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Abstract

We consider a discretionary stopping problem that arises in the context of pricing a class of perpetual
American-type call options, which include the perpetual American, Russian and lookback-American call
options as special cases. We solve this genuinely two-dimensional optimal stopping problem by means of an
explicit construction of its value function. In particular, we fully characterise the free-boundary that provides
the optimal strategy, and which involves the analysis of a highly nonlinear ordinary differential equation
(ODE). In accordance with other optimal stopping problems involving a running maximum process that
have been studied in the literature, it turns out that the associated variational inequality has an uncountable
set of solutions that satisfy the so-called principle of smooth fit.
c© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

We denote by X the geometric Brownian motion given by

dX t = µX t dt + σ X t dWt , X0 = x > 0, (1)
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for some constants µ and σ , where W is a standard one-dimensional Brownian motion. Also,
given a point s ≥ x , we denote by S the running maximum process defined by

St = max
{

s, max
0≤u≤t

Xu

}
. (2)

In this context, we consider the discretionary stopping problem whose value function is defined
by

v(x, s) = sup
τ∈T

E
[

e−rτ
(

Xa
τ Sb
τ − K

)+
1{τ<∞}

]
, (3)

for some constants r > 0 and a, b, K ≥ 0, where T is the set of all stopping times.
Special cases of the discretionary stopping problem defined by (1)–(3) include the optimal

stopping problems arising in the context of pricing the well-known perpetual American call
option (a = 1, b = 0 and K > 0), which was solved by McKean [18] (in fact, he solved the
perpetual American put option), the Russian option introduced by Shepp and Shiryaev [23,24]
(a = 0, b = 1 and K = 0), and the lookback-American option studied by Pedersen [20] and Guo
and Shepp [11] (a = 0, b = 1 and K > 0). Our analysis focuses on the generic case in which
a, b, K > 0 because, at the parameter limits giving rise to the special cases mentioned above, the
continuation and the stopping regions that characterise the optimal strategy take qualitatively
different forms. However, we use analytic arguments to show that the continuation and the
stopping regions of the problem we focus on do transform continuously to the corresponding
regions arising in the context of these special cases when the parameters a, b and K tend to the
corresponding limits.

The problem (1)–(3) is also related with optimisation problems involving the so-called per-
centage or maximum drawdown. The percentage drawdown X S−1 is associated with risk mea-
sures that are useful for the quantification of portfolio performance by fund managers. Relevant
contributions include Cvitanic and Karatzas [6], Magdon-Ismail and Atiya [17], Chekhlov,
Urgasev and Zabarankin [4], Carr [3], Vecer [26], and references therein.

Optimal stopping has a well-developed body of theory, which has been documented, e.g.,
in Shiryaev [25], Krylov [14], El Karoui [8], Bensoussan and Lions [1], and Peskir and
Shiryaev [22]. The vast majority of the problems that admit closed form analytic solutions con-
sists of problems that can be associated with one-dimensional variational inequalities. This paper
provides a new addition to the class of genuinely two-dimensional explicitly solvable problems
that involve the running maximum process of a one-dimensional diffusion; see Jacka [13], Du-
bins, Shepp and Shiryaev [7], Graversen and Peskir [10], Peskir [21], Pedersen [20], Guo and
Shepp [11], Peskir and Shiryaev [22, Section 13], Hobson [12], Obloj [19], and Cox, Hobson
and Obloj [5] for relevant references.

An interesting feature of the problem that we solve is that its associated variational inequality
has uncountably many solutions that satisfy the so-called principle of smooth fit (see Lemma 4
below). In fact, this feature has been observed in the solution of other optimal stopping problems
involving the running maximum process. To address this situation, our analysis relies in a highly
non-trivial way on the use of the so-called transversality condition. In particular (see Lemma 2
below), we identify the value function v with the unique solution w of the associated variational
inequality that satisfies an appropriate growth condition and

lim inf
T→∞

E
[
e−rTw(XT , ST )

]
= 0. (4)
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In general, the transversality condition can be viewed as a growth condition that can be used as
an appropriate boundary condition for the Hamilton–Jacobi–Bellman equations of infinite time
horizon problems with unbounded state space domains. In the literature, it appears in various
forms, similar to the one in (4), and it figures among the assumptions of standard verification
theorems concerned with such problems (e.g., see Fleming and Soner [9, Theorems IV.5.1,
VII.4.1], and Øksendal and Sulem [16, Theorems 2.2, 3.1, 4.2, 5.2, 6.2, 8.1] for stochastic control
problems, and Øksendal [15, Theorem 10.4.1] for optimal stopping problems).

In the context of a class of optimal stopping problems involving the running maximum of a
one-dimensional Itô diffusion, Peskir [21] identified uniquely the value function by means of a
technique that he termed as the maximality principle. Also, Pedersen [20] verified that Peskir’s
maximality principle can be used to solve the special case of the optimal stopping problem
(1)–(3) that arises when a = 0, b = 1 and K > 0. Although the general problem (1)–(3) does not
belong to the above class of problems, it turns out that its solution exhibits the pattern suggested
by Peskir’s maximality principle. Indeed, a subset of the free-boundary that characterises the
solution of (1)–(3) is obtained by solving a given ODE that is parametrised by appropriate choices
of its initial condition. In accordance with the maximality principle, the correct initial condition
can be identified as the one that corresponds to the maximal solution of the ODE that does not
hit the diagonal of R2

+ (see Fig. 2 and Lemma 3.(I)). In the context of the problem that we solve
here, our analysis goes a step further. Indeed, we establish precise asymptotics for all solutions
of the relevant ODE that do not hit the diagonal of R2

+.
The paper is organised as follows. Section 2 is concerned with the problem formulation and

some preliminary issues. In Section 3, we prove a verification theorem, the assumptions of which
are tailored to fit the solution of our problem rather than aspire to maximal generality. We solve
the discretionary problem in Section 4. Finally, we consider a number of limiting cases that arise
in the context of pricing perpetual American, Russian and lookback-American call options in
Section 5.

2. The optimal stopping problem

We fix a probability space (Ω ,F ,P) equipped with a filtration (Ft ) satisfying the usual
conditions of right continuity and augmentation by the P-negligible sets, and carrying a standard,
one-dimensional (Ft )-Brownian motion W . We denote by T the set of all (Ft )-stopping times.

Our objective is to solve the optimal stopping problem defined by (1)–(3) in the introduction
in the presence of the following assumption.

Assumption 1. σ, r, a, b, K > 0. �

The solution of this problem involves the general solution of the ODE

1
2
σ 2x2u′′(x)+ µxu′(x)− ru(x) = 0, (5)

which is given by

u(x) = Axn
+ Bxm, (6)

for A, B ∈ R, where the constants m < 0 < n are the solutions of the quadratic equation

1
2
σ 2k2

+

(
µ−

1
2
σ 2
)

k − r = 0, (7)
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given by

m, n =
−

(
µ− 1

2σ
2
)
±

√(
µ− 1

2σ
2
)2
+ 2σ 2r

σ 2 . (8)

The following result shows that the value function is identically equal to∞ if a + b > n. We
are going to prove later that the same is true if a + b = n (see Theorem 5 below).

Lemma 1. Consider the optimal stopping problem defined by (1)–(3) and suppose that its data
are such that a + b > n. Then v ≡ ∞.

Proof. Recalling that n is the positive solution of the quadratic equation (7), we note that, if
a + b > n, then

1
2
σ 2(a + b)2 +

(
µ−

1
2
σ 2
)
(a + b)− r > 0.

