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SOME BIVARIATE STOCHASTIC MODELS ARISING

FROM GROUP REPRESENTATION THEORY

MANUEL D. DE LA IGLESIA AND PABLO ROMÁN

Abstract. The aim of this paper is to study some continuous-time bivariate Markov pro-

cesses arising from group representation theory. The first component (level) can be either

discrete (quasi-birth-and-death processes) or continuous (switching diffusion processes), while
the second component (phase) will always be discrete and finite. The infinitesimal operators of

these processes will be now matrix-valued (either a block tridiagonal matrix or a matrix-valued

second-order differential operator). The matrix-valued spherical functions that appear in the
representations of the symmetric pair (SU(2)×SU(2), diag SU(2)) will be eigenfunctions of these

infinitesimal operators, so we can perform spectral analysis and study directly some probabilistic
aspects of these processes. Among the models we study there will be rational extensions of the

one-server queue and Wright-Fisher models involving only mutation effects.

1. Introduction

It is very well known that many important results of one-dimensional stochastic processes can
be obtained by using spectral methods. In particular, for Markov processes, many probabilistic
aspects can be analyzed in terms of the (orthogonal) eigenfunctions and eigenvalues of the in-
finitesimal operator associated with the Markov process. In a series of papers in 1950-1960, S.
Karlin and J. McGregor studied random walks and birth-and-death processes by using orthogonal
polynomials (see [18]–[22]). Since the one-step transition probability matrix of the random walk or
the infinitesimal operator of the birth-and-death process are tridiagonal matrices, it is possible to
apply the spectral theorem to find the corresponding Borel measure associated with the process.
With this measure it is easier to study the transition probabilities, the invariant measure or the
behavior of the states of the process. Many other authors like M. Ismail, G. Valent, H. Dette, D.
P. Maki or E. van Doorn, to mention a few, have studied this connection and other probabilistic
aspects (see e.g. [4, 16, 30, 40, 41]). As for diffusion processes, it is also possible to use spectral
methods, but now applied to second-order differential operators. Many authors like H. McKean,
J. F. Barrett, D. G. Lampard, E. Wong or more recently D. Bakry, O. Mazet and B. Griffiths have
studied this connection (see e.g. [1, 2, 3, 8, 17, 23, 32, 42]). Prominent examples are the Orstein-
Uhlenbeck process, population growth models or Wright-Fisher models. For a brief account of the
subject and other relations between stochastic processes and orthogonal polynomials, see [38].

A natural extension in this direction are bivariate Markov processes with discrete and finite
second component. Now the state space is two-dimensional of the form S × {1, 2, . . . , N}, where
S ⊆ R is either a discrete set or a continuous interval, and N is a positive integer. The first
component is usually called the level, while the second one is called the phase. If S is discrete
these processes are typically called quasi-birth-and-death processes (see [29, 33]), while if S is a
continuous real interval, they are called switching diffusion processes (see [31, 43]). They key
point to study spectral methods of these processes will be the theory of matrix-valued orthogonal
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2 MANUEL D. DE LA IGLESIA AND PABLO ROMÁN

polynomials. In the last few years many progresses have been made in this direction. For discrete-
time quasi-birth-and-death processes the extension of the Karlin-McGregor formula was given
independently in [6, 9], while for continuous-time in [5]. For switching diffusion processes see [14].

A natural source of examples comes from group representation theory. There is a close rela-
tionship between special functions and harmonic analysis on groups that has been worked out for
various classes of groups. E. Cartan and H. Weyl linked the classical theory of spherical harmonics
with that of group representations showing that spherical harmonics arise naturally from the study
of functions on the n-dimensional sphere Sn = SO(n+ 1)/SO(n). More generally, it is well known
that the zonal spherical functions associated to real compact symmetric spaces can be realized
as Jacobi polynomials. The link between zonal spherical functions and orthogonal polynomials
has a matrix-valued analogue that was first investigated in [11] for the compact symmetric pair
(G,K) = (SU(3),U(2)). The matrix-valued spherical functions are related to an auxiliary function
which is an eigenfunction of a matrix-valued differential operator related to the Casimir operator
of the group G and that is given explicitly. A probabilistic interpretation for this case is given in
[10] and is extended in [12]. An alternative approach to relate matrix-valued spherical functions
and matrix-valued orthogonal polynomials is given in [26, 27, 15, 37], where more general families
of symmetric pairs (G,K) are treated. In this construction, one obtains a family of matrix-valued
functions Ψn, together with a matrix-valued differential operator Ω, for which the functions Ψn

are eigenfunctions. The first of these functions, Ψ0 turns out to be invertible, and the sequence
Pn = ΨnΨ−1

0 is a sequence of matrix-valued orthogonal polynomials with respect to an appro-
priate weight function which are eigenfunctions of a matrix-valued hypergeometric operator as in
[39].

The bispectral property of these examples will give us naturally a block tridiagonal Jacobi
matrix (or a three-term recurrence relation) and a matrix-valued second-order differential operator,
along with their eigenfunctions and eigenvalues. After appropriate conjugations it will be possible
to transform these operators into infinitesimal operators of bivariate Markov processes. From the
block tridiagonal Jacobi matrix we will get the infinitesimal operator of a continuous-time level-
dependent quasi-birth-and-death process, while from the matrix-valued second-order differential
operator we will get a switching diffusion process. The structure of the group will divide both
processes into two independent processes, which will be studied in detail. For simplicity, we will
focus on the lowest dimensional cases.

The structure of the paper goes as follows. In Section 2 we will give a brief account of
matrix-valued spherical functions, focusing on the example for the pair (G,K) = (SU(2) ×
SU(2),diag SU(2)) studied in [26, 27] and the one-parameter extension given in [25, 37]. The
second-order differential operator, three-term recurrence relation, weight matrix, norms and other
structural formulas to transform the operators into operators with stochastic interpretation will
be given. The reader interested exclusively in the stochastic models could skip this section and
go directly to Sections 3 and 4. In Section 3 we will study in detail the 3 × 3 case and we will
use the spectral analysis to study several probabilistic aspects. From the block tridiagonal Jacobi
matrix we will get two birth-and-death models. The first one is a regular birth-and-death process,
while the second one is a continuous-time quasi-birth-and-death process with two phases (there are
very few examples in the literature in this direction). Both can be viewed as rational extensions
of the one-server queue with one free parameter. From the second-order differential operator we
will get two diffusion models. The first one is a regular diffusion process with killing, while the
second one is a switching diffusion process with two phases. Both can be viewed as extensions of
the Wright-Fisher model involving only mutation effects. Finally, in Section 4 we will give some
remarks about the 5 × 5 case, especially for the second-order differential operator. In this case
we will get two models, a switching diffusion process with three phases, and a switching diffusion
process with two phases with killing. The spectral analysis of this last process appears to be new.
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3

2. Spherical functions and differential operators

In this section Eij will denote the matrix with 1 at the entry (i, j) and 0 elsewhere (i, j ≥ 0).
Additionally we will use the following N ×N diagonal matrices

J =
N−1∑

i=0

(N − 1− i)Eii, J̆ = (N − 1)I − J =
N−1∑

i=0

iEii, (2.1)

and the nilpotent matrix of order N

A =
N−2∑

i=0

Ei,i+1. (2.2)

For any matrix M ∈ CN×N , M∗ will denote the conjugate transpose of M . Also IN will denote,
as usual, the identity matrix of dimension N ×N .

