the equation for reflecting Brownian motion with negative drift, i.e.,

Y (t) = y − λ t + W (t) + LY (t) ≥ 0,

LY (t) = max
0≤s≤t


−y + λ s − W (s)

+
, 0 ≤ t < ∞

from the theory of the SKOROKHOD reflection problem (e.g., KARATZAS AND SHREVE [19, pp.
209–210]). In particular, strength and pathwise uniqueness hold; for more general results along
these lines see CHITASHVILI AND LAZRIEVA [6]. It is also clear from the last two displayed
equations, that the filtration identity FY (t) = FW (t), 0 ≤ t < ∞ in (3.19) also holds.

In this case, then, when the particles collide, the trajectory X1(·) of the first particle bounces
off the trajectory X2(·) of the second particle as if this latter were a perfectly reflecting lower
boundary. We can visualize the situation by saying that, under the conditions of (1.5) and (5.3),
the second particle is “heavy” (unaffected by collisions), whereas the first particle is “light” in
that it bounces off (reflects perfectly) when colliding with the heavy particle.

• The “symmetric” situation obtains for α = 0, that is ζ ≠ 0 and η = 0 or equivalently

ζ2 − ζ1 ≠ 2 = η1 − η2; (5.4)

in this case and again with x1 ≥ x2, when the two particles collide, the second particle bounces
off the first as if this latter were a perfectly reflecting upper boundary; it is the first particle that
is now “heavy”, and the second that is “light”.

5.2. Frictionless collision

It follows also from (3.16) that the local times disappear entirely in (1.2) when we have the
configuration of parameters (1 − ζ1)α + (1 − η1)(1 − α) = 0, or equivalently

(1 − ζ1) η + (1 − η1) ζ = 0; (5.5)

in this case the trajectory of the first particle crosses that of the second without “feeling it”, that
is, without being subjected to any local time drag.

Similarly, the second particle crosses the first in the same frictionless manner, that is, the local
times disappear entirely in (1.3), if

(1 − ζ2) η + (1 − η2) ζ = 0. (5.6)
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• If both (5.5) and (5.6) hold, then all such crossings are completely frictionless. We note that
(5.5) and (5.6) are both satisfied, if and only if

η1 + ζ1 = η2 + ζ2 = 2 (5.7)

holds. This condition implies η = ζ (so when this common value is nonzero we are in the case
α = 1/2 mentioned at the start of the section), and is obviously satisfied in the special case
η1 = ζ1 = η2 = ζ2 = 1 studied by FERNHOLZ ET AL. [10]. However, (5.7) holds also for other
configurations of parameters, for instance ζ1 = η2 = 1/2, η1 = ζ2 = 3/2.

The condition (5.7) gives the value β = 1 for the parameter of (3.21); back in (4.18), (4.19),
this implies that the collision local time L R1−R2(·) “gets apportioned equally to the ranks”.

5.3. Elastic collisions

Beyond these two extremes of perfect reflection and frictionless collision – that is, for all
other configurations of parameters – we have collisions that are “elastic”: neither completely
frictionless, nor perfectly reflecting.

5.4. Brownian motion reflected on an independent Brownian motion

Finally, let us consider the case β = 0 or equivalently η ζ + ζ η = 0, that is

2

ζ1 + ζ2 + η1 + η2


=

ζ1 + ζ2

 
η1 − η2


−

η1 + η2

 
ζ1 − ζ2


(5.8)

in light of (3.21) and (1.4), (3.13). This happens, for instance, when ζ1 = 3/4, ζ2 = 9/4, η1 =

−4/3, η2 = −8/3; in this case we have α = 4/7 and of course β = 0.
Under the condition (5.8), the laggard in (4.19) feels no pressure (local time drag) from the

leader; it just evolves like Brownian motion with variance σ 2 and nonnegative drift. On the
other hand, the leader in (4.18) evolves like an independent Brownian motion with variance
ρ2 and nonpositive drift, reflected off the trajectory of the laggard. Such a process has been
studied by BURDZY AND NUALART [5] (see also SOUCALIUC ET AL. [34], SOUCALIUC AND

WERNER [35]); here it arises as a special case of the ranked system (4.18), (4.19) for the particles
whose motions are governed by Eqs. (1.2), (1.3).

