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Abstract

Stable laws G, admit a well-known series representation of the type

G, = y'( Y I’},-’"“X,-)., 0<ox<?2,
N
where [.15,... arc the successive times of jumps of a standard Poisson process. and
X X5 denote 1.1.d. random variables, independent of 7. 15.... We investigate the rate of
approximation of G, by distributions of partial sums S, =3%_, I'; 12X, and we get (asymp-
totically) optimal bounds for the variation of G, — ¥(S,). The results obtained complement
and improve the results of A. Janicki and P. Kokoszka, and M. Ledoux and V. Paulauskas.
Bounds for the concentration function of S, are also proved.

AMS classification: Primary 62E20; Secondary 60F0S
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1. Introduction

The characteristic function g, of any stable distribution function G, allows the
representation

gty =exp!—clt(1 +iflo(x )., 0<a <2, (h

where | f| < 1. and ¢ 1s a well-known function (see. for example. Samorodnitsky and
Taqqu. 1994).

Introduce a sequence 74,45, ... of independent identically distributed (i.1.d.) ran-
dom variables with exponential distribution. that is P{z; > x] =e " * for x = 0. It is
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well known that the sequence I, = A, + --- + 4, defines the successive times of the
jumps of a standard Poisson process.

Let X, X{,X,, ... be asequence of 1.i.d. random variables with common distribu-
tion function F such that

0<E|X["<ow and EX =0 ifa>1.

Assume that sequences 1, 4,, ... and X, X;, X,, ... are independent. The representa-
tion

Ga=$(z rjl/“X,), o # 1, (2)

j=1

of stable random variables with distribution G, by an almost surely convergent series

goes back to P. Levy and was revived by LePage (1989, 1981) and Le Page et al. (1981).

Recall, that the scale parameter ¢ in (1) is connected to X by the following relation:
1—u

jljg X1 — Go(x) + G,(—x)) = ¢ T2~ ) cos a2 =E|X|*

We shall investigate the convergence rates in (2), that is, we shall obtain bounds for

G, — Z(S,), where S, denotes the partial sum
S.= > Ij'"X,
j=1

General results on series representation of stable laws (including the cases & = 1 and
EX # 0) and formulae connecting F with the parameters ¢ and § in (1) can be found,
for example, in Samorodnitsky and Taqqu (1994, Theorem 1.4:5). Poissonian repres-
entations of stable laws or even infinitely divisible distributions (Ferguson and Klass,
1972; Rosinski, 1990) are valid in general Banach space setting. They are useful in
treating structure problems related to stable laws (see, e.g., Marcus and Pisier, 1981;
Ledoux and Talagrand, 1991; Samorodnitsky and Taqqu, 1994; Janicki and Weron,
1994). Such representations have been used in resampling (bootstrap) problems in
statistics (see, for example, LePage, 1992; Kinateder, 1992; LePage and Podgorski,
1993; LePage et al., 1994), and in financial mathematics and option pricing models
(Rachev and Samorodnitsky, 1992; LePage et al.,, 1994). For relations of the repres-
entation theorem to simulations of stable random variables and processes, see Janicki
and Weron (1994) and Janicki and Kokoszka (1992a).

Denote

Ay = Au(a, F) = sup | P{S, < x} — G,(x)|.

Write
A, =supt’P{|X]| >t}

t>0

and assume that the number r satisfies

a <r<min{l + a2}



V. Bentkus et al. /Stochastic Processes and their Applications 65 (1996) 55-6& 57

We shall assume, in addition, that
EX=0 ilr>1.

By C(x, 8, ...) we shall denote generic constants which can depend only on 2. f5. ...

Theorem 1. We have

A, = sup|P{S, < x} = Gu(x)] < Clur, F)An =~ (3)

IfE|X|" < o, then
An — O(n‘(rfa)/a)_ (4}

For explicit bounds for C(a, r, F) in (3), see Corollary 3 and Remark 4.

Theorem 1 is a consequence of Theorem 2 and its Corollary 3, where bounds for the
variation distance between measures .#(S,) and #(S,,) are obtained. Bounds for
4, are similar to Berry-Esseen bounds in the classical Central Limit Theorem for i.1.d.
summands in the case of Gaussian limiting law. The rate of convergence in the CLT is
o(n” %2y (respectively, O(n~%?)) provided that E|X|*?7? <o (respectively,
Ay s <o), 0 < d <1 (see, e.g, Ibragimov and Linnik, 1971; Petrov, 1995). Similarly
to the case of the CLT, the bounds (3) and (4) are asymptotically optimal, as n — .
More precisely, if the distribution of X is the stable distribution F = G.,. then we have

A%, G,) = Clo, r)n™ =21 {5)

(see Ledoux and Paulauskas, 1995, Proposition 9). Since A, is finite in this case, the
lower bound (5) establishes the optimality of (3).