2.1. Matrix-valued spherical functions. Here we discuss the family of matrix-valued spherical
functions given in [26, 27] for the pair (G,K) = (SU(2)×SU(2),diag SU(2)) and the one-parameter
extension [25, 37]. For each ` ∈ N, if we let N = 2`+ 1, it was shown in [26, 27] that there exists
a family of CN×N -valued functions {Ψn : n ∈ N0}, defined on the interval [0, 1]. The family is
constructed by means of the spherical functions associated to (G,K). All the properties of the
spherical functions, like e.g. orthogonality relations, being eigenfunctions of differential operators,
can be translated into properties of the functions Ψn. This family has a one parameter extension

{Ψ(ν)
n }n≥0 given in [25, 37]. The functions Ψ

(ν)
n satisfy the matrix-valued differential equation

Ω(ν)Ψ(ν)
n (y) = y(1− y)

d2Ψ
(ν)
n (y)

dy2
+ a(ν)(y)

dΨ
(ν)
n (y)

dy
+ F (ν)(y)Ψ(ν)

n (y) = Ψ(ν)
n (y) Λ(ν)

n , (2.3)

where a(ν)(y) = 1/2 + ν − y(2ν + 1) and

F (ν)(y) = `(`+ 2)− (ν − 1)(2`+ ν + 1)− 1

2y(1− y)

[
`(ν − 1)(1− 2y)2 + `+ JJ̆

]
(2.4)

+ JJ̆ +
1− 2y

4y(1− y)

(
J̆A∗(J + ν − 1) + JA(J̆ + ν − 1)

)
,

where J, J̆ and A are given by (2.1) and (2.2).

2.2. Matrix-valued orthogonal polynomials. Matrix-valued spherical functions are closely
related to matrix-valued orthogonal polynomials. In fact we have

Ψ(ν)
n (y) =

[
Ψ∗0(y)P (ν)

n (y)
]∗
,

where Ψ0(y) is independent of ν and (P
(ν)
n )n is a family of monic matrix-valued orthogonal poly-

nomials satisfying
∫ 1

0

P (ν)
n (y)W (ν)(y)

(
P (ν)
m (y)

)∗
dy = δnm‖P (ν)

n ‖2W (ν) , (2.5)

where ‖P (ν)
n ‖2W (ν) is the matrix-valued norm of the monic polynomial P

(ν)
n and it is given by the

diagonal matrix with entries

(
‖P (ν)

n ‖2W (ν)

)
k,k

=

√
π

2 · 4n
Γ(ν + 1/2)

Γ(ν + 1)

ν(2`+ ν + n)

ν + n

k! (2`− k)! (n+ ν + 1)2`

(2`)! (n+ ν + 1)k(n+ ν + 1)2`−k
(2.6)

× n! (`+ 1/2 + ν)n(2`+ ν)n(`+ ν)n
(2`+ ν + 1)n(ν + k)n(2`+ 2ν + n)n(2`+ ν − k)n

,

and the weight matrix is given by

W (ν)(y) =
4ν−`(ν + `)`+1

2(ν + 1/2)`
[y(1− y)]ν−1/2 (Ψ0(y))

∗
T (ν)Ψ0(y), (2.7)

T
(ν)
ij = δij

(
2`

i

)
(ν)i

(ν + 2`− i)i
.
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4 MANUEL D. DE LA IGLESIA AND PABLO ROMÁN

Observe that the diagonal entries of T
(ν)
ij correspond up to a constant to the nodes of the beta-

binomial distribution (α = β = ν). Note also that the ν-dependence on the weight matrix is only

located in the scalar weight [y(1− y)]
ν−1/2

and the constant diagonal matrix T (ν). The function
Ψ0(y) is the building block of the orthogonality measure and has been calculated explicitly in [26].
A nice compact formula for Ψ0(y) is given in [37]. Let K be the constant matrix with entries

Ki,j = Kj(i) = Kj(i, 1/2, 2`),

where Kn(x, p,N) are the Krawtchouk polynomials, see e.g. [24, §1.10]. Then we have

Ψ0(y) = KMΥ(y)K∗, (2.8)

where Υ,M are the diagonal matrices

Υ(y)jj = (−1)
3j
2 y

j
2 (1− y)

2`−j
2 , Mjj =

(
2`

j

)
.

Since the spherical functions Ψ
(ν)
n are eigenfunctions of Ω(ν), the matrix-valued orthogonal

polynomials (P
(ν)
n )∗ are eigenfunctions of the differential operator Ψ−1

0 Ω(ν)Ψ0 which is explicitly
given by

D(ν) = y(1− y)∂2
y + (C + ν − y(2`+ 2ν + 1))∂y + V + (ν − 1)(2`+ ν + 1), ∂y =

d

dy
, (2.9)

where

C =
2`+ 1

2
− 1

2
(A∗J +AJ̆), V = JJ̆,

and J, J̆ and A are given by (2.1) and (2.2). Moreover, the operator D(ν) is symmetric with respect
to W (ν). The eigenvalue for D(ν) (and Ω(ν) in (2.3)) is

Λ(ν)
n = −n(n− 1)− n(2`+ 2ν + 1) + V + (ν − 1)(2`+ ν + 1). (2.10)

Additionally the monic matrix-valued orthogonal polynomials P
(ν)
n satisfy a three-term recur-

rence relation of the form

yP (ν)
n (y) = P

(ν)
n+1(y) +B(ν)

n P (ν)
n (y) + C(ν)

n P
(ν)
n−1(y), n ≥ 1, (2.11)

where the coefficients B
(ν)
n and C

(ν)
n are given by

B(ν)
n =

1

2
− 1

4
J(J + ν − 1) [(J + n+ ν − 1)(J + n+ ν)]

−1
A

− 1

4
J̆(J̆ + ν − 1)

[
(J̆ + n+ ν − 1)(J̆ + n+ ν)

]−1

A∗, n ≥ 0,

and

C(ν)
n =

n(n+ ν − 1)(2`+ n+ ν)(2`+ n+ 2ν − 1)

16
×

×
[
(J + n+ ν − 1)(J + n+ ν)(J̆ + n+ ν − 1)(J̆ + n+ ν)

]−1

, n ≥ 1,

where J, J̆ and A are given by (2.1) and (2.2).

2.3. The function S. In this subsection we turn the differential operator Ω(ν) into a differential
operator which has a form that allows for a probabilistic interpretation by conjugating with a
matrix-valued function. The appropriate function is given by a diagonal matrix whose diagonal
entries are those of the `-th column of Ψ0(y). We assume ` ∈ N, so that 2` + 1 is odd. The `-th
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5

column (and the `-th row) of the matrix Ψ0(y) is a polynomial in y. More precisely from (2.8), it
is given explicitly by

(Ψ0)k,` =
2∑̀

h=0

(
2`

h

)
Kk(h)K`(h)(−1)

3h
2 y

h
2 (1− y)

2`−h
2

=
∑̀

h=0

(−1)h
(

2`

2h

)
K2h(k)K2h(`)yh(1− y)`−h

=
∑̀

h=0


(−1)h

(
`

h

) h∑

j=0

(−1)j
(
h

j

)
K2j(k)


 yh, 0 ≤ k ≤ 2`, (2.12)

Here we are using that Kh(`) = 0 if h is odd and h ≤ 2` − 1, the binomial theorem and the
identities

K2j(`) = (−1)j
(
`

j

)(
2`

2j

)−1

,

(
`

j

)(
`− j
h− j

)
=

(
`

h

)(
h

j

)
.

