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Abstract

Forward–backward stochastic differential equations (FBSDEs) have attracted significant attention since
they were introduced, due to their wide range of applications, from solving non-linear PDEs to pricing
American-type options. Here, we consider two new classes of multidimensional FBSDEs with distributional
coefficients (elements of a Sobolev space with negative order). We introduce a suitable notion of solution
and show its existence and in certain cases its uniqueness. Moreover we establish a link with PDE theory
via a non-linear Feynman–Kac formula. The associated semi-linear parabolic PDE is the same for both
FBSDEs, also involves distributional coefficients and has not previously been investigated.
c⃝ 2019 Published by Elsevier B.V.

MSC: primary 60H10; secondary 35K55; 60H30; 35K10
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1. Introduction 1

In this paper we study systems of multidimensional forward–backward stochastic differential 2

equations (forward–backward SDEs or FBSDEs for shortness) with generalized coefficients. In 3

particular, we consider a class of coefficients b which are elements of the space L∞([0, T ], H−β
q ) 4

for some β ∈ (0, 1/2), where H−β
q is a fractional Sobolev space of negative derivation order, 5

hence its elements are distributions (see Section 2 for its definition). We consider two different 6
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systems of FBSDEs with distributional coefficients, both decoupled so that the forward equation1

can be solved first and the solution plugged into the backward equation.2

In the first system, the distribution b appears in the driver of the backward equation as follows3

4 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X t,x
s = x +

∫ s

t
dWr ,

Y t,x
s = Φ(X t,x

T ) −

∫ T

s
Z t,x

r dWr +

∫ T

s
f (r, X t,x

r , Y t,x
r , Z t,x

r )dr

+

∫ T

s
Z t,x

r b(r, X t,x
r )dr,

∀s ∈ [t, T ],

(1)5

where W is a d-dimensional Brownian motion, Φ and f are functions with standard regularity6

properties which will be specified later, and the processes X, Y, Z are d, m and m × d-7

dimensional, respectively.8

In the second system, the distribution appears in the forward equation as follows9 ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X t,x

s = x +

∫ s

t
b(r, X t,x

r )dr +

∫ s

t
dWr ,

Y t,x
s = Φ(X t,x

T ) −

∫ T

s
Z t,x

r dWr +

∫ T

s
f (r, X t,x

r , Y t,x
r , Z t,x

r )dr,

∀s ∈ [t, T ].

(2)10

The two systems are studied independently. We give a meaning to the integral terms11 ∫ T
s Z t,x

r b(r, X t,x
r )dr and

∫ s
t b(r, X t,x

r )dr by introducing a suitable notion of solution for the12

systems (1) and (2), and then investigate their existence and uniqueness. Moreover we look at the13

associated PDE and show its link with the FBSDEs (the well known non-linear Feynman–Kac14

formula). As one might expect, it turns out that the PDE associated to both systems (1) and (2)15

is the same, and it is a semi-linear equation of the form16 ⎧⎨⎩ut (t, x) + Lbu(t, x) + f (t, x, u(t, x),∇u(t, x)) = 0,
u(T, x) = Φ(x),
∀(t, x) ∈ [0, T ] × Rd ,

(3)17

where the operator Lbu :=
1
2∆u + ∇ub is defined component by component (see Section 3).18

This PDE also involves distributional coefficients, in particular the drift b which is multiplied by19

∇u. A thorough investigation of the partial differential equation is carried out.20

Literature review. The history of FBSDEs dates back to 1990, when the foundational paper21

of Pardoux and Peng [27] appeared. In 1992 the same authors established the link between22

(decoupled) FBSDEs and quasi-linear PDEs, well-known as the non-linear Feynman–Kac23

formula [28]. A year later, Antonelli [1] studied for the first time fully coupled FBSDEs in a24

small time interval. Since then, the theory of BSDEs and of FBSDEs received a lot of attention25

by the mathematical community and found many applications in different fields, especially in26

finance. For more details on the latter we refer to the paper of El Karoui et al. [9] and references27

therein.28

The above-mentioned literature and many subsequent papers were concerned with strong29

solutions, but starting from the early 2000s mathematicians introduced and studied the notion30

of weak solution for FBSDEs. Weak solutions are analogous to weak solutions for SDEs,31

and their importance is illustrated by a series of stochastic differential equations which admit32
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a weak solution but for which no strong solution exists. For example we mention the well- 1

known Tsirel’son’s stochastic differential equation introduced in 1975 by Tsirel’son [33], or the 2

so-called sticky Brownian motion, which was recently studied by Engelbert and Peskir [10]. 3

Antonelli and Ma [2] first proposed the notion of weak solutions for FBSDEs in 2003. A 4

more general notion of weak solution was studied later by Buckdahn et al. [5] in 2004, where 5

the equation for the forward component was implicitly given, and its existence without the 6

uniqueness was discussed. Lejay [24] in 2004 studied existence of weak solutions by using the 7

link between FBSDEs and weak and mild solutions of PDEs. Delarue and Guatteri [7] in 2006 8

were the first to establish uniqueness of weak solutions for fully coupled Markovian FBSDEs. 9

In their paper, the coefficients for the backward equation are Lipschitz, hence the “weak” notion 10

essentially only intervenes in the forward equation. In 2008 Ma et al. [25] also studied existence 11

and uniqueness of weak solutions but in a more general framework, and in fact there the “weak” 12

character appears both in the forward and in the backward equation. 13

The literature on FBSDEs is large but to our knowledge there is very little about (forward- 14

)backward equations with generalized functions (Schwartz distributions). In 1997–1998, Erraoui, 15

Ouknine and Sbi [11,12] studied (reflected) BSDEs with distribution as terminal condition. By 16

applying the stochastic flow method, Bally and Matoussi [3] in 2001 studied stochastic PDE 17

with terminal values and coefficients being distributions using Backward Doubly SDEs. In 2007, 18

Hu and Tessitore [17] studied mild solutions of elliptic PDEs in Hilbert spaces by proving the 19

regularity properties of a bounded solution of a BSDE with infinite horizon. Recently, Russo and 20

Wurzer [31] studied a one-dimensional BSDE indirectly involving distributional coefficients: 21

They consider and solve a semilinear ODE with a distributional drift and study the associated 22

one-dimensional martingale problem. The martingales are then used to construct the solution of 23

a martingale-driven BSDE with random terminal time. We also cite the recent results of Diehl 24

and Zhang [8] where the authors deal with BSDEs with Young integrals. 25

Motivation. The importance of classical results on FBSDEs and their link to PDEs through the 26

generalized Feynman–Kac formula is well known. In our case, we relax notably the assumptions 27

on the coefficients of Markovian systems of FBSDEs to allow for generalized functions, and 28

investigate what kind of solutions one can expect in that case. Once a generalized Feynman–Kac 29

formula is obtained in the irregular/distributional case, then new tools and methods can be used to 30

investigate irregular physical phenomena described by (S)PDEs with distributional coefficients. 31

In particular, PDEs like (3) with irregular fields b have been considered as models of transport of 32

passive scalars in turbulent fluids (like the Kraichnan model [22]). In recent years the Kraichnan 33

model has been researched by physicists also when the velocity field is a stochastic process, 34

see e.g. [26] or [14] and references therein. An example of b that we can treat in this paper 35

is the formal gradient of the realization of some random field (like fractional Brownian noise 36

cut at infinity, but one could consider also other fields not necessarily Gaussian so long as their 37

realizations are α-Hölder continuous with α > 1/2). 38

In this paper we are indeed able to derive a Feynman–Kac formula that links the PDE (3) 39

with the forward–backward equations (1) and (2), but our starting point is the solution of the 40

PDE. Hence we use our knowledge on the PDE to infer results on the FBSDE. This is only 41

partially satisfactory if one argues that using FBSDEs to solve PDEs is more interesting than the 42

vice versa, but nevertheless the link provides new stochastic tools to represent and study such 43

turbulent PDEs. For example numerical methods to solve FBSDEs could be employed to find the 44

numerical solution of the PDEs using the Feynman–Kac formula illustrated in this paper. Indeed 45

there is a line of research that exploits this connection and uses numerical solutions of BSDEs to 46

infer solutions of PDEs (for a recent work on this see e.g. [21]). 47



SPA: 3445

Please cite this article as: E. Issoglio and S. Jing, Forward–backward SDEs with distributional coefficients, Stochastic Processes and their
Applications (2019), https://doi.org/10.1016/j.spa.2019.01.001.

4 E. Issoglio and S. Jing / Stochastic Processes and their Applications xxx (xxxx) xxx

Novelty and main results. The present paper is the first to deal with FBSDEs like (1)1

with distributional coefficients appearing in the driver, both in the one-dimensional and in the2

multidimensional case. Because of the lack of literature on this topic, the first challenge we3

face is to define a suitable notion of solution for the backward component of the FBSDE (see4

Definition 12 of virtual-strong solution). Once this is done, the next challenge is to investigate5

existence and uniqueness of the solution. To do so, we introduce a transformation – which6

in some sense can be regarded as the analogous for BSDEs of a Zvonkin transformation for7

SDEs – and rewrite the original BSDE as an auxiliary backward SDE which can be treated with8

classical methods, see Eq. (26). For the auxiliary BSDE it is then possible to show existence and9

uniqueness of a strong solution, which leads to the same result for the original BSDE (1) by10

transforming back the equation, see Theorem 15. It is worth stressing the fact that the solution11

we find is a strong type of solution (and not weak, i.e. not of martingale type like in [31]). This12

is possible in the first place because the forward equation here is a Brownian motion and not a13

solution of a martingale problem.14

The second main result in this paper is a non-linear Feynman–Kac representation formula15

that links the PDE (3) and the FBSDE (1) (see Theorems 18 and 19). To show this, we consider16

smooth approximations of b and related solutions to the FBSDE and the PDE, and then take17

the limit. This requires various uniform bounds on the smoothed solutions of the PDE (3) and18

of auxiliary PDE (23) (see Sections 3 and 4.2). Indeed the study of PDE (3) is crucial in this19

paper because its solution is used to define virtual solutions for both FBSDEs systems (1) and20

(2), as illustrated in Definitions 12 and 24. We solve the semi-linear PDE (3) by looking for21

mild solutions using a fixed-point argument. This is the same idea applied in [13,18] where22

linear PDEs of transport-diffusion type with distributional coefficients analogous to b have been23

studied. The novelty here is the non linear term f , and for this we require Lipschitz continuity24

properties. Moreover there is a delicate issue about f that we want to mention at this point,25

namely the need to match the two set-ups in which the PDE and the FBSDE naturally live,26

which clearly reflects on the assumptions on the coefficients. The former (PDE) is solved as an27

infinite-dimensional equation, in particular the solution as a function of time takes values in a28

Sobolev space and so the Lipschitz continuity required for the non-linearity f must be set up29

in terms of Sobolev spaces (see Assumption 2). The latter (FBSDE) is set-up in Rd and thus30

assumptions on the coefficients (including f ) cannot be made in the Sobolev space, but are31

written in Rd instead (see Assumption 1). Thus some care is needed to match the two settings32

and this is explained in Remark 3.33

The final main result is about the FBSDE (2). This system is, in some sense, the generalization34

to multi dimensions of the BSDE studied in [31], but with deterministic terminal time. The35

system is decoupled and the forward equation is solved first. Here we study the forward equation36

with different techniques than in [31], in particular we invoke the results found in [13] about37

SDEs with distributional coefficients which can be applied to the forward component of (2).38

The forward solution X t,x is then used to find a virtual-weak solution (X t,x , Y t,x , Z t,x ) to the39

FBSDE (2), see Theorem 25. The virtual-weak solution is constructed using the mild solution40

u of the PDE (3) and is given in terms of a Feynman–Kac representation (X t,x , Y t,x , Z t,x ) =41

(X t,x , u(·, X t,x ),∇u(·, X t,x )).42

For system (2) we do not find strong solutions but only weak solutions, because the solution43

of the forward equation is of weak type. We refer the reader to Section 5.1 for some extended44

and heuristic comments on the link between (1) and (2), and for open questions.45

