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Abstract 

Stable laws G~ admit a well-known series representation of the type 

( ;~= J: F[~ '~X j  , 0 < ~ < 2 .  
i 1 

where I ~ , 1 ,  .... arc the successive times of jumps of a standard Poisson process, and 
X~, Xe . . . . .  denote i.i.d, random variables, independent of 11,1"_, .... We investigate the rate of 
approximation of G~ by distributions of partial sums S,, = Y~I~ ~ Fi ~ X : ,  and we get (asymp- 
totically) optimal bounds for the variation of G~ - J'(S,,) .  The results obtained complement 
and improve the results of A. Janicki and P. Kokoszka, and M. Ledoux and V. Paulauskas. 
Bounds for the concentration function of S,, are also proved. 

A M S  classi/ication: P r i m a r y  62E20;  S e c o n d a r y  60F05  

Kevwvrds: Stable laws; Poissonian representation: Convergence in variation: Convergence 
rates: Berry-Esseen bounds; Concentration functions 

1. Introduction 

The characteristic function g~ of any stable d is t r ibut ion function G, allows the 

representat ion 

~,l~(t) e x p { - c ] t l ~ ( l  + i f i ~ p ( ~ , t ) ) ~ ,  0 < ~ < 2 ,  (ll 

where [fil ~ 1. and g is a wel l -known function (see, for example. Samorodnitsky, and 

Taqqu,  1994). 

In t roduce a sequence )q,22 . . . .  of independent  identically distr ibuted (i.i.d.) ran- 

dom variables with exponent ia l  dis tr ibut ion,  that is P{2~ > x} : e -'. for \ ~ 0. It is 
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well known that the sequence F, = 21 + ... + 2, defines the successive times of the 
jumps of a standard Poisson process. 

Let X, X1, Xz , . . .  be a sequence of i.i.d, random variables with common distribu- 
tion function F such that 

0 < E [ X [ ~ < o e  and E X = O  i f c ~ > l .  

Assume that sequences 21,22, ... and X, Xi,  X2, ... are independent. The representa- 
tion 

G ~ = ~ ( ~ = I F f l / ~ x i ) ,  ~ # 1 ,  (2) 
J 

of stable random variables with distribution G~ by an almost surely convergent series 
goes back to P. Levy and was revived by LePage (1989, 1981) and Le Page et al. (1981). 
Recall, that the scale parameter c in (1) is connected to X by the following relation: 

lim x'(1 - G,(x) + G~(-x))  = c = E[XI ~. 
x~ ~ F(2 - c~) cos ~rc¢/2 

We shall investigate the convergence rates in (2), that is, we shall obtain bounds for 
G, - 5~(S,), where S, denotes the partial sum 

S, = ~, F f  1/~Xj. 
j - 1  

General results on series representation of stable laws (including the cases c~ = 1 and 
E X  # 0) and formulae connecting F with the parameters c and/3 in (1) can be found, 
for example, in Samorodnitsky and Taqqu (1994, Theorem 1.4:5). Poissonian repres- 
entations of stable laws or even infinitely divisible distributions (Ferguson and Klass, 
1972; Rosinski, 1990) are valid in general Banach space setting. They are useful in 
treating structure problems related to stable laws (see, e.g., Marcus and Pisier, 1981; 
Ledoux and Talagrand, 1991; Samorodnitsky and Taqqu, 1994; Janicki and Weron, 
1994). Such representations have been used in resampling (bootstrap) problems in 
statistics (see, for example, LePage, 1992; Kinateder, 1992; LePage and Podgorski, 
1993; LePage et al., 1994), and in financial mathematics and option pricing models 
(Rachev and Samorodnitsky, 1992; LePage et al., 1994). For  relations of the repres- 
entation theorem to simulations of stable random variables and processes, see Janicki 
and Weron (1994) and Janicki and Kokoszka (1992a). 

Denote 

A, = A,(:~,F) = sup[P{S,  ~< x} - 6,(x)l. 
x 

Write 

Ar = supt~P{lX] > t} 
t>O 

and assume that the number r satisfies 

< r ~ min{1 + ~, 2}. 
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We shall assume, in addition, that  

E X = O  if r >  1. 

By C(:~, [~ . . . .  ) we shall denote generic constants  which can depend only on ~./~ . . . .  