Lemma 2.1. We have
h∑

j=0

(−1)j
(
h

j

)
K2j(k) =

(−k)h(−2`+ k)h
(−`)h(−`+ 1/2)h

. (2.13)

Proof. First we rewrite the Krawtchouk polynomial K2j(k) = Kk(2j) as in [24, Formula (1.10.1)]
and invert the order of summation. We obtain

h∑

j=0

(−1)j
(
h

j

)
K2j(k) =

k∑

i=0

(−1)i2i(−k)i
(−2`)i

h∑

j=0

(−1)j
(
h

j

)(
2j

i

)
. (2.14)

The inner sum is given explicitly by

h∑

j=0

(−1)j
(
h

j

)(
2j

i

)
= (−1)h22h−i

(
h

i− h

)
,

so that (2.14) becomes, using (−k)i/(−2`)i =
(

2`−i
2`−i

)(
2`
k

)−1
, the following expression

(−1)h22h

(
2`

k

)−1 k∑

i=0

(−1)i
(

2`− i
2`− i

)(
h

i− h

)
= (−1)h+k22h

(
2`

k

)−1(
h+ k − 2`− 1

k − h

)
.

The last sum can be evaluated explicitly using [7, Formula (5.25)]. Finally, a straightforward
computation shows that the last expression is exactly the same as the one given on the right hand
side of (2.13). �

Now we construct a diagonal matrix S(y) with the entries of the `-th column of Ψ0(y) as
diagonal entries. Then we have

S(y) =
2∑̀

i=0

(Ψ0)i,`Eii. (2.15)

Lemma 2.2. For all k = 0, . . . , 2`, we have

S(y)k+1,k+1

S(y)k,k
≥ 0, for y ∈ [0, 1/2),

S(y)k+1,k+1

S(y)k,k
≤ 0, for y ∈ (1/2, 1].

Proof. First we rewrite the entries of S in the basis {(1−2y)j}. It follows from (2.12) and Lemma
2.1 that

S(y)k,k = (Ψ0)k,` =

k∑

j=0

αk,j(1− 2y)j , αk,j =
(−1)j

j!

k−j∑

s=0

2−s−j(−k)s+j(−2`+ k)s+j
s!(−`+ 1/2)s+j

.
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6 MANUEL D. DE LA IGLESIA AND PABLO ROMÁN

Note that

αk,j =
(−1)j2−j(−k)j(−2`+ k)j

j!(−`+ 1/2)j

k−j∑

s=0

(−k + j)s(−2`+ k + j)s
s!(−`+ j + 1/2)s

2−s,

=
(−1)j2−j(−k)j(−2`+ k)j

j!(−`+ 1/2)j
2F1

(−k + j,−2`+ k + j

−`+ j + 1/2
; 1/2

)
,

=
(−1)j2−j(−k)j(−2`+ k)j

j!(−`+ 1/2)j

(k − j)!
(−2`+ 2j)k−j

C
(−`+j)
k−j (0)

=





0, if k − j is odd,

(−1)j2−j(−k)j(−2`+ k)j
j!(−`+ 1/2)j

(k − j)!
(−2`+ 2j)k−j

(−1)(k−j)/2(−`+ j)(k−j)/2
((k − j)/2)!

, if k − j is even.

=





0, if k − j is odd,
k!(2`− k − j + 1)j(`− (k + j)/2 + 1)(k−j)/2

2jj!((k − j)/2)!(`− j + 1/2)j
, if k − j is even.

The third equality comes from the definition of Gegenbauer polynomials in terms of the hyper-
geometric function (see [24, Formula (1.8.15)]), while the fourth equality comes from the value of
the Gegenbauer polynomials at zero, see [34, Table 18.6.1]. Observe that all coefficients αk,j are
nonnegative. Therefore we have

S(y)2k,2k =
k∑

j=0

α2k,2j(1− 2y)2j , k = 0, 1, . . . , `,

S(y)2k+1,2k+1 = (1− 2y)

k∑

j=0

α2k+1,2j+1(1− 2y)2j , k = 0, 1, . . . , `− 1,

from which the Lemma easily follows. �

Proposition 2.3. Let Ξ = S−1Ω(ν)S, where Ω(ν) is given by (2.3). Then we have

Ξ = y(1− y)∂2
y +A(ν)(y)∂y +Q(ν)(y), ∂y =

d

dy
, (2.16)

where

A(ν)(y) = 2y(1− y)S(y)−1S′(y) + a(ν)(y),

Q(ν)(y) = y(1− y)S(y)−1S′′(y) + a(ν)(y)S(y)−1S′(y) + S(y)−1F (ν)(y)S(y).

Morover, the sum of the rows of Q(ν)(y) − (Λ
(ν)
0 )`,` and the off-diagonal terms of Q(ν) are non-

negative for all y ∈ [0, 1].

Proof. It follows from (2.3) that the spherical functions Ψ
(ν)
n are solutions of the differential equa-

tion

y(1− y)
[
Ψ(ν)
n (y)

]′′
+ a(ν)(y)

[
Ψ(ν)
n (y)

]′
+ F (ν)(y) Ψ(ν)

n (y) = Ψ(ν)
n (y) Λ(ν)

n ,

where F (ν)(y) is defined by (2.4) and Λ
(ν)
n by (2.10). A straightforward computation shows that

the function χn = S−1Ψ
(ν)
n satisfies the following differential equation:

y(1− y)χ′′n(y) + (2y(1− y)S(y)−1S′(y) + a(ν)(y))χ′n(y)

+ [y(1− y)S(y)−1S′′(y) + a(ν)(y)S(y)−1S′(y) + S(y)−1F (ν)(y)S(y)]χn(y) = χn(y)Λ(ν)
n .

This proves the first statement of the proposition. Observe that the fact that the sum of the rows

of Q(ν)(y)− (Λ
(ν)
0 )`,` is zero, is equivalent to

[y(1− y)S(y)−1S′′(y) + a(ν)(y)S(y)−1S′(y) + S(y)−1F (ν)(y)S(y)− (Λ
(ν)
0 )`,`]e2`+1 = 0,
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where e∗2`+1 = (1, 1, . . . , 1) ∈ C2`+1, which is, in turn, equivalent to

[y(1− y)S′′(y) + a(ν)(y)S′(y) + F (ν)(y)S(y)− (Λ
(ν)
0 )`,`]e2`+1 = 0.

If we denote by (Ψ0)` the `-th column of Ψ0, it follows from (2.15) that

y(1− y)(Ψ0)′′` (y) + a(ν)(y)(Ψ0)′`(y) + F (ν)(y)(Ψ0)`(y) = (Λ
(ν)
0 )`,`,

which is the `-th column of (2.3).
Finally, the off-diagonal terms of Q(ν) come from the term S(y)−1F (ν)(y)S(y). More precisely

we have

(S(y)−1F (ν)(y)S(y))k,k+1 =
i(2`+ ν − k)(1− 2y)

4y(1− y)

S(y)k+1,k+1

S(y)k,k
,

which is nonnegative for all y ∈ [0, 1] by Lemma 2.2. The proof for the (k, k − 1)-th entry is
analogous. This completes the proof of the proposition. �

Remark 2.4. There are two properties of the matrix-valued function Q(ν) which are essential in
the forthcoming sections: first, the sum of the rows is equal to zero and second, the off-diagonal
terms are nonnegative for y ∈ [0, 1].

It follows from the proof of Proposition 2.3 that, for the sum of the rows of Q(ν) to be zero, the

diagonal matrix S can be replaced by any column of the function Ψ
(ν)
n (y), viewed as a diagonal

matrix. Our specific choice of S is due to the fact that it has a simple expression that allows us
to verify the second property of Q(ν).

The proof of the first property follows from a general argument that can be extended in a
straightforward way to any of the families of matrix-valued spherical functions associated to com-
pact Gelfand Pairs studied in [15, 36]. The main challenge in finding probabilistic interpretations
for the new families is to find a suitable diagonal matrix S so that the second property holds.

