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We study the role of inhibition in a nearest-neighbours-connected neural model. The state of the network 

is a Markov process of which we study the ergodic properties or divergence characteristics using the 

parameters of the system. We prove that, when inhibition is smaller than a certain threshold, the network 

is ergodic and works in a stationary way. Conversely, when inhibition increases, the network is divided 

into two groups: active and inactive neurons. We observe by means of computer simultation that striped 

or moirC responses appear, whose shape and width depend on considered neighbourhood size. The 

model resembles the biological reality of the young animal’s cerebellar cortex. 
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1. Introduction 

Many formal neural networks have been studied since MacCulloch and Pitts (1943) 

and Von Neumann (1956). See Kohonen (1984), or Rumelhart (1986) for a review 

of the different aspects covered in recent research. See also Cottrell and Fort (1986, 

1987) or Cottrell (1988a) for some examples of neural networks. In this paper, we 

study a neural network whose cells are linked by inhibitory coupling. 

The model we present here was derived from a simplified model of a neurobiologi- 

cal system, introduced by Axelrad et al. (1985). The motivation was to try to 

understand the role of the inhibitory synapses which link the main cells (Purkinjie 

cells) of the cerebellar cortex. 

More thorough explanations about the model motivation are set out in Cottrell 

(1988b) or Axelrad et al. (1987), and neurobiological description of the cerebellar 

cortex can be found for instance in Eccles et al. (1967), or in Palay and Chan-Palay 

(1974). 

The heuristic description of the model is as follows. The neurons i, 1 G i s IV, are 

arranged in a two-dimensional lattice. Each of them is linked to its neighbours by 

inhibitory synapses. Let Y(i) be the neighbourhood of the neuron i and u = ) 7,‘“) the 

number of its elements. We consider different shapes of Y” and different values of 
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v, which can be 4, 6, 8, etc., as indicated in Figure 1. It is possible to consider the 

lattice as a tore, so that each cell has the same number u of neighbours. 

First, we consider only the spontaneous neuron activity, which consists of electric 

discharges, so called ‘spikes’, with constant duration and amplitude. So, we can 

represent a neuron’s activity by a point process, i.e. a sequence of interspike intervals. 

At time t, the state of neuron i is a positive valued variable Xi, which represents 

the waiting time to the next spike of neuron i, i.e. the duration that i should wait 

if it was not inhibited. Then Xi = 0 means that i fires a spike at time t. 

As long as neither i nor its neighbours fire a spike, then the variable Xl decreases 

linearly with time. 

When Xi = 0, the new i-state is given by a random variable U with distribution 

9, independent of all the rest of the network. 

Each time that a neighbour of i fires a spike, the next i-spike is delayed by a 

positive parameter 8: this is the inhibitory effect of the synapses between i and its 

neighbours. 

If neuron i is linked to the neurons of ‘V(i), its trajectory is as pictured in Figure 2. 

Due to its simplicity, this model can be considered as a model for any network, 

neural or not, where only local and inhibitory links exist. It can suggest applications 

in many other fields: Grossberg’s bipole, chemical dissipative structure, crystal- 

lography etc. 

The paper consists mainly of mathematical analysis of the model, as depending 

on parameters v, % and 0. 

* * 

v=4: * 0 * v=6: * *a** 

* * 

* 
* * * * * * 

v = 8: * Q * v=l2: * * 0 * * 

* * * * * * 

* 

Fig. 1. Some neighbourhoods. 

XL 
i 

Fig. 2. Typical trajectory of a neuron linked to its neighbours. 
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It is organized as follows: In Section 2, we explicitly define the model, and prove 

that the network state (Xi)’ is an aperiodic, irreducible, Markov process. Section 3 

is devoted to proving that a threshold 0,, does exist such that, if 0 < &, the (Xi)’ 

process is ergodic, positive and recurrent, and then its mean interspike interval is 

evaluated. 

Section 4 is devoted to the case f?> &. For a two neuron system, we prove that 

at one site the state increases to infinity, while at the other, the state converges 

weakly to a renewal process with distribution 9. In the general case of N cells, 

stability conditions for different divergent states are given, when 13 > I!+,. In this case, 

the main result is that in the transient case, the network is divided into two groups: 

(1) Active neurons, discharging as if isolated and depending on distribution 9. 

(2) Inactive completely inhibited neurons. 

Computer simulations show that there appear striped or moirt patterns depend- 

ing on the size u of the considered neighbourhood. 

In Section 5, we present some results about the network when it is stimulated by 

external inputs. 

2. The model: Irreducibility, aperiodicity of the Markov process (X’) 

2.1. Equations of the model 

The main notations are as introduced in Section 1. 

Let 9 be the interspike interval distribution of an isolated neuron and let us 

assume that 9 is absolutely continuous with respect to the Lebesgue measure on 

Rf, with density f > 0 and that E( 9) and Var( 9) are finite-valued. 

Let us write X’ for (Xi)‘, 1 G is N, and describe the model: 

At time t = 0, X0 = (Xi)’ is arbitrarily randomly chosen with positive values. 

If at instant t, the network state is X’ = (Xi)‘, we have: 

Model 2.1.1. 
l If no component of X’ is zero, dXi = -dt for every i. 

l If Xi = 0 for one site i, (i. discharges), then: 

- One draws at random an independent random variable U with distribution 

9, and puts dXa = U - d t. 

- For i E V( io), dXf = 0 - dt, where 8 is the positive delay 

- For i~Y(io)u{io}, dXf=-dt. 

It is clear that the process X’, defined in its right continuous version, is a 

continuous-time Markov process. 

To avoid the ex aequo, and define only one site io, we take as state space 

Y=(R+)Nn{xIxi-xi~G8h for i#i’}, 

which allows only one null coordinate. 
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A trajectory for X’ is typically made up of segments parallel to the diagonal 

straight line with equation y, = y, = . . . = y, in (IR’)~, separated by jumps every 

time they reach a face with equation y, = 0. For instance, if there are only two 

neurons in the network, one gets a trajectory which is like that in Figure 3. 