Theorem 1. We have 

A ,  = suplP[S~ ~< x }  - G~(x) ]  ~< C(z~,r,F)A~n -(~ ~)"~. 
x 

(3) 

(FEIXI  ~ < ~ ,  then 

A,, = o(n -~  ~)/~). (4) 

For  explicit bounds  for C(~, r, F)  in (3), see Corol lary  3 and Remark 4. 
Theorem 1 is a consequence of Theorem 2 and its Corol lary  3, where bounds  for the 

variat ion distance between measures S ( S , )  and ff'(S,,) are obtained. Bounds for 

A, are similar to Berry-Esseen bounds  in the classical Central Limit Theorem for i.i.d 

summands  in the case of Gaussian limiting law. The rate of convergence in the C L T  is 
o(n- a/2) (respectively, O(n-a/2)) provided that E I X I  2+a < oo (respectively, 

A2 ~ ,~ < :r~), 0 < 6 < 1 (see, e.g., Ib rag imov and Linnik, 197l; Petrov, 1995). Similarly 
to the case of the CLT, the bounds  (3) and (4) are asymptotical ly optimal, as n -~ < .  

More precisely, if the distr ibution of X is the stable distribution F = G~, then we haw: 

A,(7, G~) >~ C(~, r)n -(~-~)/~ (5) 

(see Ledoux and Paulauskas,  1995, Proposi t ion 9). Since A~ is finite in this case, the 

lower bound  (5) establishes the optimality of (3). 

Our  main result, Theorem 2, will show that the convergence in the representation 
(2) is indeed rather strong. For  n < N ~<; oo, write 

,5,.~,. = sup IP{Sn e A} - P{SN e A ~) l, as well as 6,, = 6,,,,,+ ~, 
A e ~  

where :@ denotes the class of Borel sets, In order  to measure the "'degeneracy" of X, 

introduce 

p - P [ c l ~ L X I < ~ c 2 }  f o r 0 < c l  ~c2~<; '~ .  

Write T = cl n 1/~, and introduce the sum of t runcated moments  

L,, = T - 2 E X 2 Z { I X l  ~ r }  + r - ' l E X l { I X {  ~ f} l  + P{)Xl  > r } .  

Let [a]  denote the integer part  of a real number  a. 

Theorem 2. We have 

~, ~< C(~)p l(c2/cl)~Lm, (6) 
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where m = [np/2] t fp < l, and m = n if  p = 1. In particular, 

(~n ~ C(~)Clr(C2/CI)~P - l - r /~  -r/~ Arn . (7) 

Furthermore, i f  E]X[  r < oe and p > O, then 

fi, = o(n-'/~). 

The bound (6) trivially holds if its right-hand side is infinite, for example, when 
p = 0. However, we can always choose 0 < cl ~< c2 so that p > 0, since P { X  = 0} < 1. 

Notice that 6,.~, ~< ~-;~- 1 6j. Thus we have the following corollary. 

Corollary 3. For all n < N <~ ~ ,  we have 

(~n,N ~ C('X)Clr(cz/C1)~P- 1 -r/~A,n-(r-~)/~ 

Moreover,  

sup fi,,s = o(n-~-~)/~), 
N > n  

provided that E[X[  ~ < oe. 

Corollary 3 implies Theorem 1, since A, ~< fi ..... 

Remark 4. Using Esseen's type inequality and proving Theorem 1 directly, we can 
improve the bound for the constant. Namely, we shall prove that 

A n ~ C(~)p IL m. 

Thus, the constant C(7, r, F) in (3) is bounded from above by C(~, r)c?~p 1-~/~ 

Define the concentration function Q(X; 2) of a random variable X by 

Q ( X ; 2 ) = s u p P { x < ~ X < ~ x + 2 }  for2~>0.  
x 

Theorem 5. We have 

Q(S,; 2) ~< C(~) max{2el  Xp-~.,~; exp{ - 3 n p / 4 } }  Jo," all ,2 >~ O. 

l f p  = P { [ X [  > ci} = 1, then, for  ,7 >~ 2, 

Q(S,; 2) ~< C(~)c(  12 fi)r all '2~ >~ 0, 

and, in particular, the distribution Junction of  S, has a density bounded J?om above by 
C(~)c? L 
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Using the obvious relation 