2.4. Block reducibility of the weight matrix. The commutant algebra of the weight W (ν)(y),
denoted by Z(ν) = {T ∈M2`+1(C) | [T,W (ν)(y)] = 0∀y ∈ [0, 1]}, was computed in [25, Proposition
2.6] where it was shown that it is generated by the matrix H, where H ∈ M2`+1(C) is the self-
adjoint involution defined by H : ej 7→ e2`−j . Therefore there is an orthogonal decomposition with
respect to the ±1-eigenspaces of H. More precisely, let Y defined by

Y =
1√
2

(
I`+ 1

2
H`+ 1

2

−H`+ 1
2

I`+ 1
2

)
, if ` =

2n+ 1

2
, n ∈ N,

Y =
1√
2




I` 0 H`

0
√

2 0
−H` 0 I`


 , if ` ∈ N.

(2.17)

Then

W̃ (y) = YW (ν)(y)Y ∗ =

(
W1(y) 0

0 W2(y)

)
,

where W1(y) is a (` + 1) × (` + 1) weight matrix and W2(y) is a ` × ` weight matrix. Observe
that by [28, Example 4.2] no further non-orthogonal decomposition is possible. We will use this
block matrix decomposition in the next section to analyze two independent processes generated
by the weight matrices W1(y) and W2(y). As we will see the probabilistic interpretation of these
examples will not change under this transformation.

3. The ` = 1 case

For the ` = 1 case, the matrix Y in (2.17) is given by

Y =
1√
2




1 0 1

0
√

2 0
−1 0 1


 . (3.1)
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8 MANUEL D. DE LA IGLESIA AND PABLO ROMÁN

Therefore

W̃ (y) = YW (ν)(y)Y ∗ =


 W1(y)

0
0

0 0 w2(y)


 , y ∈ [0, 1],

where W1(y) is a 2 × 2 weight matrix and w2(y) is a positive scalar weight. This matrix Y is
unique up to linear polynomial combinations of Y . For this case, in order to study conveniently
the stochastic processes behind, it will be appropriate to take different matrix transformations.

3.1. Two birth-and-death models. We take in this case the transformation matrix T given by

T = I3 + Y 2 =




1 0 1
0 2 0
−1 0 1


 ,

where Y is given by (3.1). Consider the monic matrix-valued orthogonal polynomials P
(ν)
n (y)

corresponding to the weight matrix W (ν)(y) defined in (2.7). With this transformation we have

W̃ (y) = TW (ν)(y)T ∗ =


 W1(y)

0
0

0 0 w2(y)


 , y ∈ [0, 1],

and

P̂n(y) = TP (ν)
n (y)T−1 =


 Pn,1(y)

0
0

0 0 pn,2(y)


 ,

where P̂n(y) is again a monic family. We normalize this family conveniently choosing a sequence

of diagonal matrices Ln such that Qn(y) = LnP̂n(y) satisfies

Qn(0)e3 = e3, (3.2)

where eN denotes the column vector of dimension N of all components equal to 1, i.e. eN =
(1, 1, . . . , 1)∗. This sequence of diagonal matrices is given by

L2n = 4n




(ν+n+1)n+1

(1+ν)(ν+3/2)n
0 0

0 (ν+2n)(ν+n+1)n
ν(ν+3/2)n

0

0 0 (ν+n+1)n
(ν+3/2)n


 , n ≥ 0,

and

L2n+1 = −2 · 4n



(ν+n+2)n+1

(1+ν)(ν+3/2)n
0 0

0 (ν+2n+1)(ν+n+2)n
ν(ν+3/2)n

0

0 0 (ν+n+2)n
(ν+3/2)n


 , n ≥ 0.

Qn can also be divided by blocks

Qn(y) =


 Qn,1(y)

0
0

0 0 qn,2(y)


 . (3.3)

Observe also that the norms of Qn with respect to W̃ are related with the norms of P
(ν)
n with

respect to W (ν) as follows

‖Qn‖2W̃ = LnT‖P (ν)
n ‖2W (ν)(LnT )∗, n ≥ 0, (3.4)

where ‖P (ν)
n ‖2W (ν) are given by (2.6).

From (2.11) we see that the sequence of matrix-valued orthogonal polynomials Qn(y) satisfies
a three-term recurrence relation of the form

−yQn(y) = AnQn+1(y) +BnQn(y) + CnQn−1(y), (3.5)
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where the coefficients are given by

An = −LnL−1
n+1 =




2ν+n+2
4(ν+n+2) 0 0

0 (n+ν)(2ν+n+2)
4(ν+n+1)2 0

0 0 2ν+n+2
4(ν+n+1)


 , n ≥ 0,

Bn = −LnTB(ν)
n (LnT )−1 =




− 1
2

ν
2(ν+n)(ν+n+2) 0

1+ν
2(ν+n+1)2 − 1

2 0

0 0 − 1
2


 , n ≥ 0,

Cn = −LnTC(ν)
n (Ln−1T )−1 =




n
4(ν+n) 0 0

0 n(ν+n+2)
4(ν+n+1)2 0

0 0 n
4(ν+n+1)


 , n ≥ 1.

The corresponding Jacobi matrix is a block tridiagonal matrix with the property that the diagonal
entries are negative, the off-diagonal entries are nonnegative and the sum of each row equals 0 (as
a consequence of (3.2) and (3.5)). Therefore the Jacobi matrix is the matrix of an infinitesimal
operator associated with a continuous-time quasi-birth-and-death process with two-dimensional
state space N× {1, 2, 3}. As we can see from the division by blocks of the coefficients An, Bn, Cn,
this process splits into two independent processes. The first one is a continuous-time quasi-birth-
and-death process with two-dimensional state space N× {1, 2} with coefficients

An,1 =

(
2ν+n+2

4(ν+n+2) 0

0 (n+ν)(2ν+n+2)
4(ν+n+1)2

)
, n ≥ 0,

Bn,1 =

(
− 1

2
ν

2(ν+n)(ν+n+2)
1+ν

2(ν+n+1)2 − 1
2

)
, n ≥ 0, (3.6)

Cn,1 =

(
n

4(ν+n) 0

0 n(ν+n+2)
4(ν+n+1)2

)
, n ≥ 1.

Therefore, the matrix of the infinitesimal operator (conservative) is a pentadiagonal matrix given
by

A1 =




− 1
2

1
2(ν+2)

ν+1
2(ν+2) 0 0 0 0 0 · · ·

1
2(ν+1) − 1

2 0 ν
2(ν+1) 0 0 0 0 · · ·

1
4(ν+1) 0 − 1

2
ν

2(ν+1)(ν+3)
2ν+3

4(ν+3) 0 0 0 · · ·
0 ν+3

4(ν+2)2
1+ν

2(ν+2)2 − 1
2 0 (1+ν)(2ν+3)

4(ν+2)2 0 0 · · ·
0 0 1

2(ν+2) 0 − 1
2

ν
2(ν+2)(ν+4)

ν+2
2(ν+4) 0 · · ·

0 0 0 ν+4
2(ν+3)2

1+ν
2(ν+3)2 − 1

2 0 (2+ν)2

2(ν+3)2 · · ·
...

...
...

...
. . .

. . .
. . .

. . .
. . .




(3.7)
The second process is a regular birth-and-death process with rational birth and death parameters
given by

λn =
2ν + n+ 2

4(ν + n+ 1)
, µn =

n

4(ν + n+ 1)
, n ≥ 0. (3.8)

Therefore, the matrix of the infinitesimal operator (again conservative) is a tridiagonal matrix
given by

A2 =




− 1
2

1
2 0

1
4(ν+2) − 1

2
2ν+3

4(ν+2) 0

0 1
2(ν+3) − 1

2
ν+2

2(ν+3) 0

. . .
. . .