We have in this case β = 0 an interesting fusion: the “perfect reflection” we saw in Sec-
tion 5.1, and the “frictionless motion” of Section 5.2, are occurring here simultaneously—not
for the motions of the individual particles, however, but rather for the motions of their ranked
versions, the leader R1(·) and the laggard R2(·), respectively. To put it a little differently: starting
with two particles that undergo skew-elastic collisions one is able, under the conditions of (1.5)
and (5.8), to “simulate a heavy particle” (the laggard) and a “light” particle (the leader).

• The “reverse” situation obtains when β = 2 or equivalently η ζ + ζ η = 2 (η + ζ ), that is

2

ζ1 + ζ2 + η1 + η2


= 4


4 + ζ1 − ζ2 − η1 + η2


+

ζ1 + ζ2


η1 − η2


−

η1 + η2


ζ1 − ζ2


; (5.9)

then it is the trajectory of the laggard (now the “light” particle) that gets reflected off that of the
leader (now the “heavy” particle). This happens, for instance, when ζ1 = 3/2, ζ2 = 3, η1 =

7/3, η2 = 1; in this case we have α = 4/7 and β = 2.
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Fig. 1. ζ1 = 0, ζ2 = η1 = η2 = 1; α = 2/3, β = 2/3. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. ζ2 = 2, ζ1 = η1 = η2 = 1; α = 2/3, β = 4/3. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

5.5. Some simulations

The pictures (Figs. 1–3) present simulations of the processes X1(t) (in black) and X2(t) (in
red) for t ∈ [0, 1], with drifts g = h = 1 in the degenerate case ρ = 0.

6. Skew Brownian motion with bang–bang drift

We revisit here the stochastic differential equation (3.18) for the skew Brownian motion with
bang–bang drift

b(y) = −λ sgn(y) = −λ

1(0,∞)(y) − 1(−∞,0](y)


, y ∈ R (6.1)
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Fig. 3. ζ1 = 0, ζ2 = 2, η1 = η2 = 1; α = 1, β = 1. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

for some given constant λ > 0 with skewness parameter α ∈ [0, 1]. The cases α = 0 and α = 1
have been discussed already in Section 5.1, so we focus now on the range 0 < α < 1.

For this range of values of the skewness parameter, we choose to write Eq. (3.18) in terms of
the right-continuous local time of the unknown process at the origin, namely

Y (·) = y0 − λ


·

0
sgn


Y (t)


dt + W (·) +

2 α − 1
α

LY (·). (6.2)

This equation is of the more general form

Y (·) = y0 +


·

0
τ (Y (t)) dW (t) +


R

LY (·, ξ) ν(dξ) (6.3)

with dispersion function τ (y) ≡ 1 and measure ν(dy) = 2 b(y) dy + ((2 α−1)/α) δ0(dy), in the
notation of (6.1) and with δ0(·) the DIRAC mass at the origin. Using the methodologies pioneered
by HARRISON AND SHEPP [14], NAKAO [24] in the context of skew Brownian motion, and
developed for equations of the form (6.3) by LE GALL [21,22], ENGELBERT AND SCHMIDT [7]
and particularly BASS AND CHEN [4], the following result can be established.

Theorem 6.1. Eq. (3.18) admits a pathwise unique, strong solution for all values of its “skewness
parameter” α ∈ [0, 1], and we have the filtration identity of (3.19).

Remark 6.1. Towards the end of Section 3 in HARRISON AND SHEPP [14], it is shown that
Eq. (3.18) has no solution for α ∉ [0, 1]. Consequently, when η + ζ ≠ 0 holds but (1.5) fails
because α = η/(η + ζ ) ∉ [0, 1], the system of equations (1.2), (1.3) has no solution.

Remark 6.2. We compute in the next subsection the transition probabilities of the diffusion
Y (·). It follows from these computations, and in conjunction with the theory developed in
PORTENKO [30–32], that this process has the strong MARKOV and FELLER properties.
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From the Remarks 3.1, 3.2, 6.1 and Theorem 4.1, we obtain now the following result.

Proposition 6.1. The conditions of (1.5) are not just sufficient but also necessary for the well-
posedness of the system of equations (1.2), (1.3).

6.1. Joint distribution of SBBBM and its local time

Let us recall a construction of the skew Brownian motion (ITÔ AND MC KEAN [15,16],
WALSH [40]). We take a Brownian motion starting from y0 ≥ 0, reflect it at the origin, and
consider its excursions away from the origin. Then we change the sign of each excursion inde-
pendently with probability 1 − α ∈ (0, 1). The resulting process is positive with probability α,
and negative with probability 1 − α. This implies a non-symmetric reflection principle around
the origin. We shall see that even in the presence of the bang–bang drift as in (6.1), this principle
continues to hold for the skew Brownian motion. Thus, the joint distribution of SBBBM and its
local time are derived.