Observe that the coordinate processes Xi are not Markov processes by themselves. 

e e 1 

Fig. 3. Behaviour of X’ in the two-neuron case. 

2.2. Embedded chain 

With the Markov process defined by Model 2.1.1, we associate the 

sequence of stopping times T, , T2, Lf,, . . . , defined as the instants of 

spikes, i.e. the (X’)‘s jump epochs. More precisely, with To= 0, we set 

T,+,=inf{t> T,13io,Xf4,=0}. 

increasing 

successive 

(2.2.1) 

Remark 2.2.1. The T are all finite a.s., and moreover lim sup( T,/I) < E(9) (see 

Remark 3.1.1). 

For XE 9, let 5(x) = min,(x,) and i,(x) be the only integer that achieves this 

minimum. 

Then after instant T,, the neuron number which will be the first to discharge is 

io(Xq), denoted by i’, and we have 

I-,+,= Tf+Y(XT’)= 7-,+x,:. 

Setting Z(x) = x - Y-(x)1,, and defining two vectors with the same Z(x) as 

equivalent, we have, for q G t < T,+, , X’ = XT - (t - T,)U,, so that X’ is equivalent 

to x7t; therefore Z( X’) = Z( X Tl) = Z( X’F+l) = X 7y+i, denoted by Z’ henceforth. 

If we consider the system state just after discharge, at instant T,,, , we get 

x7+1 = zi+ u,+,l~,=,‘)+ 81{,Ey.(i’)) (2.2.2) 

for 1s is N (U,,, is the (I+ 1)th draw with distribution 9, corresponding to the 

(1+ 1)th discharge of a neuron). 

The processes XT and Z’ are both discrete-time Markov chains. For the chain 

Z’, the state space is 9, = {x E YI3i, xi = O}. Its transition kernel is called Q. As for 

Xq, its state space is Y,, = {x E YI 3i, Vj E Y(i), 5, > 6}, since every neighbour of 

the just-fired neuron is simultaneously raised by 0, at each discharge. 
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Of course, the embedded chain XT contains all the information of the process 

X’, since the trajectory section going from Xq to XrLl is deterministic. 

If P is the transition kernel of the homogeneous Markov chain Xq, we denote 

its iterates by P2, P3,. . . , P”, . . . . For an initial distribution /..L, we call PP (or P’) 

the distribution of both processes X q and X’. In a similar way, we put PE for the 

distribution of XTh, with initial distribution /.L. 

2.3. Irreducibility, aperiodicity 

Let Z” = X0 - 9(X”)TIN. The first jump occurs at time T, = 5(X0) and in the site 

i, = i,(X’) such that Zz, = 0. We have (2.2.2), with obvious notations, 

x Tl = z” + u, 1 i, + e 1 ‘I’( i,) . 

Let A(x) = maxi - Y(x), then we see that for all j f i,, X.,rl c .4(Z0) + 0, and it 

is sufficient to choose U, > &(Z”)+ 8, to get that the next jump occurs in i, # i2. 

Then at time T,, we get 

x,+ U,-Ju(ZO)-0, ‘z X,, = u2, 

X,T2~~(Zo)+20, and so on.. . 

Thus, if at each draw, the innovation Ui is so that 

Uj>NJu(zo)+(1+2+~ ..+N)B=NJU(ZO)+~N(N+~)~, 
we can define a permutation u of the integers (1, . . . , IV}, depending only on Z” 

and defining the order of the sites where there is a jump. Then at time TN, each 

coordinate Xp is written UC,,,+ cp,(Z”). And qoi(Zo) is deterministic, it does not 

depend on the U,, and is fully determined by Z”. 

Let us denote by U,, cp(Z”) and (U > a) resp. vector ( UCCi,), vector (Cpi(Z”)) and 

(U,>a) for all i. 

We can sum up this by the following: 

Lemma 2.3.1 (Deterministic evolution). Let M(Z’) = NJll(Z”)+~N(N+ l)e. There 

exist a deterministicpermutation u(Z”) of (1, . . . , N} and a deterministic vector cp(Z’) 

with max,(cp,(Z”)) G M(ZO) such that, if U = (U,, U,, . . . , U,) > M(ZO), then 

Xrv = U, + cp(Z”), with TN i M(Z’). We also have 

T N+l - TN G M(ZO)+max,( U,). 0 

As Y. = 0 Y n {x, = 0}, by considering in Y n {xi = 0} the Lebesgue measure on 

coordinates different from j and the Dirac measure 6, on the jth coordinate, we 

define (as a direct sum) the measure A on 9,. 

Lemma 2.3.2 (Lower bound). If K is a compact set in go, there is a constant yK > 0, 

such that 

Q”(z,dz’)a yKIK(z)lK(z’)A(dz’). 
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Proof. We need prove it only for z; = 0. Let z’= (0, ~4,. . . , z&). According to the 

previous lemma, after N steps, the process hits ( U, + cpl(Z), . . . , UN + pN(Z)) and 

we can choose the Ui, as long as they satisfy Ui > M(Z’). So, it is possible to give 

a lower bound of Q”(z, dz’), namely 

$,:=o,A(dz’) 
I 

:,il f(u+zj-Vj(z)+P,(z)) du (2.3.1) 

by choosing A and B that achieve the conditions of Lemma 2.3.1. 

As z belongs to the compact K, we can find an upper bound M(K) for M(z). 

Note that UUCj, must be equal to zbCj, + Ul- ~~cj,(z) + q,(z), to ‘go down’ to z’. 

Moreover, as IqVC,) (z)l, Ip1(z)l<M(z)6M(K), it is sufficient to take B>A> 

3M(K), in order to get UC,Cj,> M(K) for all j (lemma’s conditions) and positive 

arguments in the integral expression (2.3.1). 