In view of this inequality, we can see that

v(x, s) ≥ sup
t≥0

E
[

e−r t
(

Xa
t Sb

t − K
)+]

≥ sup
t≥0

E
[
e−r t Xa+b

t

]
− K

= sup
t≥0

E
[

exp
(
−r t +

(
µ−

1
2
σ 2
)
(a + b)t + σ(a + b)Wt

)]
− K

= sup
t≥0

exp
([

1
2
σ 2(a + b)2 +

(
µ−

1
2
σ 2
)
(a + b)− r

]
t

)
− K

= ∞,

which establishes the result. �

3. A verification theorem

With reference to the general theory of optimal stopping (e.g., see Shiryaev [25], Krylov [14],
Bensoussan and Lions [1], and Peskir and Shiryaev [22]) and optimal stopping problems involv-
ing a running maximum process that are related to the one we solve here (e.g., see Graversen
and Peskir [10], Peskir [21], and Peskir and Shiryaev [22, Section 13]), we expect that the value
function v of our optimal stopping problem should identify with an appropriate positive solution
w of the variational inequality

max
{

1
2
σ 2x2 ∂

2w

∂x2 (x, s)+ µx
∂w

∂x
(x, s)− rw(x, s), xasb

− K − w(x, s)

}
= 0, (9)

with boundary condition

∂w

∂s
(s, s) = 0. (10)

Rather than going for maximal generality, we prove here a verification theorem that is tailored
to the requirements of the problem defined by (1)–(3). To this end, we assume that there exists a
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point s∗ > 0, two C1 functions G, H : [s∗,∞[→ R+ such that

0 < G(s) < H(s) < s for all s > s∗,

and a solution w : {(x, s) ∈ R2
+ | 0 < x ≤ s} → [0,∞[ of (9)–(10) such that

(x, s) 7→ w(x, s) is C2 outside {(G(s), s), (H(s), s) | s ≥ s∗} (11)

and

x 7→ w(x, s) is C1 at G(s) and H(s) for all s ≥ s∗. (12)

The function w satisfies

1
2
σ 2x2 ∂

2w

∂x2 (x, s)+ µx
∂w

∂x
(x, s)− rw(x, s) ≤ 0 (13)

inside the set
{
(x, s) ∈ R2

+ | 0 < x < s
}
\ {(G(s), s), (H(s), s) | s ≥ s∗} and(

xasb
− K

)+
≤ w(x, s) for all (x, s). (14)

Furthermore, (9) is true for all (x, s) 6∈ {(G(s), s), (H(s), s) | s ≥ s∗} and (10) holds for all
s > 0.

Lemma 2. Consider the optimal stopping problem defined by (1)–(3), and suppose that the
variational inequality (9) with boundary condition (10) has a solution w as described above
and such that

w(x, s) ≤ C
(
1+ sγ

)
for all 0 < x ≤ s, (15)

for some constants C, γ > 0. Also, consider the stochastic processes Z and R defined by

Z t = e−r tw(X t , St ) and Rt = e−r t (Xa
t Sb

t − K )+. (16)

The following statements hold true:

(I) Z is an (Ft )-supermartingale majorising the reward process R, and

v(x, s) ≤ w(x, s) for all 0 < x ≤ s. (17)

(II) If w satisfies the transversality condition

lim inf
T→∞

e−rT E [w(XT , ST )] ≡ lim inf
T→∞

E [ZT ] = 0, (18)

then Z is the least (Ft )-supermartingale that majorises the reward process R, i.e., Z is the Snell
envelop of R,

v(x, s) = w(x, s) for all 0 < x ≤ s, (19)

and the first hitting time τS of the stopping region S =
{
(x, s) ∈ R2

+ | w(x, s) = (xasb
− K )+

}
,

defined by

τS = inf {t ≥ 0 | (X t , St ) ∈ S} , (20)

is an optimal stopping time.
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Proof. In view of (11)–(12), w possesses enough regularity for an application of Itô–
Tanaka–Meyer’s formula (see Graversen and Peskir [10, Remark 4.2]), which yields

e−rTw(XT , ST ) = w(x, s)+
∫ T

0
e−r t ∂w

∂s
(St , St )dSt + MT

+

∫ T

0
e−r t

[
1
2
σ 2 X2

t
∂2w

∂x2 (X t , St )+ µX t
∂w

∂x
(X t , St )− rw(X t , St )

]
dt

= w(x, s)+ MT

+

∫ T

0
e−r t

[
1
2
σ 2 X2

t
∂2w

∂x2 (X t , St )+ µX t
∂w

∂x
(X t , St )− rw(X t , St )

]
dt, (21)

where

MT =

∫ T

0
e−r t ∂w

∂x
(X t , St )dWt ,

and the second identity follows from the boundary condition (10) and the fact that S increases
only on the set {X t = St }. The growth assumption (15) and the fact that E

[
SγT
]
<∞ imply that

E [ZT ] = E
[
e−rTw(XT , ST )

]
<∞ for all T ≥ 0.

Also, if (Tn) is any localising sequence of (Ft )-stopping times for the local martingale M , then
(21) and the inequality (13) imply that

E
[
e−r(T∧Tn)w(XT∧Tn , ST∧Tn ) | Ft

]
≤ e−r(t∧Tn)w(X t∧Tn , St∧Tn ) for all t ≤ T and n ≥ 1. (22)

To prove part (I) of the lemma, we use the dominated convergence theorem, Fatou’s lemma
and (22) to calculate

E [ZT | Ft ] = E
[
e−rTw(XT , ST ) | Ft

]
≤ lim

n→∞
E
[
e−rTw(XT , ST )1{T≤Tn} | Ft

]
+ lim inf

n→∞
E
[
e−rTnw(XTn , STn )1{Tn<T } | Ft

]
= lim inf

n→∞
E
[
e−r(T∧Tn)w(XT∧Tn , ST∧Tn ) | Ft

]
≤ lim

n→∞
e−r(t∧Tn)w(X t∧Tn , St∧Tn )

= Z t for all t ≤ T,

which proves that Z is an (Ft )-supermartingale. Furthermore, the claim that Z majorises R
follows immediately from inequality (14), while (17) follows from the fact that Z is a positive
supermartingale majorising R and the definition (3) of the value function v.

To establish part (II) of the theorem, we observe that, if τS ∈ T is the stopping time defined
by (20), then we can see that (21) and the fact that w satisfies the variational inequality (9) imply
that

e−rτS
(

Xa
τS Sb

τS − K
)+

1{τS≤T∧Tn} = w(x, s)+ MT∧Tn∧τS
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+ e−rτS

[(
Xa
τS Sb

τS − K
)+
− w(XτS , SτS )

]
1{τS≤T∧Tn}

− e−r(T∧Tn)w(XT∧Tn , ST∧Tn )1{τS>T∧Tn}

+

∫ T∧Tn∧τS

0
e−r t

[
1
2
σ 2 X2

t
∂2w

∂x2 (X t , St )+ µX t
∂w

∂x
(X t , St )− rw(X t , St )

]
dt.

= w(x, s)+ MT∧Tn∧τS − e−r(T∧Tn)w(XT∧Tn , ST∧Tn )1{τS>T∧Tn}.

Taking expectations, we obtain

E
[

e−rτS
(

Xa
τS Sb

τS − K
)+

1{τS≤T∧Tn}

]
= w(x, s)− E

[
e−r(T∧Tn)w(XT∧Tn , ST∧Tn )1{τS>T∧Tn}

]
. (23)

The growth condition (15) and the fact that S is an increasing process imply that

0 ≤ e−r(T∧Tn)w(XT∧Tn , ST∧Tn )1{τS>T∧Tn} ≤ C
(
1+ SγT

)
.