2 clef .,~ 1/zcX.J 2 1. 
= = E F j  -' , 

i = n +  1 j = n +  1 

Janicki and Kokoszka  showed that cr~ = O(n ~ =~/~). This result yields rather weak 
bounds for A,, namely A, = O(n ~2 ~/~). As stated, our results do not imply bounds 
for the rate of convergence of moments. However, we can obtain such bounds using 
estimates for the characteristic function (and its derivatives) of S,,, 

Ledoux and Paulauskas (1995) obtained upper (and lower) bounds for A,. The 
results of the present paper improve these bounds since the dependence of the bounds 
on n is asymptotically optimal, and neither moment  nor smoothness conditions for 
X are required. The proof  of the main Theorem 2 is based on conditioning and 

random selections techniques (Bentkus and G6tze, 1995, 1996). Using the techniques, 
it is possible as well to extend these results to the multidimensional case, to obtain 
asymptotic expansions of ~a(S,), to estimate closeness of densities of ~U(S,,) and G~, 
and so forth. 

2. Main reduction 

In this section we show that instead of the sum S,, which has relatively complicated 
structure due to the dependence of random variables I}'s, we can study a simpler sum 
of specially chosen independent random variables (see Lemma 7). 

Let ~ ,  ¢2 .. . .  denote i.i.d, random variables such that ~ has a Pareto distribution. 
that is. P{~I > x~ = x -~, for x ~> 1. Assume that the sequences 

{ X , , i > ~  1~, {~, i~>1} and { / i , , i > l ]  

are independent. 
Let, # denote a class of subsets o fR  invariant with respect to shifts and multiplica- 

tion by positive constants, that is 

A ~ . / / , 2 > O , a ~ R  ~ 2 A ~ - J / / . A + a e . / / .  

For n < N ~<.m, write 

~5..N(,#)=supIP{S. eA}-P{S,~,~-A}I and b.(.g)=(5...+l(-//'). 

Notice that 

3,,,:~- = ii..N(~) and A .  = 6.. . ( ~ ) ,  

where .N denotes the class of Borel sets, and :~ = { ( -  ~c, x): x e R} is the class of 
half-intervals. 
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Lemma 6. Write  Z .  = ZY= 1 ~jXi.  Then 

5.(J / )  d sup I ? { Z .  e A} - P { Z .  + X e A}I, 
A e,/7 

;rl/~ r.+l} Q(S.; 2) ~ E sup P { x  ~ Z .  ~ x + ,~-.+ I 
x 

(8) 

(9) 

Proof. We shall prove the estimate (8) only, since the proof of the inequality (9) is 
similar. Let G1 ~> 4,2 ~> "'" >~ 4., be the ordered values of 41 . . . . .  4,. Then the random 
vectors 

#~ = (~nl . . . . .  ~nn) and ~ = ((Fn--~) -1/~, ..-, (Fn--~) -1/~ ) 

satisfy ~ ( ~ )  = 2'(N) (see, for example, LePage, 1981). Observe (cf. Samorodnitsky 
and Taqqu, 1994) that the conditional distribution of 3, given F,+I, equals the 
unconditional one, and thus equals the distribution of ~.  The proof of this fact is 
similar to the proof that 

l ~ ' ' ' ~  F~+I 

has the same distribution as (U,1, ...7 U,,), where U,1 <~ "" <~ U,, are the ordered 
values of i.i.d, random variables U1, . . . ,  U,, uniformly distributed on [0, 1] (Breiman, 
1968, p. 285). Therefore we can write the following distributional equalities: 

= = r-I/~ 4:X: F 1 / ~  Sn F -1/°t • -J X j  c# F_I /~  4nJXJ ~ - -n+ l  = . + l ~ n "  
n + l  j ~= l \ y .+ l l  # - - n + l  j = l  j = l  

Proceeding similarly, using the independence assumption and ~ ( X .  +1) = 2#(X), we 
obtain 

g , - l # t y  ~ F - l / ~  ~ ~ j X j _ ~  y,-1/a¥- C-1/ot[7 S . + 1 = S . + - . + 1 ~ . . + 1  = .+1 - . + 1 ~ . + 1 = - . + 1 ~ .  + X ) '  
j = l  

1/a Finally, the definition of the class ~ combined with conditioning on F]+ 1 implies the 
result. [] 

In the next lemma we shall get rid of the random variables X's, replacing them by 
constants. This is done by a method introduced in Bentkus and G6tze (1996). 