Even if it means to substitute f~ 1 for J; we may assume (in the lower bound 

(2.3.1)) thatf is a strictly positive bounded integrable function. So the lower bound, 

which is continuous with respect to (zJ - cpi(z) + p,(z)), is greater than a constant 

c,>o. q 

Besides, with one more step, we can hit any z’, starting at z, in N+ 1 transitions, 

instead of N. 

From Lemma 2.3.2, it follows that the chain 2’ is irreducible with respect to the 

measure A, and the last remark provides the aperiodicity. 

In fact, for any c E IO, l[, and any initial x, the measure G’(x, dy) defined as 

C c”Q”(x, dy) is equivalent to A, and we get: 

Lemma 2.3.3. The chain Z’ is irreducible and aperiodic. The chain Z’ is recurrent (i.e. 

for all x, all E with A(E) > 0, starting at x, it vi& E injinitely often) if there exists 

x and compact K (with A(K) > 0) such that either 

(1) starting at x, it returns to K i.o., or 

(2) the potential G(x, K) = +a. (See for example Revuz (1975).) q 

We can deduce the same properties for the chain XT!. Let x and X’ belong to a 

compact K c YP. As the conditional distribution after the first jump depends only 

on Z(x), after N steps, the chain Z’ goes from z = Z(x) to z’, with z’ leading to 

x’E.YP:if x’=(x{,..., x&) E Y,,, there is i such that XI > 0 for j E ‘P”(i) and z’= 

(z:, * *. , z’&) can lead to x’ as long as zi = 0, z,! = x: - 0 for j E V(i), z$ = xj, for j’ # i 

and j’& ‘V(i), provided that U = xi. 

Then in N + 1 steps, it is possible to go from x to x’, with a positive lower bounded 

probability on K. Of course, like for Z’, we can make one more step, for hitting X’ 

in N +2 steps. Hence: 

Corollary 2.3.4. The chain X q is irreducible and aperiodic on 5fP (with the Lebesgue 

measure A). If there is a compact set with infinite potential, it is recurrent in every 
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A-positive set of YP. Similarly, X’ is irreducible, aperiodic on Y and the recurrence of 

XT1 involves that of X’. q 

Indeed, as the chain Xq contains all the information of the process X’, X’ has 

the same properties as XT,, on its support 9. 

3. Positive recurrence case 

Intuitively the recurrence is equivalent to the fact that each neuron discharges in 

turn, i.e. each integer i (1 G i < N) has a positive probability to verify 

i = i’ = iO(Xq) (X7 = minj(Xj)q). 

The positive recurrence signifies that the ‘bascule’ occurs after an integrable time. 

Conversely, when a neuron i does not discharge any more, it never decreases enough 

to be the minimum: it is overloaded and Xl + CO. 

Let us begin with some technical lemmas. 

3.1. Recurrence time for state 0 at each site 

In this subsection, it is not necessary to assume that IV(i)1 is the same for all i. 

Let i be a given site, with state x = Xp at t = 0, and let us denote by 7 its first 

return-to-O time. For t < T, 

t<t+Xf=x+eI~~(.)~l,~,,,~<*, (3.1.1) 

where Tjm is the mth return-to-O time of site j. Denote by N,(t) the number of 

returns-to-O at site j before time t, 

Nj(t)=C l(T,_Sr). 

m 

In the initial model, we give us only one sequence U, i.i.d. with distribution 9. We 

could just as easily assign to each site j a sequence U$ i.i.d. with distribution 9. 

These sequences are independent, and reinitialize site j at each return to 0, so that, 

formal, 

l&+, - qj, z u$‘. 

Let S(j) = U’,” + . m * . + U$’ and uj be the associated counting process: 

{Vj(t)~m+l}={S~)G t}, 

(3.1.2) 

So (3.1.2) implies N,(t)s v,(t). 

Remark that vj does not depend on the initial distribution, and that 

Yi(t) a.s. 1 

t - E(9). 
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Remark 3.1.1. Let N(t) be the ‘total counting process’: (N(t) 2 I+ 1) = (T, s t). As 

9(X?) s U, at each T,, it is clear that N(t) 2 v(t), where v(t) is the counting 

process associated with the random walk (U,), so lim inf(N(t)/t) 2 1/E(9), that 

is to say lim sup( T,/Z) G E( 9). 

Since (t<r)~(l~~/t+C~~~~~~~(~~(t)/t)) (by 3.1.1), we see that the event 

(T = CO) is impossible if 0l”Ir(i)l/E(9) < 1, and we conclude by: 

Lemma 3.1.1. If in site i, 0lV(i)l< E(S), then, for every initial distribution, the 

return-to-O time at site i is jinite a.s. 0 

Let us prove now that the hypothesis 6lV( i)l < E(9) implies the integrability of 

7; with an exponential upper bound. Denote by v the number 1 clr( i)l of neighbours 

of i, P, the process distribution defined by an initial distribution with Xp = x, and 

Y the common distribution of the v;. From P,( r > t + x) s P’( 0 CjGyCiJ vj( t + x) 2 t), 

we get P,( T > t + x) s uP( u( t + x) 2 t/ I.$). If [z] is the integer part of z, it holds 

P,(r) t+x)s zIP(.s[,,UB]_, S t+x). 

But the centred random variable U - E(S) is left-bounded and thus satisfies a 

Cramer inequality: for every (Y > 0, there exists some y > 0, such that 

$(S,~m(E(.F)-a))<exp(-my). 

Define p > 0 by E(9) = v0( 1 + p), and a = $M_@, and let y be the associated number. 