Organization of the paper. The paper is organized as follows: In Section 2 we introduce the46

notation and recall some useful results; In Section 3 we study the PDE (3) and find a unique mild47
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solution with related smoothness properties. In Section 4 we introduce the notion of virtual- 1

strong solution for backward SDE (1) and show that a unique virtual-strong solution exists. 2

Moreover we establish the non-linear Feynman–Kac formula for (1) and (3). Finally in Section 5 3

we recall the notion of virtual solution for the forward SDE in (2), we show existence of a 4

virtual-weak solution to (2) by providing an explicit representation by means of a non-linear 5

Feynman–Kac formula. 6

Throughout the paper the constants C and c can vary from line to line. 7

2. Preliminaries 8

Here we recall some known facts, for more details see [13, Section 2.1] and references therein. 9

Let (P(t), t ≥ 0) be the heat semigroup on the space of Rd -valued Schwartz functions S(Rd ) 10

generated by 1
2∆, that is the semigroup with kernel pt (x) =

1
(2π t)d/2 exp

(
−

|x |
2

2t

)
, where | · | 11

denotes the Euclidean norm in Rd . The semigroup extends to the space of Schwartz distributions 12

S ′(Rd ) by duality, and in particular it maps any L p(Rd ) into itself for 1 < p < ∞. This 13

restriction to L p(Rd ), denoted by (Pp(t), t ≥ 0), is a bounded analytic semigroup (see [6, 14

Theorems 1.4.1, 1.4.2]). Let Ap := I −
1
2∆, then −Ap also generates a bounded analytic 15

semigroup which is given by e−t Pp(t) (i.e. with kernel e−t pt (x)). We can define fractional 16

Sobolev spaces as images of fractional powers of Ap (which are well defined for any power 17

s ∈ R, see [29]) by H s
p(Rd ) := A−s/2

p (L p(Rd )). These are Banach spaces endowed with the 18

norm ∥u∥H s
p := ∥As/2

p u∥L p . It turns out that these spaces correspond to the domain of fractional 19

powers of Ap and of −
1
2∆, that is D(As/2

p ) = D((− 1
2∆)s/2) = H s

p(Rd ). Moreover A−α/2
p is an 20

isomorphism between H s
p(Rd ) and H s+α

p (Rd ), for each α ∈ R. H s
p(Rd

;Rn) are defined as above 21

for each component. For shortness of notation we will sometimes denote them simply by H s
p 22

(note that the dimension n could be d,m or m × d depending on the context). When we write 23

u ∈ H s
p we mean that each component ui is in H s

p(Rd ). The norm will be denoted with the same 24

notation for simplicity. One can also show that ∇ : H 1+δ
p → H δ

p is a continuous map, so if 25

u ∈ H 1+δ
p then ∥∇u∥Hδ

p
≤ c∥u∥H1+δ

p
for some positive constant c. 26

The semigroup (Pp(t), t ≥ 0) is a contraction on the H s
p(Rd )-spaces for all t > 0 and all 27

s ∈ R and moreover it enjoys the following mapping property: for δ > β ≥ 0, δ + β < 1 and 28

0 < t ≤ T it holds Pp(t) : H−β
p (Rd ) → H 1+δ

p (Rd ), in particular we have 29

∥Pp(t)w∥H1+δ
p (Rd ) ≤ Ct−

1+δ+β
2 ∥w∥H−β

p (Rd ) (4) 30

for w ∈ H−β
p (Rd ), t > 0, where C = ceT for some positive constant c. This follows from a 31

similar property for the semigroup (e−t Pp(t), t ≥ 0) which is stated in [13, Lemma 10], see 32

also [18, Proposition 3.2] for the analogous on domains D ⊂ Rd . 33

Here we recall the definition of the pointwise product between a function and a distribution 34

(see [30]) as we will use it several times in this paper. Let g ∈ S ′(Rd ). We choose a function 35

ψ ∈ S(Rd ) such that 0 ≤ ψ(x) ≤ 1, for every x ∈ Rd and 36

ψ(x) =

{
1, |x | < 1,

0, |x | ≥
3
2
.

37

For every j ∈ N, we consider the approximation S j g of g as follows: 38

S j g(x) := F−1
(
ψ

(
ξ

2 j

)
F(g)

)
(x), 39
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where F(g) and F−1(g) are the Fourier transform and the inverse Fourier transform of g,1

respectively. The product gh of g, h ∈ S ′(Rd ) is defined as2

gh := lim
j→∞

S j gS j h, (5)3

if the limit exists in S ′(Rd ). The convergence of the limit (5) in the case we are interested in is4

given by the following result (for a proof see [30, Theorem 4.4.3/1]).5

Lemma 1. Let g ∈ H−β
q (Rd ), h ∈ H δ

p(Rd ) for 1 < p, q < ∞, q > max(p, d
δ
), 0 < β < 1

2 and6

β < δ. Then the pointwise product gh is well defined, it belongs to the space H−β
p (Rd ) and we7

have the following bound8

∥gh∥H−β
p (Rd ) ≤ c∥g∥H−β

q (Rd ) · ∥h∥Hδ
p(Rd ).9

For the following, see [32, Section 2.7.1]. The closures of S with respect to the norms10

∥h∥C0,0 := ∥h∥L∞11

and12

∥h∥C1,0 := ∥h∥L∞ + ∥∇h∥L∞13

respectively, are denoted by C0,0(Rd
;Rm) and C1,0(Rd

;Rm). For any α > 0, we consider the
Banach spaces

C0,α
= {h ∈ C0,0(Rd

;Rm) : ∥h∥C0,α < ∞}

C1,α
= {h ∈ C1,0(Rd

;Rm) : ∥h∥C1,α < ∞},

endowed with the norms

∥h∥C0,α := ∥h∥L∞ + sup
x ̸=y∈Rd

|h(x) − h(y)|
|x − y|

α

∥h∥C1,α := ∥h∥L∞ + ∥∇h∥L∞ + sup
x ̸=y∈Rd

|∇h(x) − ∇h(y)|
|x − y|

α
,

respectively.14

Let B be a Banach space. We denote by C0,α([0, T ]; B) the space analogous to C0,α but with15

values in B, and its norm by ∥ · ∥C0,α ([0,T ];B). We denote by C([0, T ]; B) the Banach space of16

B-valued continuous functions and its sup norm by ∥ · ∥∞,B . For h ∈ C([0, T ], B), we also use17

the family of equivalent norms {∥ · ∥
(ρ)
∞,B, ρ ≥ 1}, defined by18

∥h∥
(ρ)
∞,B := sup

0≤t≤T
e−ρt

∥h(t)∥B .19

The usual esssup norm on L∞(0, T ; B) will also be denoted by ∥ · ∥∞,B with a slight abuse of20

notation. The Euclidean norm in R, Rd , Rm , and the Frobenius norm in Rm×d will be denoted by21

| · |.22

The following lemma provides a generalization of the Morrey inequality to fractional Sobolev23

spaces. For the proof we refer to [32, Theorem 2.8.1, Remark 2].24

Lemma 2 (Fractional Morrey Inequality). Let 0 < δ < 1 and d/δ < p < ∞. If h ∈ H 1+δ
p (Rd )25

then there exists a unique version of h (which we denote again by h) such that h is differentiable.
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Moreover h ∈ C1,α(Rd ) with α = δ − d/p and 1

∥h∥C1,α ≤ c∥h∥H1+δ
p
, ∥∇h∥C0,α ≤ c∥∇h∥Hδ

p
, (6) 2

where c = c(δ, p, d) is a universal constant. 3

Standing assumption: Throughout the paper we will make the following standing assumption 4

about the drift b and in particular about the parameters involved. We acknowledge that the set 5

K (β, q) is taken from [13]. 6

Let β ∈
(
0, 1

2

)
, q ∈

(
d

1−β
, d
β

)
. Let the drift b be of the type 7

b ∈ L∞
(
[0, T ]; H−β

q (Rd
;Rd )

)
. 8

Moreover for given β and q as above we define the set 9

K (β, q) :=

{
κ = (δ, p) : β < δ < 1 − β,

d
δ
< p < q

}
. (7) 10

We always choose (δ, p) ∈ K (β, q). Note that K (β, q) is non-empty since β < 1
2 and 11

d
1−β

< q < d
β

. 12

Regarding the functions f and Φ, we make the following parallel sets of assumptions. This 13

is because the PDE is set (and solved) using fractional Sobolev spaces, whereas the BSDE is 14

typically set in Rd . We discuss the link and implications of these two sets of Assumptions in 15

Remark 3. Afterwards, we also give examples of possible f . Note that the notation for f is the 16

same, even though the function is in principle different in the two sets of assumptions. 17

Assumption 1. 18

• Φ : Rd
→ Rm is such that Φ ∈ H 1+δ+2γ

p for some γ < 1−δ−β

2 ; 19

• f : [0, T ] × Rd
× Rm

× Rm×d
→ Rm is continuous in (x, y, z) uniformly in t , and 20

Lipschitz continuous in (y, z) uniformly in t and x , i.e. | f (t, x, y, z) − f (t, x, y′, z′)| ≤ 21

L(|y − y′
| + |z − z′

|) for any y, y′
∈ Rm and z, z′

∈ Rm×d ; 22

• supt,x | f (t, x, 0, 0)| ≤ C and supt∈[0,T ]

∫
Rd | f (t, x, 0, 0)|pdx ≤ C . 23

Assumption 2. 24

• Φ ∈ H 1+δ+2γ
p (Rd

;Rm) for some γ < 1−δ−β

2 ; 25

• f : [0, T ] × H 1+δ
p (Rd

;Rm) × H δ
p(Rd

;Rm×d ) → H 0
p(Rd

;Rm) is Lipschitz continuous in 26

the second and third variables uniformly in t , that is, there exists a positive constant L such 27

that for any u1, u2 ∈ H 1+δ
p and v1, v2 ∈ H δ

p then 28

∥ f (t, u1, v1) − f (t, u2, v2)∥H0
p

≤ L
(
∥u1 − u2∥H1+δ

p
+ ∥v1 − v2∥Hδ

p

)
; 29

• supt,x | f (t, x, 0, 0)| ≤ C and supt∈[0,T ] ∥ f (t, 0, 0)∥H0
p

≤ C , where 0 here denotes the 30

constant zero function. 31

Notation: In Assumption 2 the functional f is a function of time t and of two other functions, 32

often denoted by u and v (or u and ∇u). In this paper we write f (t, u, v), or f (t, ·, u, v), or also 33

f (t, ·, u(·), v(·)), and this is an element of the space H 1+δ
p by Assumption 2. 34
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Remark 3.1

• By applying the Fractional Morrey inequality we see that Φ ∈ C1,α with α = δ+2γ −
d
p >2

0. This implies in particular that Φ is bounded and continuous. Note that the latter would3

be the standard assumption on the terminal condition Φ when solving the BSDE, but our4

setting to solve the PDE requires that Φ is an element of fractional Sobolev spaces and we5

will use the fact that Assumption 1 implies Assumption 2, as illustrated below.6

• Assumption 1 implies Assumption 2. Indeed take f according to Assumption 1. Then we
can define the functional f̄ as follows f̄ (t, u, v)(·) := f (t, ·, u(·), v(·)) for u ∈ H 1+δ

p and
v ∈ H δ

p . The first and third bullet points of Assumption 2 are obvious. The second bullet
point can be proven as follows. First we show that for (t, u, v) ∈ [0, T ] × H 1+δ

p × H δ
p then

f̄ (t, u, v) ∈ H 0
p . Indeed we have∫

Rd
| f̄ (t, u, v)(x)|

p
dx =

∫
Rd

| f (t, x, u(x), v(x))|pdx

≤c
∫
Rd

| f (t, x, u(x), v(x)) − f (t, x, 0, 0)|pdx

+ c
∫
Rd

| f (t, x, 0, 0)|pdx

≤cL p(∥u∥
p
H1+δ

p
+ ∥v∥

p
Hδ

p
) + sup

0≤t≤T
∥ f (t, 0, 0)∥H0

p
< ∞,

where the constant c depends on p.7

Now with similar calculations one can prove that given any u, u′
∈ H 1+δ

p and v, v′
∈ H δ

p it8

holds9

∥ f̄ (t, u, v) − f̄ (t, u′, v′)∥H0
p

≤ cL
(
∥u − u′

∥H0
p
+ ∥v − v′

∥H0
p

)
,10

where the constant c depends on p, and L is the Lipschitz constant for f .11

Example.12

• An easy case is the class of functions f linear in (y, z), for example f (t, x, y, z) =13

c(t) · (y + z) + d(x), where t ↦→ c(t) is continuous on [0, T ] and x ↦→ d(x) is bounded14

in Rd and L p(Rd )-integrable, for example d(x) = e−|x |
2
. In this case we would have15

f̄ (t, u, v) = c(t) · (u + v) + d.16

• A non-linear example is given by f (t, x, y, z) = c(t) · sin(y + z) + d(x), where c and d17

are as above. Then we would get f̄ (t, u, v) = c(t) · sin(u + v) + d, which is Lipschitz18

continuous in (u, v) and bounded at 0 uniformly in (t, x).19

3. The semi-linear PDE20

In this section we analyse the PDE (3) and obtain several bounds for its solution and for the21

mollified version. We refer the reader to [16,18] for results on different (S)PDEs obtained using22

similar techniques, and [19] for the general case of linear equations in metric measure spaces.23
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3.1. Existence and uniqueness of a mild solution 1

We recall the PDE below for ease of reading: 2⎧⎨⎩ut (t, x) + Lbu(t, x) + f (t, x, u(t, x),∇u(t, x)) = 0,
u(T, x) = Φ(x),
∀(t, x) ∈ [0, T ] × Rd .