For non-random 

al . . . . .  am such that cl <~ lajl ~ c2 for all 1 ~<j ~< m, (10) 

introduce the sum 

Vm = m -I/~ ~ aj4). (11) 
j = l  
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Write 

~,.(,J#) = sup sup Ie{v , .  ~ A} - e {  v., + m - ' / ~ X  ~ A}I, 
A ~  / /  a 

where sup~ denotes the supremum over all a l , . . . ,  am satisfying (10). 

Lemma  7. ! ( P  = 1, then 6.(~g) <~ 6".C<t1) and 

Q(S.;).)~< E s u p  s u p P { x  <~ V.~<.x + En l/~rl/~_.+llF.+l 
a x 

[ f p  < 1, then we have 

6 . ( . # )  ~< 3 , . ( J / )  + e x p { - 3 p n / 4 } ,  (12) 

Q ( S . ; 2 ) < ~ E s u p s u p P { x < ~  Vm <~ x + 2m-l/~F1/~.+l F.+, + e x p { - 3 p n / 4 } ,  (13) 
a X 

where m = [pn/2]. 

Proof.  If p = 1, we derive the result condit ioning on X1 . . . . .  X. .  
Thus, it remains to prove the bounds (12) and (13) assuming that 0 < p < 1. We 

shall prove only (12) since the proof  of (13) is similar. 
Recall that p = P{cx <~ IX[ ~ c2]. Int roduce the i.i.d. Bernoulli r andom variables 

rli = I { c l  <~ IXj[ <~ C 2 } ,  f o r j / >  1. Consider  the event 

B. = {~1 + "'" + ~. > pn/2} 

and its complement  B. ¢. Since Er/~ = p and Iq~ - Eq~[ ~< 1, a well-known exponential  
inequality yields 

P{B~.} <~ exp{-3r ip~4}.  (14') 

In what follows E{..} will denote  the expectat ion taken with respect to those 
r andom variables which are written in parenthesis as subscript to E. 

Combining (8) with (14) and condit ioning on X1 . . . .  , X. ,  we have 

6 . ( . # )  <~ sup IE( I {Z .  ~ A} - I { Z .  + X 6 A } ) I { B . } I  + P{B~.} 
Ae [/ 

~< Elx ...... x.}6'.(~') + exp{ - 3 p n / 4 } ,  

where 

6"( .~)  = I { B . }  suplEl¢ ...... ¢. ,x , ( I{Z.  ~ A} - I { Z .  + X ~ A})I. 

Thus, in order  to prove the lemma, it is sufficient to verify that 

6 ' .( .#) ~< g . , ( ~ ) .  (15) 
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If I { B , }  = 0, the inequality (15) is obviously fulfilled. Therefore we can assume that 
I { B , }  = 1, that is, that the event B, occurs. Consequently, there exist indices 11 . . . . .  lk 
such that 

k > np/2 >~ m and C 1 < [Xl~l < C2 for 1 ~<j ~< k. 

Notice that k and l~,...,lk are random (they depend on X's) but independent of 
~l . . . .  , ~,. Define the random sets 

M 1  = {11 . . . .  ,lm} and M z  : { l  . . . . .  n } \ M 1 .  

Introducing the notation 

j ~ M I  

we can write 

U =  ~ ~jXj, V =  ~ ~;Xj and EM=E/~,.i~M I, 
j ~ M 2  

<<. 

sup IEM EM2EIx}(I{U ~ A -- V} - - I { U  + X e A - V})l 
A ~. l /  

s u p  leM,E x (I{V e A - v }  - / { v  + x A - V})l 
A ~ . l t  

sup [EM EIxI ( I {U ~ A} -- I { U  + X ~ A})l 
AE.  II 

sup sup ]E{M,IEIxI(I{U ~ A} - I { U  + X ~ A})I 
A ~ . ¢ /  a 

In the last step we replaced the sum U by m-1/~U and used the obvious equality 
E~M,~f(~j , j  ~ M1) = E f ( ~ x ,  . . . ,  ~m), which is valid for any measurable function f o f  
m arguments since ~1, ~2 . . . .  are identically distributed. [] 

3. Auxiliary lemmas 

Write p(x) = ~x -~ l l { x  >~ 1} for the Pareto distribution density, and f ( t )  for its 
characteristic function. 