Then for every ms2(2+x/(vB))/p, if (m+l)veS t<(m+2)vB, it holds 

$,(5-Z t+x)C v exp(-my), 

then: 

Lemma 3.1.2. If 0 < E(S)/lV”(i)l, f or any initial distribution t..~ (with initial value 

equal to x at site i), 

EP(7)<A+Bx and E*(T~)sA+Bx~ 

where A and B are constants depending only on distribution 9 and delay 0. 0 

From the inequality Ni( t) S 1 + vi(t), we get: 

Lemma 3.1.3. If0<E(SF)/(V(i)l, then 

p( N(t)2 [$-11) Sexp(-yt) so long as t> to 

where to and y are positive constants depending only on 9. 0 

Throughout the rest of this section, we assume that all neighbourhoods have the 

same cardinal v, and that 0 < E( 9)/ v. We take p = 90” as initial distribution. 
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3.2. Positive recurrence 

At first we have: 

Lemma 3.2.1. If 0 < E(S)/ v, the probability sequence 

is tight ( i. e. mass-preserving). 

From this lemma, we deduce immediately that every adherent probability is 

invariant, consequently unique, equivalent to Lebesgue measure A, and that sequence 

(5’“) converges to it. Thus, the chain XT is positive recurrent. 

Proof of Lemma 3.2.1. Fix a site i, and let T,k be the sequence of return times 

to 0 at i (for process X’-) with Ti,O= 0. If r,k S s < x,k+i, XfS r&t1 -s then 

j;;+l Xf ds s +( T, k+l - Tii,k)2. But, included for k = 0, XT2.k has distribution 9, so 

that using Lemma 3.1.2 and putting C = A + BE, (7’)) it holds 

I 

T z.L 
4 X; ds s$Ck. (3.2.1) 

0 

Denote by ET the variable Ii Xf . If T, is the Ith discharge time for all the network 

Ti,, 3 T,, and 

I 

? 
4 5?YS ds s$CNl. (3.2.2) 

0 

Let 8k =ci Xp , and recall that Tk = mini(Xi)Tk. The chain changes are given by 

T k+l = Tk+yk, X>+‘=Xp-s forOGs<Yk,, 

and thus 

Observe that %kk+l = %k - iVYk + vl3 + uk+, , where ( Uj) is the %-distributed innova- 

tion sequence, so that for (Y = 13/( N + 2), we have 

(3.2.3) 

Case 1. Suppose that max(yk, yk+i,. . , Tk+N+l) 2 a. Previous formula imply 

J 
T k+N+Z 

%.r dS==&gk. 
Tk 

But among instants Tk+, , . . . , Tk+N+2, one of the sites discharges at least twice, so 

that if We put w,,, = min{ u,,, , . . . , Uk+N+2}, Tk+N+Z- Tk * w,,, . 
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Case 2. Now let max(kTk,. . . , .!Tk+N+,) < a We know that 8k+j 2 gk (1 ~js 

N+2), and thus j2+N+2 8, ds ai5YkWktl. Let gktl = (Y A W,,, . By combining both 

lower bounds, it follows that 

J 
‘k+N+2 

ifs ds>+&+,&. (3.2.4) 
Tk 

Observe that, by construction, &+, is independent of the process evolution until 

Tk, and has mean 2p > 0. Therefore, there exists p > 0 such that for any initial 

distribution, 

Just as well, for any initial distribution, 

From this and (3.2.2), using definition of pu, and putting 8 = C Xi, we get 

c (j+l)(N+2)+1 
g dPl+j(N+z, c 2~ 

1 +j(N+2) 
N(N-C2), 

(3.2.5) 

(3.2.6) 

which proves,- as C and N are finite and p > 0, that J 8 dF,, is bounded. 

If KT is the compact (‘8 G T), it follows that Tp,(K$) is bounded, hence the 

tightness of (p,,) is proved. 0 

Then, as the chain XT1 is recurrent in every h-positive subset of its state space, 

we can deduce the same property for process X1, in every A-positive subset of its 

own state space. Of course, it also has an invariant probability equivalent to Lebesgue 

measure A. In the same way as in the beginning of this section, it is sufficient to 

prove that, for the same initial distribution /..L, the family 

(3.2.7) 

is tight. 

Let A, be the event (for any site i, 1+ Ni( t) s k,) where k, is the integer [2t/E(%)]. 

Let Z, = lA, Ji iCs ds. In A,, T,+ 2 t and using (3.2.1), 

E,(z,)+cNk,~ CNt/E[S]. (3.2.8) 

From the Markov inequality, 

p,[%> T]sP~(A,)+CN/(TE[~]). 

But Lemma 3.1.3 implies that, when t tends to infinity, P,(A,) tends to 0 and (3.2.7) 

is proved. So we can sum up the results. 
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Proposition 3.2.2. If 0 < E (9)/ v, and E( 9’) <CO, the processes X’ and XT are 

ergodic, irreducible, aperiodic and positive recurrent. 0 

This result can be extended to the no-homogeneous case: supi [ 7f( i)[ 8 < E (9) is 

the only hypothesis necessary to ensure that all Y& are finite a.s. 

3.3. Distribution of the interspike interval in a two-neuron network (recurrent case) 

We consider the process (X’) for a network which consists of two neurons denoted 

by 1 and 2, and we study the interspike intervals of neuron 2. In that case, X’ is 

positive recurrent if 8 < B0 = E(9), since 1 V/^I = 1. 

Suppose that at time to, the system state is (x0, 0). We study the conditional 

distribution of (X, , X,)’ given X’i = (x0, 0): 

+ 

State: ,x:: 0) (xQ+t;, 2.40). 

If u,< x0+ 8, the next spike of 2 occurs at to+ uo: 

t;= t,+u, c 
(x~+o-uu,,O) (x0-u,+28, u,). 

If not, the next discharge is at site 1 and it occurs at to+ x0+ 8 in (0, uO- x,, - 0) 

and (ul, u,,-x0) after the jump. 

Recursively, we can see that time T between two consecutive discharges of neuron 

2 can be written 

7= LJ,+ICe (3.3.1) 

where U, is a random variable with distribution 9, and K an integer-valued variable. 