Since E
[
SγT
]
< ∞ for all T > 0, these inequalities and the dominated convergence theorem

imply that

lim
n→∞

E
[
e−r(T∧Tn)w(XT∧Tn , ST∧Tn )1{τS>T∧Tn}

]
= E

[
e−rTw(XT , ST )1{τS>T }

]
.

Furthermore, the transversality condition (18) implies that

0 ≤ lim inf
T→∞

E
[
e−rTw(XT , ST )1{τS>T }

]
≤ lim inf

T→∞
E
[
e−rTw(XT , ST )

]
= 0,

while the monotone convergence theorem implies that

lim
T→∞

lim
n→∞

E
[

e−rτS
(

Xa
τS Sb

τS − K
)+

1{τS≤T∧Tn}

]
= E

[
e−rτS

(
Xa
τS Sb

τS − K
)+

1{τS<∞}

]
.

In view of these limits, we can see that (23) yields

E
[

e−rτS
(

Xa
τS Sb

τS − K
)+

1{τS<∞}

]
= w(x, s),

which, combined with (17), implies that v(x, s) = w(x, s) and that τS is optimal. Finally, the
assertion that Z is the Snell envelop of R follows from the results that we have established thus
far and the general theory of optimal stopping (e.g., see El Karoui [8, 2.51–2.76], and Peskir and
Shiryaev [22, Section 2]). �

4. The solution of the optimal stopping problem

We now solve the optimal stopping problem (1)–(3) by constructing a solution w of the vari-
ational inequality (9) with boundary condition (10) that satisfies the requirements of the verifica-
tion Lemma 2 when a+b < n (see also Lemma 1). To this end, we first note that, by considering
simple sub-optimal stopping times, such as the first hitting time of the set {(x, s) | xasb

−K ≥ 1},
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which is finite, P-a.s., we can see that the value function is strictly positive in the domain
{(x, s) | 0 < x ≤ s}. It follows that the set{

(x, s) ∈ R2
+ | (x

asb
− K )+ = 0

}
=

{
(x, s) ∈ R2

+ | x ≤

(
K

sb

)1/a
}

must be a subset of the continuation region W . Furthermore, we observe that, since

∂

∂s

(
xasb
− K

)∣∣∣∣
x=s
= bsa+b−1 > 0 for all s > 0,

the line {(x, s) ∈ R2
+ | x = s > (K/sb)1/a}, which is part of the state space’s boundary, must

also be a subset of the continuation region W because the boundary condition (10) cannot hold
otherwise.

In view of these observations, we conjecture that there exists a point s∗ > 0, a strictly
decreasing function G : [s∗,∞[→ R and a strictly increasing function H : [s∗,∞[→ R with

G(s∗) = H(s∗) and 0 <
(

K

sb

)1/a

< G(s) < H(s) < s for all s > s∗,

such that the stopping region S is given by

S =
{
(x, s) ∈ R2

+ | s∗ ≤ s and G(s) ≤ x ≤ H(s)
}
. (24)

Accordingly the continuation region W is given by W = W1 ∪W2 ∪W3, where

W1 =

{
(x, s) ∈ R2

+ | s∗ ≤ s and 0 < x < G(s)
}
, (25)

W2 =

{
(x, s) ∈ R2

+ | s∗ ≤ s and H(s) < x ≤ s
}
, (26)

W3 =

{
(x, s) ∈ R2

+ | 0 < s < s∗ and 0 < x ≤ s
}
. (27)

This conjecture is depicted by Fig. 1.
To proceed further, we recall the fact that the functions w(·, s) should satisfy the ODE (5) in

the interior of the waiting region W . Since the general solution of (5) is given by (6), we therefore
look for functions A j and B j such that

w(x, s) = A j (s)x
n
+ B j (s)x

m, if (x, s) ∈ W j , for j = 1, 2, 3.

To determine these functions and the free-boundaries G and H , we consider each of the cases
associated with W1, W2 and W3 separately.

In the region W1, we must have B1 ≡ 0, otherwise, the transversality condition (18) of the
verification Lemma 2 cannot be satisfied. Furthermore, by appealing to the so-called principle
of smooth fit, which we have incorporated into the requirements of Lemma 2, we look for C1

continuity along the free-boundary function G, which yields the system of algebraic equations

A1(s)G
n(s) = Ga(s)sb

− K ,

n A1(s)G
n(s) = aGa(s)sb,
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1

x=s

s

x

s

x=H(s)

W
2

s
*+

W
3

S

x=G(s)W

Fig. 1. The continuation region W1∪W2∪W3 and the stopping region S of the discretionary stopping problem (1)–(3)
when a + b = n.

for s ≥ s∗. This system is straightforward to solve, and we are faced with the expressions

A1(s) =
a

n

(
nK

n − a

)−(n−a)/a

sbn/a > 0, B1(s) = 0, (28)

and

G(s) =

(
nK

n − a

)1/a

s−b/a >

(
K

sb

)1/a

. (29)

Plainly, the function G given by (29) is strictly decreasing. Also, the equivalence(
nK

n − a

)1/a

s−b/a < s ⇔ s >

(
nK

n − a

)1/(a+b)

implies that we must have

s∗ >

(
nK

n − a

)1/(a+b)

=: sĎ (30)

for our construction to make sense (see also Fig. 1).
In the region W2, the boundary condition (10) becomes relevant and yields the expression

Ȧ2(s)s
n
+ Ḃ2(s)s

m
= 0. (31)

Also, C1 continuity along the free-boundary function H is associated with the system of
equations

A2(s)H
n(s)+ B2(s)H

m(s) = Ha(s)sb
− K ,

n A2(s)H
n(s)+ m B2(s)H

m(s) = aHa(s)sb,
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for s ≥ s∗, which is equivalent to

A2(s) =
(a − m)Ha(s)sb

+ mK

n − m
H−n(s), (32)

B2(s) =
(n − a)Ha(s)sb

− nK

n − m
H−m(s). (33)

Differentiating these expressions with respect to s and substituting the results for Ȧ and Ḃ in
(31), we can see that H should satisfy the ODE

Ḣ(s) = H (H(s), s) , (34)

where

H
(
H̄ , s

)
=

b
[
(a − m)

(
s
H̄

)n
+ (n − a)

(
s
H̄

)m]
H̄a+1sb−1[

(a − m)(n − a)H̄asb + mnK
] [( s

H̄

)n
−

(
s
H̄

)m] . (35)

We need to solve this ODE with an initial condition

H(s∗) = G(s∗) ≡

(
nK

n − a

)1/a

s−b/a
∗ , (36)

for some appropriate s∗ > sĎ inside the domain

D H =

{
(H̄ , s) ∈ R2

+ | sĎ < s and
(

nK

n − a

)1/a

s−b/a
≤ H̄ < s

}
. (37)

For future reference, we also note that, if (34) has the required solution, then (32), (33) and (36)
imply that

lim
s↓s∗

A2(s) =
a

n

(
nK

n − a

)−(n−a)/a

sbn/a
∗ = lim

s↓s∗
A1(s) and lim

s↓s∗
B2(s) = 0. (38)

The following result, which we prove in the Appendix, and which can be illustrated by Fig. 2,
is mainly concerned with the solvability of (34)–(36).