. . .


 . (3.9)
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10 MANUEL D. DE LA IGLESIA AND PABLO ROMÁN

The good thing about these two processes is that we have explicitly all the elements to perform
the spectral analysis (the weights, orthogonal polynomials and norms), so we can have a Karlin-
McGregor formula for the transition probabilities of both processes, which is unique since all
coefficients are bounded (see [1, Section 4.3]). Let us study the probabilistic properties of each
one of these processes.

(1) Let {Xt : t ≥ 0} be the birth-and-death process associated with the infinitesimal operator
(3.9). The transition probabilities are given by

P
(2)
ij (t) = P(Xt = j|X0 = i).

The potential coefficients can be explicitly calculated from the definition of λn and µn in (3.8).
Indeed,

π0 = 1, πn =
2(ν + n+ 1)(2ν + 3)n−1

n!
, n ≥ 1.

The scalar weight is given by

w2(y) =
4ν+1(ν + 1)2

ν + 1/2
[y(1− y)]

ν+1/2
, y ∈ [0, 1], ν > −3/2. (3.10)

The polynomials qn,2(y) in (3.3) are a special instance of the Gegenbauer polynomials on [0, 1]
with the property that qn,2(0) = 1. In particular, we have that

πn =
‖q0,2‖2w2

‖qn,2‖2w2

, ‖q0,2‖2w2
=

√
π(ν + 2)Γ(ν + 1/2)

Γ(ν + 1)
.

We can therefore perform the spectral analysis of the process and have the Karlin-McGregor
representation

P
(2)
ij (t) =

1

‖qj,2‖2w2

∫ 1

0

e−ytqi,2(y)qj,2(y)w2(y)dy

=
2(ν + j + 1)(2ν + 3)j−14ν+1Γ(ν + 2)

j!
√
πΓ(ν + 3/2)

∫ 1

0

e−ytqi,2(y)qj,2(y) [y(1− y)]
ν+1/2

dy.

We can also analyze the recurrence of the process in terms of the weight w2(y). Indeed, a necessary
and sufficient condition in order for the process to be recurrent is that

∫ 1

0

w2(y)

y
dy =∞.

From the definition (3.10) we see that this is possible only when −3/2 < ν ≤ −1/2. Otherwise (if
ν > −1/2) the process will be transient. For the values where the process is recurrent it is possible
to see that

∑
πn =∞, so the process will be null recurrent and it can never be positive recurrent

or ergodic. This behavior can be seen in Figure 1. In the first plot, we fix ν = −5/4 (recurrent),
so the trajectories can reach the boundary state 0 recurrently. In the second plot ν = 0 (transient)
so the length of the queue tends to go to infinity and never comes back.

This birth-and-death process can be seen as a rational variant of the one-server queue as the
length of the queue increases. As n → ∞ we see that both birth and death coefficients in (3.8)
converges to 1/4. These coefficients make a difference when the length of the queue is short
depending on the parameter ν (except when ν = −1 where both coefficients are constant). But
when it is growing the queue behaves like the one-server queue.

(2) Let {Zt = (Xt, Yt) : t ≥ 0} be the two-dimensional quasi-birth-and-death process associated
with the infinitesimal operator (3.7). The transition probabilities are given by

(
P

(1)
ij (t)

)
i′j′

= P(Xt = j, Yt = j′|X0 = i, Y0 = i′), i, j ∈ N, i′, j′ ∈ {1, 2}.

Observe that P (1)(t) is a block matrix. The probability of going from state (i, i′) to state (j, j′)

in time t is given by the element in the position (i′, j′) of the matrix P
(1)
ij (t). The weight matrix
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Figure 1. Trajectories of the queue starting at X0 = 1 (the state space is
{1, 2, 3, . . .}) given by coefficients (3.8) for the value of the parameters ν = −5/4
(null recurrent) and ν = 0 (transient).

is supported on [0, 1] and is given by

W1(y) = 4ν+1/2(ν + 2) [y(1− y)]
ν−1/2

(
1− 2(1+ν)

ν+1/2 y(1− y) 1− 2y

1− 2y 1− 2ν
ν+1/2y(1− y)

)
, (3.11)

where now, in order that the infinitesimal matrix (3.7) has a probabilistic interpretation, we need
to impose ν ≥ 0 (although the weight matrix is well defined for ν > −1/2). Each block entry (i, j)
of P (1)(t) admits a Karlin-McGregor integral representation of the form (see [5])

P
(1)
ij (t) =

(∫ 1

0

e−ytQi,1(y)W1(y)Q∗j,1(y)dx

)(∫ 1

0

Qj,1(y)W1(y)Q∗j,1(y)dy

)−1

.

As it was shown in [13] the inverse matrix of the norms of the polynomials Qn,1 in (3.3) are exactly
the matrix-valued potential coefficients, defined by

Π0 = ‖Q0,1‖−2
W1
, Πn =

(
‖Qn,1‖2W1

)−1
= (C∗1,1C

∗
2,1 · · ·C∗n,1)−1‖Q0,1‖−2

W1
A0,1A1,1 · · ·An−1,1,

where An,1 and Cn,1 are defined in (3.6). Since An,1 and Cn,1 are diagonal matrices and the norm
of Q0,1 = I2 is given by

‖Q0,1‖−2
W1

=
Γ(ν + 1)√

π(ν + 2)Γ(ν + 1/2)

(
1 0

0
ν + 1

ν + 2

)
,

we can calculate an explicit expression of the matrix-valued potential coefficients with the help of
(2.6) and (3.4), given by

Π0 = ‖Q0,1‖−2
W1
, Πn =

2Γ(ν + 2)(2ν + 3)n−1√
πn!(ν + 2)Γ(ν + 1/2)

(
ν+1

ν+n+1 0

0 ν(ν+n+1)
(ν+n)(ν+n+2)

)
, n ≥ 1.

Not only that, but according to Theorem 3.1 of [13] we can compute explicitly the invariant
measure of the process, given by

π = ((Π0e2)∗; (Π1e2)∗(Π2e2)∗; · · · ) , e∗2 = (1, 1),

=
Γ(ν + 1)√

πΓ(ν + 1/2)(ν + 2)

(
1,
ν + 1

ν + 2
;

2(ν + 1)2

ν + 2
,

2ν(ν + 2)

ν + 3
; · · ·

)
.
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We observe that for all values of ν
∞∑

n=0

πn =
Γ(ν + 1)√

πΓ(ν + 1/2)(ν + 2)

[
1 + 2(ν + 1)2

∞∑

n=1

(2ν + 3)n−1

n!(ν + n+ 1)

ν + 1

ν + 2

(
1 + 2ν(ν + 2)

∞∑

n=1

(2ν + 3)n−1(ν + n+ 1)

n!(ν + n)(ν + n+ 2)

)]
=∞.

We can analyze the recurrence of the process in terms of the weight W1(y). According to
Theorem 4.1 in [5] the process is α-recurrent if and only if for some l = 1, 2, we have that

e∗l

(∫
W1(y)

x− α dy
)
el =∞,

where e∗1 = (1, 0) and e∗2 = (0, 1). Since in our case the process is irreducible and the weight matrix
is supported in the interval [0, 1], then α = 0, in which case α-recurrence is equivalent to regular
recurrence. From the definition (3.11) we see that the process is recurrent only when 0 ≤ ν ≤ 1/2.
Otherwise (if ν > 1/2) the process will be transient. For the values where the process is recurrent
we have that

∑
πn =∞, so the process will always be null recurrent. This behavior can be seen

in Figure 2 and it is similar to the previous example.
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Figure 2. Trajectories of the queue starting at X0 = 1 and Y0 = 1 (the state
space is {1, 2, 3, . . .}×{1, 2}) with infinitesimal operator (3.7) for the value of the
parameters ν = 1/4 (null recurrent) and ν = 1 (transient).