(8) 3

Here the operator Lbu =
1
2∆u + ∇ub is defined component by component by (Lbu)i (t, x) = 4

1
2∆ui (t, x) + ∇ui (t, x)b(t, x) for all i = 1, . . . , d. The peculiarity of this PDE is that it involves 5

a distributional coefficient b and in particular its product with ∇u. The meaning we give to 6

this product makes use of the pointwise product recalled in Section 2. We follow the study of 7

a similar equation from the first author in [18]. Here the novelty is that the PDE is non-linear, 8

with the extra term f appearing. We are going to look for mild solutions, hence the following 9

definition is in order. 10

Definition 4. A mild solution of (8) is an element u of C([0, T ], H 1+δ
p ) which is a solution of

the following integral equation

u (t) =Pp(T − t)Φ +

∫ T

t
Pp(r − t) (∇u (r) b (r)) dr

+

∫ T

t
Pp (r − t) f (r, u(r ),∇u(r )) dr, (9)

where (Pp(t), t ≥ 0) is the semigroup generated by 1
2∆ and recalled in Section 2. 11

To solve the PDE (8) we will use a fixed point argument in Eq. (9) and for that we need f to be 12

an element of a fractional Sobolev space as function of x and further to be Lipschitz continuous 13

in such space: this is what is stated in Assumption 2. 14

Theorem 5. Suppose that Assumption 2 holds. Then there exists a unique mild solution 15

u ∈ C([0, T ], H 1+δ
p ) of (8). 16

Proof. The idea of the proof is similar to the proof of [18, Theorem 3.5] and [13, Theorem 14]: 17

We look for a fixed point in C([0, T ], H 1+δ
p ), in particular we show that the mapping defined by 18

the right-hand side of (9) is a contraction by using the family of equivalent norms ∥ · ∥
(ρ)
∞,H1+δ

p
. 19

To this aim, we rewrite the mild solution in a forward form for ū(t) = u(T − t). We get

ū (t) =Pp(t)Φ

+

∫ t

0
Pp(t − r ) (∇ū (r) b (T − r)+ f (T − r, ū(r ),∇ū(r ))) dr (10)

=Pp(t)Φ +

∫ t

0
Pp(t − r )

(
∇ū (r) b̄ (r)+ f̄ (r, ū(r ),∇ū(r ))

)
dr,

where b̄(r ) = b(T − r ) and f̄ (r, ū(r )) = f (T − r, ū(r ),∇ū(r )). Since b̄, f̄ , ū and b, f, u share 20

the same regularities in r , with a slight abuse of notations, in the following we still write b, f 21

and u instead of b̄, f̄ and ū. 22

If we denote by It (u) the right-hand side of (10), then we need to control the norm
∥I (u1) − I (u2)∥(ρ)

∞,H1+δ
p

for any u1, u2 ∈ C([0, T ], H 1+δ
p ), which is the sum of three terms: One
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with the initial condition, one term with b and one term with f . The initial condition Pp(t)Φ
belongs to H 1+δ

p since Φ ∈ H 1+δ+2γ
p ⊂ H 1+δ

p and the semigroup is a contraction on H 1+δ
p . The

term including the distributional coefficient b can be treated exactly like in [18, Theorem 3.4]
because the pointwise product is linear. One gets the bound∫ ·

0
Pp(· − r ) ((∇u1(r ) − ∇u2(r ))b(r )) dr

(ρ)

∞,H1+δ
p

≤Cρ
δ+β−1

2 ∥b∥
∞,H−β

p
∥u1 − u2∥

(ρ)
∞,H1+δ

p
,

which is finite and the constant Cρ
δ+β−1

2 tends to zero as ρ → ∞ since δ + β − 1 < 0 by1

assumption on the parameters.2

The third term involves f and is estimated using the Lipschitz regularity of f and the mapping3

property (4) of Pp(t) with β = 0. We get4 ∫ ·

0
Pp(· − r ) f (r, u1(r ),∇u1(r )) dr −

∫
·

0
Pp(· − r ) f (r, u2(r ),∇u2(r )) dr

(ρ)

∞,H1+δ
p

≤ sup
0≤t≤T

e−ρt
∫ t

0
∥P(t − r )

(
f (r, u1(r ),∇u1(r ))− f (r, u2(r ),∇u2(r ))

)
∥H1+δ

p
dr

≤ sup
0≤t≤T

e−ρt
∫ t

0
Cr−

1+δ
2 ∥ f (r, u1(r ),∇u1(r ))− f (r, u2(r ),∇u2(r )) ∥H0

p
dr

≤C sup
0≤t≤T

∫ t

0
e−ρ(t−r )e−ρrr−

1+δ
2 L

(
∥u1(r ) − u2(r )∥H1+δ

p
+ ∥∇u1(r ) − ∇u2(r )∥Hδ

p

)
dr

≤2C∥u1 − u2∥
(ρ)
∞,H1+δ

p
sup

0≤t≤T

∫ t

0
e−ρ(t−r )r−

1+δ
2 dr

≤Cρ
δ−1

2 ∥u1 − u2∥
(ρ)
∞,H1+δ

p
,

5

where in the second to last inequality we used the definition of ρ-equivalent norm and the6

continuity of ∇ : H 1+δ
p → H δ

p . Note that again the exponent of ρ is negative since δ < 17

by assumption. Thus for ρ large enough we have8

∥I (u1) − I (u2)∥(ρ)
∞,H1+δ

p
≤ C∥u1 − u2∥

(ρ)
∞,H1+δ

p
,9

where C < 1 does not depend on u1 and u2. Hence by Banach’s contraction principle there exists10

a unique solution u ∈ C([0, T ], H 1+δ
p ). □11

Remark 6. Thanks to the choice of the parameters δ and p in K (β, q) (which is always possible12

since p > d/δ, see [13] for more details) and to Lemma 2, we have the embedding of H 1+δ
p in13

C1,α , where α = δ − d/p. So for each t ∈ [0, T ], the solution u(t) as a function of x is in fact14

bounded, differentiable and the first derivative is Hölder continuous, u(t) ∈ C1,α .15

We will use [13, Proposition 11] several times in this paper. We recall it here for the reader’s16

convenience.17

Proposition 7. Let h ∈ L∞

(
[0, T ]; H−β

p

)
and g : [0, T ] → H−β

p for β ∈ R be defined as18

g(t) =

∫ t

0
Pp(t − r )h(r )dr.19
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Then g ∈ C0,γ
(

[0, T ]; H 2−2ε−β
p

)
for every ε > 0 and γ ∈ (0, ε). Moreover, we have 1

∥g(t) − g(s)∥
H2−2ε−β

p
≤ C(t − s)γ

(
(t − s)ε−γ + sε−γ

)
∥h∥

∞,H−β
p
. (11) 2

The proof of bound (11) can be found in the proof of [13, Proposition 11]. 3

Additionally we can show the following lemma. 4

Lemma 8. The mild solution u of (8) is Hölder continuous in time of any order γ < 1−δ−β

2 , that 5

is, u ∈ C0,γ ([0, T ]; H 1+δ
p ). 6

Proof. This is done using the results of Proposition 7 with ε =
1−δ−β

2 and noting that Pp(·)Φ is 7

γ -Hölder continuous if Φ ∈ H 1+δ+2γ
p , with 2γ < 1 − δ − β. □ 8

3.2. Uniform bounds on mollified mild solution 9

In the next sections we will make use of an approximating sequence bn in place of b. We 10

therefore need to describe its effect on the solution of the PDE (8) where the coefficient b is 11

replaced by a coefficient bn , that is 12⎧⎨⎩un
t (t, x) + Lbn

un(t, x) + f (t, x, un(t, x),∇un(t, x)) = 0,
un(T, x) = Φ(x),
∀(t, x) ∈ [0, T ] × Rd ,

(12) 13

where Lbn
un(t, x) :=

1
2∆un(t, x) + ∇un(t, x)bn(t, x) is the analogue of Lb. 14

If bn is smooth, for example bn
∈ C([0, T ]; C1

b (Rd
;Rd )) (bounded with bounded first 15

derivatives), then un is a classical solution and it coincides with the mild solution found in 16

Theorem 5. We will use this fact for example in the proof of Theorem 18. In what follows 17

we state and prove some continuity results which hold also for bn non-smooth. 18

Lemma 9. Let Assumption 2 hold, and let bn
→ b in L∞

(
[0, T ]; H−β

q

)
. Then 19

(i) un
→ u in C([0, T ]; H 1+δ

p ) and there exists a constant C independent of n such that 20

∥un
− u∥

∞,H1+δ
p

≤ C∥bn
− b∥

∞,H−β
q
. 21

(ii) un
→ u and ∇un

→ ∇u uniformly on [0, T ] × Rd . 22

Proof. (i) By similar calculations as in Theorem 5 and by adding and subtracting bn(r )∇u(r ) we
have

∥u − un
∥

(ρ)
∞,H1+δ

p
= sup

t∈[0,T ]
e−ρt

∥u(t) − un(t)∥H1+δ
p

≤ sup
t∈[0,T ]

e−ρt
(∫ t

0
∥Pp(t − r )(∇un(r )bn(r ) − u(r )b(r ))∥H1+δ

p
dr

+

∫ t

0
∥Pp(t − r )( f (r, un(r ),∇un(r )) − f (r, u(r ),∇u(r )))∥H1+δ

p
dr
)

≤ sup
t∈[0,T ]

(
C
∫ t

0
e−ρ(t−r )(t − r )−

1+δ+β
2 e−ρr

∥bn(r )∥H−β
q

∥un(r ) − u(r )∥H1+δ
p

dr
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+ C∥bn
− b∥

∞,H−β
q

∫ t

0
e−ρ(t−r )(t − r )−

1+δ+β
2 e−ρr

∥u(r )∥H1+δ
p

dr
)

+ sup
t∈[0,T ]

e−ρt
∫ t

0
r−

1+δ
2 ∥ f (r, un(r ),∇un(r )) − f (r, u(r ),∇u(r ))∥H0

p
dr

≤C∥b∥
∞,H−β

q
∥un

− u∥
(ρ)
∞,H1+δ

p
ρ
δ+β−1

2 + C∥bn
− b∥

∞,H1+δ
p

∥u∥
(ρ)
H1+δ

p
ρ
δ+β−1

2

+ C∥un
− u∥

(ρ)
∞,H1+δ

p
ρ
δ−1

2 .

Therefore there exists a ρ big enough so that1

1 − C
(
ρ
δ+β−1

2 + ρ
δ−1

2

)
> 0.2

Hence for such ρ,

∥u − un
∥

(ρ)
∞,H1+δ

p
≤

C∥u∥
(ρ)
H1+δ

p
ρ
δ+β−1

2

1 − C
(
ρ
δ+β−1

2 + ρ
δ−1

2

)∥bn
− b∥

∞,H1+δ
p

=C∥bn
− b∥

∞,H1+δ
p
.