Our main result, Theorem 2, will show that the convergence in the representation
(2) is indeed rather strong. For n < N < o0, write

Spn=sup|P{S,e A} — P{Sye A}|, aswellasd, =0, ,1.

AeA

where .4 denotes the class of Borel sets. In order to measure the “degeneracy™ of X,
introduce

p=Plc; <|X|<c,} forO<e; <, €.
Write T = ¢, n'* and introduce the sum of truncated moments
=T EXX| ST + T HEXI|XI ST+ P{X|>T].

Let [a] denote the integer part of a real number a.

Theorem 2. We have

(Sn < C{a\)pil(CZ/cl)aLmﬂ (6)
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where m = [np/2] if p < 1, and m = n if p = 1. In particular,

Oy < C(@)eq "epfey)'p 7" AT (7)
Furthermore, if E|X|" < oc and p > 0, then

Sy = o(n~"%).

The bound (6) trivially holds if its right-hand side is infinite, for example, when
p = 0. However, we can always choose 0 < ¢; < ¢, so that p > 0,since P{X =0} < 1.
Notice that d, y < ¥7_,' 6;. Thus we have the following corollary.

Corollary 3. For all n < N < o0, we have
Buu < COICT(eaferyp = A0
Moreover,

sup 4,y = o(n~ "),
N>n

provided that E| X|" < oc.
Corollary 3 implies Theorem 1, since 4, <9, ...

Remark 4. Using Esseen’s type inequality and proving Theorem 1 directly, we can
improve the bound for the constant. Namely, we shall prove that

4, < Clx)p 'L,

—1-rlx

Thus, the constant C(a, r, F) in (3) is bounded from above by C(x, r)c{"p
Define the concentration function Q(X; 4) of a random variable X by

QX;A)=supP{x<X<x+ 4} foraz0.

Theorem 5. We have

Q(S,; 2) < Clo) max{icy 'p~ V% exp{—3np/d}} forall ) > 0.
Ifp=P{IX|>c } =1, then, for n = 2,

0(S,: A) < Cla)er '4 for all 4 >0,

and, in particular, the distribution function of S, has a density bounded from above by
Clx)er
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Using the obvious relation

2 ¥4
~EX* Y EI]*

ji=nt+1

%
def -1,
O'f = ‘ Z FJ 1/:lAX'j

j=nt1

Janicki and Kokoszka showed that 67 = O(n~ 2~ *"*). This result yields rather weak
bounds for 4,,, namely 4, = O(n~ 2~ #/3%). As stated. our results do not imply bounds
for the rate of convergence of moments. However, we can obtain such bounds using
estimates for the characteristic function (and its derivatives) of S,,.

Ledoux and Paulauskas (1995) obtained upper (and lower) bounds for 4,. The
results of the present paper improve these bounds since the dependence of the bounds
on #n is asymptotically optimal, and neither moment nor smoothness conditions for
X are required. The proof of the main Theorem 2 is based on conditioning and
random selections techniques (Bentkus and Go6tze, 1995, 1996). Using the techniques,
it 1s possible as well to extend these results to the multidimensional case, to obtain
asymptotic expansions of #(S,), to estimate closeness of densities of #(S,) and G,.
and so forth.

2. Main reduction

In this section we show that instead of the sum S, which has relatively complicated
structure due to the dependence of random variables I'}'s, we can study a simpler sum
of specially chosen independent random variables (see Lemma 7).

