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Abstract

We show that for every positive p, the L p-norm of linear combinations (with scalar or vector coef-
ficients) of products of i.i.d. random variables, whose moduli have a nondegenerate distribution with the
p-norm one, is comparable to the /,-norm of the coefficients and the constants are explicit. As a result the
same holds for linear combinations of Riesz products.

We also establish the upper and lower bounds of the L ,-moments of partial sums of perpetuities.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction and main results

Let X, X1, X», ... be i.i.d. nondegenerate nonnegative r.v.’s with finite mean. Define
i
Ro:=1 and R,-::l_[Xj fori=1,2,.... 1)
j=l1
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Then obviously for any vectors vg, vi, ..., v, in a normed space (F, || ), E|| Y °7_jviRill <
Z?:o llv; lIER;. In [17] it was shown that the opposite inequality holds, i.e.

n
D ik
i=0

where cy is a constant, which depends only on the distribution of X.
In this paper we present similar estimates for L ,-norms. Our main result is the following.

E

n
> cx Y IullER;,
i=0

Theorem 1. Let p > 0 and X, X1, X2, ... be i.i.d. rv’s such that |X| is nondegenerate,
E|X|? < oo and let R; be defined by (1). Then there exist constants 0 < c¢p x < Cp x < 00
which depend only on p and the distribution of X such that for any vectors vy, v1, ..., U, in a
normed space (F, | |),

I3 n
< Cpx ) IvillPEIR|P.

n
cpx Y IilPEIR;|? <E
i=0 i=0

n
> uk
i=0

Remark. The assumption that | X | has a nondegenerate distribution is crucial. If P(X; = £1) =
1/2 then (R;) are i.i.d. symmetric £1 r.v’s and by the Khintchine inequality E| Y "7_, R;|? is of
the order n?/2, whereas 3_'_, E|R;|P = n.

In fact we prove a more general result that does not require the identical distribution assump-
tion. Namely, suppose that

X1, X2, ... are independent r.v.’s such that E| X;|? < oo. 2)
Further assumptions depend on whether p < 1. For p € (0, 1] we assume that
B Vi EIXGIP? < AEIX 1) 3)
and

J5-04>1 Vi E(Xi|? — EIX;1”)Ligix;1p<|x, 17 <AE|x; 7} = SE|X;]P. 4)

Theorem 2. Let 0 < p < 1 and X1, X2, ... satisfy assumptions (2)—(4). Then for any vectors
Vo, V1, .. ., Up in a normed space (F, || ||) we have

n
Z Vi R;
i=0

where c(p, A, 6, A) is a constant which depends only on p, A, 8 and A.

n p
c(p. 1,8, A) Y IlvilPEIR;|? <&
i=0

n
<Y IullPEIR:|,
L

For p > 1 to obtain the lower bound we assume that

Ju=0.4<00 Vi ElIXi| = E[X; || = w(B|X;|")"/?  and
! 1 ®)
EIXi| — EIXillLyx, 1> aix, 0y 1/ry < Z,u(IE|Xi|P) p
and

Jy=max(p—1.1) Ja1 Vi EIX; DY < AEIX;|7)VP. (6)
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For the upper bound we need the condition

Vie12, . 1p1—1 Tig<1 Vi (BIX; [PV PR <50 (B X, PRkt D), @)

Theorem 3. Let p > 1 and X1, X3, ... satisfy assumptions (2), (5), (6) and (7). Then for any

vectors vy, V1, ..., Uy in a normed space (F, || ||) we have
n n p
c(po it A g, ) Y IvilIPEIR:)P < E | viR;
i=0 i=0

IA

n
C(p. M- A=) Y i IPEIR; |7,
i=0

where c(p, u, A, q, L) is a positive constant which depends only on p,u, A,q and A and
C(p, A1, ..., Arp1—1) is a constant which depends only on p, A1, ..., Aip—1.

Remark. Proofs presented below show that Theorem 2 holds with

83 83(1 — 1)?
Tex’ where k is an integer such that ka2 < ¥

- 2124
In Theorem 3 we can take

p(p+1> 1
Cp.riyeeshpp-)=2"72" l_[ Y
1<j<ipl-1 L = 4;

c(p,r,8,A) =

and

wp
c(p,u,A,q,A) = Sk 2107 35"
(1 —ur

~ 8Cp-210p.3p°

24\" 2 @
CO—(l— )1 p —p 48mmpll.
3.) \g+1—pmn2

Another consequence of Theorem 1 is an estimate for L ,-norms of linear combinations of the
Riesz products. Let T = R/27Z be the one dimensional torus and m be the normalized Haar
measure on T. The Riesz products are defined on T by the formula

where k is an integer such that kaPk <

i
Ri(t) =[] +cos(njr)), i=1,2,...,
j=1

where (nx)x>1 is a lacunary increasing sequence of positive integers. B

It is well known that if coefficients n; grow sufficiently fast then || Y 7 o a;R;|l Ly(T) ~
(ElY 7 _yaiRi 1”) /P for p > 1, where R; are products of independent random variables
distributed as R;. Together with Theorem 1 this gives an estimate for || > OalR Iz, (r). Here
is the more quantitative result.

Corollary 4. Suppose that (ni)k>1 is an increasing sequence of positive integers such that

ngr1/ng > 3 and Zk lnkk1 < o0. Then for any coefficients agy,ay,...,a, € R and
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/T ;aiRi(t)

cpZmiV’/;rmi(rn" dm(1),
i=0

where 0 < ¢, < Cp, < 00 are constants depending only on p and the sequence (ny).

p=>1

cpZ|ai|"fT|R,»<r>|"dm(r>
i=0

p

IA

dm(t)

IA

Proof. Let X, X5, ... be independent random variables distributed as 1 4+ cos(Y), where Y
is uniformly distributed on [0, 2] and R; be given by (1). By the result of Y. Meyer [18],
T gaiRillL, < EIYI_gaiRi|P)YP < Al Y }_yaiRi|lL, (in particular also % [|Ril|, <
(ERl.p YWr < ARl ,)» where A depends only on p and the sequence (nx). Thus the estimate
follows by Theorem 1. [

Theorem 1 has also an immediate application to the stationary R?-valued solution S of the
random difference equation

S= XS+ B, ®)

where the equality is meant in law and (X, B) is a random variable with values in [0, 00) x R4
independent of S such that for some p > 0,

EX? =1, E|B|’ <oo and P(X =1) < 1. (GK1)

Over the last 40 years Eq. (8) and its various modifications have attracted a lot of attention
[1-3,5,8,9,11-16,19,20]. It has a wide spectrum of applications including random walks in ran-
dom environment, branching processes, fractals, finance and actuarial mathematics, telecommu-
nications, various physical and biological models. In particular, the tail behaviour of S is of
interest.