We get 

P(K > 0) = P( Uo> x,+ e), 

P(K>k)=P(U,>x,+& U,<Uo-x,,, U,<U,,-U,+@--x,,..., 

lJ,<lJ,-u,-. . .- U,_,+(k-1)8-x,). 

If U’= U-O (EU’=EU-0), 

P(K>k)=P(U,>x,+8,U:<U;,-x,,U;+U;<U;,-x,,..., 

u;+u;+.. *+ lJ;< ut,-x0) 

=~(u:,>x,,u:<u;,-x,,...,u;+u:+~~~+u;~u:,-x,). 

(3.3.2) 

But U:+. . . + Ul, is a random walk such that EUI = EU - 0 = &- 8 (2 neurons). 

We find again that K + +OO when EU’<O, i.e. when 8 > &,. 
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Conversely, if 0 < EU = &, EU’> 0, and 

lP(K = k) = P[( U,!,> x,) and k is the first strictly positive integer such that 

Vi-t. . *+ u;> u:,-x,], (3.3.3) 

where (Ui) is the random walk (U, - @). (3.3.3) provides the conditional distribution 

of K given the state (x0, 0) just before the discharge of neuron 2. 

We have 

E,(K)=CIP(K>k) 
k 

=; j-x;ro f(uO) duo I,“-‘” f(ud du, 

x* . .x 

i 

uo-x,~(k-2)8~u,-u,~-..-~~~~ 

f(Uk-I) duk-, 

0 

I 

~,~xo-(k--l)H-u,~uz-. ‘-uk 

X f c”k) duk. 

0 

When K = k, the interval T takes the value uo+ k0, with k> 0 when uo> x0+ 0. 

At tktl = to + u0 + k0, the state is (u, + * ~~+~~-u~+x~-(k-1)8,0)andifthesystem 

is stationary, we can write 

u, + . “+ u,- u,,+x,-(~-l)6 G x,J, 

or also 

u:+. ~.+u;-u:,+x,,x,. 

In particular 

E(U;+. ..+U;)=EU:,=f3,-0 

and since K is a stopping time, 

(EK)( EU’) = (EU&) hence EK = 1 

hence: 

Proposition 3.3.1 (Two-neuron case). For the stationary limiting distribution (when 

8 < B. = E (9)), the mean interspike interval is E (9) + 8. 0 

This result can be also deduced like in the next subsection. 

3.4. Interspike interval in a N-neuron network (recurrent case) 

Let 7 be the return-to-O time of site i: T = U + t3 CIELVlr(,) Nj(7), so, with initial 

distribution p = ( 9)ON, 

K,k = rl-6 + ' . .+ u;_,+e c Nj(7;,k). 

jFV(i) 
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But the ergodicity implies that 7&/k converges a.s. to a limit si (0 < si < 00). As 

cl;+. . .+ Uk-l 
k 

-E(9) 20 and Ni(x,,,)=k, 

it follows 

N(Tk) 
E(9) T A+e c 

N,(L) a.s. , 1. 

1.k jc7-(t) T l,k 

But N;(t)/t converges a.s.; we denote by l/7, its limit, so we get limit equations 

l=E(9)L+0 C L Vi. (3.4.1) 
Ti Je'V(i) Tj 

These convergences take place for any initial distribution. Therefore 9 is the mean 

return-to-O time for site i and for the stationary limiting distribution. In particular, 

if the network is spatially homogeneous (IV(i)1 = v independent of i), 

7, = E(9)+ Bv Vi. (3.4.2) 

Hence: 

Proposition 3.4.1 (Case of N neurons, with homogeneous neighbourhoods with v 

elements). For the stationary limiting distribution (8 < 0” = E(S)/ v), the mean inter- 

spike interval is E (9) + ~0. 0 

4. Divergence 

4.1. Two-neuron case (divergent case) 

Here 0 > 6+, = E (9) (N = 2, (V( = 1). Remember that in any case the T1 are finite as. 

In the two-neuron case, the sign of (X,-Xl)Tf indicates what the next discharge 

will be: neuron 1 (resp. 2) discharges if (X2-X,)? >O (resp. ~0). 

At first, consider the discrete-time process D’ = (X,-X,) ?. We have D’+’ = 

D’ +sgn(D’)( 8 - U,,,), where U,,, is a r.v. with distribution 9, independent of D’. 

The mean jump of D’ has the same sign as D’ if and only if E(9) - 0 < 0. See 

Figure 4. From Section 3, we know that if 8 < BO, XT! and X’ are ergodic. It remains 

to study the behaviour of XT and X’ when f3 > E (9). 

+-+-+- E(.5+0>0 

D’ 0 D’ 

: + + +- E(9)-@CO 

D' 0 D' 

Fig. 4. 
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Theorem 4.1.1 (Two-neuron case, 0 > E(9)). When 8 > E(9): 

(i) (X2-X,(‘, and (X,-X,(’ tend towards +CU, U.S., and more precisely, 

(ii) for almost all trajectories w, when t + +a, (X2-X1)’ tends towards +a or 

towards --oo. 

Proof. (i) For U-9, we put V=0-U, EV=&E(9)=a>O, Var V=Var(S). 

We put D’= (X,-X,)q. We know that D,+’ = D’+sgn(D,)(o - U,,,) with U,,, 

independent from D’, and with distribution 9. From D’+’ = D’ + sgn( D’) . VI+, , we 

get 

ID,+‘1 = 1 ID’1 + v,+,l. 

ID’1 is @-measurable. Let E, be the conditional expectation given D’. Then 

E(ID’+‘I (II’, . . . , D’) = E’(ID’+‘l) 

2 IE,([D’J + V,+,)l = III’\ + LY > ID’I. 

Thus JD’I is a positive submartingale. As 

E(ID’+‘l) = E(E’ID,+‘l), 

it holds 

E()D,+‘\)~E(ID’l)+a. 

So the sequence E(ID’I) 3 1 a, is increasing and goes to +OO. 