Lemma 8. Let  ~ > O. There exist positive constants Cl(a), C2(~) and C3(~, 6) < 1 such 

that 

[f(t)l ~< exp{-Cl(7) l t l  ~} for  It[ ~< l, (16) 

If'(t)l ~< C2(~)[t[ ~-1 for  all t ¢ O, (17) 

If(t)[ ~< C2(~) l t l - '  for  all t ~ O, (18) 

If(t)[ ~< C3(c~, 3) for  It[ > 6. (19) 
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Proof.  The Pare to  distr ibution admits  a density, thus (19) is fulfilled. 
While proving  (16) (18) we shall assume that  t > 0, since the case t < 0 can be 

treated similarly. Let us decompose  the characterist ic  function f into a real and an 

imaginary  part ,  f( t)  = fl(t) + if2 (t), where 

. / ' l ( t ) = ~  x ~ l c o s t x d x ,  f2( t )=c~ x -~ l s i n t x d x .  

Notice that  

fl ~ It ~ f l ( t )  = 1 - ~  x - ~ - l ( 1  - cos tx) d x -  1 - ~ t  ~ u ~-1(1 - cos u) du. 

A similar formula  holds for f2. Therefore,  we easily obta in  the est imates 

Ift( t) l  ~< 1 - C(~)Itl ~, If2(t)l ~< C(c0(ItV + Itl) for Itl ~< C4(~). 

These est imates combined  with If( t)[  = (I f1(012 + ~(t)]2) 1~2 imply that  

If( t) l  ~< e x p { - C l ( = ) l t V }  for Itl ~< C~(~), (20~ 

for some positive C4(~). 
The  bound  (16) follows f rom (20). Indeed, the est imate (20) implies (16) provided 

that C4(~) >~ 1. If C4(c 0 < 1, then we may  choose a smaller constant  C1(~) (if neces- 
sary) and use (19) in order  to obta in  (16). 

The  proofs  of(17) and (18) are similar to the p roof  of(16). Here  some remarks  on the 
p roof  of, say (18), will suffice. In tegra t ing by parts  we have 

f~' tx dx f / tx Ifl( t) l  = ~ x -~ l c o  S =,:zt -1 x - ~ - I  d sin 

1 s in  ~ ~ tx dx = 0~t- t + (¢~ + 1) x - ~  2 sin ~< C(~)f 1. [ ]  
J 1 

L e m m a 9 .  We harem 2/~ <~ p-~ Lm. 

Proof.  Indeed, 

Lm>/(elml/=)-2c2e{cl ~[X] ~ c l m  1/a } + P{IX]  > C l t n  1/~z } ~ n l  2~]3, 

We shall use the following version ( L e m m a  8.1 in Bentkus and G6tze,  19941 of 
a smooth ing  l emma due to Prawi tz  (1972). 

L e m m a  10. Let F and G be arbitrary distribution lunctions with the characteristic 
./unctions f and g. Then 

1 f n  H dt sup lF(x) - G(x)l <~ _ If(t) - g(t)l~l ÷ R" 
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for any H > O, where 

1 If(t)[ dt + ~ - ~  10(t)l dt. 

4. Proof of Theorems 

To prove  T h e o r e m  2 we shall use the following lemma.  Its p roof  will be given later. 

L e m m a  l l .  The distribution function of V,, (as defined in (11)) has a differentiable 
density, say Pro, for m ~ 10. Furthermore, the quantities 

K ,  = sup s u p ~  [p~,(x)Idx, K 2 =  sup sup Ip~,(x) dx 
m>~5 a dR m ~ l O  a dR 

satisfy 

K2 <~ C(~)K~, K 2 <<. C(~)c72(c2/cly. 

Proof of Theorem 2. We shall only prove  the bound  (6) since the other  s ta tements  of 
the theorem follow from (6) by s tandard  arguments .  Wri te  

J = [P{V,, e A} - P{V,, + m -1/:(X E A} I. 

It  follows f rom L e m m a s  7 and 9 that  it suffices to prove  that  

6,,(J¢/) -- sup sup J <~ C(e)(c2/ca)~Lm, (21) 
A~,ll a 

where m = [np/2] i fp  < 1, and m = n i fp  = 1. In the p roo f  of(21) we shall assume that  
m ~> 10 since otherwise (6) follows f rom 6m(dg) -%< 1 and L e m m a  9. 