It is well known that in law

o0
S = Z R;_1B;,
i=1

where R;—1 = X1---X;_1, Ro = 1 and (X;, B;);>1 is an i.i.d. sequence of r.v.’s with the same
distribution as (X, B). Under the additional assumption that
log X conditioned on {X # 0} is non lattice and EX” logt X < oo, (GK2)

S has a heavy tail behaviour, i.e. the limit
lim PP(||S|| > 1) = coo(X, B)
11— 00
exists and coo (X, B) is strictly positive provided that P(Xv + B = v) < 1 for every v € R?. If

P(Xv+ B =v)=1then S, =v— R,—1v — v = S. Assumptions (GK1), (GK2) together with
P(Xv + B = v) < 1 will be later on referred to as the Goldie—Kesten conditions. Let

n
Si =Y Ri_1B:.
i=1
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It turns out that the sequence E|| S, ||? is closely related to co (X, B). Recently, it has been proved
in [6] that under the Goldie—Kesten conditions plus a little bit stronger moment assumption
E(XPT¢ 4+ ||B||”*?) < oo for some ¢ > 0, we have

1
lim —E|[|S,]|” = coo(X, B) > 0,
n—oo npp
where p := EX? log X.
Now suppose that X, B are independent. Then Theorem 1 implies that for every n

1
cpxEIB|” < ;EllSnll” < CpxE|BI?, C))

which gives uniform bounds on the Goldie constant ¢ (X, B) depending only on the law
of X and E||B|” and independent of the dimension. Moreover, in some particular cases
when constants A, 8, i, g, Ar in (3)—(7) can be estimated more carefully, (9) may give some
information about the size of the Goldie constant which is of some value, especially in the
situation when none of the existing formulae for it is satisfactory enough (see [7,10,6,4]).

We can go even further. With a slight modification of the proof we can get rid of independence
of X, B and obtain the following theorem.

Theorem 5. Suppose that F is a separable Banach space. Let p > 0 and let an i.i.d. se-
quence (X, B), (X1, B1), ... with values in [0, 0c0) X F be such that X is nondegenerate and
E|B||?, EXP < oo. Assume additionally that

P(Xv+B=v) <1 foreveryv e F. (10)

Then there are constants ¢,(X, B) > 0 which depend on p and the distribution of (X, B) and
Cp(X) < oo which depend on p and the distribution of X such that for every n,

n
ZRilei
i=1

Theorem 5 specified to our situation with EX? = 1 gives

P n
< C,(X)E|B|I” Y "ER! ;. (11)

n
cp(X, BE|B|I” Y "ER! | <E
i=1 i=1

P 1 P P
cp(X, BIEIBI” < ~E|[S,|1” < Cp(XOE| B|I".

This leads to an estimate for the Goldie constant but now with ¢, (X, B), Cp,(X) depending on
the law of (X, B). Again, in particular cases, a careful examination of the constants involved in
the proof may give a more satisfactory answer. Also, in view of Theorem 5, it would be worth
relaxing the assumptions of [6].

The paper is organized as follows. In Sections 2 and 3 we derive lower bounds in Theorems 2
and 3. Then in Section 4 we establish upper bounds in both theorems. We conclude in Section 5
with a discussion of the proof of Theorem 5.

2. Lower bound for p > 1

In this section we will show the lower bound in Theorem 3. Since it is only a matter of
normalization we will assume that

X1, X5, ... are independent r.v.’s such that E| X;|? = 1. (12)

In particular this implies that E|R;|? = 1 for all i.
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We alsosetfork =1,2,...

i
Rik—1=1 and Ry; = l_[Xi fori > k.
=k

Observe that R; = Ry Ry, fori > k > 0.

We begin with several lemmas.

Lemma 6. Suppose that ar.v. X satisfies E| | X|—E|X|| > pwand E| | X|—E|X||Lx|>4) < %IL
Then forall p > 1 and u,v € (F, | ||) we have

p
ElluX +vl|” = EluX + vl Ljx|<a) = g—pmin {1, }max{llullp, [vll?}.

1
EIXDP

Proof. Let Y has the same distribution as X conditioned on the set {|X| < A}. Let us define
t := EY. Then |t| < E|Y| < E|X]. Clearly, E(|X| — E|X|)+ = E(X| — E|X])- > %u.
Therefore,
E|IX —t|Tjxj<ay = E[1X] = [t] [ T1x1<a) = E(X] = [tD)+Lx)<a)
> E(IX| = EIXD+1qx)<a)
E(X| — E[X[)+ — E(X| = E[X)41{xp-a)
1 1

1 1
—u—E|X| —EIX||L{xoa) > —p — L = L.
1 [1X] X 11gx) Ay Z SH T =gl

v

We obtain
[t EluY +v|| = E|lv(t = Y) + (tu +v)Y|| = ||v|E|Y — t]| — ||[tu + v||E|Y].
Since E|luY + v| > | uEY 4+ v|| = |[tu + v|| and [¢| < E|Y| < E|X| we have

1 vl
E|uY > ———|v|E|]Y —¢] > ElX —¢1
lu¥ + v = |t|+E|Y|”U” | | > JEXP(X] < A) | |L(x1<a)
I lvll
~ 8E|IX|P(IX| < A)’
We arrive at
EluX + vllPLyxj<a) > (EluX + vl Lyxi<a))” = ElluY + v|P(X| < A))?
Mp
> ————|v||”.
8P(E|X )P

We also have
ElluY +v|| = E||lu(Y —t) +tu + v| > |[u||E|Y —¢| — |[tu + v]|.