Part (ii) follows from part (i) and by the Fractional Morrey inequality (Lemma 2). □3

Lemma 10. Let Assumption 2 hold and let bn be such that bn
→ b in L∞(0, T ; H−β

q ).4

The mild solution un of (12) is Hölder continuous in time of any order γ <
1−δ−β

2 , that is,5

un
∈ C0,γ ([0, T ]; H 1+δ

p ). Moreover, we have the uniform bound:6

∥un
∥C0,γ ([0,T ];H1+δ

p ) ≤ C (13)7

for some C independent of n.8

Proof. We recall that9

∥un
∥C0,γ ([0,T ];H1+δ

p ) = sup
0≤t≤T

∥un(t)∥H1+δ
p

+ sup
0≤s<t≤T

∥un(t) − un(s)∥H1+δ
p

|t − s|γ
.

(14)10

By Lemma 9, the first term on the right-hand side of (14) is bounded by11

∥un
∥

∞,H1+δ
p

≤ C∥u∥
∞,H1+δ

p
,12

where the constant C is independent of n. To bound the second term, let us consider the difference13

un(t) − un(s) as the sum of three terms14

(Pp(t)Φ − Pp(s)Φ) + (gn
1 (t) − gn

1 (s)) + (gn
2 (t) − gn

2 (s)),15

where16

gn
1 (t) =

∫ t

0
Pp(t − r )∇un(r )bn(r )dr17

and18

gn
2 (t) =

∫ t

0
Pp(t − r ) f (r, un(r ),∇un(r ))dr.19
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Observe that since Φ ∈ H 1+δ+2γ
p , then A

1+δ
2 Φ ∈ H 2γ hence it belongs to D(Aγ ) and so does 1

Pp(s)A
1+δ

2 Φ. We have 2

∥Pp(t)Φ − Pp(s)Φ∥H1+δ
p

≤C∥(Pp(t − s) − I )Pp(s)A
1+δ

2 Φ∥H0
p

≤C(t − s)γ ∥Pp(s)A
1+δ

2 +γΦ∥H0
p

≤C(t − s)γ ,

3

where we have used the fact that for any φ ∈ D(Aγ ) then ∥Ptφ − φ∥H0
p

≤ Cγ tγ ∥Aγφ∥H0
p
. 4

Observe also that for ε > 0 such that 1 + δ ≤ 2 − 2ε−β, i.e., ε ≤
1−δ−β

2 , we have, for i = 1,2, 5

∥gn
i (t) − gn

i (s)∥H1+δ
p

≤ ∥gn
i (t) − gn

i (s)∥
H2−2ε−β

p
. (15) 6

Moreover, for fixed r ∈ [0, T ], we have 7

∥∇un(r )bn(r )∥H−β
p

≤C∥bn(r )∥H−β
q

∥∇un(r )∥Hδ
p

≤C∥bn
∥

∞,H−β
q

∥un
∥

∞,H1+δ
p
.

8

Hence by Proposition 7 applied to gn
1 and using (15) we get 9

∥gn
1 (t) − gn

1 (s)∥H1+δ
p

≤C(t − s)γ
(
(t − s)ε−γ + sε−γ

)
∥∇unbn

∥
∞,H−β

p

≤C(t − s)γ
(
(t − s)ε−γ + sε−γ

)
,

10

where C is independent of n because un
→ u in C([0, T ], H 1+δ

p ) by Lemma 9 and bn
→ b in 11

L∞(0, T ; H−β
q ) by hypothesis. 12

The difference involving g2 is similar, but instead we use the Lipschitz property of f to get 13

∥ f (r, un(r ),∇un(r ))∥H−β
p

≤∥ f (r, un(r ),∇un(r ))∥H0
p

≤C∥ f (r, un(r ),∇un(r )) − f (r, 0, 0)∥H0
p
+ C∥ f (r, 0, 0)∥H0

p

≤C
(

1 + ∥un(r )∥H1+δ
p

+ ∥∇un(r )∥Hδ
p

)
≤C

(
1 + ∥un

∥
∞,H1+δ

p

)
,

14

having also used the fact that supr ∥ f (r, 0, 0)∥H0
p
< c by Assumption 2. Hence by Proposition 7 15

we get 16

∥gn
2 (t) − gn

2 (s)∥H1+δ
p

≤C(t − s)ε∥ f (·, un,∇un)∥
∞,H−β

p
+ C(t − s)γ sε−γ ∥ f (·, un,∇un)∥

∞,H−β
p

≤C
(

1 + ∥un
∥

∞,H1+δ
p

) (
(t − s)ε + (t − s)γ sε−γ

)
≤C(t − s)γ

(
(t − s)ε−γ + sε−γ

)
.

17

where C is independent of n. Putting the three terms together we get 18

∥un(t) − un(s)∥H1+δ
p

≤∥Pp(t)Φ − Pp(s)Φ∥H1+δ
p

+ ∥gn
1 (t) − gn

1 (s)∥H1+δ
p

+ ∥gn
2 (t) − gn

2 (s)∥H1+δ
p

≤C(t − s)γ + 2C(t − s)γ
(
(t − s)ε−γ + sε−γ

)
,

19



SPA: 3445

Please cite this article as: E. Issoglio and S. Jing, Forward–backward SDEs with distributional coefficients, Stochastic Processes and their
Applications (2019), https://doi.org/10.1016/j.spa.2019.01.001.

14 E. Issoglio and S. Jing / Stochastic Processes and their Applications xxx (xxxx) xxx

and so the second term on the right-hand side of (14) is bounded by1

C + 2C
(
(t − s)ε−γ + sε−γ

)
≤ C(T ),2

for ε such that γ < ε ≤
1−δ−β

2 , which is always possible since 2γ < 1−δ−β by assumption. □3

Both for u and un we have desirable continuity properties and bounds which are uniform in4

n.5

Lemma 11. Let Assumption 2 hold and let u and un be the solutions of (8) and (12) respectively.6

For ν = u and ν = un , the following properties hold:7

For each t ∈ [0, T ] we have ν(t) ∈ C1,α and there exists a positive constant C independent of8

n such that9

sup
0≤t≤T

(
sup
x∈Rd

|ν(t, x)|

)
≤ C, (16)10

and11

sup
0≤t≤T

(
sup
x∈Rd

|∇ν(t, x)|

)
≤ C. (17)12

Moreover, there exists a positive constant C independent of n such that for any t, s ∈ [0, T ] and13

x, y ∈ Rd we have14

|ν(t, x) − ν(s, y)| ≤ C (|t − s|γ + |x − y|) , (18)15

and16

|∇ν(t, x) − ∇ν(s, y)| ≤ C (|t − s|γ + |x − y|
α) , (19)17

for any γ < 1 − β − δ and for α = δ −
d
p .18

Proof. Since u ∈ C([0, T ]; H 1+δ
p ) and (δ, p) ∈ K (β, q), we can apply the fractional Morrey19

inequality (Lemma 2) and for all t ∈ [0, T ] we get u(t) ∈ C1,α with α = δ −
d
p . By using the20

definition of the norms in C1,α and in C([0, T ]; H 1+δ
p (R)) we get (16) for ν = u.21

For ν = un , since from Lemma 9 part (i) it holds un
→ u in C([0, T ]; H 1+δ

p ), then there exists22

a constant C such that23

∥un
∥

∞,H1+δ
p

≤ C∥u∥
∞,H1+δ

p
, ∀n ≥ 0. (20)24

Then we have25

sup
0≤t≤T

(
sup
x∈Rd

|un(t, x)|

)
≤ ∥un

∥
∞,H1+δ

p
≤ C∥u∥

∞,H1+δ
p
.26

For (17), we first observe that by the definition of the norm in C1,α and the continuous
embedding H 1+δ

p ⊂ C1,α we have

sup
x∈R

|∇u(t, x)| ≤ ∥u(t)∥C1,α ≤ ∥u(t)∥H1+δ
p

≤ sup
t∈[0,T ]

∥u(t)∥H1+δ
p

= ∥u∥C([0,T ];H1+δ
p ) =: C,

where the last bound is due to the fact that u ∈ C([0, T ]; H 1+δ
p ). This proves (17) for ∇ν = ∇u.27

Bound (17) for ∇ν = ∇un is obtained analogously by using (20).28
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To prove (18), let (t, x), (s, y) ∈ [0, T ] × Rd . We have

|u(t, x) − u(s, y)|
≤|u(t, x) − u(s, x)| + |u(s, x) − u(s, y)|
≤ sup

x∈Rd
|u(t, x) − u(s, x)| + |u(s, x) − u(s, y)|

≤∥u(t, ·) − u(s, ·)∥C1,α + ∥u(s, ·)∥C1,α |x − y|

≤∥u(t, ·) − u(s, ·)∥H1+δ
p

+ ∥u(s, ·)∥H1+δ
p

|x − y|

≤∥u∥C0,γ ([0,T ];H1+δ
p )|t − s|γ + ∥u∥C0,γ ([0,T ];H1+δ

p )|x − y|

≤∥u∥C0,γ ([0,T ];H1+δ
p )(|t − s|γ + |x − y|),

having used the embedding property (fractional Morrey inequality) with α = δ − d/p, the 1

Lipschitz property of u(t, ·) (due to the fact that it is differentiable) and the Hölder property of 2

u(·) with values in H 1+δ
p . Setting C = ∥u∥C0,γ ([0,T ];H1+δ

p ) concludes the proof of (18) for ν = u. 3

The bound (18) for ν = un is obtained from the previous one: we proceed as the proof for 4

ν = u and get 5

|un(t, x) − un(s, y)| ≤ ∥un
∥C0,γ ([0,T ];H1+δ

p ) (|t − s|γ + |x − y|) . (21) 6

Plugging (13) from Lemma 10 into (21), we get the desired result. 7

To show (19) for ∇ν = ∇u we proceed with very similar computations for 8

|∇u(t, x) − ∇u(s, y)| as in the proof of (18), but now we use the fact that ∇u(s, ·) is only 9

Hölder continuous of order α rather than Lipschitz continuous, that is |∇u(s, x) − ∇u(s, y)| ≤ 10

∥u(s, ·)∥C1,α |x − y|
α , so we finally have 11

|∇u(t, x) − ∇u(s, y)|
≤|∇u(t, x) − ∇u(s, x)| + |∇u(s, x) − ∇u(s, y)|
≤∥u(t, ·) − u(s, ·)∥C1,α + ∥u(s, ·)∥C1,α |x − y|

α

≤∥u∥C0,γ ([0,T ];H1+δ
p )(|t − s|γ + |x − y|

α),

12

which is the claim with C as in the previous bound. 13

The proof of (19) for ∇ν = ∇un is similar and uses (13) in the last part. □ 14

4. Solution of BSDE (1) 15

4.1. Definition of solution, existence and uniqueness 16

In this section we consider FBSDE (1), which we write again below for convenience 17⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X t,x
s = x +

∫ s

t
dWr ,

Y t,x
s = Φ(X t,x

T ) −

∫ T

s
Z t,x

r dWr +

∫ T

s
f (r, X t,x

r , Y t,x
r , Z t,x

r )dr

+

∫ T

s
Z t,x

r b(r, X t,x
r )dr,

∀s ∈ [t, T ],

(22) 18

where (Ws)s is a given Brownian motion on a filtered probability space (Ω ,F ,P,F) and the 19

filtration F is the Brownian filtration. Here f : [0, T ] × Rd
× Rm

× Rm×d
→ Rm and 20
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Φ : Rd
→ Rm . We note that X t,x

:= (X t,x
s )s∈[t,T ] is in fact a Brownian motion starting1

from x at time t . The major difficulty related to (22) is the term
∫ T

s Z t,x
r b(r, X t,x

r )dr because2

b ∈ L∞([0, T ]; H−β
q ). Given X t,x , we introduce the notion of virtual-strong solution for the3

backward SDE in (22). To do so, we first consider the following auxiliary PDE4 ⎧⎪⎨⎪⎩
wt +