Lemma 3. Suppose that the problem data satisfy Assumption 1 and a+b < n. There exist points
s◦ and s◦ satisfying

sĎ <

(
nK

n − a

)1/(a+b) [
(n − a)(a + b − m)

(a − m)(n − a − b)

]a/[(a+b)(n−m)]

< s◦ ≤ s◦ <∞, (39)

where sĎ is given by (30), such that the following statements hold true:

(I) Given any s∗ ∈]sĎ, s◦[, the ODE (34) with an initial condition (36) has a unique solution
H(·) ≡ H(·; s∗) in D H that is defined up to an “explosion” point ŝ = ŝ(s∗) < ∞. In
particular, (H(s), s) ∈ D H for all s ∈ [s∗, ŝ[, lims↑ŝ H(s) = ŝ, and H is strictly increasing
in its domain [s∗, ŝ[.

(II) Given any s∗ ∈ [s◦, s◦], the ODE (34) with an initial condition (36) has a unique solution
H(·) in D H . This solution is a strictly increasing function such that
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o

s

x

s+

x=s

x=cs

so

x=H(s )

Fig. 2. The solution of (34)–(36) for different values of s∗ > sĎ.

H(s) < cs for all s ≥ s∗, and lim
s→∞

H(s)

s
= c, (40)

where

c =

[
(a − m)(n − a − b)

(n − a)(a + b − m)

]1/(n−m)

∈]0, 1[. (41)

(III) Given any s∗ > s◦, the ODE (34) with an initial condition (36) has a unique solution
H(·) ≡ H(·; s∗) in D H . This solution is a strictly increasing function such that

s−b/(n−a)
∗ H(s∗)s

b/(n−a)
≤ H(s) ≤ min

{
cs,Csb/(n−a)

}
for all s ≥ s∗, (42)

for some constant C = C(s∗) > 0, and for c given by (41).
(IV) In each of the three cases above, A2(s), B2(s) > 0 for all s > s∗ in the domain of H, where

A2(s) and B2(s) are given by (32) and (33).

This lemma suggests that we must have s∗ ≥ s◦ because, otherwise, the candidate for the
value function that we construct does not satisfy the boundary condition (10) (see the discussion
at the beginning of the section).

Now, in the region W3, we must have B3 ≡ 0 for the requirement (18) of the verification
Lemma 2 to be satisfied. In this context, the boundary condition (10) implies that Ȧ3 = 0.
Combining these observations with (28), (38) and the requirement that w should be continuous,
we are faced with the expressions

A3(s) =
a

n

(
nK

n − a

)−(n−a)/a

sbn/a
∗ > 0 and B3(s) = 0 (43)

for all s ≤ s∗.
Summarising the analysis thus far, we conjecture that the value function v of our optimal

stopping problem identifies with the function w given by

w(x, s) ≡ w(x, s; s∗)
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=


xasb
− K , x ∈ S,

A1(s)x
n, x ∈ W1,

A2(s)x
n
+ B2(s)x

m, x ∈ W2,

A3(s)x
n, x ∈ W3,

=



xasb
− K , x ∈ S,

a

n

(
nK

n − a

)−(n−a)/a

sbn/a xn, x ∈ W1,

(a − m)Ha(s)sb
+ mK

n − m

(
x

H(s)

)n

+
(n − a)Ha(s)sb

− nK

n − m

(
x

H(s)

)m

, x ∈ W2,

a

n

(
nK

n − a

)−(n−a)/a

sbn/a
∗ xn, x ∈ W3,

(44)

for some s∗ ≥ s◦. The following result, which we prove in the Appendix, establishes that each
of these functions, which are parametrised by s∗ ≥ s◦, is a solution of the variational inequality
(9)–(10).

Lemma 4. Suppose that the problem data satisfy Assumption 1 and a + b < n. Also, fix any
s∗ ≥ s◦, where s◦ is as in Lemma 3. The function w(·) ≡ w(·; s∗) defined by (44), where G is
given by (29), H(·) ≡ H(·; s∗) is the associated solution of (34)–(36), and S , W1, W2, W3 are
defined by (24)–(27), is a solution of the variational inequality (9) with boundary condition (10)
that has the properties (11)–(14).

We can now prove the main result of the paper.

Theorem 5. Consider the optimal stopping problem defined by (1)–(3), and suppose that the
problem data satisfy Assumption 1.

(I) If a+b < n, then s◦ = s◦, where s◦, s◦ are as in Lemma 3, and v = w(·; s◦), where w(·; s◦)
is defined by (44) with s∗ = s◦. Furthermore, the first hitting time τS of the stopping region
S , which is defined as in (20) in the verification Lemma 2, is optimal.

(II) If a + b ≥ n, then v ≡ ∞.

Proof. Given a constant λ ∈]0, n[, there exist ε1, ε2 > 0 such that

1
2
σ 2λ2

+

(
µ−

1
2
σ 2
)
λ− (r − ε1) = −ε2σλ.

For such a choice of constants fixed, we can see that, given any initial condition 0 < x ≤ s,

e−rT E
[
SλT
]
= e−rT E

[
max

{
sλ, max

0≤t≤T
Xλt

}]
≤ sλe−rT

+ xλe−ε1T E
[

exp
(

max
0≤t≤T

{(
µ−

1
2
σ 2
)
λt − (r − ε1)t + σλWt

})]
≤ sλe−rT

+ xλe−ε1T E

[
exp

(
σλ sup

0≤t

{
−

(
1
2
σλ+ ε2

)
t +Wt

})]

= sλe−rT
+ xλ

σλ+ 2ε2

2ε2
e−ε1T ,
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the last equality following because the maximum of a Brownian motion with drift −ν < 0 is an
exponentially distributed random variable with the parameter 2ν (e.g., see Borodin and Salminen
[2, 2.1.1.4]). It follows that

lim
T→∞

e−rT E
[
SλT
]
= 0 for all λ ∈]0, n[. (45)

To proceed further, we consider part (I) of the theorem, and we assume that a+ b < n. Given
any s∗ ≥ s◦, we note that (40) and the left-hand side of (42) in Lemma 3 imply the inequalities

xasb
− K ≤ sa+b for all (x, s) ∈ S, (46)

A1(s)x
n
≤ A1(s)G

n(s) =
aK

n − a
for all (x, s) ∈ W1, (47)

−mK

n − m

(
x

H(s)

)n

≤
−mK

n − m
sn H−n(s)

≤
−mK sbn/(n−a)

∗

(n − m)Hn(s∗)
sn(n−a−b)/(n−a) for all (x, s) ∈ W2, (48)

B2(s)x
m
≤

n − a

n − m
Ha(s)sb

(
x

H(s)

)m

≤
n − a

n − m
Ha(s)sb

≤
n − a

n − m
sa+b for all (x, s) ∈ W2, (49)

and

A3(s)x
n
≤

a

n

(
nK

n − a

)−(n−a)/a

s(a+b)n/a
∗ for all (x, s) ∈ W3. (50)

If we write

w(x, s) =
a − m

n − m
H−(n−a)(s)sbxn1[s∗,∞[(s)+ w̃(x, s), (51)

then an inspection of (44) reveals that |w̃| is bounded by the sum of the strictly positive terms
on the left-hand sides of inequalities (46)–(50). In view of this observation, we can see that there
exists a constant C1 = C1(s∗) such that

|w̃(x, s)| ≤ C1

[
1+ sa+b

+ sn(n−a−b)/(n−a)
]

for all 0 < x ≤ s. (52)

Combining this estimate with (45), we can see that

lim
T→∞

e−rT E
[
|w̃(XT , ST )|

]
= 0, (53)

thanks to the assumption that the constants a, b > 0 satisfy a + b < n.
Given any s∗ > s◦, the estimate given on the right-hand side of (42) implies that