Therefore

flael ol

E|luY > —EFE|Y —¢t|> ————
Y +vll = ==K |_8]P’(X§A)

and as before we get that ElluX + v||[”1x<a) > ‘§—£||u||p. [l
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Lemma 7. Assume that (12) and (5) hold. Then for any vg, vy, ..., v, € (F, || ||) we have
p 2
nw
> ) p
> o ||z|| _641’ E v ll®.

Proof. For 1 < j < n we have 27:0 ViRi =Y + X;j(wjRj—1 + Xj11Z), where Y and Z are
independent of X ; and X ;. Observe that E[X;| < 1 and E|X ;| < 1. Thus, using Lemma 6
twice, we obtain

ub MZP MZI’
> S_I,EHUjijl +X;nZ|IP = M—p||vj||”IE|Rj,1|1’ = 64—pllvj||p- O

Lemma 8. Assume that (12) holds and there exist ¢ > 1 and 0 < A < 1 such that for all i,
(E|X;|9)Y4 < A. Then for any vo, vy, ..., v, € (F, | ||) and t > 0,

1 b L (=p)q _ 4
P =ty Ml ) <=2 7
i=0 i=0

ZU,’R

Proof. Using Minkowski’s and Holder’s inequalities we obtain

1
q\ ¢ n X .
(E ) <> (BlvR|)7 < Z||v,||)J Z”v,”m P
=0

p—1

n . % n . P
< (Z ||vi||f'x’> (le)
i=0 i=0

(p—Dg
(levll”/\’> -7

By Chebyshev’s inequality we get

1 q n i % d=pq _ g
>er (Y Mwl?) |=a-n 7 e O
i=0

Thus,

Lemma 9. Let Y, Z be random vectors with values in a normed space F and let p > 1. Suppose
that E|Y |7~ Z|| < yEI|Z||P. Then

1
EIlY + Z|” = E[IY[I” + (3— - 217)/>]EIIZ|I”-

Proof For any real numbers a, b we have |a + b|? > |a|’ — pla|P~"|b|. If, additionally,
lal < 3 |b| then |a +b|" > |a|P + 55 |b|” Taking a = ||Y ||, b = —|| Z]| and using the inequality
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1Y + Z|| = [IY]l — [IZ]|| we obtain

EI|Y+Z||”=EIIY+ZII”]1[ }+EIIY+Z||”]1[

1YI<31Z] I¥i=31z1}

= EIYITLy,,,

1
— p
iz} T3 R Il[Wns%nzn]

+EI|Y||”]1{ —pEIIYIIp_IIIZH]l{

1141z} 1vi>-41z1)

1
_ P _ p —
= EIYI” + 3;EIZ| (1 11{”y|>;m}>

—pE|Y P Y2 )
PEIVITHZIL(yyyz)

Note that
1 1
_ 14 r—1 <2 p—1 < P
E (3,, 1ZI1” + plIY | ||Z||) RTTE (3 + p) EIY 1177121 < 2pyEIZI.
Therefore,
1
ElY + ZI? = ElIY|I” + 3—pEI|ZIIP —2pyElZ|IP. O
We are now able to state the key proposition which will easily yield the lower bound in
Theorem 3.

Proposition 10. Let p > 1 and suppose that rv.’s X1, X2, ... satisfy assumptions (12), (5) and
(6). Then there exist constants €y, €1, Co > 0 depending only on p, u, A, q and ) such that for

any vectors vy, vy, ..., Uy in a normed space (F, || ||) and k > 1 we have
n p " el
E viR; |l = eollvoll? + (——c-) v, 13
; > sollvoll ;k i) Dl (13)

where
i
¢i=0 forl<i<k-—1, ¢ = @ZM’ fori >k and & = Cor P~k
j=k
Proof. Define
1 u? ur M2p
g :=min{——, ——¢, g :=min{ —, ——— { €0,
{4~3P 8-241’} {SP 21’—16417}
where the value of Cy will be chosen later. In the proof by ¢, C2, C3 we denote finite nonnegative
constants that depend only on parameters p, i.A, g and A.
We fix k > 1 and prove (13) by induction on n. From Lemmas 6 and 7 we obtain

p p
n 281 n »
dOuiRi| == i’
i=0 s

n
E|Y wRi| =2e0lwl?. E
i=0

Therefore for n < k we have

n p
E ZviR,-
i=0

n
€1
> eollvoll” + % E v ll?.
i=1
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Suppose that the induction assertion holds for n > k. We show it for n + 1. To this end we
consider two cases.
Case 1. gollvo]|? < & 70 Af ;|7

Applying the induction assumption conditionally on X we obtain

4 n+1

n+1
> sofl+ 0 X7+ 3 (5 —cim1) EIXiuil”

E ZU,‘R,
=0

n+1
> —||v1||P+Z(——c, ) il
n+1 n+1
> eolluoll” — @Zx’m |”+—||v1||P+Z(——c, 1) il
n+1

= sollwl” + 3 (55 =) il

where the second inequality follows from Lemma 6.

Case 2. sollvoll? > & 3/ A |jv; |17
Define the event Ay € (X1, ..., Xx) by

1
Ay = {|X1| < A, |Rox| < mk—l}.

By the induction assumption used conditionally on X1, ..., Xy we have
n+1 p k p
E ZviR ]]‘Q\Ak > goE ZviR ]]‘Q\Ak
i=0 i=0
n+1 £
+ 2 (- ) EluRel Loy, (14)

i=k+1
We have by Chebyshev’s inequality and (6),

E[Ry |7
k—1
(|R2"|>2“ >—2A<k g E2

Together w1th (5)it imphes P(Ay) > 0. Let (Y, Y’, Z) have the same distribution as the random
vector (Z —k v R;, Zl x ViRiy1is Zf:é v; R;) conditioned on the event A;. Note that

p
14, =P(AYE|Y + Z|P.