1
2
∆w = ∇u b,

w(T, x) = 0,
∀(t, x) ∈ [0, T ] × Rd ,

(23)5

where u is the mild solution of (8). The term ∇u b is defined by means of the pointwise product,
and thanks to the semigroup properties (see Section 2 for more details) there exists a unique mild
solution w ∈ C([0, T ]; H 1+δ

p ) to (23) which is given by

w(t) = Pp(T − t)w(T ) +

∫ T

t
Pp(r − t)∇u(r )b(r )dr

=

∫ T

t
Pp(r − t)∇u(r )b(r )dr. (24)

Note that by the Fractional Morrey inequality (Lemma 2) we have that w can be evaluated6

pointwisely sincew ∈ C([0, T ]; C1,α) for α = δ− d
p . We use this functionw to give a meaning to7

the backward SDE in (22) as follows. In the sequel we will drop the superscript t, x for simplicity8

of notation.9

Definition 12. A virtual-strong solution to the backward SDE in (22) is a couple (Y, Z ) such10

that11

• Y is continuous and F-adapted and Z is F-progressively measurable;12

• E
[
supr∈[t,T ] |Yr |

2] < ∞ and E
[∫ T

t |Zr |
2dr
]
< ∞;13

• for all s ∈ [t, T ], the couple satisfies the following backward SDE

Ys = Φ(XT ) −

∫ T

s
Zr dWr +

∫ T

s
f (r, Xr , Yr , Zr )dr

− w(s, Xs) −

∫ T

s
∇w(r, Xr )dWr (25)

P-almost surely, where w is the solution of (23) given by (24).14

An intuitive explanation on why we define virtual-strong solutions like this is the fact that15

if b were smooth, also w would be smooth and we could apply Itô’s formula to w(·, X ), where16

Xs = x + Ws − Wt , to get17

dw(s, Xs) = wt (s, Xs)ds + ∇w(s, Xs)dXs +
1
2
∆w(s, Xs)ds

= ∇u(s, Xs)b(s, Xs)ds + ∇w(s, Xs)dWs .

18

Therefore, we could write

w(T, XT ) − w(s, Xs) −

∫ T

s
∇w(r, Xr )dWr

= −w(s, Xs) −

∫ T

s
∇w(r, Xr )dWr
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=

∫ T

s
∇u(r, Xr )b(r, Xr )dr

=

∫ T

s
Zr b(r, Xr )dr,

where the last equality holds because in the smooth case the solution (Y, Z ) could be written as 1

(u(·, X ),∇u(·, X )). This is why the term −w(s, Xs)−
∫ T

s ∇w(r, Xr )dWr appears in (25) in place 2

of
∫ T

s Zr b(r, Xr )dr . 3

We recall that a strong solution of (25) is a couple (Y, Z ) such that 4

• Y is continuous and F-adapted, Z is F-progressively measurable; 5

• E
[
supr∈[t,T ] |Yr |

2] < ∞ and E
[∫ T

t |Zr |
2dr
]
< ∞; 6

• (25) holds P-almost surely. 7

Note that the terms involving w in (25) do not pose any extra condition because we can prove 8

that w is continuous and bounded (see Lemma 16). 9

The notion of virtual-strong solution for BSDE is in alignment with classical strong solutions 10

when the drift b is a function with classical regularity properties. In this case a virtual-strong 11

solution is also a strong solution, as illustrated in the proposition below. 12

Proposition 13. Let b ∈ C([0, T ]; C1
b (Rd ,Rd )) (bounded with bounded first derivatives). Then 13

the virtual-strong solution (Y, Z ) of the backward SDE in (22) is also a strong solution. 14

Proof. First observe that the first two conditions for Y and Z in Definition 12 are the same as 15

for strong solutions. 16

Let u be the classical solution of (8) and w be the classical solution of (23). Then u and 17

w are both at least of class C1,2 and by Itô’s formula applied to w we have that the term 18

−w(s, Xs) −
∫ T

s ∇w(r, Xr )dWr is equal to
∫ T

s Zr b(r, Xr )dr , hence the BSDE in (22) holds P- 19

a.s. □ 20

We remark that, although every term in the backward SDE (25) is well defined, this SDE is not 21

written in a classical form. Hence to find a virtual-strong solution we transform (25) using the 22

solution of the PDE (23), in particular we apply the transformation y ↦→ y + w(s, x) where 23

w is the solution of the PDE (23). This transformation could be regarded as the analogous 24

of the Zvonkin transformation for SDEs to get rid of a (singular) drift. More precisely, we 25

set Ŷs := Ys + w(s, Xs) and Ẑs := Zs + ∇w(s, Xs) for all s ∈ [t, T ] and f̂ (r, x, y, z) := 26

f (r, x, y − w(r, x), z − ∇w(r, x)), and we get the following auxiliary backward SDE 27

Ŷs = Φ(XT ) −

∫ T

s
Ẑr dWr +

∫ T

s
f̂ (r, Xr , Ŷr , Ẑr )dr, (26) 28

for all s ∈ [t, T ]. 29

It turns out that indeed the BSDEs (25) and (26) are equivalent as shown in the following 30

proposition. 31

Proposition 14. Let X be a Brownian motion starting from x at time t and F be the Brownian 32

filtration generated by W . Then 33

(i) If (Y, Z ) is a virtual-strong solution of the backward SDE in (22), then 34

(Ŷ , Ẑ ) := (Y + w(·, X ), Z + ∇w(·, X )) 35
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is a strong solution of (26).1

(ii) If (Ŷ , Ẑ ) is a strong solution of (26), then2

(Y, Z ) := (Ŷ − w(·, X ), Ẑ − ∇w(·, X ))3

is a virtual-strong solution of the backward SDE in (22).4

Proof. The proof is very easy and straight-forward, so we omit it. □5

We will now prove existence and uniqueness of the virtual-strong solution for the FBSDE6

(22). For this we need Assumption 1.7

Theorem 15. Under Assumption 1 there exists a unique virtual-strong solution (Y, Z ) to the8

backward SDE in (22).9

Proof. By definition, a virtual-strong solution of the backward SDE in (22) is a couple that10

solves BSDE (25), if u exists. Note that by Remark 3 we know that Assumption 1 implies11

Assumption 2, hence u does exist by Theorem 5. Moreover BSDE (25) is equivalent to BSDE12

(26) by Proposition 14.13

Using the Lipschitz assumption on f from Assumption 1 and the definition of f̂ , we have for14

any y, y′
∈ Rm and z, z′

∈ Rm×d that15

| f̂ (t, x, y, z) − f̂ (t, x, y′, z′)|
=| f (t, x, y − w(t, x), z − ∇w(t, x)) − f (t, x, y′

− w(t, x), z′
− ∇w(t, x))|

≤C(|y − y′
| + |z − z′

|).
16

Moreover by definition of f̂ we have17

E
[∫ T

0
| f̂ (r, x + Wr , 0, 0)|2dr

]
=E

[∫ T

0
| f (r, x + Wr ,−w(r, x + Wr ),−∇w(r, x + Wr ))|2dr

]
≤ C

(
1 + E

[∫ T

0
| f (r, x + Wr , 0, 0)|2dr

])
,

18

where we have used the fact that w and ∇w are uniformly bounded by Lemma 16. The latter19

integral is bounded using the assumption of f (t, x, 0, 0), indeed20

E
[∫ T

0
| f (r, x + Wr , 0, 0)|2dr

]
≤ E

∫ T

0
sup
t,x

| f (t, x, 0, 0)|2dr ≤ c.21

Hence Eq. (26) has a unique strong solution by classical results (see for example [9, Theorem22

2.1]). □23

4.2. The auxiliary PDE and the auxiliary BSDE24

We now establish several useful properties for the auxiliary PDE (23) and for the auxiliary25

BSDE (26), which will be used in the next Section to prove the non-linear Feynman–Kac26

formula.27

We start by proving a result analogous to Lemma 11.28
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Lemma 16. Let Assumption 2 hold and b ∈ L∞(0, T ; H−β
q ). Then the solution w is an element

of C0,γ ([0, T ]; H 1+δ
p ) for all 2γ < 1 − δ − β and it enjoys the following bounds

sup
0≤t≤T

(
sup
x∈Rd

|w(t, x)|

)
≤ C, (27)

sup
0≤t≤T

(
sup
x∈Rd

|∇w(t, x)|

)
≤ C. (28)

Furthermore, for all t, s ∈ [0, T ] and x, y ∈ Rd we have

|w(t, x) − w(s, y)| ≤ C (|t − s|γ + |x − y|) , (29)

|∇w(t, x) − ∇w(s, y)| ≤ C (|t − s|γ + |x − y|
α) , (30)

where α = δ −
d
p . 1

Proof. To show that w ∈ C([0, T ]; H 1+δ
p ) we first observe that ∇u b ∈ L∞([0, T ]; H−β

p ) since 2

∥∇u(s)b(s)∥H−β
p

≤ C∥∇u(s)∥Hδ
p
∥b(s)∥H−β

q
, 3

and taking the supremum over s ∈ [0, T ] the right-hand side is bounded by a constant which is 4

independent of s. Hence 5

∥∇u b∥
∞,H−β

p
≤ sup

0≤s≤T
C∥u(s)∥H1+δ

p
∥b∥

∞,H−β
q

≤ C(b, u). 6

By Proposition 7 applied to Eq. (24) we have that w ∈ C0,γ ([0, T ]; H 2−2ε−β
p ) for every ε > 0 7

and γ ∈ (0, ε), and setting with ε =
1−δ−β

2 it implies w ∈ C([0, T ]; H 1+δ
p ). 8

The bounds (27) and (28) follow by fractional Morrey inequality (Lemma 2) 9

w ∈ C0,γ ([0, T ]; H 1+δ
p ) ⊂ C0,γ ([0, T ]; C1,α), 10

where α = δ −
d
p . Hence the supt,x of the functions w and ∇w are finite. 11

The bound (29) is clear by using the norm definition in C0,γ , whereas (30) can be obtained by 12

using the fact that w ∈ C0,γ ([0, T ]; C0,1+α) implies ∇w ∈ C0,γ ([0, T ]; C0,α) and applying the 13

definition of the norm in the latter space. □ 14

If we now consider a smooth coefficient bn in place of b then the PDE (23) becomes 15⎧⎪⎨⎪⎩
wn

t +
1
2
∆wn

= ∇un bn,

wn(T, x) = 0,
∀(t, x) ∈ [0, T ] × Rd .

(31) 16

For this approximating PDE we have nice convergence properties as follows. 17

Lemma 17. Let Assumption 2 hold and let bn
→ b in L∞([0, T ]; H−β

q ). Then wn
→ w in 18

C0,γ ([0, T ]; C1,α) and ∇wn
→ ∇w in C0,γ ([0, T ]; C0,α). In particular, wn(t, x) → w(t, x) and 19

∇wn(t, x) → ∇w(t, x) uniformly on [0, T ] × Rd . 20

Proof. By Lemma 16 we have thatw andwn are both elements of C0,γ ([0, T ]; H 1+δ
p ). The norm

of w − wn in C0,γ ([0, T ]; H 1+δ
p ) has two terms, as recalled in Section 2. The first one can be
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bounded by observing that

w(T − t) − wn(T − t) =

∫ t

0
Pp(r )

(
∇u(r + T − t)b(r + T − t)

− ∇un(r + T − t)bn(r + T − t)
)
dr

and by abuse of notation we consider the semigroup simply acting on ∇u(r )b(r ) − ∇un(r )bn(r )
because the regularity properties are the same. So

∥w(T − t) − wn(T − t)∥H1+δ
p

≤

∫ t

0
Pp(r )(∇u(r )b(r ) − ∇u(r )bn(r ))dr


H1+δ

p

+

∫ t

0
Pp(r )(∇u(r )bn(r ) − ∇un(r )bn(r ))dr


H1+δ

p

≤

∫ t

0
r−

1−δ−β
2

(
∥u(r )∥H1+δ

p
∥b(r ) − bn(r )∥H−β

q

+ ∥bn(r )∥H−β
q

∥∇u(r ) − ∇un(r )∥H1+δ
p

)
dr

≤ CT
1+δ+β

2 ∥b − bn
∥

∞,H−β
q
,

where the constant C is independent of n (for n large enough) because un
→ u as shown in

Lemma 9, part (i) and bn → b by hypotheses. Thus

sup
t∈[0,T ]

∥w(t) − wn(t)∥H1+δ
p

= sup
t∈[0,T ]

∥w(T − t) − wn(T − t)∥H1+δ
p

≤ C∥b − bn
∥

∞,H−β
q
.