H−(n−a)(s)sbxn1[s∗,∞[(s) ≥ C−(n−a)xn
− C−(n−a)xn1]0,s∗[(s)

≥ C−(n−a)xn
− C−(n−a)sn

∗ for all 0 < x ≤ s.
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In view of (53) and the fact that the process (e−r t Xn
t , t ≥ 0) is a martingale, it follows that

lim inf
T→∞

e−rT E [w(XT , ST )] ≥
a − m

(n − m)Cn−a lim
T→∞

e−rT (E [Xn
T

]
− sn
∗

)
− lim

T→∞
e−rT E

[
|w̃(XT , ST )|

]
=

a − m

(n − m)Cn−a xn

> 0,

which proves that, when s∗ > s◦, w(·; s∗) does not satisfy the transversality condition (18)
of the verification Lemma 2 and cannot be identified with the value function v. On the other
hand, for s∗ ∈ [s◦, s◦], (40) implies that there exist constants ε ∈]0, c[ and sε ≥ s∗ such that
H(s) ≥ (c − ε)s for all s ≥ sε. For such a choice of constants, we can see that

H−(n−a)(s)sbxn1[s∗,∞[(s) ≤ (c − ε)
−(n−a)s−(n−a−b)xn1]sε,∞[(s)

+ H−(n−a)(s)sbxn1[s∗,sε](s)

≤ (c − ε)−(n−a)sa+b
+ H−(n−a)(s∗)s

b+n
ε for all 0 < x ≤ s. (54)

Combining these inequalities with (45) and (53), we can see that

lim
T→∞

e−rT E [w(XT , ST )] ≤
a − m

(n − m)(c − ε)(n−a)
lim

T→∞
e−rT

×

(
E
[

Sa+b
T

]
+ (c − ε)(n−a)H−(n−a)(s∗)s

b+n
ε

)
+ lim

T→∞
e−rT E

[
|w̃(XT , ST )|

]
= 0,

which proves that w(·; s∗) satisfies the transversality condition (18) when s∗ ∈ [s◦, s◦]. Since
w(·; s∗) satisfies all of the requirements of the verification Lemma 2 when s∗ ∈ [s◦, s◦], it follows
that v = w(·; s∗) for all s∗ ∈ [s◦, s◦], which establishes part (I) of the theorem. In particular, the
identity s◦ = s◦ follows from the uniqueness of the value function v.

In view of Lemma 1, we will prove part (II) of the theorem if we show that v ≡ ∞ if a+b = n.
To this end, we fix the rest of the problem data, we parametrise the value function v by b, and we
note that

v(x, s; n − a) ≥ v(x, s; b) for all b ∈]0, n − a[ and 0 < x ≤ s,

by the definition (3) of the value function v. In light of this observation, the fact that
v(·; b) = w(·; b, s◦(b)) for all b ∈]0, n − a[, which we have established above, the fact that
limb↑n−a s◦(b) = ∞, which follows from (39), and the expression (44) of w, we can see that

v(x, s; n − a) ≥ lim
b↑n−a

a

n

(
nK

n − a

)−(n−a)/a

sbn/a
◦ (b)xn

= ∞ for all 0 < x ≤ s,

and the proof is complete. �

5. Limiting cases

We now study the robustness of our optimal strategy by considering the form that it takes as
certain of the parameters a, b and K tend to 0 in a fashion that gives rise to problems studied in
the literature. To this end, we denote by G(·; a, b, K ) and H(·; a, b, K ) the free-boundaries that



X. Guo, M. Zervos / Stochastic Processes and their Applications 120 (2010) 1033–1059 1047

characterise our optimal solution, by c(a, b) the constant defined by (41), and so on, to stress the
dependence of such objects on the data a, b and K . Also, we assume that the parameters a and
b always satisfy the inequality a + b < n. It is worth noting that we focus on showing that the
continuation and the stopping regions of the problem we have solved transform continuously to
the corresponding regions of the limit problems that we consider. The fact that the limit regions
indeed provide the optimal stopping strategies of the limit problems has been proved in the
references we list; it can also be established using the verification Lemma 2.

The payoff structure of the well-known perpetual American call option, essentially solved by
McKean [18], arises formally when a = 1, K > 0 and b ↓ 0. In this case, we can check that

lim
b↓0

G(s; 1, b, K ) =
nK

n − 1
for all s > 0,

and that

lim
b↓0

lim
s→∞

H(s; 1, b, K )

s
= lim

b↓0
c(1, b) = 1. (55)

Noting that limb↓0 H(H̄ , s; 1, b, K ) = 0 for all (H̄ , s) ∈ D H , we can see that (55) is satisfied if
and only if

lim
b↓0

s∗(1, b, K ) = lim
b↓0

sĎ(1, b, K ) =
nK

n − 1

and the strictly increasing functions H(·; 1, b, K ) converge pointwise to the function
H(·; 1, 0, K ) given by H(s; 1, 0, K ) = s, for s ≥ nK/(n − 1). (Note that the graph of
H(·; 1, 0, K ) lies on the part of the boundary of the domain D H where the ODE (34) becomes
singular.) In particular, at the limit b ↓ 0, the stopping region is given by

S =
{
(x, s) ∈ R2

+ |
nK

n − 1
≤ x ≤ s

}
and the continuation region is given by

W1 ∪W3 =

{
(x, s) ∈ R2

+ | 0 < x ≤ min
{

s,
nK

n − 1

}}
,

while the value function is given by

w(x, s) =


x − K , for (x, s) ∈ S,
1
n

(
nK

n − 1

)−1/(n−1)

xn, for (x, s) ∈ W1 ∪W3,

as expected (see also Fig. 3).
The payoff structure of the lookback American option studied by Pedersen [20] and Guo and

Shepp [11] arises formally when b = 1, K > 0 and a ↓ 0. In this case, we can check that

lim
a↓0

G(s; a, 1, K ) = 0 for all s > lim
a↓0

sĎ(a, 1, K ) = K ,

lim
a↓0

c(a, 1) =
(
−m(n − 1)
n(1− m)

)1/(n−m)

, (56)
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nk/(n–1)

x=s

s

x

s  = nk/(n–1)

W

W
1

3

+

S

Fig. 3. The continuation region W1 ∪W3 and the stopping region S of the perpetual American option.

and that

lim
a↓0

H(H̄ , s; a, 1, K ) =

[
−m

(
s
H̄

)n
+ n

(
s
H̄

)m]
H̄

−mn(s − K )
[(

s
H̄

)n
−

(
s
H̄

)m] =: H(H̄ , s; 0, 1, K ). (57)

It follows that, at the limit a ↓ 0, the stopping region is given by

S =
{
(x, s) ∈ R2

+ | s∗ < s and 0 < x ≤ H(s)
}
,

while the continuation region is given by

W2 ∪W3 =

{
(x, s) ∈ R2

+ | either s∗ ≤ s and H(s) < x ≤ s or 0 < x ≤ s < s∗
}
,

where H is the solution of the ODE (34) with H given by (57) that tends asymptotically to the line
with slope given by the constant in (56), which is in agreement with the results of Pedersen [20]
and Guo and Shepp [11] (see also Fig. 4).