On the other hand, the submartingale (10’1) can be split up (Doob’s decomposi- 

tion) into the sum of an integrable martingale M, and an increasing process Al, i.e. 

ID’1 = M,+A,. 

This decomposition is unique if we take A,, = 0 and MO = [DOI. These variables are 

defined by 

A ,+, -A, = AA, = E’(ID’+‘I - 10’1) = E’(lD’+‘l) - ID’I 2 a, 

and Ml+, -Ml = AM, = ID,+‘1 -E’(ID’+‘l). Thus Ala la and A, a-s. ’ +a when 

I+ +co. 

It remains to study the behaviour of martingale M,. The submartingale Mf is 

integrable since distribution 9 is square integrable. It can be split up into M: = 

m, + B,, where m, is an integrable martingale and B, an increasing process. We have 

E’(AM;) = E,((ID,+11)2) -(E’(ID’+11))2 

= E,(ID,+sgn(D’)V,+,~2)-(E’ID’+sgn(D’)V,+,~)2 

~E’(~D,+sgn(D’)V,+,~2)-(E’(D’+sgn(D,)Vl+,))2 

(since IEX( c ElXl) 

= (D’)2+2(sgn D’) * II’- EV,,, + E[( V,,,)‘] 

-(0’)2-2(sgnD’).D’+EV,+,-E[(V,+,)]2 

= Var V = Var( 9). 
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AS 

B ,+1 -B, = E’(M:+,) -My= E’(AM:), 

we get 

BI s 2 Var(9). 

Then (see Neveu, 1972, Section VII.2), on (B, < +a), Ml converges almost surely 

to a finite limit; on (B, = -too), IV&/X$ ln( B,) a.‘. > 0 when I + +a, and thus 

Ml = o(Ji ln( I)) a.s. 

In both cases, the submartingale (II\’ tends almost surely towards +a, since A, + +CW, 

a.s. with AI 2 Zu and M,/A, a.S. > 0. As (X,-X,)’ is equal to D’ for 

T,ct< Z+I, IX*-X,(‘A +co when t++co. 

(ii) ID’1 = A,( If Ml/A,) with A ,~handMJA,+O.SothereexistP(O</3<a) 

and L(o), such that VZ> L(w), ID’/ 3 Ifi. 

When ID’1 2 I/?, a sign change has a probability less than 

which is a convergent series. So according to Borel-Cantelli’s 

change its sign infinitely often: there is no oscillation. 

lemma, D’ cannot 

It is the same for (X,-X,)‘. Then for every trajectory, it can be defined a time 

T(w) after which (X,-X,)’ keeps a constant sign and tends either towards +a, or 

towards -00, from (i). IJ 

Let us prove that when one component of (X’) tends towards +a, the other 

converges in law. 

Proposition 4.1.2 (Two-neuron case). When 8 > B0 = E(S), on almost all trajectories, 

one of the two components tends towards +OO, the other converges in law to the 

distribution 9. 

Proof. On each trajectory, from Theorem 4.1.1, one of the two components tends 

towards +OO, since the other is positive. Let w be a trajectory on which Xi + +a. 

Let rA(w) be the hitting time for (X,(o) 7 A) and Ek be the event U, + U, +. * * + 

U,-kB<A-8. As long as E,, E2 ,..., Ek are realized, neuron (2) does discharge. 

We can write 
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where cp is some function of A with q(A) -+ 1 when A+ +co. Indeed 

P(U kaiA(W) Ei)sCk P(E”,). But 3k,,, 3C such that if ka k,, we have 

.+ U,- kE(9) A-O 

k 
> O-E(9)+, 

> 

.+ U,-kE(9) 

k 

where h is the Cramer transformed of distribution 9. The function h does exist at 

left since U is left-bounded. 

For k< kO, 

uyu,+. . . + U, - kt3 > A - 0) s qk(A) for some function (Pi. 

so 

G k, rn?x qL(A)+ C +F ePkh(e-E”) 
b 

Therefore for every E, there exists a K such that the second term <$F if K < K,, 

and a A,, such that the first term (with KO= K) <ts if A> AO. Hence (4.1.1) holds. 

Therefore on ET = nk_ Ek, the limit distribution of (X,) given Ei converges 

weakly to distribution 9, since Ez has asymptotically probability 1. q 

4.2. N-neuron network (divergent case) 

We can observe in the simulations that the threshold &, is underestimated by 

E(9)/(V(. That can be explained by considering the proof of Lemmas 3.1.1 and 

3.1.2: We have overestimated the number of discharges that the neighbours of i 

have by the number that they would have if they discharge according to their own 

distribution 9, i.e. with frequency l/E (9) instead of l/( E( 9) + 01 VI). When 0 > 8,,, 

divergence occurs and maps of active or inhibited neuron do appear: some differen- 

ces increase to +a. A stable map of active or inhibited neurons (i.e. of sites i where 

Xi remains bounded or sites j where Xj increases to infinity), divides the network 

into two subsets E and F such that after a time T the active neurons all belong 

to E. 

Let us give an asymptotical stability criterion for a given map. Suppose that for 

every i E E, YE(i) = { i’c E/i E 7f( i’)} has the same cardinal v, and that for every 

j E F, WE(j) = {i E E/j E V(i)} is not empty and has a cardinal wj. Note straightaway 

that if w; = 0 for some j, j necessarily becomes active after a finite time since it 

always decreases without being inhibited. From Section 3, we know that if 

.!h<E(S), (4.2.1) 

the process restricted to E is recurrent. If Ni(t) is the counting process at site i 

(which counts the discharges of neuron i before time t), for every initial distribution 
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p on E, and for every site i, it holds 

Ni( l) a.S. 1 

-= E(F)+&’ t 

Then for j E F, we define 

E;(t)= f3 c N,(t) 
IE‘u’,( j) 

and 

y,(t) a.s. 8w, 

-= E(9)+&’ t 

So if 

VjE F, 0(w,-v)> E(9) 

there exists lo (dependent on CL) such that 

(4.2.2) 

P‘(VjjEF, E;(t)>t)sl-E. 