15)

n+l1

E ZU,‘R,
=0

Applying Lemma 6 conditionally we obtain

=3 un

1
P(|Ryk| < 2“1‘_1> p P
wh » ( . I » 1 MK »
al B ol ———— = B . 16
37 [lvoll P(AD) = llvoll P(X;| < A) Z 3 llvoll (16)

p
Elz||? =

Tix,<ayl

1
[Ryk|<21 A""]

v
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Note that Y’ has the same distribution as Zfikl Vi Rr+1,; and is independent of Z. We have for
t >0,

V4
P(|Y P > tE|Z||F) < P(Apxl"k”z?uwnp > r‘g—pnvmw)
» p @ n+1 .
< P APWPED2 Y|P = B S g
8P &0 i

n+1
=P (”Y/“” = fcoezzk”‘nvinp) < Ci(1Co) 7, (17)
i=k

where the last inequality follows by Lemma 8 (recall that &> and C; denote constants depending
on p, u, A, q and A).

In order to use Lemma 9 we would like to estimate E||Y||”?~!|| Z||. To this end take § > 0 and
observe first that

ENY 1P~z < EWY 1P~ NZIL gy e <senziey + EIY NP ZIL 210 <sm)z)e)
+EIY NP N ZI Ly irsseiziny Lo zie sl zye) - (18)
Clearly,

P

p=l —1 p=1
ENY 1P~ ZI Ty yr<smyziey <8 7 (EIZIP) 7 E|Z| <8 7 E|Z]*. (19)

To estimate the next term in (18) note that
ENY 1P~ Z 1L yzyr<smiziry < 8YPEIZ)P)VPE|Y P~

Using estimate (17) we obtain

n—1 00
EIY~ = EZI") 7 / P(IY17 = s7TEIZ|1) ds
0

Sk

p=l [ 4 4
S (EHZ“P) r / min{l,C]CO Ky p—]} dS
0

< ®IZIH'T (1 + C2CO_Z> ,
where the last inequality follows since ¢ > p — 1. Thus,
ENY 1P~ ZILgzpr<seyzyry < 87 <1 + CzCOZ> E|Z|*. (20)
We are left with estimating the last term in (18). We have
EIYIP~NZI Ly sseizin Lazirsseizir)

o0
-1
= Z EINY 1P NZIL msmy 2y <y jp <2t 5w 20y L zir > sE1217)

m=0

o
he=t p=t =
< Y 2"V ST EEIZIY) TN ZILpmszizie <iviey Luzie-seizie)

m=0
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p=1

.

1 pet(IZIP 7

s D5 E(T | Z|| LomsEyziip <) ¥ )7}
=0

m

IA

p—

o

+
ZQW FENZIP L amsry 2 <)y i)
m=0

Recall that Z and Y’ are independent. Therefore as in (17) we get

EIZ|IPLomsgyzie<gyiry < EIIZ|IP1 ntl
1Y/]P=2m8Cosz 3 A=k jv; |IP
i=k

n+1
= E|Z||”P (IIY’H” > 2m5C0822)L1_k||Ui||p)
i=k

< E|Z|PC,(2"5Co) 7.

We arrive at
- N N T
ENY 1PN ZILgyyr=seizizy Lz =seiziry < EIZIIPC1(8Co) ™ » 22 P27
m=0
< E|ZIIPC3(5C0) 7, @1

where we have used the fact thatg > p — 1.
Estimates (18)—(21) imply
p=t

p— -4 _q
E|Y P~z < E|z|? (8 7o slr (1 + C2C, ) + C3(8C) )

Now we choose § = §(p) sufficiently small and then Cy = Cy(p, A, p.q, A) sufficiently large
to obtain

1
E|Y 1P~z <
4p3p

From Lemma 9 we deduce

EllZ|*. (22)

1
ElY + Z||? = E|Y|? + —E||Z|”?.
1Y+ 21" 2 EY 7+ =2 Kl Z]l

Hence
n+1 p 1 k—1 p n+1 p
E Zv,'R,' ]]-Ak > 2.3[7E Zv,‘R,' lek +E Zv,'R,' ]]-Ak' (23)
i=0 i=0 i=k
Lemma 6 and (15) yield
k—1 p P 14
R K p 7kt I n P
BID vk Lo, = Gl P(1Rol = 200571) = 5 - Exluoll”
It follows that
1 k=1 p k=1 p
TS gvim L, = eollvoll” + g0l ;vi&- Ly, (24)
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By the induction assumption we obtain

n+l p n+l
E|> viRi| 1a = eoBllveRelPLa, + Y (? —ci k) Ellv; Ry [|P1L o, (25)
i=k i=k+1

Combining (23)—(25) we get

n+1 p k—1 p
E|> viRi| La, > eollvoll” +coE | D viRi| La, + eoBllvi RellPLa,
i=0 i=0
n+1
+ > (2 cl-_k)E||v,-Rk||P11Ak
i=k+1
sz L,
n+1

+ 3 (E—c, ¢) Elloy RiIP 1,

i=k+1

This inequality together with (14) and Lemma 7 yields

n+l p p n+1
E|S uRri| = Zvl + 3 (S =ik EloRel?
. k
i=0 i=k+1
n+l1
> sollvoll? + 2 Zn wll?+ D2 (5= e ) Iol?
i=k+1
n+1
zao||vo||f’+2(——c,)||vlnf’ O

We are ready to prove the lower L ,-estimate for p > 1.

Proof of the lower bound in Theorem 3. For sufficiently large k we have for all 7,

Prk Corr* _ &
1—x  1—x — 2k

¢ =

Thus, Proposition 10 yields

n
E ZviR, > gollvoll” + —Z lvill? = svaln"
i=0

where & := min{eo, 5t}. O

Remark. Observe that u < E| |X;| — E|X;|| < 2E|X;| < 2(E|X;|?)!/P = 2. This shows that

P u3p

0=goam 1T lew

) 1 w3P
YT, -0 and min {80, —

2k}:8k-zlop-3p'
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Other constants used in the proof of Proposition 10 may be estimated as follows

uPrr 2_£ - 30\7? c (1 )\)(lfp)q -4 < )\)(lfp)q 2A\1
= q _ = — P —_ P JE—
&2 8P APgg —\24/ "’ ! &2 = 36 )
q
—1 2r 2
<L ¢ ad G3=———C < P Ci.
qg+1—p 2 5 (q+1—-p)n2

Hence we can for example take

P (24N 2p @
§: =48 mnp=TTT and Cop:=(1—-A) P — — 48 min{p=T.1} |
3A (g+1—p)ln2

then each term §(?—D/p_§l/p, 61/”C2C6q/p and C3(8Co)~4/? is not greater than 4877, hence
then (16173”)_1 and (22) holds.