This quasi-birth-and-death process (with 2 phases) may be viewed as a queue with state space
{0, 1, . . .} and the following behavior. There are two ways of increasing or decreasing the length
of the queue, either by 1 element or by 2. If the process moves along any of the phases, then the
process can add (or remove) 2 elements to the queue. On the contrary, if the process moves from
one phase to another, then the process add (or remove) 1 element to the queue. The transitions of
phases are ruled by entries (1, 2) and (2, 1) of Bn,1 in (3.6). As n→∞ these coefficients tend to
0, meaning that as the length of the queue increases, it is very unlikely that a transition between
phases occurs. This behavior can be seen more closely in Figure 3. As n→∞ the birth and death
rates for each phase tend to 1/4, so it behaves like the one-server queue but adding or removing 2
elements to the queue. Therefore this quasi-birth-and-death process may be viewed as a rational
variation of a couple of one-server queues where the interaction between them is remarkable in the
first states of the queue.
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Figure 3. Trajectories of the queue starting at X0 = 1 and Y0 = 1 (the state
space is {1, 2, 3, . . .}×{1, 2}) with infinitesimal operator (3.7) for the value of the
parameters ν = 1/4 and ν = 1. The possibilities of increasing or decreasing by 1
the queue are higher when the length of the queue is shorter.

The importance about this example, as far as the authors know, is that it is the first nontrivial
continuous-time level-dependent quasi-birth-and-death process where a complete spectral analysis
can be given.

3.2. Two diffusion models. In this case we have to follow the conjugation given by the matrix
S(y) in (2.15) (see also (2.12) and (2.13)), which it is given by

S(y) =




1 0 0
0 1− 2y 0
0 0 1


 .

Additionally, we consider the transformation matrix T given by

T = −
√

2

2
I3 + (1 +

√
2)Y −

√
2

2
Y 2 =




1 0 1
0 1 0
−1 0 1


 , (3.12)

where Y is given by (3.1). These two transformations allow us to derive second-order differential
operators with stochastic interpretation, according to Proposition 2.3, as well as splitting the
weights and polynomials into blocks, which will not change the probabilistic interpretation of
these operators.

Let {W (ν), D(ν)} be the pair given by (2.7) and (2.9), respectively. We consider a transformation
of this pair according to the following function

R(y) = Ψ−1
0 (y)S(y)T ∗,

where Ψ0(y) is given by (2.8). The new pair is {W̃ , D̃}, where

W̃ (y) = R∗(y)W (ν)(y)R(y), D̃F (y) = R−1(y)D(ν) [(R(y)F (y)] .

Observe that D̃ is the operator (T ∗)−1ΞT ∗, where Ξ is given in Proposition 2.3. Consider now

P
(ν)
n the monic family of matrix-valued orthogonal polynomials with respect to W (ν) given by

(2.5) such that D(ν)(P
(ν)
n )∗ = (P

(ν)
n )∗Λ(ν)

n , where Λ
(ν)
n is given by (2.10). Define the sequence of

matrix-valued functions

Qn(y) = R−1(y)(P (ν)
n (y))∗T ∗. (3.13)
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14 MANUEL D. DE LA IGLESIA AND PABLO ROMÁN

Observe that Qn are no longer real matrix-valued polynomials since

R−1(y) =




1− 2y 1 1− 2y
1/(1− 2y) 1 1/(1− 2y)

2i
√
y(1− y) 0 −2i

√
y(1− y)


 .

Then it is easy to see that Qn is a family of matrix-valued orthogonal functions with respect to

W̃ , which is given by

W̃ (y) =
4ν−1(2 + ν)[y(1− y)]ν−1/2

ν + 1/2




1 + ν 0 0
0 ν(1− 2y)2 0
0 0 1 + ν


 .

Qn can also be divided by blocks

Qn(y) =


 Qn,1(y)

0
0

0 0 qn,2(y)


 , (3.14)

and the norms are given by

‖Q∗n‖2W̃ = T‖P (ν)
n ‖2W (ν)T

∗. (3.15)

Additionally, Qn is eigenfunction of the second-order differential operator

D̃ = y(1− y)∂2
y+




(ν + 1/2)(1− 2y) 0 0

0 (ν + 3/2)(1− 2y)− 1

1− 2y
0

0 0 (ν + 1/2)(1− 2y)


 ∂y

+
1

2y(1− y)



−ν(1− 2y)2 ν(1− 2y)2 0

1 + ν −(1 + ν) 0
0 0 −ν(1− 2y)2


 ,

i.e. D̃Qn = QnΛ̃n, where the eigenvalue is Λ̃n = Λ
(ν)
n + ν2 + 2ν − 4 and in this case it is given by

Λ̃n =



−1− n(n+ 2ν + 2) 0 0

0 −n(n+ 2ν + 2) 0
0 0 −1− n(n+ 2ν + 2)


 , n ≥ 0.

This second-order differential operator can be identified with the infinitesimal operator of a two-
dimensional diffusion process (also known as switching diffusion processes) with state space [0, 1]×
{1, 2, 3}. As before, the division by blocks gives two independent processes. The first one is a
switching diffusion process with state space [0, 1]× {1, 2} with infinitesimal operator given by

D1 = y(1− y)∂2
y+




(ν + 1/2)(1− 2y) 0

0 (ν + 3/2)(1− 2y)− 1

1− 2y


 ∂y (3.16)

+
1

2y(1− y)

(
−ν(1− 2y)2 ν(1− 2y)2

1 + ν −(1 + ν)

)
, ν ≥ 0,

with eigenvalue

Λn,1 =

(
−1− n(n+ 2ν + 2) 0

0 −n(n+ 2ν + 2)

)
, n ≥ 0, (3.17)

and weight matrix

W1(y) =
4ν−1(2 + ν)[y(1− y)]ν−1/2

ν + 1/2

(
1 + ν 0

0 ν(1− 2y)2

)
. (3.18)

Observe that the independent coefficient of D1 (depending on y) is the matrix of the infinitesimal
operator of a continuous-time birth-and-death process with two states.
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The second process is a regular diffusion process with a killing factor, which infinitesimal oper-
ator is given by

D2 = y(1− y)∂2
y + (ν + 1/2)(1− 2y)∂y −

ν(1− 2y)2

2y(1− y)
, ν ≥ 0, (3.19)

with eigenvalue
λn,2 = −1− n(n+ 2ν + 2), (3.20)

and weight function

w2(y) =
4ν−1(1 + ν)2[y(1− y)]ν−1/2

ν + 1/2
. (3.21)

Observe that the independent coefficient of D2 (depending on y) is never positive, so it is the
killing factor of a diffusion process.

We can perform again the spectral analysis of these two operators since we have an explicit ex-
pression of the weights, orthogonal functions and norms. Let us study the probabilistic properties
of each one of these diffusion processes.