By GIRSANOV’s theorem (e.g., KARATZAS AND SHREVE [19, Section 3.5]), we consider
the “reference probability measure” P⋆, under which the process


·

0 b(Y (t)) dt + W (·) becomes
standard Brownian motion. For every given t ∈ [0, ∞) the RADON–NIKODÝM derivative on
FY (t) of the original measure with respect to the reference measure, is

dP
dP⋆


FY (t)

= exp

 t

0
b(Y (s))dW (s) +

1
2

 t

0
b2(Y (s))ds



= exp


λ

|y0| − |Y (t)| + 2LY (t)


−

λ2

2
t


;

we have used in this last equation the relationships (3.29), (3.9).
Under the reference probability measure P⋆, the process Y (·) is skew Brownian motion

starting at y0. As shown in WALSH [40] (see also LANG [20]), the transition probability density
function p⋆(t; y0, ξ) = P⋆(Y (t) ∈ dξ)/dξ for this process is given by

p⋆(t; y0, ξ) =
1

√
2π t

exp


−

(y0 − ξ)2

2t



+ (2α − 1) · sgn(ξ) ·
1

√
2π t

exp


−

(|y0| + |ξ |)2

2t


for (ξ, y) ∈ R2, t > 0. Moreover, by the method of elastic Brownian motion (e.g., KARATZAS

AND SHREVE [18], APPUHAMILLAGE ET AL. [2]) the joint distribution of the skew Brownian
motion and its symmetric local time is computed as

P⋆(Y (t) ∈ dξ, 2LY (t) ∈ db) =

1 + (2α − 1) sgn(ξ)


·
|ξ | + b + |y0|

√
2π t3

× exp


−

(|ξ | + b + |y0|)
2

2 t


dξ db; b > 0,

P⋆


Y (t) ∈ dξ, 2LY (t) = 0


=

1
√

2π t


exp


−

(|y0| − |ξ |)2

2t


− exp


−

(|y0| + |ξ |)2

2t


dξ
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for ξ ∈ R. Note that we have 1 + (2α − 1) sgn(ξ) = 2α, if ξ > 0, and 1 + (2α − 1) sgn(ξ) =

2(1−α) if ξ ≤ 0. Thus, the non-symmetric reflection principle around the origin works intuitively
even for the joint distribution. As expected, when there is no accumulation of local time at the
origin, the skewness parameter α does not affect the transition probabilities.

• We bring the above formulas from the reference measure P⋆ back to the original measure P.
With (ξ, b) ∈ [0, ∞) × (0, ∞), the joint density functions are

P(Y +(t) ∈ dξ, Y −(t) = 0, 2LY (t) ∈ db)

= 2α · e−2λξ
·
ξ + b + |y0|

√
2π t3

exp


−

(ξ + b + |y0| − λt)2

2 t


dξ db, (6.4)

as well as

P(Y −(t) ∈ dξ, Y +(t) = 0, 2LY (t) ∈ db)

= 2(1 − α) · e−2λξ
·
ξ + b + |y0|

√
2π t3

exp


−

(ξ + b + |y0| − λt)2

2 t


dξ db. (6.5)

Whereas, when there is no accumulation of local time, we have

P


Y ±(t) ∈ dξ, Y ∓(t) = 0, 2LY (t) = 0


=
1

√
2π t


exp


−

(ξ − |y0| + λt)2

2t


− e−2λ ξ

· exp


−

(ξ + |y0| + λt)2

2t


dξ,

ξ > 0. (6.6)

• The marginal density p(t; y0, ξ) dξ = P(Y (t) ∈ dξ) of Y (t) under the original probability
measure P is obtained from

