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Abstract

We investigate a random flight process approximation to a random scatterer Lorentz gas with variable
scatterer density in a gravitational field. For power function densities we show how the parameters of the
model determine recurrence or transience of the vertical component of the trajectory. Finally, our methods
show that, with appropriate scaling of space, time and the density of obstacles, the trajectory of the particle
converges to a diffusion with explicitly given parameters.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the random flight process that arises as the Boltzmann–Grad limit of a random
scatterer model (“Lorentz gas”) in a constant gravitational field in dimension three. We also
extend our model to other dimensions, where it can be considered as the random walk
approximation to the Boltzmann–Grad limit. The Lorentz gas model, which was introduced in
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1905 as a model for the motion of an electron in a metallic body [20], has been studied extensively
in the mathematics and physics literature. See [9] for a recent survey. Fundamentally, the model
consists of a particle moving in an array of fixed convex scatterers, which are placed either
periodically or randomly, and the particle either reflects specularly off of the scatterers (hard
core model) or is pushed away via a potential (soft core model). We are motivated by the three
dimensional random scatterer hard core model where, in addition to interacting with scatterers,
the particle is also pulled down by a constant gravitational field. We generalize the process to
arbitrary dimension and investigate whether it is recurrent or transient. We show that dimension
three with constant density of scatterers is critical for determining recurrence versus transience
with respect to both dimension and the rate at which the density of scatterers increases.

Various aspects of the influence of a gravitational field on a Lorentz gas have previously been
investigated, see e.g. [7,28,29,34]. Of this prior work, only [7] has worked directly with the
Lorentz gas model. In [7] the authors establish the surprising result that the trajectory of a ball in
a two-dimensional, periodic, hard core, Lorentz gas with gravitation is (neighborhood) recurrent
[7, Theorem 1]. Heuristically, the pull of gravity is not strong enough to pull the particle to −∞,
but rather the scatterers are enough of an obstruction to make the particle bounce back up to
some finite energy level infinitely often. In addition to this (neighborhood) recurrence result,
a diffusive limit for the particle trajectory is also determined [7, Theorem 2]. We remark that
although [7, Theorem 1] is stated with a hypothesis that the particle has a sufficiently high initial
speed, as shown in [7, p. 838] all one needs for the particle to return to a fixed finite energy level
infinitely often is for the initial speed to be positive (this is a slight oversimplification—in the
deterministic setting of [7] the velocity must be uniformly distributed on a particular set specified
in [7], but there can be an arbitrarily small upper bound on the initial speed of a particle whose
initial velocity is in this set, see [7] for details).

One of the motivations of the present work is to investigate the robustness of these results
under perturbations of the model. However, as the authors of [7] mention in their companion
paper [6] their approach should extend to the three dimensional case, but the extension currently
seems intractable due to the complicated nature of the singularities. Thus we work, as the authors
of [28,29,34] do, with the Boltzmann–Grad limit of the random Poisson scatterer Lorentz gas
rather than the Lorentz gas itself. Our results suggest that dimension three is the most difficult
dimension and that the problem for the periodic Lorentz gas may become tractable again in
dimensions four and higher. We determine criteria for the recurrence or transience of the particle
trajectory for particular forms of the density of scatterers. Our methods allow us to derive several
types of invariance principles in multiple scaling regimes and determine the influence of the
density of scatterers on the limiting diffusion. A similar model with constant scatterer density was
previously considered in [29], where diffusion limits were obtained but questions of transience
and recurrence were not addressed.

The Boltzmann–Grad limit is a low density limit in which the number of scatterers in a fixed
box goes to infinity while, at the same time, the size of each scatterer goes to zero in such a
way that the distribution of the distance between scattering events for the tracer particle has a
non-degenerate limit. When the centers of scatterers are placed according to a Poisson pro-
cess and the rates are chosen appropriately, the asymptotic behavior of the moving particle
is described by a Markovian random flight process [10,30,31]. The Markovian nature of the
Boltzmann–Grad limit is due to the following two observations: (i) re-collisions with scatterers
become unlikely as the size of each scatterer goes to zero, and (ii) the Poisson nature of the scat-
terer locations means that knowing the location of one scatterer does not give information about
the locations of the other scatterers. Since analyzing the random Lorentz gas directly is beyond
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the capability of current techniques, this random flight model is commonly studied in both the
mathematics literature [2,4,29,34] and the physics literature [1,8,23,32] to gain insight into the
behavior of random Lorentz gas models. Random flight processes also arise in settings other
than Lorentz gas models. For example, the random flight process we study here also appears as
a model for a particle percolating through a porous medium, see [35] and the references therein.

1.1. The model

Let us now introduce our model carefully. We will use the notation x = (x1, x2, . . . , xd) ∈

Rd . We will denote the (d − 1)-dimensional sphere in Rd by Sd−1
:= {x ∈ Rd

: ∥x∥ = 1} and
we will typically reserve the following notation for its elements, u = (u1, u2, . . . , ud) ∈ Sd−1.
We will denote components of other vectors in a similar way. The notation dx will refer to
d-dimensional Lebesgue measure.

We are primarily interested in the process in dimension three and we start by explaining the
Boltzmann–Grad limit. Fix g > 0 and h : R → R. The constant g will serve as the strength of
the gravitational field, which will be directed towards −∞ in the last coordinate and will not act
on the other coordinates, and the density of scatterers will be determined by h. We will assume
that the density of scatterers depends only on the distance from the planeR2

×{0}. This does not
effect taking the Boltzmann–Grad limit, but makes our analysis of the limiting process tractable.
In the Boltzmann–Grad limit, we let the size of the scatterers tend to 0 as the number of scatterers
tends to ∞. In particular, assume spherical scatterers with radius 1/R are placed so their centers
are the points of a Poisson process with intensity R2h(x3)dx. Since, typically, the trajectory of
a particle in a gravitational field does not intersect itself, the arguments of [30,31] can easily be
adapted to include the gravitational field and produce the following result: if the initial position
and velocity of the particle is absolutely continuous with respect to Lebesgue measure on the
constant energy surface then the distribution of the position and velocity process of the particle
converges as R → ∞, in the sense of convergence of finite dimensional distributions, to a
Markovian random flight process (X(t), V(t))t≥0 with generator

D f (x, v) = v · ∇x f (x, v) − g
∂

∂v3
f (x, v)

+ h(x3)∥v∥


S2

( f (x, ∥v∥u) − f (x, v))σ (du), (1.1)

where σ is the normalized surface measure on the unit sphere S2, see [31]. More generally, in
any dimension d we will consider the process (X(t), V(t))t≥0 with generator

D f (x, v) = v · ∇x f (x, v) − g
∂

∂vd
f (x, v)

+ h(xd)∥v∥


Sd−1

( f (x, ∥v∥u) − f (x, v))σ (du), (1.2)

where σ is the normalized surface measure on the unit sphere Sd−1. In dimensions other than 3
the Boltzmann–Grad limit of the Lorentz gas has a similar generator, but instead of the integral
being against the normalized surface measure it is against a kernel that depends on v, see
Appendix. For physical reasons we are most interested in dimension 3, so we take advantage
of the simplification provided by taking a uniform scattering direction. We note that even in
other dimensions we expect the process we consider to have similar qualitative behavior to the
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Boltzmann–Grad limit of the Lorentz gas. Our process essentially corresponds to the random
walk in gravity in a field of scatterers and random walks have long been, and continue to be, a
source of intuition for the behavior of Lorentz gases, see e.g. [9,24,27,36] for a non-exhaustive
list. Moreover, and more rigorously, there are many universality results in the literature on
transport processes, of which our process is a special case, that show the reflection directions
average out on a very short time scale [11,25,26]. This is due to the diffusive heuristic that
reflections happen on a shorter time scale than the particles movement, see e.g. Theorems 1.2
and 1.3 for the exact form in this setting. Thus the reflection direction will mix before a far away
observer will see the particle move, and to an observer watching from far away it will seem that
the particle has reflected in a uniform direction essentially because if the particle approaches a
scatterer in a uniformly random direction, the direction will still be uniformly random after the
scattering event has occurred. See [26,25] for detailed arguments making this rigorous in settings
similar to ours and [14] for a classical version of the argument from the physics literature in a
similar setting. Our expectation is further supported by the rapid decay of auto-correlations of the
velocity of periodic Lorentz gas models, which goes back to [5] and continues to play a role in
more recent work such as [7], which is very close to our present setting and, when taken together
with our results, confirms the qualitative similarity when d = 2 and h = 1.

The process (X(t), V(t))t≥0 can be constructed iteratively by interspersing periods of
deterministic motion in a gravitation field (flights) with random perturbations to the velocity
at discrete times, which explains the name “random flight process”. We now give the details of
this construction. Let (Λ(x, v, t))t≥0 with x, v ∈ Rd and ∥v∥

2/2 + gxd = E denote the solution
to the initial value problemΛ′′

≡ −ged ,

Λ(0) = x,

Λ′(0) = v,

(1.3)

where e1, . . . , ed are the standard basis vectors of Rd . We construct our process
((X(t), V(t)), t ≥ 0) recursively as follows. Set (X(0), V(0)) = (x, v) and let T0 = 0. For
k ≥ 1, assuming we have defined ((X(t), V(t)))0≤t≤Tk−1 , we let Uk−1 be independent of this
part of the path and uniformly distributed on Sd−1 and let Tk satisfy

P

Tk − Tk−1 > t | Uk−1, ((Xt , Vt ))0≤t≤Tk−1


= exp


−

 t

0
h

Λ


X(Tk−1), ∥V(Tk−1)∥Uk−1, s


×

Λ′


X(Tk−1), ∥V(Tk−1)∥Uk−1, s

 ds


. (1.4)

For t ∈ [Tk−1, Tk] we then define

X(t) := Λ(X(Tk−1), ∥V(Tk−1)∥Uk−1, t − Tk−1),

V(t) := Λ′(X(Tk−1), ∥V(Tk−1)∥Uk−1, t − Tk−1).
(1.5)

We note that, under very mild assumptions, Tk → ∞ a.s., and thus this defines the path of the
particle for all times. Intuitively, Tk defines the kth reflection of our particle by a scatterer.