In t roduce  the t runcated  r a n d o m  variable Y = XI{IX[  <~ clml/~}. Then 

J ~< J, + P { I X I  > clml/~}, 

where 

J , =  IP{Vme A} - P { V , ,  + m-1/~Y 6 A}[. 

Expand ing  p,,(x - m - i / ~ y )  in powers  of  m-l i lY ,  we have 

Jt =- E f A  (Pro(X) -- pm(x -- m-  1/~y)) dx 

<~ Em-1/~Y fA p~(x)dx  + Em 2/~y2 fA p"(x + Om 1/~Y) dx 

~ m - 1 / ~ l E Y [ s u p  fA [p'm(x)ldx + m - 2 / ~ E y 2 s u p  fA Ip~(x)ldx 
A~.¢t" A~.t/ +Om l,,~y 

<<_ K l m  x/~IEY[ + K2m-2/~EY 2 

<~ C(~)(c2/c1)~(cllm-1/'lEY[ + c;2m - 2/~Ey2), 



E Bentkus et al./Stochastic Processes and their Applications 65 (1996) 55 68 65 

where 10[ ~< 1. Collecting the bounds,  we obta in  (21) since 

P{[X[ > Cl ml /~}  + c l l m - 1 / C ~ [ E Y [  H- c 1 2 m  2 / aEy2  = L m. [~ 

Proof of L e m m a  11. By/3 we denote  the Fourier  t ransform of a function p. 
Let us prove  that  K 2 ~ C(~)K 2. Let k = [m/2]. Then we can split 

V,, = U1 + U2 where U1 =/91- 1.~ ~ ai~_ j and U2 = Vm -- U~. 
i:- 1 

Let u~ and u2 denote  the densitites of U~ and U2, respectively. Then Pm= U~ * U2 is the 
convolu t ion  of Ul and u2 since r a n d o m  variables U1 and U2 are independent .  Notice 
thai [P'I  = ]u'l * u'2] <<. [u'l[*lu'21. Therefore,  integrat ing and using Fubini 's  Theorem.  
we obtain  K2 <~ C(c0K 2. 

Let f d e n o t e  the characterist ic function of the Pare to  distribution. While est imating 
K21, we shall use the inequali ty 

( [ t l k l f ( m  1 / = t ) 1 2 m - a d t  ~< C ( g ) .  122~ s u p  s u p  
0-<k-<.4 rn>5 die 

In order  to prove  (22) split the real line R into three disjoint sets 

{Itl < m ' . '% {m 1/~ ~< Itt < m2" '} ,  [Itl > m2"~}, 

and on each of these sets apply  est imates (16), (19) and (18), respectively. 
Now we shall es t imate K 2. Let c > 0 denote  an arb i t ra ry  fixed number .  We shall 

prove  that  

K 2 ~< Cc 1 

where 

sup Io + Cs sup 12 + Ct; -1 sup J, (231 
a, m >~ 3 a, m ~ 3 a. m ~ 3 

lk = fR tkl/3m(t)[2 dt, k = 0, 2, J = IR t2 ]~;,(t}12 dt. 

Indeed. by H61der's inequality, we have 

fR ~ , 2 K~ ~< C~: 1 sup sup (s 2 + x~){p.,(x)) dx. 
m > 3 a 

The Parseval  equali ty combined  with the 
t ransform imply 

fR (p ' ( x ) )2dx<~CfRt2 l f i . , ( t ) ' 2d t  

well-known propert ies  of the Fourier  
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;Rx2(p'~(X))2 dx = fR(xp'~(X))2 dx <. C fRi~m(t)]Z dt + C fRt2]~'~(t)l 2 dt. 

Thus, (23) follows. 
Let us estimate Ik. Write f j( t)=f(tajm-1/~).  Then /3m = f l  .--fro. Applying the 

geometric-arithmetic mean inequality we have 

2 m-1 If l TM. 
j ~ l  

Therefore 

Ik ~< m - 1  ~'~ sup sup fR t~[fJ(t)12m at 
j = l m ~ > 5  a 

= sup sup fR tklf(am-1/~t)12'~dt 

~< c~ -k-1 sup fR tk]f(m-1/~t)12m dt, 
m~>5 

C(O~)C1 k -  1 (24) 

using the equality of all summands in the sum, using change of variables, and (22) as 
well. 