P(Y (t) ∈ dξ) = P(Y (t) ∈ dξ, 2LY (t) > 0) + P(Y (t) ∈ dξ, 2LY (t) = 0) · 1{ξ y0>0}, (6.7)

where the second term takes care of the case when the local time is absent. If ξ > 0 and y0 > 0,
the marginal density becomes

p(t; y0, ξ) = (2α − 1) e−2λξ
·

1
√

2π t
exp


−

(ξ + y0 − λt)2

2t



+
1

√
2π t

exp


−

(ξ − y0 + λt)2

2t


+ (2α) ·

λ e−2λξ

√
2π t


∞

ξ+y0

e−
(u−λt)2

2t du; (6.8)

whereas, if ξ < 0 and y0 < 0, this expression becomes

p(t; y0, ξ) = (1 − 2α)e2λξ
·

1
√

2π t
exp


−

(−ξ − y0 − λt)2

2t



+
1

√
2π t

exp


−

(−ξ + y0 + λt)2

2t


+ 2 (1 − α) ·

λ e2λξ

√
2π t


∞

−ξ−y0

e−
(u−λt)2

2t du. (6.9)
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If ξ y0 ≤ 0, then this expression becomes

p(t; y0, ξ) =

1 + (2α − 1) sgn(ξ)


·

e−2λ|ξ |

√
2π t

·


exp


−

(|ξ | + |y0| − λt)2

2 t


+ λ


∞

|ξ |+|y0|

e−
(u−λt)2

2t du


, (6.10)

where the term P(Y (t) ∈ dξ, 2LY (t) = 0) in (6.7) is now equal to zero.

Remark 6.3. Letting t → ∞ in (6.8)–(6.10), we derive for the process Y (·) the stationary mea-
sure m(·) =


·
p∞(ξ) dξ with the double-exponential probability density function

p∞(ξ) := lim
t→∞

p(t; y0, ξ) = α · (2λ) e−2 λ ξ
· 1{ξ>0} + (1 − α) · (2λ) e 2 λ ξ

· 1{ξ≤0}. (6.11)

It can be verified that (6.11) is the invariant distribution. Furthermore, it follows from the transi-
tion density (6.8)–(6.10) and the stationary distribution (6.11) that the following duality holds:

R
g(y)


R

f (ξ)p(t; y, ξ)dξ


p∞(y)dy =


R

f (ξ)


R

g(y)p(t; ξ, y)dy


p∞(ξ)dξ,

for arbitrary bounded, measurable functions f, g, or equivalently
R

g(y) Ey


f (Y (t))] p∞(y) dy =


R

f (ξ) Eξ


g(Y (t))


p∞(ξ) dξ ; t > 0. (6.12)

Here Ey stands for the expectation under the measure Py induced by Y (·) which starts from
y ∈ R. Thus, under the probability measure P∞(·) :=


R Py(·) m(dy), the process Y (·) is sta-

tionary, and moreover, given a fixed time T ∈ (0, ∞), the time reversalY (t) := Y (T − t), 0 ≤ t ≤ T (6.13)

satisfies

EP∞


f0(Y (t0)) · · · fn(Y (tn))


= EP∞


f0(Y (tn)) · · · fn(Y (t0))


(6.14)

for every n ∈ N, 0 = t0 < t1 < · · · < tn = T , and bounded, measurable functions f0, . . . , fn .

Remark 6.4. The infinitesimal generator of the process Y (·) may be defined formally by

[L f ](ξ) :=
1
2

f ′′(ξ) − λ sgn(ξ) f ′(ξ) + 2 (2α − 1) f ′(ξ) δ0(ξ), ξ ∈ R (6.15)

for f ∈ D := C∞

0 (R), where δ0(·) is the “DIRAC delta function” at the origin. Here we use
the parametrization for the symmetric local time LY (·). Let us denote formally the symmetric
version of the density of m byp∞(ξ) = (2α) λ e−λξ

· 1{ξ>0} + 2(1 − α) λ eλξ
· 1{ξ<0} + λ · 1{ξ=0}.

Then by direct calculation
R

f (ξ) [Lg](ξ) m(dξ) =


R

g(ξ) [L f ](ξ) m(dξ),
R
[L f ] m(dξ) = 0; f, g ∈ D.

(6.16)
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Applying Theorem 2.3 of FUKUSHIMA AND STROOCK [12], we arrive at the same conclusion
(6.14).