3. Lower bound for p <1

In this section we prove the lower bound in Theorem 2. We will also assume normalization
(12) and use similar notation as for p > 1.
We begin with a result similar to Lemma 6.

Lemma 11. Let X be a random variable such that E|X|P = 1. Then for every A > 1 and u, v
in a normed space (F, || ||) we have

EluX +vll? = ElluX + vl|PLyxp<ay = 8 max{|ull”, [[v]?},
where

§ :=E(XI” = DLn<xpp<a)-

Proof. Since E|X|? = 1 we have
8§ <E(XI” = Diju<xry = E(1 = [XI")Lxp<ty < P(X|P < 1) < P(X|" < A). (26)

The triangle inequality yields |4 X + v|| > |||u|||X| — ||v|||. Thus, it suffices to prove

Elllull1X| = vl |"Lyxip<ay = 8 max{|lul?, [v]?}. 27)

If u = O then this inequality is satisfied due to (26). In the case # # 0 divide both sides of (27)
by |lu||” to see that it is enough to show

El|X| —t|P1xjp<ay > §max{t”, 1} forr > 0.
To prove this inequality let us consider two cases. First assume that ¢ € [0, 1]. Then we have

ElX] - tlp]l{lepfA} > El|IX| - t|p]l{1§|X|I’§A} >E(X|? — l‘p)]l“g\x\pg,q}
> E(X|P — D1j<xjp<a) = 8 = max{z?, 1}.
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In the case ¢t > 1 it suffices to note that

ENX|—t1PLyxp<ay = ElIX] — t]PLxp<1y = E@P — [ XIP)Lyxp <1
tPE(1 — |X|p):ﬂ_{|x|p51} > 8tP = § max{t?, 1},

v

where the last inequality follows from (26). [

As a consequence, in the same way as in Lemma 7, we derive the following estimate.

Lemma 12. Let rv’s X1, Xo, ... satisfy (12) and (4). Then for any vectors vy, V1, ..., v, € F
we get

P 52 n
E > 6% max [lo;|I” = — > i’
1<i<n n =1

n
D_vik
i=0

Lemma 13. Suppose that random variables X, X2, . .. satisfy assumptions (12) and (3). Then
for all vectors vy, vy, ...in (F, | ||) we have

p n
t : 1
P > AP ) < t>0.
<l_ _1_}‘?:0 ||vl||)_ fort >

n
Z v; R;
=0

S

Proof. Note that

n
D _uik
i=0

By the Cauchy—Schwarz inequality we get

n 2 n n ] n
AiliP?) <Y Ay Al uill? < —— ) A .
(; vl <Y Ay Al —1—/\;; vl

i=0 i=0

p/2 n n
E < Y Iull?PEIR P2 <Y A w1772,

i=0 i=0

Thus, using Chebyshev’s inequality we arrive at

n P ;o n p/2 no
IP( D vk = A‘nvinf’) <P 2wk = Vi) Ml
i=0 i=0 i=0 i=0
n -1 n p/2 1
< (ﬁZk‘||vi||P/2> E ZUiRi < —.
i=0 i=0 “/;

Our next lemma is in the spirit of Lemma 9, but it has a simpler proof.
Lemma 14. Let Y, Z be random vectors with values in a normed space (F, || ||) such that

1
E|Z|I”1 = gEIIZH”.

{irir=gE1zIr} =
Then

1
E[lY + Z|” = E[IY]I” + EEIIZII”.
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Proof. For any u, v € F we have ||u + v||? > }||u|| — ||v|||p > |lu||” — ||v||?, therefore
EIY +ZI” 2 EYI? + 1Z17 = 20217 Ly o 120,
+E(YI?+ 12117 - 2”Y||p)]1{|\y||p<%1a||z||p}

p P _ p _ p
= EIY I +EIZI” = 2BIZ17 Ly oz 1y 290y = 2ENY 1Ly <z

1 1

> EIY|I” +EIZ|” - 2. SEIZI” -2 SE|Z)|7
1

=E|Y|” +3EIZ|”. O

The proof of the lower bound for p < 1 is similar to the proof for p > 1 and it relies on a
proposition similar to Proposition 10.

Proposition 15. Let 0 < p < 1| and suppose that rv.’s X1, X2, ... satisfy assumptions (12), (3)
and (4). Then for any vectors vy, v1, ..., U, in a normed space (F, || ||) and any integer k > 1
we have

p n
€1
E = eollooll” + Y (=) ul”.

i=1

n
Zvl‘Ri
i=0

where g9 = 8/8, &1 = 8% /8 and

S 284
ci=0 forl<i<k—1, c=0) ) forizkandézmkk_z.

Proof. For n < k the assertion follows by Lemmas 11 and 12, since &g < §/2 and ¢;/k <
e1/n < 82/(2n). For n > k we proceed by induction on r.

Case 1. go||vo]|? < 9527:;3 A v |7

In this case the induction step is the same as in the proof of Proposition 10.

Case 2. gol|vo]|” > @ Y1 af vy |7

Let us define the set

Ap = {IX1|P < A, [Rax|P < 42%72),

By the induction hypothesis we have

n+1 p
E Zv,’R,' ]]._Q\Ak
i=0
k p ntl g
= 60 | Y uki| Lo+ . (= k) EluRd Loy, 28)
i=0 i=k+1

By Chebyshev’s inequality and (3) we get
p/2
ElRyIP _ 1
k=1 =2

in particular P(A;) > 0. Let Y, Y’, Z be defined as in the proof of Proposition 10. As in (16) we
show that Lemma 11 yields E||Z||? > §|lvo||?. We have ||V ||? < 4Ax%*=2||Y’||?, variables Y’

P(|Rok|” > 4272 < (29)
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and Z are independent and Y’ has the same distribution as Z:’ikl Vi Ri+1,i. Thus,

ENZIPL oz tmyziey < BIZIP L a52-2py 02 8 o)

1
= E|Z||"P (IIY’II” > W&‘ollvollp)

n+1 P 26 ntl
< EnZnPIP( Y viRipri| =
i=k
1
< ZE|Z|)7,
8

> A i)
1=2 i=k

1703

where the second inequality follows by the assumptions of Case 2 and the definition of ¢ and

the last one by Lemma 13. Hence, Lemma 14 yields

1
EW+HV2EWW+§MHW

Thus,
n+l p = p n+1 p
E ;UiRi ]]-Ak > EE ;U,’Ri ]]-Ak +E ig];v,'R,' ]].Ak.