Let us show that 

J <<. Cm 2 sup fRt2[f~(t)lZlf2(t)12m-4dt. (25) 
a,rn>~3 

By the product formula 

lq A, 
j ~ l  l < ~ k ~ m , k C j  

whence 

j = l  1 <~k<~m,kJ-j 1 <~j<l<~m 1 <~k<~m,kCj 

1 <~k<~m,k¢-I 

Now we can proceed similarly to the proof of (24). Using ] fj] ~< 1, we see that the 
integral over terms in the ordinary sum in (26) is bounded by the right-hand side of 
(25). One can estimate the integrals over the remaining terms in (26) similarly. To this 
end it is necessary to apply first H61der's inequality. For example, writing 
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A = ] f3(t)] 2 ... ] ,£,(t)l 2, we have 

i ( f  f )1:2 t2lf~ll fzlAdt<~ sup tzlf~[2Adtsup~ tz l f2iaAdt  
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= sup,, I t  21./~ 12 ,4 dr. 

By (17), we have I/"(t)] <~ C2(~)ltl =- 1 for all t c R. Therefore  (25) yields 

J <~ C(~)c{ ~ sup sup [ It[ 2~1 f2(t)] 2" 4 dt. 
m - 5 a dR 

Now by a change of the variable and (22), we obta in  J ~< C(~)c{~c( 2~ l 

Collecting the bounds  for lk and J and using (23) we have 

"3 , : ,  2~e 1 K~C(~)CI2(C1 g 1(1+[62,~11 ) + e c [ 1 ) ~ < C ( , 2 ) c [ ~  l , -(clc (c2/cl) 2~ +~:cl ), 

_, = )~ concludes the proof. D since 1 ~< c ) / c , .  The choice  of ~, cl (c2.,'cl 

Proof  of  Remark  4. We start as in the proof  of  Theorem 2. In view of L e m m a s  7 and 9, 

we have to est imate SUpx sup.  [r , , (x)  - Gm(x)], where 

Fm(x)=P' ,Vm<x},  G , , f x ) = P { V , , + m - I : ~ Y  < x l  

and where the t runcated r a n d o m  w m a b l e  Y = XI[]X] ~ Clml'=}. Here we use the 
smooth ing  L e m m a  10. Recall that/3, ,  denotes the characterist ic function of P;,,. Let 

,q denote  the characterist ic  function of m ~:~Y. Let us apply L e m m a  10 with H = > 
This is possible since H61der's inequali ty and (24) together  imply Jg I/~It)l dt < :~. 
Using Taylor ' s  formula  for the difference l1 - ,q{t)l, we easily get the est imate 

IFm{x) - G,,(x)l ~ C(~) [ (m- t :qEYI  + ]tim- 2:~Eye)lfJm(tJl dt <~ C(~)L s u p  

x dR 

provided we again apply  H61der's inequality, and est imate the integrals as in (24). 

For  example,  writing k = [m/2] and splitting tim(t)= AB, where a =,1] ....lJ, and 

B :--fi,_~ 1..-,1~,,, we obta in  

fR]t]f.(t)] dt <- ( fR lt[Ae dt fR ]t[Be dt)l:2 <~ C(~)Cl 2. 

Proof  of Theorem 5. By L e m m a  7, we have to est imate 

EsupsupP{x<~ V ~ < ~ x + 2 m  -l'~r'l:=-n+llan+llH } .  
a .x" 

The dis tr ibut ion of the r a n d o m  variable V,, has a density p,,, which is bounded  from 
above  by A d~r jRi/3,,(t) [ dt. Using H61der's inequali ty and (24), we get A ~< C(~)c[  ~ 

Consequent ly ,  we obta in  

-i,=,-I,= ll;,+ } C(~)cFl, -l,':cr'l,~ supP[~c~< Vm ~ X + ~tm ' 1,, +1 1 ~ ,<m 1, ~1. 
x 
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T a k i n g  e x p e c t a t i o n s  a n d  u s i n g  EFt./~ <~ C(e)n  1/~, we c o n c l u d e  t he  p r o o f  fo r  t he  case  

p < l .  

I n  t h e  ca se  p = 1 t he  p r o o f  b e c o m e s  s i m p l e r  s ince  L e m m a  7 c a n  be  r e p l a c e d  by  

L e m m a  6, a n d  we  c a n  r e p e a t  t h e  p r e v i o u s  a r g u m e n t s  w i t h  m = n. [ ]  
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