Remark 6.5. Let us define the time reversal of Y (·) as in (6.13). Following PARDOUX [27] and
PETIT [28], we may show that the time reversal is a solution of the stochastic equation

Y (t) = Y (0) + W ♯(t) + 2 (1 − 2α)LY (t)

+

 t

0


λ sgn

 Y (s)

+

∂

∂ξ
log p


T − s; y0,Y (s)


ds (6.17)

for 0 ≤ t ≤ T , where W ♯(·) is a standard Brownian motion with respect to the backwards
filtration FY (·) generated by the time-reversed process Y (·) of (6.13), and

L Y (t) := LY (T ) − LY (T − t), 0 ≤ t ≤ T . (6.18)

In the special case y0 = 0 = Y (T ), the logarithmic derivative of the transition probability density
function is

∂

∂ξ
log p


t; 0, ξ


= − 2 λ sgn(ξ) −

ξ

t
·

C1(t, ξ)

C1(t, ξ) + C2(t, ξ)
,

where

C1(t, ξ) := exp


−

(|ξ | + λt)2

2t


, C2(t, ξ) := λ e−2λ|ξ |


∞

|ξ |

exp


−

(u − λt)2

2t


du.

Thus, the time reversal is a skew Brownian bridge with bang–bang drift

Y (·) = Y (0) + W ♯(·) + 2

1 − 2 α

LY (·)

−


·

0


λ sgn

Y (t)

+

Y (t)

T − t
·


C1

C1 + C2

 
T − t,Y (t)


dt.

This result suggests that the time reversal of SBBBM in general looks like a skew Brownian
bridge drifted towards the target point Y (T ) = y0.

7. Applications of the skew representations (3.30)–(3.31)

With the skew representations in Section 3.4 and the joint distribution of (Y (·),LY (·)) in
Section 6.1 it is now straightforward to compute the transition density of the system (1.2)–(1.3)
as well as its time reversal.

7.1. Transition density

Let us discuss only some special cases, since the other cases are quite similar. For example,
in the degenerate case with σ = 0, thus ρ = 1, γ = 1 and with x1 ≥ x2, (3.30)–(3.31) become

X1(t) = x1 + g t + (Y +(t) − y+

0 ) − β LY (t),

X2(t) = x2 + g t + (Y −(t) − y−

0 ) − β LY (t),
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for 0 ≤ t < ∞, where y0 = x1 − x2 ≥ 0, and hence the transition density of (X1(·), X2(·)) is

P

X1(t) ∈ dξ1, X2(t) ∈ dξ2


= (2α) ·

2
β

· e−2λ(ξ1−ξ2)

·
c1

√
2 π t3

exp


−

(c1 − λ t)2

2t


dξ1dξ2,

where c1 := ξ1 − [(2 + β)ξ2/β] + x1 + [(2 − β)x2/β] + [2gt/β], if β > 0, ξ1 ≥ ξ2 and
ξ2 < x2 + g t . Similarly, by (skew) symmetry:

P

X1(t) ∈ dξ1, X2(t) ∈ dξ2


= 2(1 − α) ·

2
β

· e−2λ(ξ2−ξ1)

·
c2

√
2 π t3

exp


−

(c2 − λ t)2

2t


dξ1dξ2,

where c2 := ξ2 − [(2 + β)ξ1/β] + x1 + [(2 − β)x2/β] + [2gt/β], if β > 0, ξ2 ≥ ξ1 and
ξ1 < x2 + g t . If β > 0, ξ1 > ξ2 = x2 + g t , then the local time LY (·) is absent, and the transition
density is easily obtained from (6.6):

P

X1(t) ∈ dξ1, X2(t) = x2 + g t


=

1
√

2π t


exp


−

(a − x1 + x2 + λt)2

2t



− e−2λ a
· exp


−

(a + x1 − x2 + λt)2

2t


a=ξ1−x2−g t

dξ1.

• For another extreme example, in the degenerate case with σ = 1, thus ρ = 0, γ = −1 and
with x1 ≥ x2, (3.30)–(3.31) become

X1(t) = x1 − h t − (Y −(t) − y−

0 ) + (2 − β)LY (t),

X2(t) = x2 − h t − (Y +(t) − y+

0 ) + (2 − β)LY (t),

for 0 ≤ t < ∞. If β < 2, ξ1 ≥ ξ2 and ξ1 > x1 − h t , then

P

X1(t) ∈ dξ1, X2(t) ∈ dξ2


= (2α) ·

2
2 − β

· e−2λ(ξ1−ξ2) ·
c3

√
2 π t3

exp


−

(c3 − λ t)2

2t


dξ1dξ2,

where c3 :=


4 − β

2 − β


ξ1 − ξ2 −


β

2 − β


x1 − x2 +


4 − β

2 − β


h t.