Using Lemma 11 and (29) we obtain

k=1 p s

EY viRi| La = 8lvoll”P(Rok| < 42%72) = —lwoll”.
i=0 2

Since g9 < zl; and g9 < §/8, it follows that

= p k=1 p
SE(D_viRi] Tag = eollvoll” +eoE | viRi| Ta,.
i=0 i=0
By the induction assumption we obtain
n+1 p n+1

i=k+1

Combining (30)-(32) we arrive at

n+1 p k—1 P
E|Y viRi| Ta, > eollvoll” +F | Y viRi| La, + coElviRellP L,
i=0 i=0
n+1 P
+ Z (; - Ci—k) Ellvi Rell” L 4,
i=k+1
k p
> gollvoll” + eoF | Y viRi| Ta,
i=0

n+1

+ 3 (T — k) ElvRel"Ly,.

i=k+1

&1
E (> viRi| La, = eoBllveRelPLa, + Y (; —Cifk) Ellv; Rill "L 4.
i =k

(30)

€1y

(32)
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Combining this inequality with (28) yields

n+l p k P ontl
E|Y whi| = ool +e0E | Y wiki| + Y (7 —cik) EluiRel?
i=0 i=0 i=k+1
k n+1
&1 €1
= eollooll” + == Dl + Y- (= o) luill?
i=1 i=k+1

n+1

wollol”+ 3 (S =) huil”.

where in the second inequality we used Lemma 12. [

v

We are now ready to establish the lower L ,-bound for p < 1.

Proof of the lower bound in Theorem 2. To show the lower bound let us choose k such that

83(1 — )2

2k—2

s g

Then
- 2k 284022 ¢
Ci

= < —.
ST ST a0 S

Therefore, Proposition 15 implies

n p
E ZviR,
i=0

8
> Zonll? 4 — P> PO
= 8||Uo|| + 16k E loill® = 16k E l[vi ]~

4. Upper bounds

The upper bound in Theorem 2 immediately follows by the inequality (¢ + b)P < af +
bP, a,b >0, p € (0, 1]. To get the upper bound in Theorem 3 we prove the following result.

Proposition 16. Let p > 0 and X1, X», ... be independent rv.’s such that E|X;|P < oo forall i
and

Vick<rp) Jng<1 Vi (EIX; )PV PR < 34 ()X, p7FHH/ =hED, (33)

Then for any vectors vy, v1, ..., U, in a normed space (F, || ||) we have

n p
E ZviR,
i=0

where C(p) = 1 for p < 1 and for p > 1,

Al Cip—1
C(p)=2° (1 +C(p— 1)%) < 2PLP_I).
Y Y

n
<C(p) Y Ivl”EIRi”, (34)
i=0

Proof. We have || >/ o viRill < X7 o llvilllRi| and |R;| = H;:l |X |, so it is enough to
consider the case when F' = R, v > 0 and variables X ; are nonnegative. Since it is only a
matter of normalization we may also assume that EX lp = 1foralli.
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We proceed by induction on m = [p].If m = 1,1ie. 0 < p < 1 then the assertion easily
follows, since (x + y)? < xP +yP, x,y > 0.

Suppose that m > 1 and (34) holds in the case p < m. Take p suchthatm < p < m + 1.
Observe that

(x +y)P <xP +2P(yxP~1 +yP) forx,y > 0. (35)

Indeed, either x < y and then (x + y)? < 2Py”, or 0 < y < x and then by the convexity of x”,
((x +y)P —xP)/y < (2x)P —xP)/x = (2P — DxP~L.
We have by (35)

n n
D viki| <E|) uiR
i=0 i=1
Iterating this inequality we get

n p n—1 n =1,
ZviRi < vP'ERF 4 2P kaERk ( Z viRi) —i—ZvipERip
i=0 i

k=0 i=k+1 i=0
However, ER (30, viR)P ™! = ERPE(Y.} ;1 vi Ris1,)? "' and ER} = 1‘[’;:1 Exj.’ =1.
Hence

p—1
p
+ v,

p
<E

p

E +27 | wE

n
ZU,‘R,’

i=1

E

p n n—1 n p-1
E < 2P Z vip + 2P Z v E ( Z v,-Rk_H,,-) .
i=0 k=0

i=k+1

n
2 vk
i=0

The induction assumption yields

n p—1 n
-1 -1
E( 3 R> <cp-n Y R,

<
i=k+1 i=k+1
n | i |
=cip-0 > v T] EX?
i=k+1 j=k+1
n
<Clp—1 Y of Y,
i=k+1

where the last inequality follows by (33). To finish the proof we observe that

n—1 n
_ _D(i— 1 —1 _D(i—
b 3 o b oy (_UerP Ulgz> AP=DG=0
k=0 i=k+1 O<k<i<n \P

IA
[
<

~
.Mg
.—A>)/\
i
Z
|

Remark. It is not hard to show by induction on [ p that

(p+1) 1
cp <25 [ ——=
pP—J

1<j=rpl-1 L =4}
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5. Stochastic recursions

The proof of Theorem 5 is only a slight modification of the proof of Theorem 1. Normalizing
we may always assume EX? = 1. The upper bound follows as in the proof of Proposition 16
(see more details below). To show the lower bound we consider two cases:

There are w, u € F such that w + B + Xu =0 a.e. (ChH
or
P(w+ B+ Xu=0) <1 foreveryw,u € F. (C2)

In case (C1) we get
n n n n
Z Ri—1B; = Z Ri—1(—w — X;ju) = — Z Ri—1w — Z Riu
i=1 i=1 i=1 i=1

n
= —ZRi_l(w+u)+u—Rnu.
i=1
Notice that
P
= lw+ul|’E

p

n
ZRFI

i=1

2 Cp,Xn”w +u||p7

n
E Z Ri—1(w + u)
i=1

where the last inequality follows by Theorem 1 with F' = R and v; = 1. Assumption (10) implies
w + u # 0. Moreover,

Ellu — Ryul|” < 27 ||u]|”(1 + ERY) =27 |lu]1?.