At this point we make a simple but important observation. By conservation of energy,

∥V(t)∥ =


2(E − gXd(t)),
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so that, if we define

v(x) =


2(E − gxd), (1.6)

then

X(t) = Λ (X(Tk−1), v(X(Tk−1))Uk−1, t − Tk−1) for t ∈ [Tk−1, Tk]. (1.7)

Since Uk−1 is independent of ((X(t), V(t)))0≤t≤Tk−1 , this implies that if we define Xk = X(Tk),
then (Xk)k≥1 is a Markov chain. That the index in this chain starts at 1 is an artifact of our
deterministic choice of V(0). If instead of choosing V(0) = v0 in the construction above we take
V(0) = v(X(0))U, with U uniformly distributed on Sd−1, then (Xk)k≥0 is a Markov chain and
its transition operator is

P f (x) = E [ f (Λ (x, v(x)U, N (x, U)))] , (1.8)

where N (x, u) is a random variable with distribution

P (N (x, u) > t) = exp


−

 t

0
h[Λ(x, v(x)u, s)]v[Λ(x, v(x)u, s)]ds


, (1.9)

and conditional on U = u, N (x, U) is distributed like N (x, u).
To simplify matters, we will assume that the particle has zero total energy, i.e., E = 0, so that

our particle’s motion remains in the half-space Rd−1
× (−∞, 0]. This is purely a normalization

assumption and has no substantive impact on our results: conservation of energy shows that for
E > 0, the d’th coordinate of the trajectory is bounded by E/g and our results hold verbatim
upon translating the xd = E/g affine plane to the plane xd = 0. With the assumption E = 0,
between reflections the particle travels along the gravitational parabola

Λ(x, u, t) :=

d−1
i=1


xi + ui


2g|xd |t


ei +


xd + ud


2g|xd |t −

g

2
t2


ed , t ≥ 0


. (1.10)

We investigate questions of transience and recurrence for the d’th coordinate of the random
flight process (1.2) when h is of the form h(x) = h(xd) = c|xd |

λ for some λ ≥ 0. Interest in
variable densities of scatterers for random Lorentz gasses goes back at least to [30] since one
wants to understand how the qualitative features of the process depend on the model choices.
Having a variable density of scatterers also makes sense in a number of physical situations: for
example one can think of our particle as a light particle in Earth’s atmosphere with the 0 energy
barrier being the top of the atmosphere. The increasing density of scatterers then corresponds to
the fact that Earth’s atmosphere gets denser. Alternatively, if one is thinking of our particle as
diffusing through a porous medium as in, e.g., [35], this corresponds to the medium becoming
less porous as the particle travels further into the medium. In our setting where we have surprising
recurrence properties for a particle being pulled to infinity by a gravitational force in a constant
density of scatterers, such as those in [7,29], it is particularly interesting to investigate whether
or not changes in the density of scatterers can impact recurrence and transience. Other densities
are also likely to be of interest, but the ones we have chosen give a natural class for investigating
the effect of an increasing density because of the easily tunable parameter λ that exhibits a phase
transition depending simply on the relationship between λ and the ambient dimension.



6 K. Burdzy, D. Rizzolo / Stochastic Processes and their Applications ( ) –

Since our force acts only in the d’th coordinate, under this assumption on h the evolution of
((Xd(t), Vd(t)), t ≥ 0) becomes a Markov process with generator

D f (y, v) = v
∂

∂y
f (y, v) − g

∂

∂v
f (y, v)

+ h(y)


2g|y|


Sd−1


f


y,


2g|y|u


− f (y, v)


σ(du), (1.11)

and if we observe the process only at reflection times, (Xk,d)k≥0 is a Markov chain with transition
operator

P f (y) = E


f

Λd


yed ,


2g|y|U, N (yed , U)


. (1.12)

For ease of notation, we set N (y, u) = N (yed , u). Since our force acts only in the d’th coor-
dinate, determining transience versus recurrence for the d’th coordinate is equivalent to deter-
mining transience versus recurrence of the particle’s kinetic energy. Our approach to transience
versus recurrence naturally leads to some invariance principles, which we explore as well. In-
terestingly, the scaling is non-Brownian for most values of λ. The methods we use can also be
used to establish invariance principles for more general h, and we sketch how this is done. In
subsequent work of the second author and other coauthors this approach was extended to study
these types of random flight processes in a general force and scattering density [12].

Suppose that (X(t), V(t))t≥0 has the generator (1.2) and let (X(t))t≥0 = {(X1(t), . . . ,
Xd(t))}t≥0. The processes (X(t))t≥0 and (Xd(t), t ≥ 0) are not Markov. The concepts of
recurrence and transience are typically applied to Markov processes so we need the following
definition. Let 0 = (0, . . . , 0) and assume that (X(0), V(0)) = (0, 0). We say that (Xd(t), t ≥ 0)

is neighborhood recurrent if for every y < 0, the process (X(t), V(t))t≥0 hitsRd−1
×[y, 0]×Rd

infinitely often, a.s. We say that (Xd(t), t ≥ 0) is recurrent if for every y ≤ 0, the process
(X(t), V(t))t≥0 hits Rd−1

× {y} ×Rd infinitely often, a.s.
Our main result on transience versus recurrence in the case h(x) = h(xd) = c|xd |

λ is the
following theorem.

Theorem 1.1. Let (X(t), V(t))t≥0 be the Markov process with generator (1.2) started from (0, 0)

with gravitation g and scatterer density h(x) = h(xd) = c|xd |
λ, with c > 0 and λ ≥ 0. Let

(X(t))t≥0 = {(X1(t), . . . , Xd(t))}t≥0.

1. If d = 1 then (Xd(t), t ≥ 0) is recurrent.
2. If d ∈ {2, 3} then (Xd(t), t ≥ 0) is neighborhood recurrent but not recurrent.
3. If d ≥ 4 then (Xd(t), t ≥ 0) is transient if λ < (d − 3)/2 and neighborhood recurrent (but

not recurrent) if λ > (d − 3)/2.

Note that recurrence trivially fails when d ≥ 2 because conservation of energy implies that
Xd can visit 0 only if one of the reflections puts all of the velocity in the positive xd -direction,
an event that happens with probability 0. However, in the regimes where Xd(t) is neighborhood
recurrent and d ≥ 2 we will show that 0 is the only number in (−∞, 0] that Xd(t) does not visit
infinitely often. Both recurrence and neighborhood recurrence imply the interesting result that
gravity is not sufficiently strong to pull the particle through the field of scatterers to −∞.

We note that already for the case d = 3 we have to do careful calculations to show that the
process is neighborhood recurrent when λ = 0, which is the “critical” case in dimension 3. In
this we are aided by the fact that h is constant in this case. Even more delicate calculations are
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likely to be needed to determine whether the process is transient or recurrent when d ≥ 4 and
λ = (d − 3)/2 so we leave this case open.

Our approach to proving Theorem 1.1 leads naturally to two invariance principles, the first for
the process observed at reflection times and the second for the process on its natural time scale.

Theorem 1.2. Let (Xk)k≥0 = {(X1,k, . . . , Xd,k)}k≥0 be the Markov chain with transition
operator (1.8) with gravitation g and scatterer density h(x) = h(xd) = c|xd |

λ, with c > 0
and λ ≥ 0. Let

d ′
=

d + 1 + 2λ

2 + 2λ
.

Under these conditions, regardless of the distribution of X0,
1

n
1

2+2λ

Xd,[nt], t ≥ 0


→d


−ρd ′


2

dc2 (1 + λ)2 t

1/(1+λ)

, t ≥ 0


,

where the convergence is in distribution on the Skorokhod space D(R+,R) and (ρd ′(t), t ≥ 0)

is a d ′-dimensional Bessel process started at 0.

The standard classification of recurrence versus transience for Bessel processes shows that the
limiting process is recurrent at 0 if λ > (d − 3)/2, transient if λ < (d − 3)/2, and neighborhood
recurrent at 0 if λ = (d − 3)/2. This suggests that for the process in Theorem 1.1 neighborhood
recurrence is observable on the diffusive scale, since neighborhoods collapse to the origin under
scaling, when λ > (d − 3)/2 but is only observable on longer time scales when λ = (d − 3)/2.
This suggests that λ = (d − 3)/2 will be the most subtle case to analyze.

Note that the scaling is non-Brownian except when λ = 0. Since Theorem 1.2 deals with
the process observed only at reflection times, the particle’s velocity does not contribute to this
exponent. That is, the non-Brownian scaling is caused purely by the increasing scattering density.
The next result, which provides an invariance principle for (Xd(t)) t≥0, shows that the particle’s
velocity contributes a further non-Brownian term to the scaling. Our approach uses a time change
argument, but the result is somewhat weaker since the time change is degenerate when the
limiting process hits 0. Consequently, we must stop the process before it hits 0. Clearly, this
is only a meaningful restriction if 0 is recurrent for the limiting process.

Theorem 1.3. Let (X(t), V(t))t≥0 be the Markov process with generator (1.2) started from (0, 0)

with gravitation g and scatterer density h(x) = h(xd) = c|xd |
λ, with c > 0 and λ ≥ 0. Let

(X(t))t≥0 = {(X1(t), . . . , Xd(t))}t≥0. Fix z < v < 0. Let T n
z be the time of the first reflection

at which Xd < n1/(2+2λ)z and let T n
v be the time of the first reflection after T n

z such that
Xd > n1/(2+2λ)v. Let Z be a diffusion on (−∞, 0) started from z whose generator acts on
f ∈ C2 with compact support in (−∞, 0) by

Gλ,c f (y) =
2
√

2g

dc
|y|

1/2−λ


1
2

f ′′(y) −


d − 1 − 2λ

4|y|


f ′(y)


.