The payoff structure of the Russian option introduced by Shepp and Shiryaev [23] arises
formally when b = 1, a ↓ 0 and K ↓ 0. In this case, we can check that

lim
a,K↓0

G(s; a, 1, K ) = 0 for all s > lim
a,K↓0

sĎ(a, 1, K ) = 0,

and that

lim
a,K↓0

H(H̄ , s; a, 1, K ) =
−m

(
s
H̄

)n−1
+ n

(
s
H̄

)m−1

−mn
[(

s
H̄

)n
−

(
s
H̄

)m] =: H(H̄ , s; 0, 1, 0). (58)

For H(s) = cs, with c given by (56), we can see that

H(H(s), s; a, 1, K ) =
−m + ncn−m

−mn(1− cn−m)
c = c.
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x=H(s)

x=s

s

x

W
2

S
W

3

x=cs

s
*

Fig. 4. The continuation region W2 ∪W3 and the stopping region S of the perpetual lookback American option.

S

x=s

x=cs

s

x

2
W

Fig. 5. The continuation region W2 and the stopping region S of the Russian option.

This calculation shows that the function s 7→ cs, which plainly has the required asymptotic
behaviour, satisfies the ODE (34) with H given by (58). It follows that, at the limit a, K ↓ 0,
s∗ = 0, the stopping region is given by

S =
{
(x, s) ∈ R2

+ | 0 < x ≤ cs
}
,

and the continuation region is given by

W2 =

{
(x, s) ∈ R2

+ | cs < x ≤ s
}
,

which is in agreement with the results of Shepp and Shiryaev [23] (see also Fig. 5).
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Appendix. Proof of results in Section 4

Proof of Lemma 3. Recalling the definition (37) of D H , we can see that the calculation

(a − m)(n − a)H̄asb
+ mnK ≥ (a − m)(n − a)

[(
nK

n − a

)1/a

s−b/a

]a

sb
+ mnK

= anK

> 0 for all (H̄ , s) ∈ D H , (59)

implies that the function (H̄ , s) 7→ 1/
[
(a − m)(n − a)H̄asb

+ mnK
]

is strictly positive and
Lipschitz continuous in the closure of D H , and that the function H defined by (35) is strictly
positive and locally Lipschitz in D H . In light of these observations, we can see that, given any
s∗ > sĎ, the ODE (34) with initial condition (36) has a unique, strictly increasing solution
H(·) ≡ H(·; s∗) in D H up to a possible “explosion” point ŝ(s∗) at which this solution hits
the boundary of D H that coincides with the line defined by H̄ = s. Furthermore, uniqueness
implies that

s1
∗ < s2

∗ ⇔ H(s; s1
∗) < H(s; s2

∗) for all s ∈
[
s2
∗, ŝ(s1

∗)
[
, (60)

where we set ŝ(s1
∗) = ∞ if H(s; s1

∗) ∈ D H for all s ≥ s1
∗ , and we adopt the convention [γ, γ [= ∅

for γ ∈ R.
We now fix any initial condition s∗ > sĎ and we consider the associated solution H(·) ≡

H(·; s∗) of (34)–(36). We define h(s) = H(s)/s, and we calculate

ḣ(s) =

[
−(a − m)(n − a − b)+ (n − a)(a + b − m)hn−m(s)

]
ha(s)sa+b

(a − m)(n − a)
[
1− hn−m(s)

]
ha(s)sa+b + mnK

[
1− hn−m(s)

] h(s)

s

+
−mnK

[
1− hn−m(s)

]
(a − m)(n − a)

[
1− hn−m(s)

]
ha(s)sa+b + mnK

[
1− hn−m(s)

] h(s)

s
(61)

and

h(s∗) =

(
nK

n − a

)1/a

s−(a+b)/a
∗ =: g(s∗). (62)

Also, we note that (H̄ , s) ∈ D H if and only if (H̄/s, s) ∈ Dh , where the domain Dh is defined
by

Dh =

{
(h̄, s) ∈ R2

+ | sĎ < s and
(

nK

n − a

)1/a

s−(a+b)/a
≤ h̄ < 1

}
,
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that (59) implies that

(a − m)(n − a)h̄asa+b
+ mnK ≥ anK > 0 for all (h̄, s) ∈ Dh, (63)

and that (60) implies trivially the equivalence

s1
∗ < s2

∗ ⇔ h(s; s1
∗) < h(s; s2

∗) for all s ∈
[
s2
∗, ŝ(s1

∗)
[
. (64)

If there exists s̃ ≥ s∗ such that h(s̃) = c, where c is defined by (41), then (61) and (63) imply
that

ḣ(s) ≥
−mnK

(a − m)(n − a)ha(s)sa+b + mnK

h(s)

s
> 0, for s ≥ s̃. (65)

In this case, there exists ŝ = ŝ(s∗) <∞ such that

h(s) ≡
H(s)

s
< 1 for all s ∈ [s∗, ŝ[, and lim

s↑ŝ
h(s) ≡ lim

s↑ŝ

H(s)

s
= 1. (66)

To see this claim, we argue by contradiction, and we assume that h(s) < 1 for all s ≥ s∗. Since
h is strictly increasing in [s̃,∞[ (see (65)) and h(s̃) = c satisfies

−(a − m)(n − a − b)+ (n − a)(a + b − m)hn−m(s̃) = 0,

there exist ε > 0 and sε > s̃ such that

− (a − m)(n − a − b)+ (n − a)(a + b − m)hn−m(s) > ε for all s ≥ sε. (67)

For such parameter values, we can use the fact that h(s) ∈]c, 1[ for all s > sε, to calculate

ln h(s)− ln h(sε) =
∫ s

sε

ḣ(u)

h(u)
du

≥

∫ s

sε

1− hn−m(u)

h(u)
ḣ(u)du

(61)
=

∫ s

sε

[
−(a − m)(n − a − b)+ (n − a)(a + b − m)hn−m(u)

]
ha(u)ua+b

(a − m)(n − a)ha(u)ua+b + mnK
u−1du

+

∫ s

sε

−mnK
[
1− hn−m(u)

]
(a − m)(n − a)ha(u)ua+b + mnK

u−1du

(63), (65), (67)
>

∫ s

sε

εha(u)ua+b

(a − m)(n − a)ha(u)ua+b u−1du

=
ε

(a − m)(n − a)
[ln s − ln sε] ,

which implies that

h(s) > h(sε)

(
s

sε

)ε/[(a−m)(n−a)]

for all s ≥ sε.

However, this inequality contradicts the assumption that h(s) < 1 for all s ≥ s∗. It follows that,
for all s∗ > sĎ such that h(s; s∗) ≥ c, for some s ≥ s∗, (66) holds true for some ŝ = ŝ(s∗) <∞.



1052 X. Guo, M. Zervos / Stochastic Processes and their Applications 120 (2010) 1033–1059

Furthermore, noting that h(s∗) > c for all s∗ ∈]sĎ, c−a/(a+b)sĎ[, we can see that this conclusion
and (64) establish part (I) of the lemma, provided that we define

s◦ = sup
{
s∗ > sĎ | h(s; s∗) ≥ c for some s ≥ s∗

}
> c−a/(a+b)sĎ

=

(
nK

n − a

)1/(a+b) [
(n − a)(a + b − m)

(a − m)(n − a − b)

]a/[(a+b)(n−m)]

. (68)

To proceed further, we define

s◦ = inf
{

s∗ > sĎ | sup
s≥s∗

h(s; s∗) < c

}
≥ s◦, (69)

and we note that part (II) of the lemma will be established if we show that

s◦ <∞, h(s; s◦) < c for all s ≥ s◦, (70)

and

lim
s→∞

h(s; s∗) = c for all s∗ ∈ [s◦, s◦]. (71)

To this end, we observe that the second inequality in (70) follows immediately from the analysis
above, (64) and a straightforward contradiction argument. To show that s◦ < ∞, we note that
(61) and (63) imply that ḣ(s) < 0 if and only if

−mnK
[
1− hn−m(s)

]
< −

[
−(a − m)(n − a − b)+ (n − a)(a + b − m)hn−m(s)

]
ha(s)sa+b.