The Hölder term in the norm of w−wn can be bounded by using Proposition 7 with ε =
1−δ−β

2 ,1

since the integrand h(r ) := b(r )∇u(r ) − bn(r )∇un(r ) belongs to H−β
p . Then we have2

∥wn(t) − w(t) − (wn(s) − w(s))∥H1+δ

|t − s|γ
≤ C∥h∥

∞,H−β
p
,3

where C is independent of n and the norm of h is bounded by C∥b − bn
∥

∞,H−β
q

as done above.4

Hence we have shown that5

wn
→ w in C0,γ ([0, T ]; H 1+δ

p )6

which implies7

∇wn
→ ∇w in C0,γ ([0, T ]; H δ

p)8

by the continuity of the mapping ∇ : H 1+δ
p → H δ

p .9

By the Sobolev embedding (Lemma 2) we have C0,γ ([0, T ]; H 1+δ
p ) ⊂ C0,γ ([0, T ]; C1,α) and10

so it follows that11

sup
0≤t≤T

sup
x∈Rd

|wn(t, x) − w(t, x)| ≤ C∥b − bn
∥

∞,H−β
q12

and13

sup
0≤t≤T

sup
x∈Rd

|∇wn(t, x) − ∇w(t, x)| ≤ C∥b − bn
∥

∞,H−β
q
,

14

which is the uniform convergence claimed. □15



SPA: 3445

Please cite this article as: E. Issoglio and S. Jing, Forward–backward SDEs with distributional coefficients, Stochastic Processes and their
Applications (2019), https://doi.org/10.1016/j.spa.2019.01.001.

E. Issoglio and S. Jing / Stochastic Processes and their Applications xxx (xxxx) xxx 21

4.3. Feynman–Kac representation formula 1

In this last section we will establish a non-linear Feynman–Kac representation formula for the 2

FBSDE (22) using the solution of the PDE (8) and of the auxiliary PDE (23). In particular, we 3

will construct the virtual-strong solution of (22) – that is a strong solution of (25) – by means 4

of the mild solution of the PDE (8), and we will also show that the unique mild solution can be 5

obtained as the first component Y at initial time t of the virtual-strong solution (Y, Z ), and in this 6

case the gradient of the solution corresponds to Z . 7

Theorem 18. Let Assumption 1 hold. Let u be the unique mild solution of (8) and X be the 8

solution of the forward equation in (22), namely Xs = x + Ws − Wt , s ∈ [t, T ]. Then the couple 9

(u(·, X ),∇u(·, X )) is a virtual-strong solution of the backward SDE in (22). 10

Proof. First we note that by Remark 3 we can consider the composition of f with u,∇u and this 11

satisfies Assumption 2. Hence by Theorem 5 we know that a solution u to PDE (8) exists and it is 12

unique. Furthermore this solution is in C([0, T ]; C1,α) for some small α > 0 by Lemma 11 and 13

it is uniformly bounded in (t, x). These properties, together with the fact that X is a Brownian 14

motion starting in x at time t , imply that the first two bullet points of Definition 12 are easily 15

satisfied for the couple (u(·, X ),∇u(·, X )). The only non-trivial point to verify in this definition 16

is to show that (u(·, X ),∇u(·, X )) satisfies (25), where w is given by (23). 17

To show this we take a smooth approximating sequence, e.g. bn
∈ L∞(0, T ; C1

b (Rd
;Rd )), 18

such that bn
→ b converges in L∞(0, T ; L−β

q ). The PDE (8) then becomes (12) and PDE (23) 19

becomes (31). These approximations are smooth so we can apply Itô’s formula to both un(·, X ) 20

and wn(·, X ), and get 21

dun(s, Xs) = − ∇un(s, Xs)bn(s, Xs)ds

− f (s, Xs, un(s, Xs),∇un(s, Xs))ds + ∇un(s, Xs)dWs,
22

and 23

dwn(s, Xs) = ∇un(s, Xs)bn(s, Xs)ds + ∇wn(s, Xs)dWs . 24

Adding the second equation to the first we get rid of the term with ∇unbn and we end up with 25

dun(s, Xs) = − dwn(s, Xs) − f (s, Xs, un(s, Xs),∇un(s, Xs))ds

+ ∇wn(s, Xs)dWs + ∇un(s, Xs)dWs .
26

Integrating from s to T gives 27

un(s, Xs) = Φ(XT ) − wn(s, Xs)

+

∫ T

s
f (r, Xr , un(r, Xr ),∇un(r, Xr ))dr

−

∫ T

s
∇wn(r, Xr )dWr −

∫ T

s
∇un(r, Xr )dWr .

(32) 28

Our aim is to show that the limit of (32) is given by 29

u(s, Xs) = Φ(XT ) − w(s, Xs)

+

∫ T

s
f (r, Xr , u(r, Xr ),∇u(r, Xr ))dr

−

∫ T

s
∇w(r, Xr )dWr −

∫ T

s
∇u(r, Xr )dWr .

(33) 30
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We will consider the limit in S2: For a stochastic process (ξs)t≤s≤T the norm in S2 is given by
E[supt≤s≤T |ξs |

2]. We take the difference of (32) and (33), then by triangular inequality it is
enough to show S2-convergence to zero for each of the following five terms:

un(·, X ) − u(·, X )

wn(·, X ) − w(·, X )∫ T

·

f (r, Xr , un(r, Xr ),∇un(r, Xr )dr

−

∫ T

·

f (r, Xr , u(r, Xr ),∇u(r, Xr )))dr∫ T

·

∇un(r, Xr )dWr −

∫ T

·

∇u(r, Xr )dWr∫ T

·

∇wn(r, Xr )dWr −

∫ T

·

∇w(r, Xr )dWr .

The first two are a consequence of uniform convergence of un to u and wn to w (which is proven
in Lemmas 9 and 17). The third term converges to zero thanks to the Lipschitz continuity of f
(by Assumption 1) and uniform convergence of un and ∇un (again by Lemma 9). The last two
terms can be bounded using BDG inequality and Lemma 17) as follows (we show it only for
w, the same applies to u thanks to Lemma 9.

E

[
sup

t≤s≤T

⏐⏐⏐⏐∫ T

s
(∇wn(r, Xr ) − ∇w(r, Xr ))dWr

⏐⏐⏐⏐2
]

≤ cE
[∫ T

s
(∇wn(r, Xr ) − ∇w(r, Xr ))2dr

]
≤ cE

[∫ T

s

(
sup
r,x

|∇wn(r, Xr ) − ∇w(r, Xr )|
)2

dr

]
→ 0.

This concludes the proof. □1

From Theorem 18 and using Proposition 14, it is also easily seen that (u(·, X ) + w2

(·, X ),∇u(·, X ) + ∇w(·, X )) is a strong solution of (26), where u is the solution of PDE (8)3

and w is the solution of (23).4

Next we have the opposite result, namely that the BSDE provides a representation for the mild5

solution of the PDE. For this result we resume the use of the superscript t, x for better clarity.6

Theorem 19. Let Assumption 2 hold, and let (Y t,x , Z t,x ) be a virtual-strong solution of the7

backward SDE in (22). Assume further that there exists deterministic functions α(·, ·) and β(·, ·)8

such that9

Y t,x
s = α(s, X t,x

s ) and Z t,x
s = β(s, X t,x

s )10

for all s ∈ [0, T ]. Moreover assume that α ∈ Cε([0, T ]; H 1+δ
p ) (form some ε > 0) and11

β ∈ C([0, T ]; H δ
p). Then the unique mild solution of (8) can be written as u(t, x) = Y t,x

t .12

Moreover we have that ∇u(t, x) = Z t,x
t .13
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Proof. Since (Y t,x , Z t,x ) = (α(·, X t,x ), β(·, X t,x )) is a virtual-strong solution of the backward
SDE in (22), we have for s = t

α(t, x) = Φ(X t,x
T ) −

∫ T

t
β(r, X t,x

r )dWr (34)

+

∫ T

t
f (r, X t,x

r , α(r, X t,x
r ), β(r, X t,x

r ))dr

− w(t, x) −

∫ T

t
∇w(r, X t,x

r )dWr .

Note that the stochastic integrals in (34) have zero-mean because both integrands are square 1

integrable. We denote by Pt,x the probability measure of X t,x (which we recall is a Brownian 2

motion starting in x at t) and by Et,x the expectation under this measure, namely E[X t,x
s ] = 3

Et,x [Xs], where Xs is the canonical process. Moreover, this process X generates the heat 4

semigroup under this measure, namely for all bounded and measurable a we have 5

E
[
a(s, X t,x

s )
]

= Et,x [a(s, Xs)] = (P(s − t)a(s, ·)) (x). 6

The heat semigroup P coincides with the semigroup Pp when it acts on elements in L p. Then
taking the expectation E on both sides of (34) we get

α(t, ·) =E
[
Φ(X t,·

T )
]
− w(t, ·)

+ E
[∫ T

t
f (r, X t,·

r , α(r, X t,·
r ), β(r, X t,·

r ))dr
]

=Pp(T − t)Φ − w(t) +

∫ T

t
Pp(r − t) f (r, ·, α(r ), β(r ))dr

=Pp(T − t)Φ +

∫ T

t
Pp(r − t) (∇u(r ) b(r )) dr (35)

+

∫ T

t
Pp(r − t) f (r, ·, α(r ), β(r ))dr,

having used in the last equality that w is the mild solution of (23). Next we calculate the 7

covariation of Y and W . We use the covariation defined in [15], recalled below for convenience: 8

[Y,W ]s := lim
ε→0

1
ε

∫ s

0
(Yr+ε − Yr )(Wr+ε − Wr )dr, 9

if the limit exists u.c.p. in s. Notice that α ∈ Cε([0, T ]; H 1+δ
p ) implies by fractional Morrey 10

inequality ( Lemma 2) that α is continuous in time and C1,γ in space with γ = δ−
d
p . Moreover 11

one can show that α ∈ C0,1([0, T ] × Rd ) by similar computations as [13, Lemma 21], thus we 12

can apply [15, Corollary 3.13] and get 13

[Y,W ]s =
[
α(·, X t,x ),W

]
s =

∫ s

0
∇α(r, X t,x

r )dr. 14

On the other hand, the covariation calculated using the BSDE (34) gives

[Y,W ]s

=

[
Φ(X t,x

T ) −

∫ T

·

Z t,x
r dWr +

∫ T

·

f (r, X t,x
r , α(r, X t,x

r ), β(r, X t,x
r ))dr,W

]
s
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+

[
−w(·, X t,x ) −

∫ T

·

∇w(r, X t,x
r )dWr ,W

]
s

= −

[∫ T

·

Z t,x
r dWr ,W

]
s
−
[
w(·, X t,x ),W

]
s

−

[∫ T

·

∇w(r, X t,x
r )dWr ,W

]
s

=

∫ s

0
Z t,x

r dr −

∫ s

0
∇w(r, X t,x

r )dr +

∫ s

0
∇w(r, X t,x

r )dr

=

∫ s

0
β(r, X t,x

r )dr.

Therefore β(s, X t,x
s ) = ∇α(s, X t,x

s ) for all s. Eq. (35) becomes

α(t) =Pp(T − t)Φ +

∫ T

t
Pp(r − t) (∇u(r ) b(r )) dr

+

∫ T

t
Pp(r − t) f (r, α(r ),∇α(r ))dr.