As n → ∞ we have
n−

1
2+2λ Xd


n

3+2λ
4+4λ t + T n

z


∧ T n

v


, t ≥ 0


→ (Z (t ∧ τv+), t ≥ 0),

in distribution in the Skorokhod space D(R+,R), where τv+ = inf{t : Z (t) > v}.
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This result allows us to interpret the effects of λ. Observe that 2
√

2g
dc |y|

1/2−λ acts as an overall
time change and

Ḡλ,c f (y) =
1
2

f ′′(y) −


d − 1 − 2λ

4|y|


f ′(y)

is the generator of (−1 times) a Bessel process with dimension d̄ = (d + 1 − 2λ)/2. If
λ > (d − 1)/2, the drift is positive and the process is effectively pushed up towards 0, while
if λ < (d − 1)/2, the process is pushed down away from 0, but may still be recurrent because of
its diffusive nature. Thus increasing λ either strengthens the push towards 0 (large λ) or weakens
the pull away from 0 (small λ). This can be understood heuristically by noting that it shows that
it is more difficult for the particle to penetrate into areas with a high density of scatterers.

We note that our approach bears some similarities to other work on invariance principles
related to anomalous diffusions, see e.g. [21], but our situation is fundamentally different. In the
current setting the particle’s speed is unbounded so that the waiting time between reflections can
be very small and this contributes to the anomalous scaling. However, although the scaling is
anomalous, our limiting diffusion is not. This is in contrast to [21] and other work on anomalous
diffusion where the anomalous scaling arises because waiting times can be heavy tailed. Since
Theorem 1.3 is a result about approximation of a one-dimensional diffusion there are other
approaches as well, for example using [15]. The general literature on billiards, billiards with
potential, and on Lorentz gas models is huge and we do not feel that we can do justice to this
body of research. The articles [7,29] and references therein are a good point of entry to this field.

This article is organized as follows. In Section 2 we consider a simplified model where
the particle travels distance exactly one between reflections. The computations in this case are
simpler and the model illustrates the approach we take in the general case. Section 3 is devoted
to the proofs of Theorems 1.1, 1.2, and 1.3, with Section 3.1 containing technical estimates and
Section 4 containing the proofs of the theorems.

2. An overview of the method

Our approach is to employ results developed by Lamperti [16–18]. These papers provide a
general framework for establishing recurrence or transience of nonnegative Markov processes.
We collect and combine several results of Lamperti in Theorem 2.1.

Given A ≥ 0, we will say that a non-negative stochastic process (Xm, m ≥ 0) is A-recurrent
if P(Xm ∈ [0, A] i.o.) = 1.

Theorem 2.1. Let (Xm, m ≥ 0) be a Markov chain on [0, ∞) with transition operator T and for
ϑ ∈ R, let

µϑ
k (x) = E


X (2−ϑ)/2

n+1 − X (2−ϑ)/2
n

k
 Xn = x


.

When ϑ = 0 we suppress it in the notation. That is, we set µk = µ0
k . Assume:

1. There exists ϑ < 2 such that, as x → ∞, x1−ϑµ1(x) → a, x−ϑµ2(x) → b > 0 with
2a + b(1 − ϑ) > 0 and for each fixed k ∈ N, µk(x) = O(xkϑ/2).

2. T maps the set C0(R+,R) of continuous functions from [0, ∞) → R that vanish at ∞ to
itself.

3. P(lim sup Xn = ∞ | X0 = x) = 1 for all x ∈ [0, ∞).
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Let

c =
b (1 − ϑ) + 2a

b

1 −

ϑ
2

 .

(a) Regardless of the distribution of X0,
1

n
1

2−ϑ

X[nt], t ≥ 0


→d

ρc


b


1 −

ϑ

2

2

t

2/(2−ϑ)

, t ≥ 0

 ,

where the convergence is in distribution on the Skorokhod space D(R+,R) and
(ρc(t), t ≥ 0) is a c-dimensional Bessel process started at 0.

(b) If 2a > b then (Xm, m ≥ 0) is transient.
(c) If 2a < b then there exists A ≥ 0 such that (Xm, m ≥ 0) is A-recurrent.
(d) If, for ϑ as in Assumption 1 , 2xµϑ

1 (x) − µϑ
2 (x) = O(x−ε) for some ε > 0 then there exists

A ≥ 0 such that (Xm, m ≥ 0) is A-recurrent.

Remark 2.2. What we are calling A-recurrence is simply called recurrence by Lamperti in
[16–18].

Proof. Let Ym = X (2−ϑ)/2
m . Since (Ym, m ≥ 0) is Markov, [17, Lemma 7.1] shows that the

claims of recurrence and transience for (Ym, m ≥ 0) are settled by [16, Theorem 3.2], which
establishes parts (b), (c), and (d). Assumptions 1, 2, and 3 and [17, Lemma 7.1] show that the
hypotheses of Theorem 4.1 in [18] are satisfied for (Ym, m ≥ 0). Combining the conclusions
of [18, Theorem 4.1] with Assumptions 1 and 3 shows that the hypotheses of Theorem 5.1 in [17]
are satisfied so part (a) follows from the conclusion of [17, Theorem 5.1] along with translating
the results for (Ym, m ≥ 0) back to (Xm, m ≥ 0). �

We note that the functional limit theorem of [17, Theorem 5.1] actually pertains to the scaled
linearly interpolated process rather than the scaled step process, and convergence in distribution
on C(R+,R), but the convergence of the scaled step process in distribution on D(R+,R)

follows immediately.
In our present context, there is no difference between A-recurrence and neighborhood

recurrence.

Proposition 2.3. If (Xk,d)k≥0 is a Markov process with transition operator (1.12), then
(Xk,d)k≥0 is neighborhood recurrent if and only if (|Xk,d |)k≥0 is A-recurrent for some A ≥ 0.

Proof. Fix ε > 0 and observe from (1.12) that min0≤x≤A Px (|X1,d | < ε) > 0. Combined
with the strong Markov property this implies that P0(|Xk,d | < ε i.o.) = 1 since P0(|Xk,d | ≤

A i.o.) = 1. �

With Theorem 2.1 in hand, the conditions that must be checked to prove our results are clear,
but the calculations become quite involved in the general case. Thus, before getting into the true
model, we show how the method works in a simplified model where λ = 0 and the particle
travels distance exactly equal to one between reflections.

2.1. Motion with deterministic distance between reflections

This section is a warm up, in the sense that we analyze a simplified model, to develop a
sense for results that we can expect in a more realistic and hence more complicated situation.
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Specifically, we assume that the distance between any two consecutive reflections measured
along the trajectory of the particle is exactly one, which is the expected distance the particle
travels between reflections in the true model when h = 1. In this model, upon reflection at
x ∈ Rd , the particle starts its path in a uniform direction u ∈ Sd−1 and then travels along the
parabola (1.10) (with t measuring the time since the last reflection) until it has traveled distance
exactly one, at which point it reflects again. Let (X(t), t ≥ 0) be the path of such a particle
and let the discrete time process (X∗

d(k), k ∈ N0) record the positions of (Xd(t), t ≥ 0) at
the reflection times. Note that this is not the same as sampling of Xd at equal or identically
distributed time intervals because the velocity of Xd increases with |Xd | and the times between
scattering events become smaller on average. The process (X∗

d(k), k ∈ N0) is a Markov chain
with transition operator U that acts on C2 function f with compact support in (−∞, 0) by

(U f )(y) =


Sd−1

f (Λd(yed , u, t (yed , u)))σ (du)

where t (x, u) is the time it takes to travel distance 1 along the parabola in (1.10) with initial
position x and initial velocity in the direction of u. That is, t (x, u) = inf{s : ℓ(x, u, s) > 1}

where

ℓ(x, u, t) =

 t

0


2g|xd |(1 − u2

d) +


2g|xd |ud − gs

2
ds.

Theorem 2.4. The process (X∗

d(m), m ∈ N0) is neighborhood recurrent if d ≤ 3 and transient
if d ≥ 4.

Proof. We will apply Theorem 2.1 to the process (|X∗

d(m)|, m ∈ N0) in place of (Xm, m ≥ 0),
with ϑ = 0. Condition 2 of Theorem 2.1 follows from the continuity of Λ and ℓ while Condition
3 of the same theorem is a consequence of Markov property and the fact that there for every n,
there is a positive probability that the process started in the interval [−n, 0] will leave the interval
after n + 1 steps. This leaves the problem of finding the limits in Condition 1 of Theorem 2.1.
We need to analyze µ1(y) = |y|Ey(X∗

d(1) − y) and µ2(y) = Ey

(X∗

d(1) − y)2


as y tends to
−∞. The key to doing this is to analyze how t (yed , u), the time between reflections, depends
on y. Intuitively, it takes the particle the longest amount of time to travel distance 1 when its
direction goes against the pull of gravity and the shortest amount of time to travel distance 1
when it travels with the pull of gravity. Making this rigorous leads to the monotonicity relation
t (x, −ed) ≤ t (x, u) ≤ t (x, ed) for all u ∈ Sd−1. Moreover, assuming xd ≤ −1, as we will for
the remainder, we can explicitly compute

t (x, ed) =


2
g


|xd | −


|xd | − 1


and t (x, −ed) =


2
g


|xd | + 1 −


|xd |


.