By picking at random the initial values Xg on sites j E F with distribution v such 

that Xg> 2t, Vj (so one defines a measure p + v on E u F), one ensures that no 

discharge occurs in F before time to (for t < to, Xj > 21, - t,, Vj E F). So for every 

E > 0, there exists an initial distribution p + v on E u F, such that with probability 

(1 -E), (XI)& is a recurrent process and (Xj)ftF+ +OO when t + +a. 

As every state can be hit after N+ 1 transitions (Lemma 2.3.3 and Corollary 2.3.4) 

we get: 

Proposition 4.2.1. Let E, F be a partition of the network with 

VE(i)={i’E E/iE V(i’)} for ie E, 

WE(j)={iEE/jE V(i)} forjE F, 

and 

Ive(i)l= v, Iu’,(j)[= w,>O VjE F. 

So if &.I < E(9) < 0( wj - v) Vj E F, there is a positive probability that the process 

CXi)fcE is recurrent and that 

(X))’ -=4 +OO when t + +OO for each j E F. 0 

Remark4.2.1. If E is a set such that (X,)feE is recurrent (supitE IVe(i)le< E(9)), 

then E ‘absorbs’ every j of F such that wj0 < E(9). A stable configuration (E, F) 

is saturated for the condition 

sup [VE(i)le< E(9) 
,EE 

(4.2.3) 

and verifies 

(4.2.4) 
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(It follows that 2 supi I’VE(i)1 <infj I?VE(j)l.) Th ere will be bascule and instability 
if one of these conditions does not hold. The case I‘V(t9 < E9 corresponds to 

wj = u = 1 VI, and to recurrence on E in its entirety. 

Remark 4.2.2. The width of a neuron strip in F is limited by the size of the 

neighbourhood V: Every site in F have to be inhibited by at least one site in E, 

wj>O VjE F and wj> v. 

4.3. Examples of observed limit situations 

The underlying network is a tore whose periodic local image is represented. Of 

course, every translation of a limit configuration gives one more. 

Let x denote points in E, and o denote points in F. We put 

E9 
0,=sup- 

j Wj_V’ 
8, = Ey”, so (E, F) is stable for 0, < 0 c &. (4.3.1) 

V 

0 

(a) IV =4, y-=0 x 0 

0 

x 0 x 0 

v = 0, Wj =4, 6,=+E(S), O,=+q 

0 x 0 x 

x 0 0 x 

v=o , wj=2, O,=;E(P), O,=+w 

x 0 0 x 

Note. If the studied tore is T = Z/2m x Z/2m’, the particular shape of neighbour- 

hoods leads to a check pattern: T = E + F with V(i) c E for i E F and vice versa. 

But however, we get a limit situation (case (2)) which is not check-shaped. Notice 

that for 0 > $E (9), both kinds are final states. 

0 

(b) I”Irl=6, “Ir=o 0 x 0 0 

ooxxoo 

v=l, wj = 5, e,=+E(S), &= E(9), 

xx00xx 



Pd. Cottrell / Neural network 121 

(2) 

(3) 

(4) 

i 

X 

0 

0 

X 

i 

X 

0 

0 

0 

i 

X 

0 

0 

0 

0 

X 

0 

0 

0 

X 

0 

0 

0 

X 

0 

0 

0 x 

0 0 

x 0 

0 x 

0 0 

0 0 

x 0 

0 x 

0 0 

0 0 

x 0 

0 x 

0 0 x 

x 0 

0 
x 

0 i 

0’ v=o 9 wj =2, 8, =&E(S), e,=+q 

0 0 XI 

x 0 0 0 0 x 0 0 \ 2, = 0, w, = 1 or 2, 
0 0 x 0’ I 8, = E(S), ez = +a. 0 0 

0 x 

0 x 0 0 

0 0 x 0 

x’ 1 v wj = 0, = 1 2, or 

0 0 0 

e,=E(9), e,=+co. 
0 0 0 0 

Moreover, see in Figures 5,6 that they are actually limit situations when the process 

X’ is initialized at random. It would remain to determine how the choice between 

the stable maps is made, when various stable maps do exist for one value of 0 and 

to study the bifurcation phenomenon. 

I IF=40 , F Is uniform .E(S')-10 ,eo- 2.5 ,8- 6 

The *hltc lw~mm are. actlve.with lasl interval abnrt 10. their states we bowid 
The gny ne"r~ns are inhlbitcd.do not discharge any mre. tbeielr states increase to 

Fig. 5. 4 neighbours, system state after 2000 steps. 

'infinity. 
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v I II==40 , F is uniform .E(F)-10 ,fSo== 1.66,0- 6 3 

T e white neurons are active,with mean interval about 10. their states are bounded. 
The grey neurons are inhibited,do not discharge any m-e. their states increase to 

Fig. 6. 6 neighbours, system state after 2000 steps. 

5. Stimulated network 

In this section, we take external stimuli into account, and suppos ,e that some neurons 

.eo c 

infinity 

are excited. (In the cerebellar cortex, climbing fibres and mossy fibres 

Purkinjie cells.) 

stimulate the 

5.1. The model 

So let us consider that the activity of neuron i, if it was isolated from the others, is 

represented by a renewal process with an interval distribution 9, which depends 

on i. Neuron i is more excited than neuron j if and only if E( 9;) < E( 4). We 

suppose that distributions 9, have positive density on lR+ and finite mean values 

and variances, as in Section 2. 

aractefistic 

patterns 

Network state X’ is defined in the same way as in Section 2.1 (by substituting 

4 for 9). Markov chain X*1, that is sampled at discharge instants T,, and Markov 

process X’ are irreducible and aperiodic. Their behaviour depends on the inhibition 

parameter 19. 