We remark that this is exactly the mild formulation of1 ⎧⎪⎨⎪⎩
αt (t, x) +

1
2
∆α(t, x) + ∇u(t, x)b(t, x) + f (t, α(t, x),∇α(t, x)) = 0,

α(T, x) = Φ(x),
∀(t, x) ∈ [0, T ] × Rd ,

(36)2

where u is the mild solution of (8). With a very similar proof of Theorem 5 one can show that3

there exists a unique mild solution α ∈ C([0, T ]; H 1+δ
p ) to (36). But by Theorem 5 we also know4

that u is a solution of (36) hence we have α = u. The claims Y t,x
t = u(t, x) and Z t,x

t = ∇u(t, x)5

are thus proved. □6

5. Solution of FBSDE (2)7

5.1. Some heuristic comments8

In this last section we study the forward–backward system (2) recalled again below for ease9

of reading:10 ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X t,x

s = x +

∫ s

t
b(r, X t,x

r )dr +

∫ s

t
dWr ,

Y t,x
s = Φ(X t,x

T ) −

∫ T

s
Z t,x

r dWr +

∫ T

s
f (r, X t,x

r , Y t,x
r , Z t,x

r )dr,

∀s ∈ [t, T ].

(37)11

We will go into more technical details in Section 5.2 and below, but first we want to make some12

heuristic comments on the link between the system above and the other FBSDE, given by (1).13

If we were in the classical (and smooth enough) case where b is a suitable function, we would14

be able to change measure in (37) and apply Girsanov’s theorem: We could find a new measure15

P̃ defined by dP̃ := MT dP under which W̃s := Ws +
∫ s

0 b(r, X t,x
r )dr is a Brownian motion. Here16

Ms := exp(−
∫ s

0 b(r, Xr )dWr −
1
2

∫ s
0 b2(r, Xr )dr ) is a martingale. Under the new measure P̃, the17
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system (37) would read 1⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X̃ t,x
s = x + W̃s − W̃t ,

Ỹ t,x
s = Φ(X̃ t,x

T ) −

∫ T

s
Z̃ t,x

r dW̃r +

∫ T

s
f (r, X̃ t,x

r , Ỹ t,x
r , Z̃ t,x

r )dr

+

∫ T

s
Z̃ t,x

r b(r, X̃ t,x
r )dr,

∀s ∈ [t, T ],

(38) 2

which is exactly equation (1) mentioned above. In both cases the associated PDE would be the 3

same, namely (3), recalled below 4⎧⎨⎩ut (t, x) + Lbu(t, x) + f (t, x, u(t, x),∇u(t, x)) = 0,
u(T, x) = Φ(x),
∀(t, x) ∈ [0, T ] × Rd .

(39) 5

This can be easily checked by applying Itô’s formula to u(s, X t,x
s ) (respectively u(s, X̃ t,x

s )), and 6

identifying Y and Z (respectively Ỹ and Z̃ ) with u and ∇u calculated in X (respectively X̃ ). 7

The fact that the same PDE leads to two different FBSDEs can be interpreted analytically 8

by looking at the PDE from two different viewpoints. On one hand we can look at the PDE 9

and the semigroup generated by the Laplacian ( 1
2∆), which is also the generator of the forward 10

component. In this case the process generated is a Brownian motion (which is X ), so one gets 11

to (38). Alternatively, we can look at the semigroup generated by the Laplacian and the term 12

involving b (that is Lb
=

1
2∆ + (∇·) b), which is again the generator of the forward component, 13

but in this case this process is a Brownian motion with drift, more specifically it is the solution 14

of X̃s = x +
∫ s

t b(r, X̃r )dr +
∫ s

t dW̃r . This second viewpoint leads to (37). 15

Clearly when the drift b is a distribution, this argument is no longer rigorous: We are not able 16

to justify the change of measure (which would involve two measures which are not equivalent). 17

From the analytical point of view, it is unclear to us how to characterize the “semigroup” 18

generated by Lb. We do not have answers to those questions yet. 19

What we achieve here instead, is an independent study of the system (37). We will define what 20

a solution is, show its existence (but not uniqueness) and prove rigorously the link between the 21

system (37) and the PDE (39). 22

5.2. The forward component X 23

It is easy to see that the forward–backward system (37) can be decoupled and the forward 24

component solved first. We define a solution of (37) using both classical literature about weak 25

solutions of FBSDEs (see for example [5,7,25]) and the notion of virtual solution for an SDE 26

with distributional drift from [13]. Here the authors introduced and studied (in the special case 27

where t = 0) equations in Rd of the form 28

X t,x
s = x +

∫ s

t
b(r, X t,x

r )dr +

∫ s

t
dWr , s ∈ [t, T ] (40) 29

with drift b being a distribution as specified in the standing assumption, with the extra Lq - 30

condition that b ∈ L∞([0, T ]; H−β
q ∩ H−β

q̃ ), where q is as usual and q̃ :=
d

1−β
. In this Section we 31

recall some of their results for the reader’s convenience. Notice that Lemma 23 is a new result. 32

To define a virtual solution we need to consider the following auxiliary PDE 33⎧⎨⎩ξs(s, y) + Lbξ (s, y) − (λ+ 1)ξ (s, y) = −b(s, y),
ξ (T, y) = 0,
∀(s, y) ∈ [0, T ] × Rd .

(41) 34
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This PDE is similar to (8) and can be treated with similar techniques. In [13, Theorem 14]1

the authors show that the PDE (41) admits a unique mild solution in C([0, T ], H 1+δ
p ). This2

solution enjoys several smoothness properties and in particular it has a continuous version that3

can be evaluated pointwise and that will be used in the definition of virtual solution and in the4

construction of the auxiliary SDE below.5

By standard set-up we mean a quintuple (Ω ,F , P,F, (Wt )t ) where (Ω ,F , P) is a complete6

probability space, F is a filtration satisfying the usual hypotheses and W = (Wt )t is an F-7

Brownian motion. According to [13] we give the following definition.8

Definition 20 ([13, Definition 25]). A standard set-up (Ω ,F , P,F, (Wt )t ) and a continuous
stochastic process X := (X t,x

s )s on it are said to be a virtual solution of (40) if X is F-adapted
and the integral equation

X t,x
s = x + ξ (t, x) − ξ (s, X t,x

s ) + (λ+ 1)
∫ s

t
ξ (r, X t,x

r )dr

+

∫ s

t
(∇ξ (r, X t,x

r ) + Id )dWr , (42)

holds for all s ∈ [t, T ], P-a.s.9

To construct a virtual solution to (40) we transform (42) using the auxiliary PDE (41) and10

we get an auxiliary SDE (see Eq. (44)) which we solve in the weak sense. Let us define11

ϕ(s, y) := y + ξ (s, y) and let12

ψ(s, ·) := ϕ−1(s, ·) (43)13

be the inverse of y ↦→ ϕ(s, y) for any fixed s, which is shown to exist and to be jointly continuous,
see [13, Lemma 22]. Let V be the weak solution of the following auxiliary SDE

V t,x
s = v + (λ+ 1)

∫ s

t
ξ (r, ψ(r, V t,x

r ))dr

+

∫ s

t
(∇ξ (r, ψ(r, V t,x

r )) + Id )dWr , (44)

for s ∈ [t, T ], where Id is the d × d identity matrix and ξ is the solution of (41). Eq. (44) is14

exactly [13, equation (34)], where the authors show that a unique weak solution exists. Then15

in [13, Theorem 28] the authors show existence and uniqueness of a virtual solution according16

to Definition 20 by making use of the weak solution of the SDE (44) with initial condition17

v = ϕ(t, x) = x + ξ (t, x). This result is recalled in what follows.18

Proposition 21 ([13, Theorem 28]). Let Assumption 1 hold and let b ∈ L∞([0, T ], H−β
q ∩ H−β

q̃ )19

where q̃ :=
d

1−β
. Then for every x ∈ Rd and 0 ≤ t < T , there exists a unique virtual solution of20

(40) which has the form X t,x
s = ψ(s, V t,x

s ), where V is the unique weak solution of (44) and ψ21

is given by (43).22

Finally let us remark that, although the transformation ψ appearing in (44) involves a23

parameter λ not included in the original SDE for X , the virtual solution does not actually depend24

on λ. This is a consequence of [13, Proposition 29].25

The next results are important in the proof of Theorem 25, when we approximate the26

coefficient b with a smooth sequence bn . Let us denote by ψn, ϕn, ξ
n and V n the same objects as27

above associated to Eqs. (41) and (44) but with b replaced by a smooth sequence bn . In this case28

it was shown in [13, Lemma 23 and Lemma 24, (iii)] that the following property holds:29
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Lemma 22 ([13, Lemma 23 and Lemma 24, (iii)]). If bn
→ b in L∞([0, T ], H−β

q ∩ H−β

q̃ ), then 1

ξ n
→ ξ in C([0, T ], H 1+δ

p ). Moreover, ξ n
→ ξ and ∇ξ n

→ ∇ξ uniformly in [0, T ] × Rd . 2

For ψn and V n , we have the following result. 3

Lemma 23. Let bn
→ b in L∞([0, T ], H−β

q ∩ H−β

q̃ ). Then 4

(i) the functions ψn and ψ are jointly γ -Hölder continuous (for any γ < 1 − δ − β) in the 5

first variable and Lipschitz continuous in the second variable, uniformly in n, in particular 6

there exists a constant C > 0 independent of n such that 7

|ψn(t, x) − ψn(s, y)| ≤ C(|t − s|γ + |x − y|). (45) 8

(ii) the moments of V n can be controlled uniformly in n, in particular there exists a constant 9

C = C(p) > 0 independent of n such that, for every a > 2, 10

E
[
|V n

t − V n
s |

a]
≤ C(|t − s|a + |t − s|a/2). (46) 11

Proof. (i) Let t, s > 0 and x, y ∈ Rd . Then 12

|ψn(t, x) − ψn(s, y)| ≤ |ψn(t, x) − ψn(t, y)| + |ψn(t, y) − ψn(s, y)|. 13

The first term on the right hand side is bounded by 2|x − y| since sup(t,x) |∇ψn(t, x)| < 2 by [13, 14

Lemma 24 (ii)]. The second term can be bounded with a similar proof as [13, Lemma 22, Step 15

3] and one gets 16

|ψn(t, y) − ψn(s, y)| ≤
1
2
|ψn(t, y) − ψn(s, y)| + |ξ n(t, y) − ξ n(s, y)|. 17

Using the fractional Morrey inequality (Lemma 2) we have 18

|ξ n(t, y) − ξ n(s, y)| ≤ C∥ξ n(t, ·) − ξ n(s, ·)∥H1+δ
p

≤ C∥ξ n
∥C0,γ |t − s|γ , 19

where ∥ξ n
∥C0,γ ≤ C with C independent of n (proof similar to Lemma 11, (i)). 20

(ii) This bound is proven by similar arguments as in Step 3 in the proof of [13, Proposition 21

29], with the only difference that the exponent 4 is replaced by a for any a > 2. □ 22

5.3. Definition of solution for FBSDE and existence 23

Let us consider the virtual solution to the forward equation in (37), which is a standard set-up 24

(Ω ,F , P,F, (Wt )t ) and a process (X t,x
s )s that solves (42). We introduce the following definition. 25

Definition 24. A virtual-weak solution to the FBSDE (37) is a standard set-up (Ω ,F ,P,F, 26

(Wt )t ) and a triplet of processes (X t,x , Y t,x , Z t,x ) such that 27

• X t,x , Y t,x and Z t,x are F-adapted, X t,x and Y t,x are continuous; 28

• P
(
|Φ(X t,x

T )| +
∫ T

0

(
| f (s, X t,x

s , Y t,x
s , Z t,x

s )| + |Z t,x
s |

2
)

ds < ∞

)
= 1; 29

• (X t,x , Y t,x , Z t,x ) verifies, P-a.s., 30⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X t,x
s = x + ξ (t, x) − ξ (s, X t,x

s ) + (λ+ 1)
∫ s

t
ξ (r, X t,x

r )dr

+

∫ s

t
(∇ξ (r, X t,x

r ) + Id )dWr ,

Y t,x
s = Φ(X t,x

T ) −

∫ T

s
Z t,x

r dWr +

∫ T

s
f (r, X t,x

r , Y t,x
r , Z t,x

r )dr,

∀s ∈ [t, T ].