From this, one observes that
√

|y|t (yed , ±ed) → (
√

2g)−1/2 as y → −∞ and, consequently,

lim
y→−∞


|y|t (yed , u) →

1
√

2g
, (2.1)

uniformly in u. Let ℓt (x, u, t), ℓt t (x, u, t) and ℓt t t (x, u, t) denote the first, second and third
partial derivatives, respectively, of ℓ(x, u, t) in the third variable. We have ℓt (x, u, 0) =

√
2g|xd |

and ℓt t (x, u, 0) = −gud . It follows from the definition of t (x, u) that ℓ(x, u, t (x, u)) = 1. Taylor
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expanding ℓ in the t variable yields

1 = ℓ(x, u, t (x, u))

=


2g|xd |t (x, u) −
gud

2
t (x, u)2

+
ℓt t t (x, u, α)

6
t (x, u)3

for some α = α(x, u) ≤ t (x, ed). Rearranging, this yields the relation

t (x, u) =
1

√
2g|xd |


1 +

gud

2
t (x, u)2

−
ℓt t t (x, u, α)

6
t (x, u)3


. (2.2)

We have

|y|Ey(X∗

d(1) − y) = Ey


Ud


2g|y|
3/2t (yed , U)


+ Ey


−

g

2
|y|t (yed , U)2


. (2.3)

By (2.1), the second term in (2.3) converges to −1/4 as y → −∞. To analyze the first term, we
substitute (2.2) and use Ey(Ud) = 0 to find that

Ey


Ud


2g|y|
3/2t (yed , U)


= Ey


gU 2

d

2
|y|t (yed , U)2



−Ey


Ud

ℓt t t (yed , U, α(y, U))

6
|y|t (yed , U)3


. (2.4)

From (2.1) we see that

lim
y→−∞

Ey


gU 2

d

2
|y|t (yed , U)2


=

1
4
E(U 2

d ) =
1

4d
.

Furthermore, a somewhat tedious, but ultimately straightforward, calculus exercise shows that
ℓt t t (yed , u, t) = O(|y|

−1/2) as y → −∞ uniformly in u, and 0 ≤ t ≤ t (yed , ed) which,
combined with (2.1), show that the second term in (2.4) converges to 0 as y → −∞. Therefore

−a := lim
y→−∞

|y|µ1(y) = lim
y→−∞

|y|Ey(X∗

d(1) − y) =
1

4d
−

1
4

=
1 − d

4d
.

The negative sign is because Lamperti’s processes are positive while ours are negative. Similarly,
using (2.1) we see that

b := lim
y→−∞

µ2(y) = lim
y→−∞

Ey


(X∗

d(1) − y)2


= lim
y→−∞

Ey


Ud


2g|y|t (yed , U) −
g

2
t (yed , U)2

2


=
1
d

.

This shows that the limits in Condition 1 of Theorem 2.1 exist. Moreover,

2a − b =
d − 1

2d
−

1
d

=
d − 3

2d
.

The claims of Theorem 2.4 can now be read off from Theorem 2.1. Since 2a − b is positive if
d ≥ 4, the process is transient in this case. Moreover, 2a − b is negative if d ≤ 2 so the process
is A-recurrent in this case for some A ≥ 0. In the case d = 3, we have 2a − b = 0, so this is the
critical case. One can verify that when d = 3, 2|y|µ1(y) − µ2(y) = O(|y|

−ε) for sufficiently



12 K. Burdzy, D. Rizzolo / Stochastic Processes and their Applications ( ) –

small ε > 0 and, consequently, the process is A-recurrent in this case as well. We leave this
calculation in the present toy model to the reader since we do the analogous (more difficult)
calculation for our main model below. A slight modification of the Markov property argument
in Proposition 2.3 shows that A-recurrence for any A ≥ 0 implies neighborhood recurrence for
(|X∗

d(m)|, m ∈ N0). �

3. The general model

In this section we address the general model with generator (1.2) where h is of the form
h(y) = c|y|

λ for some λ ≥ 0 and c > 0. We prove some limit theorems and results on
transience and recurrence. Although Section 2 illustrates our methods, the results in this section
are technically more difficult because we must control the distance the particle travels between
reflections as well as the time between reflections in order to establish our invariance principles.

3.1. Basic estimates

Recall that for y ≤ 0, we define N (y, u) = N (yed , u) where N (x, u) is defined in (1.9) for
x ∈ Rd .

Lemma 3.1. For every t ≥ 0 we have

lim
y→−∞

sup
u∈Sd−1

P 2g|y|h(y)N (y, u) > t


− e−t
 = 0.

Proof. We use (1.9) and the substitution w =
√

2g|y|h(y)s to see that

− log

P


2g|y|h(y)N (y, u) > t


= − log

P


N (y, u) >

t
√

2g|y|h(y)



=

 t

0

h


y +
ud

h(y)
w −

1
4|y|h(y)2 w2


√

2g|y|h(y)

×


2g|y|(1 − u2

d) +


2g|y|ud −

g
√

2g|y|h(y)
w

2

dw

=

 t

0

h


y +
ud

h(y)
w −

1
4|y|h(y)2 w2


h(y)


(1 − u2

d) +


ud −

1
2|y|h(y)

w

2

dw.

For h(y) = c|y|
λ, we have

lim
y→−∞

sup
(w,u)∈[0,t]×Sd−1


h


y +
ud

h(y)
w −

1
4|y|h(y)2 w2


h(y)

− 1

 = 0,

and the lemma follows. �

In fact, this convergence in distribution can be extended to convergence of moments.
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Lemma 3.2. For fixed p ≥ 1,

E


max{


2g|y|h(y), 1}N (y, u)
p

is bounded uniformly in y and u ∈ Sd−1.

Proof. We handle the cases y ≤ −1 and y > −1 separately. For −1 ≤ y ≤ 0 there is a finite
longest time for a parabolic path started with −1 ≤ y ≤ 0 to leave [−1, 0]. Outside this interval
h is bounded below by a strictly positive constant. Hence, once the particle is outside [−1, 0], it
will encounter a scatterer at some strictly positive rate. This implies that all of the N (y, u) with
−1 ≤ y ≤ 0 are stochastically dominated by a single random variable with an exponential tail.
The lemma easily follows in this case.

We now turn to the case y ≤ −1. A monotonicity argument shows that

P(N (y, u) > t) ≤ exp

−

 t

0
c
g

2
s2

−


2g|y|s − y
λ 2g|y| − gs

 ds


.

Fix 0 < ε < 1/4. We need to control the amount of time the particle can spend above ε, since
this is where the collision rate is low and P(N (y, u) > t) decreases slowly in this region. Define

s−(u) = inf


s ≥ 0 : y + ud


2g|y|s −
g

2
s2

= −ε


(3.1)

and

s+(u) = sup


s ≥ 0 : y + ud


2g|y|s −
g

2
s2

= −ε


.

Monotonicity arguments show that

s−(u) ≥ s−(ed) =


2
g


|y| −

√
ε


(3.2)

and

s+(u) ≤ s+(ed) =


2
g


|y| +

√
ε


.

To simplify notation, let us use s± := s±(ed). This leads to the bounds

P(N n(y, u) > t)

≤

exp

−h(−ε)t


2g|y| −

g

2
t


, t ≤ s−,

exp

−h(−ε)


2g|y|[s− + s+ − t] +

g

2
[t2

− s2
− − s2

+]


, t ≥ s+.

(3.3)

An application of Fubini’s theorem shows that E(R p) = p


∞

0 t p−1P(R > t)dt for any
non-negative random variable R. Using this and (3.3) we find that

E(N (y, u)p)

≤ p
 s−/4

0
t p−1 exp


−

 t

0
c
g

2
s2

−


2g|y|s − y
λ 

2g|y| − gs


ds


dt

+ p
 4s+

s−/4
t p−1 exp


−h(−ε)s−


2g|y| −

g

8
s−


/4


dt
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+ p


∞

4s+
t p−1 exp


−h(−ε)


2g|y|


s− + s+ − t


+

g

2


t2

− s2
− − s2

+


dt.

(3.4)

The first integral is the most challenging, so we take care of the second and third integrals first.
Since

2g|y| −
g

8
s− =


2g|y| −

√
2g

8
(


|y| −
√

ε) ≥
3
4


2g|y|,

we have

lim
y→−∞

p


2g|y|h(y)
p
 4s+

s−/4
t p−1 exp


−h(−ε)s−


2g|y| −

g

8
s−


/4


dt = 0 (3.5)

because the integral term decays exponentially in |y|. Similarly we have

lim
y→−∞

p


2g|y|h(y)
p

×


∞

4s+
t p−1 exp


−h(−ε)


2g|y|


s− + s+ − t


+

g

2


t2

− s2
− − s2

+


dt = 0.

(3.6)

For the first integral in (3.4), use the Mean Value Theorem to see that for 0 ≤ t ≤ s−/4,

−

 t

0
c
g

2
s2

−


2g|y|s − y
λ 

2g|y| − gs


ds

=
c

λ + 1

g

2
t2

−


2g|y|t − y
λ+1

− |y|
λ+1


≤

c

λ + 1


−

√
2g|y|

2
t − y

λ+1

− |y|
λ+1



≤ −c

√
2g|y|

2
t inf


|z|λ : −

√
2g|y|

2
t − y ≤ z ≤ −y


≤ −c

√
2g|y|

2
t

−√
2g|y|

2
s+/4 − y

λ ≤ −C


2g|y| |y|
λ t,

where C > 0 is a constant depending on λ but not y. Consequently, we have

p
 s−

0
t p−1 exp


−

 t

0
c
g

2
s2

−


2g|y|s − y
λ 

2g|y| − gs


ds


dt

≤ p


∞

0
t p−1 exp


−C


2g|y| |y|

λ t


dt =
p!

C p(2g|y|)p/2|y|pλ
.

This and (3.4)–(3.6) prove the result for y ≤ −1. �

The next lemma gives a uniform version of the classical result that convergence in distribution
together with bounded moments implies the convergence of moments.

Lemma 3.3. For every p ≥ 1 we have

lim
y→−∞

sup
u∈Sd−1

E 2g|y|h(y)N (y, u)
p

−


∞

0
pt p−1e−t dt

 = 0.
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Proof. Let B(y, u, r) =
√

2g|y|h(y)N (y, u) ≤ r


and define q by 1/q + p/(p +1) = 1. Also,
let η(y) =

√
2g|y|h(y). Then

E


η(y)p N (y, u)p
−

η(y)p N (y, u)p

∧ r p
≤ E


η(y)p N (y, u)p1Bc(y,u,r)


≤ E


η(y)p+1 N (y, u)p+1

p/(p+1)

(P(η(y)N (y, u) > r))1/q

≤ E

η(y)p+1 N (y, u)p+1

p/(p+1)

E(η(y)N (y, u))1/qr−1/q .