(1) Let {Xt, t ≥ 0} be the diffusion process with killing associated with the infinitesimal operator
(3.19) and call p(t;x, dy) the probability transition distribution of the process if it has not been
killed yet. It is well known that p(t;x, dy) has a density p(t;x, y) and it is given by (see for instance
Section 15.13 of [23])

p(t;x, y) =
∞∑

n=0

eλn,2tqn,2(x)qn,2(y)πnw2(y),

where w2(y) is given by (3.21), the eigenvalue λn,2 is given by (3.20) and πn are the inverse of the
squared norms of the functions qn,2 in (3.14). The family of functions qn,2 can be written in the
following way

qn,2(y) = − i n!
√
y(1− y)

2n−2(ν + 1)n
C(ν+1)
n (y),

where C
(λ)
n is the family of Gegenbauer polynomials, see [24, (1.8.15)]. The norms with respect to

(3.21) follows from the explicit expression (2.6), (3.13) and (3.15):

π−1
n = ‖q∗n,2‖2w2

=
πn!(n+ ν + 1)(ν + 1)2Γ(n+ 2ν + 2)

16n4ν(2ν + 1)Γ(n+ ν + 2)2
. (3.22)

Therefore p(t;x, y) can be written in the following way

p(t;x, y) = e−t
√
x(1− x)

4ν+1(1 + ν)2[y(1− y)]ν

ν + 1/2

∞∑

n=0

e−n(n+2ν+2)t (n!)2 πn
4n (ν + 1)2

n

C(ν+1)
n (x)C(ν+1)

n (y)

=
2

π
e−t
√
x(1− x)42ν+1Γ(ν + 1)2[y(1− y)]ν×

×
∞∑

n=0

e−n(n+2ν+2)t n! 4n(n+ ν + 1)

Γ(n+ 2ν + 1)
C(ν+1)
n (x)C(ν+1)

n (y).

It is well known that the killing time ξ is a random variable distributed according the law

P (ξ > t| {Xs, s ≥ 0}) = exp

(
−ν

2

∫ t

0

(1− 2Xs)
2

Xs(1−Xs)
ds

)
.

Since we have an explicit expression for the transition probability density, we can approximate
this distribution by doing

P (ξ > t| X0 = x) =

∫ 1

0

p(t;x, y)dy.

We observe that if the process Xt is near the state 1/2, then there is a small probability that
the process is being killed. While if Xt is near 0 or 1, then there is a very high probability that
the process is being killed in a next time.

This process can be regarded as a Wright-Fisher model involving only mutation effects with
killing. In this case the intensities of mutation are equal and the behavior of the boundary points
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can be analyzed in the way it is done in pp. 239 of [23]. Therefore, since ν ≥ 0, 0 (and 1) is a
regular boundary if 0 ≤ ν < 1/2, while it is an entrance boundary if ν ≥ 1/21. In Figure 4 we can
observe this behavior. The picture on the left has ν = 1/4, so the boundaries are regular. But
when the process is close to 0 or 1, then almost immediately the process is killed. This is not the
situation when ν = 1 where we have entrance boundaries. It takes more time for the process to
be killed and the trajectories can not approach any of the boundary points.
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0.9

1

ν=1

Figure 4. Trajectories of the diffusion with killing with parameters ν = 1/4
(regular boundaries) and ν = 1 (entrance boundaries) starting at x = 1/2.

(2) Let {Zt = (Xt, Yt), t ≥ 0} be the switching diffusion process associated with the infinitesimal
operator (3.16). Now the transition probability distribution is a 2 × 2 matrix-valued function
P (t;x,A) = (Pij(t;x,A)), defined for every t ≥ 0, x ∈ [0, 1] and any real Borel set A of [0, 1],
whose (i, j) entry is given by

Pij(t;x,A) = P (Xt ∈ A, Yt = j|X0 = x, Y0 = i) , i, j ∈ {1, 2}.
The density of this matrix-valued distribution (in the sense that 0 ≤ P (t;x,A)e2 ≤ e2, for any
Borel set A) can be described in terms of the matrix-valued orthogonal functions Qn,1(y) in (3.14)
with respect to W1(y) in (3.18) (see (3.8) of [14]). Therefore

P (t;x, y) =
∞∑

n=0

Qn,1(x)Πne
Λn,1tQ∗n,1(y)W1(y),

where Λn,1, n ≥ 0, are the (diagonal) eigenvalues (3.17) and Π−1
n , n ≥ 0, are the (diagonal) norms

of the matrix-valued functions Qn,1(y), given by

Π−1
n = ‖Q∗n,1‖2W1

= π−1
n




1 0

0
ν(n+ ν + 2)

4(ν + 1)(n+ ν)


 ,

where π−1
n was given by (3.22). It is possible to write Qn,1(y) in terms of the Gegenbauer poly-

nomials (see [25, Theorem 3.4]).
The difference of this process with respect to the previous one is that their trajectories can

evolve infinitely in time, while the first one has to stop at some random killing time. There are
two phases in this process. In the first phase the diffusion evolves as a regular diffusion with
infinitesimal operator (see entry (1,1) of D1 in (3.16))

y(1− y)∂2
y + (ν + 1/2)(1− 2y)∂y,

1We recall that a boundary is said to be regular if the process can both enter and leave from the boundary, while

it is said to be entrance if the boundary cannot be reached from the interior of the state space, but it is possible

to consider the process beginning there.
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while in the second phase the diffusion evolves as a regular diffusion with infinitesimal operator

y(1− y)∂2
y +

[
(ν + 3/2)(1− 2y)− 1

1− 2y

]
∂y.

The description of how the process moves through the two phases is given by the independent
coefficient of D1:

1

2y(1− y)

(
−ν(1− 2y)2 ν(1− 2y)2

1 + ν −(1 + ν)

)
. (3.23)

It is easy to see that the boundaries 0 and 1 behaves exactly in the same way as in the previous
diffusion with killing, i.e. 0 and 1 are regular boundaries if 0 ≤ ν < 1/2, while they are entrance
boundaries if ν ≥ 1/2. Therefore the process is positive recurrent for ν ≥ 1/2. The important
difference now is that in the second phase there is a point in the interior of [0, 1] given by y = 1/2,
where the drift coefficient tends to infinity. Therefore we should analyze the behavior of the process
near this point (and only if the process is at phase 2). Using the same methodology to study the
behavior of boundaries (see pp. 239 of [23]) we conclude that the point 1/2 (both on the left and
on the right) is always an entrance boundary, meaning the the process cannot be reached from
the interior of [0, 1/2) or (1/2, 1] (which depends on the position of the particle when the process
starts at phase 2), but it is possible to consider the process beginning at 1/2.

This process can also be regarded as a variant of the Wright-Fisher model involving only
mutation effects with two different phases. The intensities of mutation are equal and the behavior
of the boundaries 0 and 1 in both phases is exactly the same, but, while the process is at phase 2,
starting for instance at an interior point of [0, 1/2), then there is a force blocking the pass through
the threshold located at 1/2 (same if the interior point is located at (1/2, 1]). If the process is at
phase 1, it can move along the whole state space [0, 1] without any restriction at the point 1/2.
This behavior can be seen in Figure 5. While the process is at phase 2 (left of the red vertical
line) the trajectory is never going to cross the 1/2 horizontal line.
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1
ν=1/4, 6 changes

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1
ν=1, 9 changes

Figure 5. Trajectories of the diffusion with two phases with parameters ν = 1/4
(regular boundaries) and ν = 1 (entrance boundaries) starting at y = 1/2 and
phase 1. Phase 1 acts on the left of the black vertical line, while phase 2 acts on
the left of the red vertical line.