Let £,,¢5, ... denote L.i.d. random variables such that £, has a Pareto distribution.
that is. P{&; > x} = x7% for x = 1. Assume that the sequences

(Xpiz 1}, {&,i=1} and {4,i=1]}

are independent.
Let . # denote a class of subsets of R invariant with respect to shifts and multiplica-
tion by positive constants, that is

Ae . #,72>0,aeR = JAc . A+ac.¥.
For n < N € o, write

Opn(.#)=sup|P{S,e A} — P{Syc A}} and O, (#) =0, 41 %)

Ae

Notice that
(5n.N = (SnN(%) and An = dn,n (%)s

where # denotes the class of Borel sets, and # = {{—oc, x): x € R} is the class of
half-intervals.
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Lemma 6. Write Z,=%"_,{;X;. Then

O,(M) < sup|P{Z,e A} — P{Z,+ X € A}|, (8)
Ae.#
QS A <SEsupP{x < Z,<x+ A Tet ) (9)

Proof. We shall prove the estimate (8) only, since the proof of the inequality (9) is
similar. Let &, > &,, = --- = &,, be the ordered values of &4, ..., &,. Then the random
vectors

Fl —1/a (1’*“ >—1/a>
P=(,....,¢6n) and G = s ey
(Gt Con) ((r> Ly

satisfy Z(P) = L(9) (see, for example, LePage, 1981). Observe (cf. Samorodnitsky
and Taqqu, 1994) that the conditional distribution of ¥, given [, , equals the
unconditional one, and thus equals the distribution of #. The proof of this fact is
similar to the proof that

G
PR M

has the same distribution as (U,q, ..., U,,), where U,; < --- < U,, are the ordered
values of i.i.d. random variables Uy, ..., U, uniformly distributed on [0, 1] (Breiman,
1968, p. 285). Therefore we can write the following distributional equalities:

s n F —1/a o i n o i n i

S":Fn+1{ Z <f—1’) X; = Fn+1{ Z & X = Fn+1{ Z éij:Fn-Fl{ Zy.
j=1 \1n+1 ji=1 j=1

Proceeding similarly, using the independence assumption and ¥ (X, +) = £ (X), we

obtain

7

Sper =St Ty i Xuey 2T Y EX, 4 T X0y = T H(Z, + X),
j=1

—1ja;

Finally, the definition of the class .# combined with conditioning on I',/{* implies the

result. [

In the next lemma we shall get rid of the random variables X’s, replacing them by
constants. This is done by a method introduced in Bentkus and Gotze (1996).
For non-random

ay,...,a, suchthate, <la;j<c, foralll <j<m, (10)

introduce the sum

m

Ve=m % aé, (11)

i=1
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Write

8(-20) = sup sup |P{V, € A} — P{V,, + m™ "X e A},

Ae d a

where sup, denotes the supremum over all a,, ..., a,, satisfying (10).

Lemma 7. If p = 1, then 8,(.#) < d,(.#) and

Q(S;; A< EsupsupP{x <V, <x+/n "IV |}
a X

If p < 1, then we have
Sul ) < S,u( M) + exp{—3pnj4, (12)

Q(S,: 7)) <Esup sup P{x < V,, < x + im ™'LY AL, ) + exp{—3pn/4}, (13)
where m = [ pn/2].

Proof. If p = 1, we derive the result conditioning on X, ..., X,.

Thus, it remains to prove the bounds (12) and (13) assuming that 0 < p < 1. We
shall prove only (12) since the proof of (13) is similar.

Recall that p = P{c; < |X| < ¢, }. Introduce the i.i.d. Bernoulli random variables
n; =I{c; <|X,;| <c,}, for j = 1. Consider the event

B,={n+ - +n,>pn/2}

and its complement B;. Since Ex; = p and |; — En;| < 1, a well-known exponential
inequality yields

P{B;} <exp{—3np/4}. (14

In what follows E, , will denote the expectation taken with respect to those
random variables which are written in parenthesis as subscript to E.
Combining (8) with (14) and conditioning on X, ..., X,, we have

S5u(M) < sup |E(I{Z,e A} —I{Z, + X € A})I{B,}| + P{BS}

Ae. W

< Ey,. x,0n(AM) + exp{—3pn/4},

nf

where

On(M)=I{B,} sup|E;s, e« x\U{Z,e A} —I{Z,+ X e A})|.

Ae

Thus, in order to prove the lemma, it is sufficient to verify that

O M) < S M). (15)
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If I{B,} = 0, the inequality (15) is obviously fulfilled. Therefore we can assume that

1{B,} = 1, that is, that the event B, occurs. Consequently, there exist indices [y, ...

such that

k>np/2>2m and ¢y <|X;|<c, forl<j<k

Notice that k& and [, ..
él:"'aén'

Define the random sets

My ={l,....0n} and M, ={1,... n}\M;.