Hence forn > ng = no(X, B) and c = ¢(p, X, B) = 2p+] cpxllw+ull?,

P
> cn.

i—1Bi|| = i—1(w +u) — (u — Ryu)

To get the lower bound in (11) for 1 < n < ng we observe that

nng no—1 (k+n P
cnng < E ZRl 1Bi| =E|Y > RBi
k=0 i_kn+1
no—1 (k+1)n no—1 (k+Dn
<n ZE Y. Ri-iB; —nOZER > Rintric1B;
i=kn+1 i=kn+1

p

ZRi—lBi

i=1

p
= nynolE

’

where the last equality follows since Zl(]:,;i)jl Rin+1,i—1B; has the same distribution as Z?:l

R;_1B;.

It is worth mentioning that the estimate E(Z;’Z] R;_1)? > cn was first observed in [4]
under the Goldie—Kesten conditions. In fact, a stronger statement was proved there: lim,_,
%E(Z?:l R;_1)? exists and it is strictly positive. Note also that if u = —w, i.e. assumption (10)
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is not satisfied, then

n
ZRiqBi
i=1

and the lower bound in (11) cannot hold for large n.
In the sequel, to derive the lower bound it is enough to consider case (C2). The following
lemma is then a counterpart of Lemmas 6 and 11.

P

E =Elu — Ryu||? < 2P |u||?

Lemma 17. Suppose that X is a nonnegative, nondegenerate r.v., B is a random vector with
values in a separable Banach space F, EXP E||B||? < oo and foranyu,w € F, P(B + Xu =
w) < 1. Then there exist constants A < oo and § > 0, depending only on the distribution of
(B, X) and p, such that

Ellw + B + XullPLix<ay =  max{|lw|?, [lu|”, E| B||"}.
Proof. By §; and §; we will denote in the sequel positive constants depending only on the
distribution of (B, X) and p. Lemmas 6 and 11 yield
Ellw + Xu|? > §; max{|w|?, |u|?} forany w,u € F.
Since |lug + uz||? < 2P(|lurl|? + ||uz||?) for any uy, ur € F, we get
Ellw + B+ Xul|” = 2 PE|lw + Xu||” —E|B||” = 27"~ sy max{|w|”, [lul|”, EI| B},
provided that max{||w||?, ||u||’} > M = 2P+ max{1, 81_1}IE||B||”. Let
a =inf {E|lw + B + Xu|”: max{|[w||?, [|u]|”} < M}.
First we observe that « > 0. Indeed, assume that « = 0. Then there exist sequences (u,),
(wy) in F such that ||u,||? < M, |w, ||’ < M and E||w, + B + Xu,||? — 0. We have
Ellw, + B + Xup||” + Ellwy + B + Xup ||”
> 27PE|(wy + B + Xup) — (W + B+ Xupm)|?
> 2778 max{llwy, — wnlI”, llun — umll?}.
Thus both sequences (u,) and (w,) satisfy the Cauchy condition, hence they are convergent,
respectively to # and w. But then E||w + B + Xul||? = lim, E||w, + B + Xu,||” = 0, which

contradicts our assumptions.
Therefore o > 0 and for max{||w||?, |lu||’} < M we get

1 1
p _ P ylP
E|lw+ B + Xul|| zaZamax{Mlle ,M||u|| ' EIB[?

EIIBIIP}-
This way we showed that

Elw + B + Xull” = 6 max{||w||”, [lu||”, E|B||”} forany w,u € F.
To finish the proof it is enough to note that

3PE(lw” + I BIP + lull”)Lix>a)

A

E|w+ B +Xu||p]]_{x>A}

IA

)
5max{||w||‘", lull”, E||B||P},

provided that A is large enough. [
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For the rest of the proof of the lower bound in (11) we do not need to assume that (X;, B;) are
i.i.d., but we need uniformity in Lemma 17, i.e. the condition

Js5-0,4<00 Vi Yw,ueF Ellw + B; + XiM”p]l{XiI’SAEXiI’}
> smax{E| B ||, |w]”, llul| "EX]}. (36)
More precisely, the following theorems hold.

Theorem 18. Let 0 < p < 1 and let (X1, B1), (X2, Bo) ... € R x F be a sequence of indepen-
dent random variables such that E| B; ||, EX;U < o0. Suppose that conditions (3) and (36) are
satisfied. Then there is a constant c(p, A, 8, A) such that for every n,

R _1B;
1

l

n p n
c(p. 2. 8.A) Y (ER! DE[B;|” <E <> @R/ DE[BP.  (37)
i=1 i=1

n

Theorem 19. Let p > 1 and let (X1, B1), (X2, B2) ... € RT x F be a sequence of independent
random variables such that K| B;||?, EX lp < 00. Suppose that conditions (6), (7) and (36) are
satisfied. Then there are constants ¢ = c(p,q,1,8,A),C(p, A1, ...A[p1—1) such that for
every n,

n n P
c(p. %, 8,A) Y (BRI DEIB;|I” <E | Ri_1B;
i=1 i=1
n
< C(p.his-o s hp-D) Y (BRI DEIBi|IP. (38)
i=1

Since it is only a matter of normalization we may and will assume that EX lp =1
First we prove the upper bound in (38). Proceeding by induction, as in the proof of Proposi-
tion 16, we get

n
ZRF]Bi
i=1

p
<E

)4 n p—1
E +27 [ E|Bi| (Z Ri ||B,»||) +E|Bi |

i=2

n
Z Ri—1B;
i=2

P n p—1
—1
—E +27 | BB XY (ZRz,iluBin) +E|Bi]”

i=2

n
ZRilei
i=2

Iterating this inequality we obtain
n

Z Ri—1B;

i=1

n—1 n p=1 n—1
< E|By|IP +27 > El| Bl R—1 R} ( > Rk+1,,-_1||B,-||) +27 Y "E|Bi|)”
k=1 i=k+1 i=1

p
E

n n—1 n p—1
-1
<27 R|IBi|I” +27 ) E| Bl X} E( > Rk+1,,~_1||Bl~||> :

i=1 k=1 i=k+1
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By the induction assumption

n p-1
E(}jRHqumO <cw—1>Zj@&H,pmwm“1

i=k+1 i=k+1

n
i —1—k)(p—1 _
<C(p—1 Yy AT VE) gyt
i=k+1

Hence,

i—1Bi

n

i—1—k)(p—1 -1 -
<2r ZEHB ||1’+2PC(p—1)Z S o D ¢ - Lo
=1i=k+1

To finish the proof of the upper bound we observe that for k < i,

_1 _
Ell Bl X? ™ 11B; |17~

IA

1
;]E(IIBkIIP +(p = DXLIB:NIP)

1 p p
= S EIBI” + (p = DEIBiI).