Both expectations are uniformly bounded by Lemma 3.2 so the bound goes uniformly to 0 as
r → ∞. The proof is completed by noting that it follows from Lemma 3.1 that for every r ≥ 0,

lim
y→−∞

sup
u∈Sd−1

E 2g|y|h(y)N (y, u)
p

∧ r p


−

 r

0
pt p−1e−t dt

 = 0. �

The next lemma is needed to control lower order fluctuations. This is where the averaging
occurs and it becomes important that the scattering distribution has mean 0.

Lemma 3.4. Let U be uniformly distributed on Sd−1 and let N (y, U) be distributed like N (y, u)

conditional on U = u. We then have

lim
y→−∞

h(y)2


2g|y|3


E [Ud N (y, U)] −

1 + 2λ

2d

 = 0.

Proof. Let

H(y, u, t) = h


y + ud


2g|y|t −
g

2
t2


,

M(y, u, t) =


2g|y|(1 − u2

d) +


ud


2g|y| − gt
2

,

F(y, u, t) =

 t

0
H(y, u, s)M(y, u, s)ds.

Using the change of variables z = F(y, u, t) and the density of N (y, u) derived from (1.9) one
finds that

1 = E[F(y, u, N (y, u))] and 2 = E[F(y, u, N (y, u))2
], (3.7)

for all y < 0 and u ∈ Sd−1. Taylor expanding F in t about 0, we find that for t < (2|y|/g)1/2,

F(y, u, t) = h(y)


2g|y|t + F ′′(y, u, T (y, u, t))
t2

2
, (3.8)

for some 0 ≤ T (y, u, t) ≤ t . Let B(y, u) = {N (y, u) < 1}. We then have

1 = E[F(y, u, N (y, u))] = E[F(y, u, N (y, u))1B] + E[F(y, u, N (y, u))1Bc ] (3.9)

and, by the Cauchy–Schwarz inequality and (3.7),

E[F(y, u, N (y, u))1Bc ] ≤


2P(N (y, u) ≥ 1).

By Lemma 3.2 we see that for every r ≥ 0

lim
y→−∞

sup
u∈Sd−1

|y|
rP(N (y, u) ≥ 1) = 0.
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Consequently

lim
y→−∞

sup
u∈Sd−1

|y|
rE[F(y, u, N (y, u))1Bc ] = 0. (3.10)

Similarly, for every r ≥ 0 and p ≥ 1 we see that

lim
y→−∞

sup
u∈Sd−1

|y|
rE

N (y, u)p1Bc


= 0. (3.11)

For y such that y ≤ −g/2, substituting (3.8) into the first expectation on the right hand side of
(3.9) and solving for E(N (y, u)1B) yields

E(N (y, u)1B)

=
1

h(y)
√

2g|y|


1 − E[F(y, u, N (y, u))1Bc ]

−
1
2
E


F ′′(y, u, T (y, u, N (y, u)))N (y, u)21B


.

Conditioning E(Ud N (y, U)1B) on {U = u} and using the fact that E(Ud) = 0, we have

h(y)2


2g|y|3E(Ud N (y, U)1B) = −h(y)|y|E[Ud F(y, U, N (y, U))1Bc ]

−
h(y)|y|

2
E

Ud F ′′(y, U, T (y, U, N (y, U)))N (y, U)21B


. (3.12)

The first term on the right hand side vanishes as y → −∞ by (3.10). For the second term,
observe that

F ′′(y, u, t) = H ′(y, u, t)M(y, u, t) + H(y, u, t)M ′(y, u, t)

=


ud


2g|y| − gt


h′


y + ud


2g|y|t −

g

2
t2


M(y, u, t)

− h


y + ud


2g|y|t −
g

2
t2
 g

√
2g|y|ud − gt


2g|y|(1 − u2

d) +
√

2g|y|ud − gt
2 .

Elementary calculations show that

lim
y→−∞

sup
(t,u)∈[0,1]×Sd−1

 F ′′(y, u, t)

h(y)
− gud(−2λ − 1)

 = 0.

Therefore, a combination of Lemma 3.3 and (3.11) shows that

lim
y→∞

h(y)|y|

2
E

Ud F ′′(y, U, T (y, U, N (y, U)))N (y, U)21B


= −

1 + 2λ

2
E(U 2

d ) = −
1 + 2λ

2d
.

The lemma follows by combining this with (3.12). �

Proposition 3.5. Let (Ym, m ≥ 0) be the Markov chain with transition operator (1.12) and
h(y) = c|y|

λ. For x ≥ 0, define

µk(x) = E

(|Y1| − x)k

 Y0 = −x

.
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We then have supx xλkµk(x) < ∞ for all k ≥ 1 and

lim
x→∞

x1+2λµ1(x) =
d − 1 − 2λ

2dc2 and lim
x→∞

x2λµ2(x) =
2

dc2 .

Proof. First note that, by (1.10) and (1.12),

xλkµk(x) =

k
i=0

(−1)k−i
g

2

i
(2gx)(k−i)/2xλkE


U k−i

d N (−x, U)i+k


≤

k
i=0

g

2

i
(2gx)(k−i)/2xλkE


N (−x, U)i+k


,

which is bounded, when x → ∞, by Lemma 3.2. Observe that

x1+2λµ1(x) = E


gxh(−x)2

2c2 N (−x, U)2
−

Ud


2gx3h(−x)2

c2 N (−x, U)


.

Lemma 3.3 implies that

lim
x→∞

E

(1/2)gxh(−x)2 N (−x, U)2


= 1/2,

while Lemma 3.4 shows that

lim
x→∞

E


Ud


2gx3h(−x)2 N (−x, U)


=

1 + 2λ

2d
.

Consequently,

lim
x→∞

x1+2λµ1(x) =
1

2c2 −
1 + 2λ

2dc2 =
d − 1 − 2λ

2dc2 .

Similarly, we see that

µ2(x) = E

g

2
N (−x, U)2

− Ud


2gx N (−x, U)
2


= E


2gxU 2

d N (−x, U)2
− gUd


2gx N (−x, U)3

+
g2

4
N (−x, U)4


. (3.13)

Lemma 3.3 implies that

lim
x→∞

E


−gUd


2gx N (−x, U)3

+
g2

4
N (−x, U)4


= 0, (3.14)

and

lim
x→∞

E

x2λ2gxU 2

d N (−x, U)2


=
2

dc2 .

This, (3.13) and (3.14) yield x2λµ2(x) →
2

dc2 as x → ∞. �

The next proposition contains an estimate needed in the case when d = 3 and λ = 0.

Proposition 3.6. If d = 3 and λ = 0 then 2xµ1(x) − µ2(x) ≤ O(x−δ) for some δ > 0 as
x → ∞.



18 K. Burdzy, D. Rizzolo / Stochastic Processes and their Applications ( ) –

Proof. For simplicity, we assume c = 1; the proof is similar in other cases. Observe that

2xµ1(x) −µ2(x) = E


gx(1 − 2U 2
3 )N (−x, U)2


− E


U3


8gx3 N (−x, U)


+ E


gU3


2gx N (−x, U)3


− E


g2

4
N (−x, U)4


. (3.15)

If δ < 1, then

lim
x→∞

xδE


gU3


2gx N (−x, U)3


= 0 and lim
x→∞

xδE


g2

4
N (−x, U)4


= 0, (3.16)

by Lemma 3.3.
For the remaining terms we need more careful estimates. Consider any ε ∈ (0, 1/2), r > 1

and p ≥ 1. Let q be so large that −p/2 − qε/2 < −r . By Lemma 3.2, for all u and large x ,

E


N (−x, u)p1{
√

x N (−x,u)>xε}


≤ E


N (−x, u)2p

1/2
E

1{

√
x N (−x,u)>xε}

1/2

≤ c1x−p/2P

(
√

x N (−x, u))q > xqε
1/2

≤ c1x−p/2 E (√x N (−x, u))q /xqε
1/2

≤ c2x−p/2x−qε/2.

It follows that

lim
x→∞

sup
u∈Sd−1

xrE


N (−x, u)p1{
√

x N (−x,u)>xε}


= 0. (3.17)

As in the toy model of Section 2.1, one can verify the intuition that it takes the particle the
longest amount of time to travel distance 1 when its direction goes against the pull of gravity and
the shortest amount of time to travel distance 1 when it travels with the pull of gravity. This leads
to the result that for all u ∈ S2 we have

P(N (−x, −e3) > t) ≤ P(N (−x, u) > t) ≤ P(N (−x, e3) > t).

Consequently, for sufficiently large x we have

E


gx N (−x, U)2


≤ E


gx N (−x, e3)
2


= E


gx N (−x, e3)
21{

√
x N (−x,e3)≤xε}


+ E


gx N (−x, e3)

21{
√

x N (−x,e3)>xε}


= 2g

 xε

0
tP(

√
x N (−x, e3) > t)dt + o(x−r )

= 2g
 xε

0
t exp


−

 t x−1/2

0

2gx − gs
 ds


dt + o(x−r )

= 2g
 xε

0
t exp


−


2gt +
gt2

x


dt + o(x−r )

= 2g
 xε

0
t exp


−


2gt


exp


gt2

x


− 1


dt

+ 2g
 xε

0
t exp


−


2gt


dt + o(x−r )

≤ O(x−1) + 1 + o(x−r ).
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Similarly, for some ν > 0

E


2gxU 2
3 N (−x, U)2


≥

2gx

3
E


N (−x, −e3)
2


=
4g

3


∞

0
t exp


−


2gt −
gt2

x


dt

≥ (e−gx2ε−1
− 1)

4g

3

 xε

0
t exp


−


2gt


dt

+
4g

3

 xε

0
t exp


−


2gt


dt

≥ O(x2ε−1) + o(e−νxε

) +
2
3
.