Introducing the notation

U =

Y EX, V=Y X, and Ey =E icu),

JjeM, JjeM,

we can write

At

SEy,sup |EyEx(I{UeA—-V} —I{U+XeA—-V})

Ae.#

=sup |[Ey Ex,(I{U e A} —I{U + X € A})|

Ae. #

< Sup Sup]E{Ml;E{X}(I{U EA} —I{U + X € A})’

Ac# a

= 5,,, (A).

7lk

., I, are random (they depend on X’s) but independent of

In the last step we replaced the sum U by m~'*U and used the obvious equality
E, f(¢5.j€ My) = Ef(&y, ..., &), which is valid for any measurable function f of
m arguments since &y, &5, ... are identically distributed. [J

3. Auxiliary lemmas

Write p(x) = ax™*" 'I{x > 1} for the Pareto distribution density, and f(¢) for its
characteristic function.

Lemma 8. Let 6 > 0. There exist positive constants Cy(a), C,(a) and Cs(a, 6) < 1 such

that

SO < exp{—=Ci@)t]"} for[t] <1,

LSO < Co(@)e|*™ forall t #0,

[f(0)] < Co()|t]™" forallt #0,

[f()] < Cs(a, 8) for [t] > 4.

(16)
(17)
(18)
(19)
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Proof. The Pareto distribution admits a density, thus (19} is fulfilled.

While proving (16)—(18) we shall assume that ¢ > 0, since the case <0 can be
treated similarly. Let us decompose the characteristic function finto a real and an
imaginary part, f(t) = f;(t) + 1f,(t), where

L

filt) = 7J 1 cos tx dx, fo()=12 ( x * 'sintx dx.
1

J1
Notice that

X s

x7* "Ml —costx)dx =1 — ozt“f u=*" (1 — cos u) du.
t

fl(t):l»ocj

1

A similar formula holds for f,. Therefore, we easily obtain the estimates
LA@< T = C)e | L0 < C@t]* + Jt])  for [1] < Cu(a).
These estimates combined with | f(1)} = (| f1(D1* + | />(1)]*)*'? imply that
| f(O] < exp{—Cy()|t|"} for [t] < Calw), (20

for some positive C4(2).

The bound (16) follows from (20). Indeed, the estimate (20) implies (16) provided
that Cu(2) = 1. If Cy(a) < 1, then we may choose a smaller constant C(x) (if neces-
sary) and use (19) in order to obtain (16).

The proofs of (17} and (18) are similar to the proof of (16). Here some remarks on the
proof of, say (18), will suffice. Integrating by parts we have

=t !

| fi(t)] =

"
J x"* Lcostx dx
1

.
J x * " Vdsintx
1

< Ct™ M

= ot !

sint + (x + l)f x 7% Zsin tx dx
1

Lemma 9. We have m 2* < p~'L,,.

Proof. Indeed,

2

Ly = (eym*™) 7 2ciP{c; < | X < eym*™} + P{X| > com'™} = m ™ *7p. [

We shall use the following version (Lemma 8.1 in Bentkus and Gotze, 1994) of
a smoothing lemma due to Prawitz (1972).

Lemma 10. Let F and G be arbitrary distribution functions with the characteristic
functions f and g. Then

H

1 : d
sup [Fx) — Glx)| < o J IJ(I)AQ(I)IJJrR-
X s H

||
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for any H > 0, where

1 H I
Ri<g [ 1rolae g | joona

4. Proof of Theorems
To prove Theorem 2 we shall use the following lemma. Its proof will be given later.

Lemma 11. The distribution function of V,, (as defined in (11)) has a differentiable
density, say p., for m = 10. Furthermore, the quantities

K, = sup supf [pm(x)] dx, K, = sup supJ | Pl
mz5 mz10

satisfy
K, < C@K3I,  Ki<C@)er?(ex/fer)

Proof of Theorem 2. We shall only prove the bound (6) since the other statements of
the theorem follow from (6) by standard arguments. Write

= |P{V,e A} — P{V,+m "X e A}

It follows from Lemmas 7 and 9 that it suffices to prove that

Sm(#) = sup sup J < C(a)(c,/c1 )" Lam, (21)

Ae# a

wherem = [np/2]if p < 1,and m = nif p = 1. In the proof of (21) we shall assume that
= 10 since otherwise (6) follows from J,,(#) < 1 and Lemma 9.
Introduce the truncated random variable Y = XI{|X| < ¢;m'*}. Then

J<J, + P{|X| > cym'*},
where
Ji=|P{V,e A} —P{V,, + m~'"Y € A}|.