Let us study now how the process moves between the two phases. For that we need to study the
matrix (3.23) (which is the infinitesimal operator of a continuous-time Markov chain with state
space {1, 2}). We observe that if the process is near 0 or 1, then the diagonal coefficients are very
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18 MANUEL D. DE LA IGLESIA AND PABLO ROMÁN

large, meaning that all phases are instantaneous, i.e., the waiting times at each phase are very
short until the process is far from the boundaries (see again Figure 5). We also observe that if the
process is near 1/2 then the entry (1, 1) is very small, meaning that phase 1 is absorbing, i.e., if
the process enters this phase and the position of the particle is close to 1/2, then it tends to spend
long periods of times in that phase (as we can see again in Figure 5). At the moment of jumping
from one phase to another, the probabilities are given by the law

P(Yt = 1→ Yt = 2) =
ν(1− 2y)2

ν(1− 2y)2 + 1 + ν
,

P(Yt = 2→ Yt = 1) =
1 + ν

ν(1− 2y)2 + 1 + ν
.

A closer look at these probabilities shows that for all values of y ∈ [0, 1] and ν ≥ 0 we have

P(Yt = 1→ Yt = 2) < P(Yt = 2→ Yt = 1),

so that the process tends to stay at phase 1 more time than in phase 2 (a behavior which can be
seen again in Figure 5).

We finally give an explicit expression of the vector-valued (of dimension 2) invariant distribution
ψ(y) given by formula (3.19) of [14], i.e.

ψ(y) =

(∫ 1

0

e∗2W1(y)e2dy

)−1

e∗2W1(y), e∗2 = (1, 1).

Since we have an explicit expression of W1(y) in (3.18), we can compute explicitly ψ(y), given in
this case by

ψ(y) =
4νΓ(ν + 2)[y(1− y)]ν−1/2

√
π(2 + ν)Γ(ν + 3/2)

(
1 + ν , ν(1− 2y)2

)
. (3.24)

In Figure 6 we have plotted both components (blue for the first component and red for the
second) for the especial cases of ν = 1/4 and ν = 1. From these plots we clearly see that, for a
large time, it is more likely that the process will be in phase 1 than in phase 2, as we previously
predicted, especially near the point 1/2, where phase 1 is absorbing.
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Figure 6. The components of the vector-valued invariant distribution ψ(y) (in
blue the first component and in red the second), for ν = 1/4 and ν = 1.

This vector-valued invariant distribution is valid only when the process is positive recurrent,
i.e. ν ≥ 1/2. For 0 ≤ ν < 1/2, (3.24) is also meaningful, but the boundary points of the process
are now absorbing, meaning that the correct vector-valued invariant distribution of such cases
involves mass jumps at the boundaries 0 and 1 plus a density portion of the form (3.24).
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4. The ` = 2 case

For the ` = 2 case, the matrix Y in (2.17) is given by

Y =
1√
2




1 0 0 0 1
0 1 0 1 0

0 0
√

2 0 0
0 −1 0 1 0
−1 0 0 0 1



.

The weight matrix W and the matrix-valued orthogonal polynomials can now be divided into two
examples of size 3× 3 and 2× 2, respectively. As in the previous case, we can study two different
stochastic models. The first one comes from the coefficients of the three-term recurrence relations,
in which case we will have two continuous-time level-dependent quasi-birth-and-death processes
(with 3 and 2 phases, respectively). These processes are similar to the ones studied in the previous
section, i.e. they are rational variations of one-server queues where the interaction between them
is remarkable in the first states of the queue. So we will not give any details in this section.

More remarkable is the situation in relation with switching diffusion processes. The conjugation
given by the matrix S(y) in (2.15) (see also (2.12) and (2.13)) is

S(y) =




1 0 0 0 0
0 1− 2y 0 0 0
0 0 1− 8

3y(1− y) 0 0
0 0 0 1− 2y 0
0 0 0 0 1



.

The transformation matrix T is given as in the ` = 1 case in (3.12).
The first process is a switching diffusion process with state space [0, 1] × {1, 2, 3}. The infini-

tesimal operator is given by

D1 =y(1− y)∂2
y

+




(ν + 1/2)(1− 2y) 0 0
0 (ν + 3/2)(1− 2y)− 1

1−2y 0

0 0 (ν + 5/2)(1− 2y)− 6(1−2y)
3−8y+8y2


 ∂y

+
1

y(1− y)



−ν(1− 2y)2 ν(1− 2y)2 0

3+ν
4

3+ν+(1+ν)(3−8y+8y2)
4

(1+ν)(3−8y+8y2)
4

0 3(1−2y)2

3−8y+8y2 − 3(1−2y)2

3−8y+8y2


 ,

with eigenvalue

Λn,1 =



−4− n(n+ 2ν + 4) 0 0

0 −1− n(n+ 2ν + 4) 0
0 0 −n(n+ 2ν + 4)


 , n ≥ 0,

and weight matrix

W1(y) =
4ν−2(ν + 4)[y(1− y)]ν−1/2

(ν + 1/2)2




(ν + 2)2 0 0
0 4ν(ν + 2)(1− 2y)2 0

0 0 ν(ν+1)(3−8y+8y2)2

3


 .

Observe that the term 3 − 8y + 8y2 is always positive for any y. This process may be viewed
as an extension of the example studied in Section 3.2 (2), but with three different phases. The
probabilistic interpretation is very similar and we can study without too much difference the
behavior at the boundaries points (including the behavior at the point y = 1/2 in phase 2), how
the process moves between phases and the invariant distribution.
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Figure 7. Trajectories of the diffusion with two phases with parameters ν = 1
starting at y = 3/5 and phase 1. Phase 1 acts on the left of the black vertical
line, while phase 2 acts on the left of the red vertical line.

For the second process we have a new phenomenon. We have a switching diffusion process with
killing with state space [0, 1]× {1, 2}. The infinitesimal operator is given by

D2 = y(1− y)∂2
y+


 (ν + 3/2)(1− 2y)− 1

1− 2y
0

0 (ν + 1/2)(1− 2y)


 ∂y

+
1

y(1− y)


 −

ν + 3

4
− (ν + 1)(3− 8y + 8y2)

4

ν + 3

4
ν(1− 2y)2 −ν(1− 2y)2


 ,

with eigenvalue

Λn,2 =

(
−1− n(n+ 2ν + 4) 0

0 −4− n(n+ 2ν + 4)

)
, n ≥ 0,

and weight matrix

W2(y) =
4ν−2(ν + 2)(ν + 4)[y(1− y)]ν−1/2

(ν + 1/2)2

(
4ν(1− 2y)2 0

0 ν + 3

)
.

The difference of this process with respect to the previous one is that in the first phase the pro-
cess can be stopped at some random killing time, so the diffusion runs according to the infinitesimal
operator

y(1− y)∂2
y +

[
(ν + 3/2)(1− 2y)− 1

1− 2y

]
∂y −

(ν + 1)(3− 8y + 8y2)

4
. (4.1)

The second phase runs as a regular diffusion with infinitesimal operator

y(1− y)∂2
y + (ν + 1/2)(1− 2y)∂y.

The description of how the process moves through the two phases is given by

1

y(1− y)

(
−ν + 3

4

ν + 3

4
ν(1− 2y)2 −ν(1− 2y)2

)
.
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This process can be regarded as a variant of the Wright-Fisher model involving only mutation
effects with two different phases, one of them with a killing factor. The behavior of the boundaries 0
and 1 in both phases is exactly the same, but, while the process is at phase 1, starting for instance
at an interior point of [0, 1/2), then there is a force blocking the pass through the threshold
located at 1/2 (same if the interior point is located at (1/2, 1]). Also in this phase the process may
terminate according to the killing coefficient given in (4.1) (see second picture of Figure 7). If the
process is at phase 2, it can move along the whole state space [0, 1] without any restriction at the
point 1/2 or being killed (see again Figure 7). As far as the authors know this is the first example
of this kind that can be studied explicitly using spectral analysis of the infinitesimal operator.
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