Combining the last two estimates, we obtain,

E


gx(1 − 2U 2
3 )N (−x, U)2


≤

1
3

+ O(x2ε−1). (3.18)

Using (3.17) and arguing as in the proof of Lemma 3.4 (and using the notation there) we have

− E


U3


8gx3 N (−x, U)


= −


8gx3E


U3 N (−x, U)1{

√
x N (−x,U)≤xε}


+ o(x−r )

= −xE

U3 F ′′(−x, U, T (−x, U, N (−x, U)))N (−x, U)21{

√
x N (−x,U)≤xε}


+ o(x−r ),

where 0 ≤ T (−x, U, N (−x, U)) ≤ xε−1/2 and

F ′′(−x, u, t) =

g


u3 −
gt

√
2gx




1 − u2
3 +


u3 −

gt
√

2gx

2
= J


u,

gt
√

2gx



with

J (u, t) :=
g (u3 − t)

1 − u2
3 + (u3 − t)2

.

Note that, for sufficiently small T , J (u, t) is continuously differentiable on S2
× [−T, T ] and,

consequently, there exists a constant C such that

|J (u, t) − gu3| = |J (u, t) − J (u, 0)| ≤ C |t |.

Therefore

−E


U3


8gx3 N (−x, U)


= −gxE


U 2

3 N (−x, U)21{
√

x N (−x,U)≤xε}


+ O(xε−1) + o(x−r )

≤ −
1
3

+ O(x2ε−1) + o(e−νxε

) + O(xε−1) + o(x−r ).

This, (3.15), (3.16) and (3.18) imply that 2xµ1(x) −µ2(x) ≤ O(x−δ) for every 0 < δ < 1. �
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4. Power function scatterer density: proofs of the main results

Proof of Theorem 1.1. Let (Xk)k≥0 = {(X1,k, . . . , Xd−1,k, Xd,k)}k≥0 be the Markov chain with
transition operator (1.8) started from 0, with gravitation g and scatterer density h(x) = h(xd) =

c|xd |
λ, with c > 0 and λ ≥ 0. Theorem 2.1, Propositions 2.3, 3.5, and 3.6 imply that

(i) if 1 ≤ d ≤ 3 then (Xd,k)k≥0 is neighborhood recurrent, and
(ii) if d ≥ 4 then (Xd,k)k≥0 is transient if λ < (d − 3)/2 and neighborhood recurrent if

λ > (d − 3)/2.
Let (X(t), V(t))t≥0 be the Markov process with generator (1.2) started from (0, 0) with

gravitation g and scatterer density h(x) = h(xd) = c|xd |
λ, with c > 0 and λ ≥ 0 and let

(X(t))t≥0 = {(X1(t), . . . , Xd(t))}t≥0. The process (Xk)k≥0 can be constructed as (X(t))t≥0
sampled at some random times. Hence, if (Xd,k)k≥0 visits an interval [y, 0] infinitely often,
so does (Xd(t))t≥0. In other words, if (Xd,k)k≥0 is neighborhood recurrent then (Xd(t))t≥0 is
neighborhood recurrent. Next suppose that (Xd(t))t≥0 is neighborhood recurrent and fix any
y < 0. A consequence of this is that (Xd(t))t≥0 will visit (2y, y) infinitely often, a.s. The random
flight construction shows that there exists p > 0, depending on y, such that if Xd(0) ∈ (2y, y)

then with probability greater than p there will be a scattering event at a location such that
Xd(t) ∈ (y, y/2) before Xd hits 3y. A standard argument based on the strong Markov property
then shows that there will be infinitely many scattering events with Xd(t) ∈ (y, y/2), a.s. and it
follows that (Xd,k)k≥0 is neighborhood recurrent. We conclude that (Xd,k)k≥0 is neighborhood
recurrent if and only if (Xd(t))t≥0 is neighborhood recurrent.

It remains to show that (Xd(t))t≥0 is recurrent only in the case d = 1. The continuity of
(Xd(t))t≥0 implies that neighborhood recurrence implies that all y < 0 are visited infinitely
often, a.s. The energy of the particle is preserved forever, so if (X(0), V(0)) = (0, 0) then we
may have Xd(t1) = 0 for some t1 only if V(t1) = 0. But if d ≥ 2 then after every scattering
event, the first coordinate of V is a non-zero constant until the next scattering event, a.s. This
shows that Xd(t) ≠ 0 for all t > 0, a.s.

If d = 1 and (Xd(t))t≥0 is neighborhood recurrent then the process will visit some interval
[y, 0] infinitely often, a.s., and, because of the claim (i) for (Xd,k)k≥0, it will scatter within this
interval. After the scattering event, it will travel upwards with probability 1/2 and reach 0 with
probability p1 > 0, depending on y. A standard argument based on the strong Markov property
shows that (Xd(t))t≥0 will hit 0 infinitely often, a.s. �

Proof of Theorem 1.2. This follows from 2.1 and Proposition 3.5. �

We now turn to the proof of Theorem 1.3. The idea is to augment the result of Theorem 1.2
to include information on the time between reflections and then make a time change argument
using the continuity properties of the Skorokhod topology.

To simplify notation, let

(Zλ
t , t ≥ 0) =d


−ρd ′


2

dc2 (1 + λ)2 t

1/(1+λ)

, t ≥ 0


(4.1)

where d ′
= (d + 1 + 2λ)/(2 + 2λ) and (ρd ′(t), t ≥ 0) is a d ′-dimensional Bessel process. Note

that Zλ is a Feller process whose generator acts on f ∈ C2(−∞, 0) with compact support by

Aλ f (y) =
2

dc2 |y|
−2λ


1
2

f ′′(y) −


d − 1 − 2λ

4|y|


f ′(y)


. (4.2)
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Theorem 4.1. Consider the Markov chain ((Ym,∆m), m ≥ 0) started from (0, 0) with transition
operatorU f (y, z) = E


f


y + Ud


2g|y|N (y, U) −
g

2
N (y, U)2, N (y, U)


.

Fix ε > 0 and for m ∈ N, let T n,ε
m =

m
j=1 ∆ j1{Y j−1≤−εn1/(2+2λ)}. We extend T n,ε to R+ by

linear interpolation. We have the joint convergence in distribution
n−1/(2+2λ)Y[sn], n−

3+2λ
4+4λ T n,ε

nt


, s, t ≥ 0


→d


Zλ

s ,Φε(Zλ)t

, s, t ≥ 0


in D(R+,R) × D(R+,R), where Φε : D(R+,R) → D(R+,R) is defined by

Φε( f )t =

 t

0

1( f (s) ≤ −ε)

c
√

2g | f (s)|λ+1/2
ds. (4.3)

Proof. Note that the map Φε is continuous in the Skorokhod topology at all continuous functions
f such that Leb({s : f (s) = −ε}) = 0, where Leb stands for Lebesgue measure. In particular, it
is almost surely continuous at (Zλ

t , t ≥ 0). Hence, we conclude from Theorem 1.2 that for every
ε > 0 we have the joint convergence in distribution in D(R+,R) × D(R+,R),

n−1/(2+2λ)Y[sn],Φε


n−1/(2+2λ)Y[tn]


, s, t ≥ 0


→d


Zλ

s ,Φε(Zλ)t

, s, t ≥ 0


.

(4.4)

Let Fm = σ((Y j ,∆ j ), 0 ≤ j ≤ m) and consider the martingale with respect to the filtration
(Fm)m≥0 given by

Wm :=

m
j=1


∆ j − E


∆ j | F j−1


, m ≥ 0.

Define φ(y) = E (N (y, U)). By the Markov property we see that E

∆ j | F j−1


= φ


Y j−1


.

By Lemma 3.2 we see that supy φ(y) < ∞ and

ξ := sup
m
E


∆m − E

∆m | Fm−1

2
< ∞.

By Chebyshev’s and Doob’s maximal inequalities we see that for every ε > 0 and integer k ≥ 1,

P


sup

1≤m≤kn
|Wm | > εn

3+2λ
4+4λ



≤
1

ε2n(3+2λ)/(2+2λ)
E

 sup
1≤m≤kn

|Wm |

2
 ≤

4

ε2n(3+2λ)/(2+2λ)
E

|Wkn|

2


≤
4kξ

ε2n1/(2+2λ)
,

from which it follows that sup1≤m≤kn

n−
3+2λ
4+4λ Wm

 converges to 0 in probability as n → ∞.

Similarly, if for ε > 0 we define

W n,ε
m =

m
j=1


∆ j − E


∆ j | F j−1


1{Y j−1≤−εn1/(2+2λ)}
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=

m
j=1


∆ j − φ


Y j−1


1{Y j−1≤−εn1/(2+2λ)}, m ≥ 0,

we find that sup1≤m≤kn

n−
3+2λ
4+4λ W n,ε

m

 converges to 0 in probability as n → ∞. We record this

for future reference as

sup
1≤m≤kn

n−
3+2λ
4+4λ

m
j=1


∆ j − φ


Y j−1


1{Y j−1≤−εn1/(2+2λ)}

 → 0, (4.5)

in probability as n → ∞.
Lemma 3.3 implies that for every ε > 0,

lim sup
n→∞

n
1+2λ
4+4λ sup

y≤−εn1/(2+2λ)

φ(y) −
1

c
√

2g|y|λ+1/2


= lim sup

n→∞

ε−λ−1/2 inf
z≤−εn1/(2+2λ)

|z|λ+1/2 sup
y≤−εn1/(2+2λ)

φ(y) −
1

c
√

2g|y|λ+1/2


≤ lim sup

n→∞

ε−λ−1/2 1

c
√

2g
sup

y≤−εn1/(2+2λ)

c


2g|y|
λ+1/2

φ(y) −
1

c
√

2g|y|λ+1/2


= lim sup

n→∞

ε−λ−1/2 1

c
√

2g
sup

y≤−εn1/(2+2λ)

c2g|y|
λ+1/2φ(y) − 1

 = 0.