If β < 2, ξ2 ≥ ξ1 and ξ2 > x1 − h t , then

P

X1(t) ∈ dξ1, X2(t) ∈ dξ2


= 2(1 − α) ·

2 e−2λ(ξ2−ξ1)

2 − β
·

c4
√

2 π t3
exp


−

(c4 − λ t)2

2t


dξ1dξ2,

where c4 :=


4 − β

2 − β


ξ2 − ξ1 −


β

2 − β


x1 − x2 +


4 − β

2 − β


h t.
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If β < 2, ξ1 = x1−h t > ξ2, then the local timeLY (·) does not accumulate, that is, the transition
density is obtained from (6.6):

P(X1(t) = x1 − h t, X2(t) ∈ dξ2) =
1

√
2π t


exp


−

(a − x1 + x2 + λt)2

2t



− e−2λ a exp


−

(a + x1 − x2 + λt)2

2t


a=x1−ξ2−h t

dξ1.

• For the isotropic variance case with ρ = σ = 1/
√

2, γ = 0 and x1 ≥ x2 the difference and the
sum of X1(·) and X2(·) are

X1(·) − X2(·) = Y (·), X1(·) + X2(·) = x1 + x2 + ν t + 2(2α − 1)LY (·) + Q(·),

where (Y (·),LY (·)) and Q(·) are independent. Thus the joint distributions of (X1(·), X2(·)) are
obtained by integrating out the local time.

If α ∈ (0, 1)\ {1/2}, then the above transition densities are discontinuous on the diagonal line
due to the skewness. If α = 1/2 and β = 1, then these formulas are the same as those of the
degenerate system studied in FERNHOLZ ET AL. [10]. The transition densities for all the other
cases as well as the joint distribution of (X1(·), X2(·), L X1−X2(·)) are computable from the skew
representations (3.30)–(3.31) and the joint distribution (6.4)–(6.6) in a similar manner.

7.2. Time reversal

We consider now the time-reversalX i (t) := X i (T − t), X i (t) := X i (T − t) − X i (T ), 0 ≤ t ≤ T, i = 1, 2 (7.1)

of the solution to the system (1.2)–(1.3) with the backwards filtrationF = {F(t)}0≤t≤T generated
by the random variable Y (T ) and by the time-reversal W (t) := W (T − t) − W (T ), Q(t) := Q(T − t) − Q(T )


, 0 ≤ t ≤ T

of the planar Brownian motion, namely F(t) := σ (Y (T )) ∨ F(Q,W )(t) with F(Q,W )(t) := σ
Q

(θ), W (θ); 0 ≤ θ ≤ t

, 0 ≤ t ≤ T .

With some extra work in addition to the discussion of Remark 6.5, we may show that Y (·)

is a diffusion (6.17) driven by the F-Brownian motion W ♯(·) (cf. PARDOUX [27] and Section
3 of PETIT [28]). Combining the skew representations (3.30)–(3.31) with the time-reversals
(6.17)–(6.18), we derive for 0 ≤ t ≤ T the time-reversed skew representationsX1(t) = −µ t + ρ2Y +(t) − Y +(0)


− σ 2Y −(t) − Y −(0)


− (1 − β − γ )LY (t) + ρ σ Q(t)

= −µ t +

 t

0


ρ21

{Y (s)>0}
+ σ 21

{Y (s)≤0}


dY (s)

− (1 − β − 2γ )LY (t) + ρ σ Q(t), (7.2)X2(t) = −µ t − σ 2Y +(t) − Y +(0)

+ ρ2Y −(t) − Y −(0)


− (1 − β − γ )LY (t) + ρ σ Q(t)
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= −µ t −

 t

0


ρ21

{Y (s)≤0}
+ σ 21

{Y (s)>0}


dY (s)

− (1 − β − 2γ )LY (t) + ρ σ Q(t). (7.3)

Remark 7.1. By analogy with (7.1) we denote the time-reversal of ranks by Ri (t) := Ri (T − t)
for 0 ≤ t ≤ T, i = 1, 2. Applying the TANAKA formula to (7.2)–(7.3), we may derive the
time-reversed dynamics of (R1(·), R2(·)).

Remark 7.2. As we saw in Remarks 6.3 and 6.4, the process Y (·) is strictly time-reversible when
started at its invariant distribution (6.11). Under this invariant distribution, the dynamics of the
time-reversal of (R1(·), R2(·)) can be derived through the skew representations of (3.30)–(3.31).
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[34] F. Soucaliuc, B. Tóth, W. Werner, Reflection and coalescence between independent one-dimensional Brownian

motions, Ann. Inst. Henri Poincaré, Sec. B 36 (2000) 509–545.
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