5.2. Two-neuron system 

Denote by U with distribution 9, (resp. V with distribution @J the r.v. which is 

used to reinitialize the state of neuron 1 (resp. 2) just after each discharge. Suppose 

E(%,) < E(%J, that is neuron 1 is excited. If 

D’=(Xz-x,)‘=(x2-x,)r’, 
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we have 

D ‘+’ = D’ + 1 DJ,0(e - U,,,) + l/94( v,+, - 0). 

( U,,, and V,,, are independent of X q, and have distribution 9, and sz respectively.) 

so: 

(a) If 9 < E(sl), mean jump of D’ and D’ have opposite signs. 

(b) If E(9,) < 9 < E( 9J, mean jump of D’ is positive. 

(c) If E( 5J < 8, mean jump of D’ and D’ have the same sign. 

Hence: 

Proposition 5.2.1 (Two-neuron case). Suppose E (9,) < E (5FJ. Let B0 = min( E%, , 

ESJ, f31 = max(ES,, E9J. 

(i) When 0 < &, both processes XT1 and X’ are ergodic. 

(ii) Whene,<e<e,,X;* +OO and Xi converges in law to a renewal process 

with distribution 5,. 

(iii) When 0 > 0,) both processes X Tl and X’ diverge. On almost all trajectories, 

one of the components tends towards +OO a.s., the other converges in law to a renewal 

process with distribution 9, or .F2 (according to the site). 

Proof. (i) and (iii) are proved in Sections 3 and 4. 

For (ii), observe that D’ is a random walk with increment V - 0 and drift @I - 8 > 0 

as long as D’ < 0, and with increment 9 - U and drift f3 - B0 > 0 when D’ > 0. q 

As in Section 3, the interspike interval for neuron (2) can be written 

T= v,+Ke 

where K is an integer-valued variable defined by 

P(K>k)=$(v,>x,+e, ul<v,-x,,, u,+u,<v,-x,+8 ,..., 

Cl,+. ..+u,<v,-x,+(1+1)8) 

where (x,, 0) is the state of the network just before neuron (2) does discharge, 

V, - sz and U, , . . . , U, are independent with distribution 9,. 

If to, t, are consecutive instants of discharge for neuron (2), and X,,, X, are the 

states of neuron (1) at these instants, we have 

x,= u,+u*+*. .+u,-v,+x,-(K-l)e 

(notations of Section 3.3) where V, is the random variable drawn in neuron (2) at 

instant to, U,,..., U, are the random variables drawn in neuron (1) between to 
and t,. 

In stationary behaviour, X, - X0 and, as K is a stopping time, we get 

(EK)(EU-0)=EV-8. 
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so 
EV- 0 

EK=--- 
EU-e’ 

It follows that: 

Proposition 5.2.2 (Two-neuron case). If e < e. = min( ES,, ET*), the mean interspike 

intervals are 

E92-e 
EcF2+--- E9 _ e e for neuron O), 

1 

E9,-e 
ES,+- E9 _e 0 for neuron (1). 0 

2 

5.3. N-neuron system 

We can generalize the results of Sections 3 and 4. 

Proposition 5.3.1 (Ergodicity). If 0 < B0 = min,( Egi/ 1 VI), processes X ‘1 and X’ are 

ergodic. q 

In this case, all neurons are active, and discharge more slowly than if they were 

isolated. We observe numerically that the mean interspike interval for neuron i is 

E& + 1 VI 0 if i lies inside or outside of the excited zone and 

if i is at 

ESis - e 
EkFi++ 

Eg-e 
e 

the boundary between the excited and non-excited zones. 

Proposition 5.3.2 (Divergence). When 8 > e1 = max,( ESi/j VI), process X’ diverges. 

q 

Its behaviour is the same as in the case without stimulation: inhibited and active 

neuron strips do appear, which break the lateral inhibition around each neuron. Of 

course, the mean interspike interval for each active neuron i is approximately equal 

to its own interval E5Fi. 

At last, when B0 < 0 < 8,) some neurons are inhibited, others no, and various 

maps can be obtained. 

Let us examine some cases: 

(1) Only one neuron i0 is excited: .f& = 9 for all i # iO, and ES6 < ES. Then if 

ES$,,/~‘V)<:~E.%-/~Y’-~, 

only the neighbours of i,, are inhibited. It is the lateral inhibition. 
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(2) One zone D (row or plate) is excited: 

ES< = 
ES, ifiED, 

ES2 ifigD, 

with ES, < ES2. Then if 

ES,/)VI < 6 <E&/12’\, 

there is 

convergence outside of D, and divergence inside of D 

and at the boundary of D, there are quite inhibited neurons. 

6. Conclusion 

For delay 8 (which models the inhibition due to neighbours’ discharge), whose 

value is in conformity with the neurobiological reality (8 is about 3 or 4 ms, for 

E (9) approximately 100 ms), one observes a stationary behaviour, according to the 

theory. We estimated the threshold ~9~ under which the stationary behaviour occurs, 

even if it is underestimated. 

When the inhibition is strong (0 > e,), the network diverges. The interesting 

phenomenon is the apparition of alternate strips made of active or inhibited neurons. 

The shape and orientation of these strips depend on the neighbourhood’s shape, 

on its width and on the value 0. When 8 increases, a bifurcation phenomenon does 

occur: new stable situations appear, without disappearance of the previous ones 

(see especially the case with 6 neighbours). 

We could have thought that a lateral inhibition area would take place around 

each active neuron, to cut them off from one another. On the contrary, we observe 

that these isolated areas burst by increasing the inhibition parameter, and that moirO 

responses do appear, which are quite similar to those that we can see in the cortex 

tissues when they are stimulated: preferential orientation maps, occular dominance 

in the visual cortex for example. The results can be compared to those of Amari 

(1977), who gives a taxonomy of neural fields connected by lateral inhibition using 

deterministic field equations. 

Our model brings to the fore in a very clear way the fact that these differentiations 

are caused by the inhibition. 
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