This implies that for every integer k ≥ 1, a.s.,

lim sup
n→∞

sup
1≤m≤kn

n−
3+2λ
4+4λ

m
j=1

φ Y j−1

−

1
2g
Y j−1

 h

Y j−1


1{Y j−1≤−εn1/(2+2λ)}

≤ lim sup
n→∞

n−
3+2λ
4+4λ kn sup

y≤−εn1/(2+2λ)

φ(y) −
1

c
√

2g|y|λ+1/2

 = 0. (4.6)

Note that,

Φε


n−1/(2+2λ)Y[ · n]


m/n

=
1
n

m
j=1

1{n−1/(2+2λ)Y j−1≤−ε}
2g
n−1/(2+2λ)Y j−1

 h

n−1/(2+2λ)Y j−1


= n−

3+2λ
4+4λ

m
j=1

1{Y j−1≤−εn1/(2+2λ)}
2g
Y j−1

 h

Y j−1

 .
Hence,

sup
1≤m≤kn

Φε


n−1/(2+2λ)Y[ · n]


m/n

− n−
3+2λ
4+4λ T n,ε

m


= sup

1≤m≤kn

Φε


n−1/(2+2λ)Y[ · n]


m/n

− n−
3+2λ
4+4λ

m
j=1

1{Y j−1≤−εn1/(2+2λ)}∆ j


= sup

1≤m≤kn

n−
3+2λ
4+4λ

m
j=1

1{Y j−1≤−εn1/(2+2λ)}
2g
Y j−1

 h

Y j−1

 − n−
3+2λ
4+4λ

m
j=1

1{Y j−1≤−εn1/(2+2λ)}∆ j


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≤ sup
1≤m≤kn

n−
3+2λ
4+4λ

m
j=1


∆ j − φ


Y j−1


1{Y j−1≤−εn1/(2+2λ)}


+ sup

1≤m≤kn
n−

3+2λ
4+4λ

m
j=1

φ Y j−1

−

1
2g
Y j−1

 h

Y j−1


1{Y j−1≤−εn1/(2+2λ)}.

This, (4.5) and (4.6) imply that for fixed ε > 0 and k,

sup
1≤m≤kn

Φε


n−1/(2+2λ)Y[ · n]


m/n

− n−
3+2λ
4+4λ T n,ε

m

 → 0,

in probability, as n → ∞. It follows from this and (4.4) that for every ε > 0 we have the joint
convergence in distribution

n−1/(2+2λ)Y[sn], n−
3+2λ
4+4λ T n,ε

nt


, s, t ≥ 0


→d


Zλ

s ,Φε(Zλ)t

, s, t ≥ 0


in D(R+,R) × D(R+,R), and the result follows. �

Remark 4.2. We conjecture that the convergence in Theorem 4.1 can be extended to include
the case ε = 0. One reason to believe this is that the limiting process is still well defined.
From the basic properties of Bessel processes it follows that for every fixed t∗ ≥ 0 we have
limε→0 m({s ≤ t∗ : Zλ

s ≥ −ε}) = 0 almost surely. Consequently, we have that

lim
ε→0

Φε(Zλ) =

 t

0

1

c
√

2g|Zλ
s |λ+1/2

ds, t ≥ 0


≡ Φ(Zλ), a.s. (4.7)

A standard occupation density computation for Bessel processes shows that Φ(Zλ)t < ∞ a.s.,
for every t ≥ 0. The problem comes in controlling the amount of time spent between collisions
when Y is near 0, which contribute constant order time. We note that the same difficulty arises
in the periodic Galton Board model, studied in [7], where the authors avoided this complication
by assuming the particle had a sufficiently large initial velocity and was reflected down at the
corresponding level. In [29] the authors considered a model similar to ours when h ≡ 1 and, in
that setting, were able to overcome this difficulty through different methods.

Theorem 4.1 allows us to obtain a scaling limit for the continuous time particle path (away
from 0). In addition to keeping track of time we need to keep track of the direction of reflection.
That is, we consider the Markov chain ((Ym,∆m, Um), m ≥ 0) with transition operator

U f (y, z, w) = E


f


y + Ud


2g|y|N (y, U) −
g

2
N (y, U)2, N (y, U), U


,

started from (0, 0, (0, . . . , 0, −1)). Let Tm =
m

j=0 ∆ j . The dth component of the path of the
particle is then given by

Y (t) = Ym−1 + U m
d


2g|Ym−1|(t − Tm−1) −

g

2
(t − Tm−1)

2

on Tm−1 ≤ t < Tm, m ≥ 1. (4.8)

The following lemma is likely to be known but we could not find a reference.
Let R∗

= R ∪ {∞} and R∗
+ = R+ ∪ {∞}. By convention, inf ∅ = ∞ and for any

function f , f (∞) = ∞. For f ∈ D(R+,R+), define Ψ : D(R+,R+) → D(R+,R∗
+) by

Ψ( f )(t) = inf {s : f (s) > t}.
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Lemma 4.3. If f ∈ D(R+,R+) is continuous and strictly increasing with limt→∞ f (t) = ∞,
then Ψ( f ) ∈ D(R+,R+) and Ψ is continuous at f .

Proof. First we prove that for any h ∈ D(R+,R+), the function Ψ(h) is in D(R+,R∗
+). It

is clear that Ψ(h) is a non-decreasing function. Since the function Ψ(h) is monotone, it has
left and right limits at every point. It remains to show that it is right-continuous. Since Ψ(h) is
non-decreasing, we have lims↓t Ψ(h)(s) ≥ Ψ(h)(t) for every t . Consider any t and an arbitrarily
small δ > 0, and let b = Ψ(h)(t). If h(b) ≤ t then there must exist b1 ∈ (b, b + δ) and t1 > t
such that h(b1) = t1. This claim holds also in the case h(b) > t , by the right-continuity of h. For
all s ∈ (t, t1) we have Ψ(h)(s) ≤ b1 < b + δ. Since δ > 0 is arbitrarily small, this implies that
lims↓t Ψ( f )(s) ≤ Ψ(h)(t). In view of the previously proved opposite inequality, we conclude
that Ψ(h) is right continuous at t . This completes the proof that Ψ(h) ∈ D(R+,R∗

+).
Now suppose that f satisfies the hypotheses of the lemma and that fn ∈ D(R+,R+) is a

sequence converging to f . Since f is continuous and strictly increasing, the function Ψ( f ) is
also continuous and strictly increasing. Fix any T < ∞. It suffices to show that

lim
n→∞

sup
t∈[0,T ]

|Ψ( fn)(t) − Ψ( f )(t)| = 0.

Suppose otherwise. Then there exist ε > 0, a subsequence nk and a sequence tnk of points in
[0, T ], such that |Ψ( fnk )(tnk ) − Ψ( f )(tnk )| > ε for all k. By compactness, we may suppose that
tnk → t∞ ∈ [0, T ] as k → ∞. We will assume that t∞ ∈ (0, T ). The argument requires only
small modifications when t∞ is 0 or T .

Let s∞ = Ψ( f )(t∞) and

δ = min( f (s∞ − ε/4) − f (s∞ − ε/2), f (s∞ + ε/2) − f (s∞ + ε/4)).

Since f (s∞) = t∞, f is strictly increasing and tnk → t∞, there exists k1 such that for all
k ≥ k1,

f (s∞ − ε/4) ≤ tnk ≤ f (s∞ + ε/4). (4.9)

Since f is continuous, fn → f uniformly on compact sets. Let k2 ≥ k1 be so large that for
k ≥ k2.

|Ψ( f )(t∞) − Ψ( f )(tnk )| < ε/4, (4.10)

sup
t∈[0,s∞−ε/2]

| fnk (t) − f (t)| < δ/4, (4.11)

sup
t∈[s∞+ε/2,T ]

| fnk (t) − f (t)| < δ/4.

It follows from the definition of δ and (4.11) that

sup
t∈[0,s∞−ε/2]

fnk (t) < f (s∞ − ε/4).

This, (4.9), the definition of s∞ and (4.10) imply that

Ψ( fnk )(tnk ) ≥ Ψ( fnk )( f (s∞ − ε/4)) ≥ s∞ − ε/2 = Ψ( f )(t∞) − ε/2

≥ Ψ( f )(tnk ) − 3ε/4. (4.12)
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The following estimates can be obtained in an analogous way,

Ψ( fnk )(tnk ) ≤ Ψ( fnk )( f (s∞ + ε/4)) ≤ s∞ + ε/2 = Ψ( f )(t∞) + ε/2

≤ Ψ( f )(tnk ) + 3ε/4.

We combine this with (4.12) to obtain |Ψ( fnk )(tnk ) − Ψ( f )(tnk )| ≤ 3ε/4. This contradicts the
definition of the sequence tnk . This contradiction completes the proof. �

In order to apply this lemma, we need the following proposition. Let τv+ = inf{t : Zλ(t) >

v}.

Proposition 4.4. For all y < v < 0,

Py


lim

t→∞

 t

0

1

c
√

2g |Zλ(s ∧ τv+)|1/2+λ
ds = ∞


= 1.

Proof. The result is trivial on the set where (Zλ(t ∧ τv+), t ≥ 0) is absorbed at v. It follows
from (4.2) that the scale function G and speed measure m for Zλ are given by

G(y) =

 y

−1
|u|

λ−(d−1)/2du and m(dy) =
dc2

2
|y|

λ+(d−1)/2dy.

If G(−∞) = −∞, then (Zλ(t ∧ τv+), t ≥ 0) is absorbed at v with probability 1, so we may
assume that G(−∞) is finite. Note that this implies that d > 3. In this case there exists C > 0
such that for all y < −1

(G(y) − G(−∞))


1

c
√

2g |y|1/2+λ


dm

dy
(y) ≥ C


|y|.