Therefore,
S LD I
DD S S o1 ): D g F: A L
k=1 i=k+1
~ -1k (1 p, Pl » R . »
<2)ZA1 —E||Bl|” + ——E|B;||” ) < —— = ) ElBi|
—1i=k+1 P P =21 i3

and the conclusion follows.

To prove the lower bounds in (37) and (38) we follow closely arguments of Sections 2 and
3, making use of (36) whenever Lemma 6 or Lemma 11 are used. For instance, to obtain the
estimate

n p
Elw+) R 1Bi| =8 max E||B; 17 > —Z]EHB P (39)
S <j=<

we proceed as follows. For 1 < j < n we have

n p
> E|w+ ZRHBi
i=1

= ERY ||IY; + B; + X;Z;|”,

p

n
E|w+ Z R,_1B; ]]-{Rj,]>0}

where

Y = <W+ZR1 1B> ﬂ{R, >0y and  Zj = Z Rjt1i-1Bi.

i=j+1
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Since variables R;_1, Y; and Z; are independent of (X ;, B;), condition (36) yields

n
w~+ Z R;_1B;
i=1

Similar argument used for j = 1 yields

n
w —+ Z Ri_1B;
i=1

For the rest of this section let us concentrate on the case p < 1, presenting only the parts of
the argument that are specific for the setting of Theorem 18. If p > 1 the argument is completely
analogous. In this situation Lemma 13 holds with the same proof.

p

E > 5]ER§'_11E||BJ»||1’ = SE||B;||”.

p

E > Slwll”. (40)

Lemma 20. Suppose the assumptions of Theorem 18 are satisfied. Then for t > 0,
t n
P > —— ) MTIE|B|P ) <7V
(_ _1_A; I l||>_

n p
ZXI < Xi—1B;
i=1

The main proposition (analogous to Proposition 15) can be formulated as follows.

Proposition 21. Suppose that the assumptions of Theorem 18 are satisfied and EX lP = 1 forall
i. Then foranyw € F andk = 1,2, ... we have

n p n
&1
Elw+ )" RiiBi| zeolwl” + ) (F — ) EIBiI”.
i=1 i=1
where ey = 6/8, €1 = d¢ep,
L 284
¢ci=0 forl<i<k-—1, ci=¢Z)\Fl, i>kand ® = A2,
1-2

=k

Proof. For n < k the assertion follows by (39) and (40). For n > k we proceed by induction. To
simplify the notation let fork = 1,2,...and w € F,

n n
Staw)=w+Y Re; 1B and S,(w):=S;,(w)=w+Y R 1B
i=k i=1
Observe that the random variable S ,(w) is independent of (X, B;)i<k—1-
As in the proof of Proposition 15 we consider two cases. First assume that

n+1
gollwll” < &> A 'E|B||”. (41)
i=k

We have
El[Sp+1 ) I” = EXV 12,011 (W) 1P Lix, >0 + Ellw + By 1" Lix, =0},

where w’ = X 1_1 (w+ Bl)]l{ x,>0}. Hence by the induction assumption (used conditionally on
(X1, B1)) we get
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n+1
€1
El|So1 )17 = EXY (eonw’np +> (- ci_l)EnB,-n") Lix,>0)
i=2

+E|w + Bi1”1ix,=0

n+l
el

= eoE|w + Bi [P Lix, 0+ ) (7 - Ci—l) EXTIIB: 11”1 ix,~0)

iz

+Elw + By [I”Lix,=0)
n+1 £
= Bl + B+ 3 (- —c1) ENB”
n+l n+l

=

€1 i
eBIBI” + Y (7 — it EIBY +eollwll” — & YA 'EIB|)”
i=2 i=k

n+1
€1
eolwll” + i EIBIIP + ) (< — <) BN,
i=2

where we used independence of X and B; for i > 2, normalization EX{ 1(x,-0; = EX{ =1
and inequalities (39) and (41).
Now suppose that
n+1 )
eolwl? > & A ~'E||B||?
i=k

and let
Ui = (X} < A, R}, <%
We have

EllSp+1 ) IPLovv, = ERL 1Skt1,n+1 W) 1P Lo\, Lir, >0)
k p
w ) Ri_1B;

i=1

+E Lo\, Liri=0),

where w’ = (R) "1 (w + Zf:l R;_1B;)1g,~0- Hence by the induction assumption
n+1 &
E||Su+1(w)IPL oy, = ERY <80||w/||p + Z (;1 — Ci—k) E||B; ||p> Lovu, Lir,>0)
i=k+1
k
w + Z R;_1B;
i=1

k
w + Z Ri_1B;
i=1
n+1 &1
+ER] Y (T — k) EI B Lo Lir-o
i=k+1

p

+E Lovw, Lire=0y

p

=gk Lo Lire>0)
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k p
+E|w+ Y Ri1Bi|| Low,ire=o)
i=1
k p n+1 P
> g ||w + Z Ri_1Bi| Lo, +ERY Z (?1 — Ci—k) E|Bi 1" Loy,
i=1 i=kt1
k p n+1 s
=& |w+ Y RiBi| Loy + Y, (? - Ci7k> ElReBi 1" Lo\w, -
i=1 i=k+1

To finish the proof we define (Z, Y, Y’) as the random variable

k n+1 n+1
w+ Y Xi--Xi1Bi, Y X1+ Xio1Bi, Y Xiqi-o- Xio1B;
i=1 i=k+1 i=k+1

conditioned on Uy and we proceed as in the proof of Proposition 15. [
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