In view of the definition (41) of c, it follows that

ḣ(s) < 0⇔ (h(s), s) ∈ D−h =
{
(h̄, s) ∈ Dh | h̄ < c and s > š(h̄)

}
, (72)

where the function š :]0, c[→ R+ is defined by

š(h̄) =

(
mnK

[
1− h̄n−m

][
−(a − m)(n − a − b)+ (n − a)(a + b − m)h̄n−m

]
h̄a

)1/(a+b)

.

To appreciate the structure of the domain D−h , we note that

lim
h̄↓0

š(h̄) = lim
h̄↑c

š(h̄) = ∞. (73)

Also, we can calculate

sgn
(

dš(h̄)

dh̄

)
= sgn

(
Q(h̄)

)
, (74)

where Q is the quadratic in h̄n−m defined by

Q(h̄) = (n − m)
[
−(a − m)(n − a − b)+ (n − a)(a + b − m)h̄n−m] h̄n−m

+
[
−a(a − m)(n − a − b)+ (n − a)(a + b − m)(n − m + a)h̄n−m] [1− h̄n−m] .

Plainly,

Q(0) = −a(a − m)(n − a − b) < 0.
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Also, in view of the definition (41) of c, we can calculate

Q(c) = (n − m)(a − m)(n − a − b)
[
1− cn−m] > 0.

These inequalities, the fact that Q is a quadratic in h̄n−m and (74) imply that there exists a point
h̄? ∈]0, c[ such that

dš(h̄)

dh̄

{
< 0 for all h̄ ∈]0, h̄?[,
> 0 for all h̄ ∈]h̄?, c[.

It follows that š(h̄) strictly decreases from∞ to š(h̄?) > 0 as h̄ increases from 0 to h̄? and then
strictly increases from š(h̄?) to∞ as h̄ increases from h̄? to c. Combining this observation with
the fact that the function g defined by (62) strictly decreases to 0 as s increases to∞, we can see
that there exists a point h̄Ď

≥ h̄? such that

š(h̄) > g(s) for all h̄ ∈]h̄Ď, c[ and s > g[−1](h̄Ď),

where g[−1] is the inverse function of g. This inequality, (72) and a straightforward contradiction
argument imply that

sup
s≥s∗

h(s; s∗) < c for all s∗ ≥ š(h̄Ď),

which establishes the claim that s◦ <∞.
To prove (71), we first note that{

(h(s; s◦), s) | s ≥ s◦
}
∩D−h = ∅. (75)

To see this claim, we argue by contradictions, and we assume that there exists sĚ ≥ s◦ such
that h(sĚ; s◦) ∈ D−h . In this case, h(s; s◦) < h(sĚ; s◦) for all s > sĚ thanks to (72). Since
s◦ ≤ s◦, this observation, (64) and (70) imply that maxs≥s◦ h(s; s◦) < c. In view of (64) and the
continuity of the vector field associated with the ODE (61) that h satisfies, we can see that this
conclusion contradicts the definition (69) of s◦, and (75) has been established.

Combining (75) with (72), we can see that h(·; s◦) is increasing. Furthermore, the continuity
of the vector field associated with the ODE (61) that h satisfies, the definition (69) of s◦, (70)
and (72) imply that

c > h(s; s◦) ≥ sup
{
h̄ | (h̄, s) ∈ D−h

}
for all s ≥ š(h̄?).

Combining this observation with (64) and (70), we can see that h(·; s∗) is increasing and
lims→∞ h(s; s∗) exists for all s∗ ∈ [s◦, s◦]. In particular, (71) is true thanks to the second limit
in (73).

To establish (42) in part (III) of the lemma, we fix any s∗ > s◦, we note that the associated
solution h of the ODE (61) with initial condition (62) satisfies sups≥s∗ h(s) < c, and we fix any
ε > 0 such that

hn−m(s) ≤ cn−m
− ε for all s ≥ s∗. (76)

Recalling the definition (41) of c ∈]0, 1[, we can see that

− (a − m)(n − a − b)+ (n − a)(a + b − m)hn−m(s) ≤ −ε(n − a)(a + b − m)

< 0 for all s ≥ s∗. (77)
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Furthermore, we can use the fact that s 7→ H(s) ≡ sh(s) is strictly increasing to obtain

(a − m)(n − a)ha(s)sa
+ mnK s−b > (a − m)(n − a)Ha(s∗)+ mnK s−b

∗

(36), (59)
= anK s−b

∗

> 0 for all s ≥ s∗, (78)

which implies that

0 <
−mnK

(a − m)(n − a)ha(s)sa+b + mnK
<
−msb

∗

asb for all s ≥ s∗. (79)

Now, (78) and the fact that h(s) ∈]0, 1[ for all s ≥ s∗, imply that

0 < (a − m)(n − a)
[
1− hn−m(s)

]
ha(s)sa+b

+ mnK
[
1− hn−m(s)

]
< (a − m)(n − a)ha(s)sa+b for all s ≥ s∗.

It follows that

1

(a − m)(n − a)
[
1− hn−m(s)

]
ha(s)sa+b + mnK

[
1− hn−m(s)

]
>

1
(a − m)(n − a)ha(s)sa+b ,

> 0 for all s ≥ s∗. (80)

These inequalities and (77) imply that[
−(a − m)(n − a − b)+ (n − a)(a + b − m)hn−m(s)

]
ha(s)sa+b

(a − m)(n − a)
[
1− hn−m(s)

]
ha(s)sa+b + mnK

[
1− hn−m(s)

]
≤
−(a − m)(n − a − b)+ (n − a)(a + b − m)hn−m(s)

(a − m)(n − a)

≤ −
ε(a + b − m)

a − m
. (81)

In view of this calculation and (79), we can see that (61) implies that

d ln h(s)

ds
≤ −

ε(a + b − m)

a − m
s−1
+
−msb

∗

a
s−(b+1).

If we define Cε = ε(a + b − m)/(a − m), then we can see that this inequality implies that

ln h(s)− ln h(s∗) ≤ −Cε

∫ s

s∗
u−1du +

−msb
∗

a

∫ s

s∗
u−(b+1)du

= ln s−Cε + ln sCε −
−msb

∗

ab
s−b
+
−m

ab

≤ ln s−Cε + ln sCε +
−m

ab
for all s ≥ s∗.

Therefore,

h(s) ≤ Γεs−Cε for all s ≥ s∗,
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where Γε = Γε(s∗) = e−m/(ab)sCε
∗ h(s∗). Using this estimate, (79) and the first inequality in (81),

we can see that (61) implies that

d ln h(s)

ds
≤
−(a − m)(n − a − b)+ (n − a)(a + b − m)hn−m(s)

(a − m)(n − a)
s−1
+
−msb

∗

a
s−(b+1)

≤ −
n − a − b

n − a
s−1
+
(a + b − m)Γ n−m

ε

a − m
s−(Cε(n−m)+1)

+
−msb

∗

a
s−(b+1)

for all s ≥ s∗. It follows that

ln h(s)− ln h(s∗) ≤ −
n − a − b

n − a

∫ s

s∗
u−1du +

(a + b − m)Γ n−m
ε

a − m

∫ s

s∗
u−(Cε(n−m)+1)du

+
−msb

∗

a

∫ s

s∗
u−(b+1)du

= ln s−(n−a−b)/(n−a)
+ ln s(n−a−b)/(n−a)

∗

+
(a + b − m)Γ n−m

ε

(a − m)(n − m)Cε

[
−s−Cε(n−m)

+ s−Cε(n−m)
∗

]
+
−msb

∗

ab

[
−s−b

+ s−b
∗

]
≤ ln s−(n−a−b)/(n−a)

+ ln s(n−a−b)/(n−a)
∗ +

(a + b − m)Γ n−m
ε

(a − m)(n − m)Cεs
Cε(n−m)
∗

+
−m

ab

for all s ≥ s∗.