(47) 31
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We conclude the paper with an existence result for the virtual-weak solution (X, Y, Z ) of (37),1

which is constructed using the solution u to the PDE (8) and a Feynman–Kac representation for2

(Y, Z ).3

Theorem 25. Let Assumption 1 hold and let b ∈ L∞([0, T ], H−β
q ∩ H−β

q̃ ). Then a virtual-weak4

solution to the FBSDE system (37) is given by (X t,x , u(·, X t,x ),∇u(·, X t,x )), where X t,x is the5

unique virtual solution of (40) and u is the solution of PDE (8).6

Proof. In this proof we will drop the superscript t, x for shortness.7

By Remark 3 and Theorem 5 there exists a unique mild solution to (8), which we denote8

by u. To prove that (X, u(·, X ),∇u(·, X )) is a virtual-weak solution of (37) with X being the9

virtual solution of the forward component, it is enough to show that (u(·, X ),∇u(·, X )) solves10

the backward component in (37) P-a.s. Indeed, the first bullet point of Definition 24 is easy11

to check thanks to regularity of X and u, and the integrability conditions on f stated in the12

second bullet point of the Definition are fulfilled because f is Lipschitz continuous in (y, z),13

bounded at (t, x, 0, 0) uniformly in (t, x) and u and ∇u are uniformly bounded by Lemma 11;14

and Z = ∇u(·, X ) is square integrable because ∇u is uniformly bounded again by Lemma 11.15

Let us denote by (Xn, Y n, Zn) the classical strong solution of the FBSDE16 ⎧⎪⎪⎨⎪⎪⎩
Xn

s = x +

∫ s

t
bn(r, Xn

r )dr +

∫ s

t
dWr ,

Y n
s = Φ(Xn

T ) −

∫ T

s
Zn

r dWr +

∫ T

s
f (r, Xn

r , Y n
r , Zn

r )dr
(48)17

in (Ω ,F ,P,F, (Wt )t ), where bn
∈ C([0, T ]; C1

b (Rd
;Rd )) such that bn

→ b in L∞
18 (

[0, T ]; H−β
q ∩ H−β

q̃

)
. This strong solution Xn converges in law to X thanks to [13, Proposition19

29]. Moreover we define20

Mn
s :=

∫ s

t
Zn

r dWr and Fn
s :=

∫ s

t
f (r, Xn

r , Y n
r , Zn

r )dr21

for any t ≤ s ≤ T . Note that from classical theory of BSDEs (see for example [9]) we have that22

Y n
s = un(s, Xn

s ) and Zn
s = ∇un(s, Xn

s ).23

We will show that there exists a subsequence of (Xn, Y n, Zn,Mn, Fn,W ) that converges in24

law to a limit vector and then we will identify this limit vector with the components of the25

solution of (37) and thus show that (X, u(·, X ),∇u(·, X )) is a solution.26

First, we prove the tightness of the sequence27

νn
= (Xn, Y n, Zn,Mn, Fn,W )28

in the space of continuous paths C([0, T ];Rd ′

), where d ′
= 2d + 3m + m × d. To do so,29

we use the following tightness criterion (see for example, [20, Corollary 16.9]): A sequence of30

stochastic processes (νn)n with values in Rd is tight in C([0, T ];Rd ) if (νn
0 )n is tight and there31

exists a, b,C > 0 (independent of n) such that32

E[|νn
r − νn

s |
a] ≤ C |r − s|1+b.33

First note that the initial condition νn
0 is deterministic and it converges pointwise to ν0, hence it

is tight. As for the other bound, we look for an estimate of the quantity

E|νn
r − νn

s |
a

≤CE(|Xn
r − Xn

s |
a
+ |Y n

r − Y n
s |

a
+ |Zn

r − Zn
s |

a

+ |Mn
r − Mn

s |
a
+ |Fn

r − Fn
s |

a
+ |Wr − Ws |

a),

for a > 2, where the constant C depends only on a.34
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The first term is defined as Xn
r = ψn(r, V n

r ). By Lemma 23 part (i) we get

|Xn
r − Xn

s |
a

= |ψn(r, V n
r ) − ψn(s, V n

s )|a

≤ C(|V n
r − V n

s | + |r − s|γ )a

≤ C(|V n
r − V n

s |
a
+ |r − s|aγ ),

and by using Lemma 23 part (ii) we get

E|Xn
r − Xn

s |
a

≤ C(E|V n
r − V n

s |
a
+ |r − s|aγ )

≤ C(|r − s|a + |r − s|a/2 + |r − s|aγ )

≤ C(|r − s|a/2 + |r − s|aγ ).

Next we look at E|Y n
r − Y n

s |
a , and using Eq. (18) from Lemma 11 we have

E|Y n
r − Y n

s |
a

= E|un(r, Xr ) − un(s, Xs)|a

≤ CE(|Xr − Xs | + |r − s|γ )a

≤ C(E|Xr − Xs |
a
+ |r − s|aγ )

≤ C(|r − s|a/2 + |r − s|aγ ).

The third term E|Zn
r − Zn

s |
a is done similarly using Eq. (19) from Lemma 11 to get 1

E|Zn
r − Zn

s |
a

≤ C(|r − s|aα/2 + |r − s|aγ ). 2

Concerning the term involving Mn , using Eq. (17) from Lemma 11, we get

E|Mn
r − Mn

s |
a

≤ CE

(⏐⏐⏐⏐∫ s

t
∇un(v, Xn

v )dWv

⏐⏐⏐⏐2
)a/2

≤ CE
(∫ r

s

⏐⏐∇un(v, Xv)
⏐⏐2 dv

)a/2

≤ C |r − s|a/2.

The last non-trivial term is 3

E|Fn
r − Fn

s |
a

= E
(∫ r

s
| f (v, Xv, un(v, Xv),∇un(v, Xv))|dv

)a

. 4

The function f inside the integral can be bounded using Assumption 1 as follows

sup
(v,x)

| f (v, x, un(v, x),∇un(v, x))|

≤ sup
(v,x)

| f (v, x, un(v, x),∇un(v, x)) − f (v, x, 0, 0)| + sup
v,x

| f (v, x, 0, 0)|

≤ sup
(v,x)

C(1 + |un(v, x)| + |∇un(v, x)|)

≤C,

where we have used Eq. (16) from Lemma 11. Thus 5

E|Fn
r − Fn

s |
a

≤ E
(∫ r

s
Cdv

)a

≤ C |r − s|a . 6

Putting everything together we have 7

E|νn
r − νn

s |
a

≤ C(|r − s|a/2 + |r − s|aγ + |r − s|a), 8
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so choosing a big enough such that min{a/2, aγ } > 1, then by the tightness criteria we have that1

νn is tight.2

Next we want to identify the limit of (Xn, Y n, Zn,Mn, Fn,W ). Let us denote by ν one limit3

of νn (or of a subsequence) in C([0, T ];Rd ′

), which exists by tightness shown as above. Note4

that the limit might not be unique. By Skorohod theorem there exists another probability space5

(Ω̃ , F̃, P̃) and other random variables ν̃n and ν̃ on this space with values in C([0, T ];Rd ′

) such6

that ν̃n
→ ν̃, P̃-a.s. and they have the same laws as the original random variables, in particular7

P̃ ◦ (̃νn)−1
= P ◦ (νn)−1 and P̃ ◦ (̃ν)−1

= P ◦ (ν)−1.8

Recall that for fixed n (some of) the components of the vector νn satisfy9

Y n
s = Y n

t + Mn
s − Fn

s , P-a.s.,10

hence11

Ỹ n
s = Ỹ n

t + M̃n
s − F̃n

s , P̃-a.s.12

Now taking the limit (along a subsequence) as n → ∞ and by the P̃-almost sure convergence of13

ν̃n to ν̃ we get14

Ỹs = Ỹt + M̃s − F̃s, P̃-a.s.,15

and since P̃ ◦ (̃ν)−1
= P ◦ (ν)−1 we also have that the components of the limit vector ν satisfy16

Ys = Yt + Ms − Fs, P-a.s.17

The last step in the proof consists in showing that the limiting components are of the desired18

form, for example that Ms =
∫ s

t Zr dWr etc.19

We start by showing the convergence in law of un(s, Xn
s ) → u(s, Xs). We do so by using20

the following result from [4, Section 3, Theorem 3.1]: Let (S, µ) be a metric space and let us21

consider S-valued random variables such that ξn → ξ in law and µ(ξn, ζn) → 0 in probability.22

Then ζn → ξ in law.23

In the present case, on one hand we have that for any bounded and continuous functional24

G : C([0, T ];Rm) → R, then G ◦ u is also bounded and continuous because u is uniformly25

continuous by Eq. (18) from Lemma 11. Hence by weak convergence of Xn
→ X we obtain26

weak convergence of G(u(·, Xn)) → G(u(·, X )), that is u(·, Xn) → u(·, X ) in law. On the other27

hand un(·, Xn)−u(·, Xn) → 0 in C([0, T ];Rm), P-a.s., because un
→ u uniformly by Lemma 928

part (ii), hence |un(·, Xn) − u(·, Xn)| → 0 in probability. These two facts imply the convergence29

in law of un(s, Xn
s ) → u(s, Xs) by [4, Section 3, Theorem 3.1]. A similar argument can be30

applied to ∇un(s, Xn
s ) → ∇u(s, Xs) by using Eq. (19) instead of (18).31

Similarly as above, one can see that the convergence in law means that the components Y and32

Z in the limit vector ν satisfy Ys = u(s, Xs) and Zs = ∇u(s, Xs) P-a.s. in C([0, T ];Rm) and33

C([0, T ];Rm×d ), since Y n
s = un(s, Xn

s ) and Zn
s = ∇un(s, Xn

s ).34

For the component F , we use the continuity assumption of f in (x, y, z) and the continuity of35

u and ∇u in x to show that the map36

Xn
·

↦→

∫
·

t
f (r, Xn

r , u(r, Xn
r ),∇u(r, Xn

r ))dr37

composed with any bounded and continuous functional G : C([0, T ];Rm) → R is still bounded38

and continuous, hence we have that39
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E
[

G
(∫

·

t
f (r, Xn

r , u(r, Xn
r ),∇u(r, Xn

r ))dr
)]

→ E
[

G
(∫

·

t
f (r, Xr , u(r, Xr ),∇u(r, Xr ))dr

)]
from the weak convergence of Xn

→ X . Moreover the convergence in probability of
|un(·, Xn) − u(·, Xn)| → 0 in C([0, T ];Rm) and the Lipschitz character of f imply that∫

·

t
| f (r, Xn

r , un(r, Xn
r ),∇un(r, Xn

r )) − f (r, Xn
r , u(r, Xn

r ),∇u(r, Xn
r ))|dr

≤ L
∫

·

t

(
|un(r, Xn

r ) − u(r, Xn
r )| + |∇un(r, Xn

r ) − ∇u(r, Xn
r )|
)

dr

≤ C
∫

·

t
|un(r, Xn

r ) − u(r, Xn
r )|dr → 0

in probability in C([0, T ];Rm). Hence applying again [4, Section 3, Theorem 3.1] we obtain 1

that
∫

·

t f (r, Xn
r , un(r, Xn

r ),∇un(r, Xn
r ))dr converges to

∫
·

t f (r, Xr , u(r, Xr ),∇u(r, Xr ))dr in law. 2

Thus, for the component F of the limit vector ν we have that 3

Fs =

∫ s

t
f (r, Xr , u(r, Xr ),∇u(r, Xr ))dr =

∫ s

t
f (r, Xr , Yr , Zr )dr, 4

P-a.s. 5

It remains to show that Ms =
∫ s

t Zr dWr , P-a.s. This follows from [23, Theorem 7.10] (see 6

also [10, Section 2.2]) and from the fact that Zn
→ Z weakly. 7

Putting everything together and using the fact that 8

Yt = YT −

∫ T

t
Zr dWr +

∫ T

t
f (r, Xr , Yr , Zr )dr 9

we have

Ys = Yt +

∫ s

t
Zr dWr −

∫ s

t
f (r, Xr , Yr , Zr )dr

= YT −

∫ T

s
Zr dWr +

∫ T

s
f (r, Xr , Yr , Zr )dr, P-a.s.,

where Ys = u(s, Xs) and Zs = ∇u(s, Xs), as wanted. □ 10
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