Since
 y
−∞

√
|u|du = ∞ for all y ∈ R, the result is an application of [22, Theorem 2.11]. �

Theorem 4.5. Fix y < v < 0 and define τ n
y− = inf{m : Ym ≤ n1/(2+2λ)y} and τ n

v+ = inf{m >

τ n
y− : Ym ≥ n1/(2+2λ)v}. For (Y (t), t ≥ 0) as defined in (4.8) and y < v < 0 we have the

following convergence in distribution on D(R+,R),
n−

1
2+2λ Y


n

3+2λ
4+4λ t + Tτ n

y−


∧ Tτ n

v+


, t ≥ 0


→ (Zλ(A(t) ∧ τv+), t ≥ 0),

where Zλ is the diffusion (4.1) started from y and

A(t) = Ψ

Φ

Zλ( · ∧ τv+)


.

Remark 4.6. The theorem remains true replacing A with Ψ

Φε(Zλ( · ∧ τv+))


for any 0 < ε <

|v|, where Φε is defined in (4.3).

Proof of Theorem 4.5. Fix 0 < ε < |v| and define λ′
= (3 + 2λ)/(4 + 4λ). Recall T n,ε

m from
Theorem 4.1 and let

An(t) = Ψ


n−λ′


T(τ n
y−+n · )∧τ n

v+
− Tτ n

y−


+

· − n−1


τ n
v+ − τ n

y−

+ 1
√

2g|v| h(v)


(t)

= Ψ


n−λ′


T n,ε

(τ n
y−+n · )∧τ n

v+

− T n,ε

τ n
y−


+

· − n−1


τ n
v+ − τ n

y−

+ 1
√

2g|v| h(v)


(t).
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Using Theorem 4.1, Lemma 4.3, and the Skorokhod-continuity of composition with a continuous
function (see e.g. [3, Section 17]), we have that

n−
1

2+2λ Y[n An(t)]∧(τ n
v+−τ n

y−), t ≥ 0


→ (Zλ(A(t) ∧ τv+), t ≥ 0).

Observe that for all 0 ≤ m ≤ τ n
v+ − τ n

y− we have n An


n−λ′


T n,ε

τ n
y−+m − T n,ε

τ n
y−


= m and, as

a result, if T n,ε

τ n
y−+m−1 − T n,ε

τ n
y−

≤ nλ′

t < T n,ε

τ n
y−+m − T n,ε

τ n
y−

then m − 1 ≤ n An(t) < m.

Define T n
m = Tτ n

y++m , fix S > 0 and observe that

sup
0≤t≤S

n−
1

2+2λ

Y nλ′

t + Tτ n
y−


∧ Tτ n

v+


− Y[n An(t)]∧(τ n

v+−τ n
y−)


≤ sup

m≤


n An


S∧n−λ′

(Tτn
v+

−Tτn
y−

)

 supT n
m−1≤t≤T n

m

×


U τ n

y++m−1
d


2g|Yτ n

y−+m−1|

n1/(2+2λ)
n−

1
4+4λ (t − T n

m−1) −
g

2n1/(2+2λ)
(t − T n

m−1)
2




≤ sup

m≤


n An


S∧n−λ′

(Tτn
v+

−Tτn
y−

)




2g|Yτ n
y−+m−1|

n1/(2+2λ)
n−

1
4+4λ (T n

m − T n
m−1)

+ sup

m≤


n An


S∧n−λ′

(Tτn
v+

−Tτn
y−

)

 g

2n1/(2+2λ)
(T n

m − T n
m−1)

2. (4.13)

Since Zλ almost surely fluctuates across levels, the convergence in Theorem 4.1 occurs jointly
with the hitting time of v, so that

n−
1

2+2λ Y[n An(t)]∧(τ n
v+−τ n

y−), An(t), n−1(τ n
v+ − τ n

y−)


, t ≥ 0


d
−→((Zλ(A(t) ∧ τv+), A(t), τv+), t ≥ 0). (4.14)

Let

Bn =

 sup

m≤


n An


S∧n−λ′

(Tτn
v+

−Tτn
y−

)

 1

n2+2λ
|Yτ n

y−+m | ≤ M,

An


S ∧ n−λ′

(Tτ n
v+

− Tτ n
y−

)


≤ M, Yτ n
v+

< n1/(2+2λ)(v + δ)

 .

It follows from (4.14) that for every p1 < 1 there exist M > 0 and 0 < δ < |v| such that for
large n, P(Bn) > p1. We use (4.13) to conclude that for ε ∈ (0, 1) there exist C1, C2 > 0 such
that
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P


sup

0≤t≤S

Y nλ′

t + Tτ n
y−


∧ Tτ n

v+


− Y[n An(t)]∧(τ n

v+−τ n
y−)

 > ε, Bn


≤ C1n sup

y≤n1/(2+2λ)(v+δ),U∈Sd−1
P(N (y, U) > C2ε).

The right hand side goes to 0 by Lemma 3.2, applied with a large enough value of p, and using
Markov’s inequality. Since P(Bn) → 1, it follows from (4.14) that

1

n
1

2+2λ

Y


n
3+2λ
4+4λ t + Tτ n

y−


∧ Tτ n

v+


, t ≥ 0


→ (Zλ(A(t) ∧ τv+), t ≥ 0). �

Proof of Theorem 1.3. This result is a consequence of Theorem 4.5 and a standard time change
computation [33]. �

Acknowledgments

We are grateful to Zhenqing Chen, Tadeusz Kulczycki, Soumik Pal and Brent Werness for very
helpful advice. KB was supported in part by NSF Grant DMS-1206276 and DR was supported
in part by NSF Grant DMS-1204840.

Appendix. Reflection direction

This short section presents an elementary fact about the classical (specular) reflection.
The claim is known in dimension d = 3 (see, for example, the discussion of the so-called
hard-sphere scattering in [13, Sect. 4.8]) but we could not find a reference for the analogous
result in all dimensions d ≥ 2.

Suppose that d ≥ 2. Let Sd−1 be the unit sphere inRd and let e1, . . . , ed be the standard basis
for Rd . Let Bd−1

= {(0, x2, . . . , xd) ∈ Rd
: x2

2 + · · · + x2
d ≤ 1}. Let b be a random vector

with the uniform distribution in Bd−1 and let L be the random straight line {b + ae1, a ∈ R}.
Suppose that a light ray starts from the point b + 2e1 and travels along L in the direction of
the point b − 2e1. Now suppose that this random light ray reflects from Sd−1 according to the
classical law of specular reflection, i.e., the angle of reflection is equal to the angle of incidence.
Let v ∈ Sd−1 be the vector representing the direction of the reflected ray, i.e., the reflected light
ray travels along a straight line of the form {w + av, a ∈ R} for some vector w ∈ Rd .

Proposition A.1. The distribution of v is uniform on Sd−1 if and only if d = 3.

Proof. Let n be the outer normal vector to the sphere Sd−1 at the point where the light ray hits
the sphere. If |b| = r1 and the angle between e1 and n is α1 then r1 = sin α1. Let Θ be the angle
between v and e1. The specular law of reflection implies that the angle between v and n is α1 so
Θ = 2α1. Hence, for a given r ∈ (0, 1), we have |b| ≤ r if and only if Θ ≤ 2α, where r = sin α.
Let β = 2α so that r = sin(β/2). We obtain

P(Θ ≤ β) = P(|b| ≤ r) = rd−1
= (sin α)d−1

= (sin(β/2))d−1.

Let Aβ be the spherical cap with the angle β, i.e., the set of points x ∈ Sd−1 such that the

angle between the vector
−→
0x and e1 is smaller than or equal to β. Let µ be the uniform probability

measure on Sd−1. It suffices to show that µ(Aβ) = P(Θ ≤ β) for all β ∈ (0, π) if and only if
d = 3.
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The following formulas for the area of Aβ and Sd−1 are taken from [19]. The area of Aβ is
equal to (2π (d−1)/2/Γ ((d−1)/2))

 β

0 sind−2 γ dγ . The area of Sd−1 is 2πd/2/Γ (d/2). It follows
that

µ(Aβ) =
Γ (d/2)

√
πΓ ((d − 1)/2)

 β

0
sind−2 γ dγ.

For d = 3 and all β ∈ (0, π),

P(Θ ≤ β) = (sin(β/2))2
=

1
2
(1 − cos β) =

Γ (3/2)
√

πΓ (1)

 β

0
sin γ dγ = µ(Aβ),

so the proposition is proved for d = 3.
For all d ≥ 2 and β ∈ (0, π),

f (β) :=
∂

∂β
P(Θ ≤ β) =

∂

∂β
(sin(β/2))d−1

=
d − 1

2
(sin(β/2))d−2 cos(β/2),

g(β) :=
∂

∂β
µ(Aβ) =

Γ (d/2)
√

πΓ ((d − 1)/2)
sind−2 β.

This implies that

f (π/2)

g(π/2)

g(π/4)

f (π/4)
= 2(3/2)−d sec(π/8)(sin(π/8))2−d

= (2 sin(π/8))3−d .

The last quantity is not equal to 1 for d ≠ 3 so the functions f and g are not identically equal to
each other. Hence, for d ≠ 3, it is not true that P(Θ ≤ β) ≡ µ(Aβ). �

Since d = 3 is the dimension of our physical space, this justifies the choice of the uniform
direction of reflection in this paper. In other dimensions, we also assume that the direction of
reflection is uniform, for several reasons. The first is mathematical convenience. Second, the
assumption of the uniform angle of reflection allows us to use a Markov model for the process
of locations of consecutive scattering events. Finally, we believe that due to mixing (in the
probabilistic sense of the word), our results would remain unchanged, in the qualitative sense, if
we incorporated the true distribution of reflection in dimensions d ≠ 3.
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