Therefore,

h(s) ≤ s(n−a−b)/(n−a)
∗ h(s∗) exp

(
(a + b − m)Γ n−m

ε

(a − m)(n − m)Cεs
Cε(n−m)
∗

+
−m

ab

)
s−(n−a−b)/(n−a)

for all s ≥ s∗. This inequality, (76) and the identity H(s) = sh(s) imply immediately the right-
hand side of (42) if we choose any

C ≥ s(n−a−b)/(n−a)
∗ h(s∗) exp

(
(a + b − m)Γ n−m

ε

(a − m)(n − m)Cεs
Cε(n−m)
∗

+
−m

ab

)
.

The left-hand side of (42) follows immediately from the calculation

d ln H(s)

ds
=

b
[
(a − m)+ (n − a)hn−m(s)

]
Ha(s)sb[

(a − m)(n − a)Ha(s)sb + mnK
] [

1− hn−m(s)
] s−1

>
b
[
(a − m)+ (n − a)hn−m(s)

]
Ha(s)sb[

(a − m)(n − a)Ha(s)sb + mnK
] s−1

>
b

n − a
s−1,

where we have used (59) and the fact that 1− hn−m(s) ∈]0, 1[ for all s ≥ s∗, to establish the first
inequality.

Finally, (36) and the fact that H is strictly increasing imply the inequalities

(a − m)Ha(s)sb
+ mK > (a − m)Ha(s∗)s

b
∗ + mK =

n − m

n − a
aK > 0

and



1056 X. Guo, M. Zervos / Stochastic Processes and their Applications 120 (2010) 1033–1059

(n − a)Ha(s)sb
− nK > (n − a)Ha(s∗)s

b
∗ − nK = 0 (82)

for all s > s∗ in the domain of H , which establish part (IV) of the lemma. �

Proof of Lemma 4. We fix any s∗ ≥ s◦, and we consider the associated functionw(·) ≡ w(·; s∗)
defined by (44). By construction, we will prove that the positive function w is a solution of the
variational inequality (9) with boundary condition (10) that satisfies (11)–(14) if we show that

f (x, s) :=
1
2
σ 2x2 ∂

2

∂x2

(
xasb
− K

)
+ µx

∂

∂x

(
xasb
− K

)
− r

(
xasb
− K

)
≡

[
1
2
σ 2a2

+

(
µ−

1
2
σ 2
)

a − r

]
xasb
+ r K

≤ 0 for all (x, s) ∈ S, (83)

and

g(x, s) := w(x, s)− xasb
+ K ≥ 0 for all (x, s) ∈ W1 ∪W2 ∪W3. (84)

In view of Assumption 1, a ∈]m, n[, where m < 0 < n are the solutions of the quadratic
equation (7). Therefore,

∂ f (x, s)

∂x
= a

[
1
2
σ 2a2

+

(
µ−

1
2
σ 2
)

a − r

]
xa−1sb < 0.

This observation and the calculation

f (G(s), s) =

[
1
2
σ 2a2

+

(
µ−

1
2
σ 2
)

a − r

][(
nK

n − a

)1/a

s−b/a

]a

sb
+ r K

=
aK

n − a

[
1
2
σ 2n2

+

(
µ−

1
2
σ 2
)

n − r −
1
2
σ 2n(n − a)

]
= −

1
2
σ 2anK

< 0

imply that

f (x, s) < 0 for all s ≥ s∗ and x ∈ [G(s), s]. (85)

In particular, (83) holds true.
Taking note of the identity(

nK

n − a

)−1

Ga(s)sb
= 1,

which follows from the definition (29) of G, we can see that, for (x, s) ∈ W1,

∂g(x, s)

∂x
= axa−1sb

[( nK

n − a

)−1

xasb

](n−a)/a

− 1


< axa−1sb

[( nK

n − a

)−1

Ga(s)sb

](n−a)/a

− 1


= 0.
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This calculation implies that the function x 7→ g(x, s) is strictly decreasing in W1. Combining
this observation with the fact that w(G(s), s) − Ga(s)sb

+ K = 0, which follows from the
C1-continuity of w at G(s), we can see that the inequality (84) holds true for all (x, s) ∈ W1.

For (x, s) ∈ W3, g(x, s) = g(x, s), where g is defined by

g(x, s) =
a

n

(
nK

n − a

)−(n−a)/a

sbn/a
∗ xn

− xasb
+ K , for (x, s) ∈ R2

+.

In view of the calculation

∂g(x, s)

∂x
= axa−1

[(
nK

n − a

)−(n−a)/a

sbn/a
∗ xn−a

− sb

]
,

we can see that the function x 7→ g(x, s) has a unique minimum at

x =

[
nK

n − a
s−bn/(n−a)
∗

]1/a

sb/(n−a).

It follows that, given any (x, s) ∈ W3,

g(x, s) ≥
a

n

(
nK

n − a

)−(n−a)/a

sbn/a
∗

[
nK

n − a
s−bn/(n−a)
∗

]n/a

sbn/(n−a)

−
nK

n − a
s−bn/(n−a)
∗ sab/(n−a)sb

+ K

= −K s−bn/(n−a)
∗ sbn/(n−a)

+ K

> 0, (86)

with the last inequality following because s < s∗. These arguments establish that (84) holds true
for all (x, s) ∈ W3.

To proceed further, we note that

1
2
σ 2x2 ∂

2g(x, s)

∂x2 + µx
∂g(x, s)

∂x
− rg(x, s)

= −

[
1
2
σ 2a2

+

(
µ−

1
2
σ 2
)

a − r

]
xasb
− r K

> 0 for all s ≥ s∗ and x ∈]H(s), s[.

Here, the equality follows because the functionw(·, s) satisfies the ODE (5) in the waiting region
W2, and the inequality follows from (85) and the definition of f in (83). This inequality and the
maximum principle imply that, given any s ≥ s∗,

the function g(·, s) has no positive maximum in the set ]H(s), s[. (87)

Now, given (x, s) in the interior of W2, we can use the identity

∂2g(x, s)

∂x2 = n(n − 1)
(a − m)Ha(s)sb

+ mK

n − m
H−n(s)xn−2

+m(m − 1)
(n − a)Ha(s)sb

− nK

n − m
H−m(s)xm−2

− a(a − 1)sbxa−2
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to calculate

lim
x↓H(s)

∂2g(x, s)

∂x2 = −[a2
− a(m + n)+ mn]Ha−2(s)sb

+ mnK H−2(s)

(8)
= −

2

σ 2

{[
1
2
σ 2a2

+

(
µ−

1
2
σ 2
)

a − r

]
Ha(s)sb

+ r K

}
H−2(s)

> 0, (88)

the inequality following thanks to (85) and the definition of f in (83). Combining this calculation
with the fact that g(H(s), s) = ∂g(H(s), s)/∂x = 0, which follows from the C1-continuity of
w(·, s) at H(s), we can see that ∂g(x, s)/∂x > 0 and g(x, s) > 0 for all x sufficiently close to
H(s). These observations and (87) imply that, given any s ≥ s∗, the function g(·, s) is increasing
and positive in [H(s), s], which establishes (84) for (x, s) ∈ W2. �
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