Expanding p,.(x —m~*Y) in powers of m~ Y, we have

J, = )Ej (pm(x) - pm(x - m—l/ay)) dx
A

< ‘Em‘l/“Y f D) dx
A

+1Em2/“Y2j m(x + 0m = 1*Y)dx

A

<m™ U |EY|sup | |pp(x)]dx +m™**EY? sup j | Prn(20)] dx
A+0m~1*Y

Ae# JA Ae.t
<K m YEY|+ K,m **EY?
< C@)(czfer ) (cr 'm™ YEY | 4 ¢f >m™ "EY?),
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where |6 < 1. Collecting the bounds. we obtain (21) since

P{X|>cm'™) + e{'m YHEY| 4+ ¢{*m *PEY? = L,,. =

Proof of Lemma 11. By p we denote the Fourier transform of a function p.
Let us prove that K, < C(x)K?. Let k = [m/2]. Then we can split

k
Vw=U, + U, where Uy =m™'* 3 q;é;and U, =V, — U,.
i=1

Let u, and u, denote the densitites of U, and U,, respectively. Then p,, = u; * u, 1s the
convolution of u; and u, since random variables U; and U, are independent. Notice
that |p,,| = u'y * u5| < |u|*|u5|. Therefore, integrating and using Fubini’s Theorem,
we obtain K, < C(a)K?3.

Let fdenote the characteristic function of the Pareto distribution. While estimating
K3, we shall use the inequality

sup supf [t%] fm~t2ey)?m % dt < Cla). (22)

O<k<s4 m=5

In order to prove (22) split the real line R into three disjoint sets
el <m=, Imt= Lt <m??), )t = m?*),

and on each of these sets apply estimates (16), (19) and (18), respectively.
Now we shall estimate K2. Let ¢ > 0 denote an arbitrary fixed number. We shall
prove that

Ki<Ce ' sup Io+ Ce sup I, +Ce™ ' sup J, (23)

amz=3 amz3 a.m>=3

where

Ik:f O dr, k = 0,2, J:J 21p (02 dr.
R

R

Indeed, by Hélder’s inequality, we have

K} < Cetsup supj (&2 + X p(x))* dx.
R

mz3 a

The Parseval equality combined with the well-known properties of the Fourier
transform imply

j (Pm(x))? f 12| pm(6) | dt
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and

R

j 3 (piy(x))? dx = j (xp())? dx < € f a2 d + C f ClpL01 d.
R R

R

Thus, (23) follows.
Let us estimate I,. Write f;(z) =f(ta;m~'"*). Then p,, =1, ... fu. Applying the
geometric-arithmetic mean inequality we have

m
Pul®> <m™1 3 | ;1P
j=1
Therefore

Li<m™' ) sup supj | fiPm de
R

j=1m=5 a

= sup sup f t*) f(am ™ Y))>™ di
R

m=Sc;<a<c,
<cr* !t sup J t*] f(m~ V%)) dt,
mz=5JR
< Clwyey ¥ 1, (24)

using the equality of all summands in the sum, using change of variables, and (22) as

well.
Let us show that

J < Cm? sup j 2LAGP LGP de. (25)
am>=3 JR
By the product formula
bu=20 11 Jo
j=1  lsk<mk#j
whence

(ﬁ;,,)2=§(f;)2 I r+2 ¥ f,ff/< I1 fk>

1<sksmk#j 1gj<igsm 1<sk<smk#j

< [l fk>- (26)
1<sk<mks!

Now we can proceed similarly to the proof of (24). Using | f;| < 1, we see that the
integral over terms in the ordinary sum in (26) is bounded by the right-hand side of
(25). One can estimate the integrals over the remaining terms in (26) similarly. To this
end it is necessary to apply first Holder's inequality. For example, writing

X
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A =1108 ... ful®))?, we have
1/2
jtzlf{l | 114 de < (sup Jtsz{le dt sup JIZ | f212A dt) = sup jtz\f{l"'A dr.
By (17), we have | /'(6)] < C,()|t]* "1, for all t € R. Therefore (25) yields

J < C(x)ed” sup supf 1£12%] fo(0)]2™ * dr.
R

m=z=35 a

Now by a change of the variable and (22), we obtain J < C(a)c3*cy **7 .
Collecting the bounds for I; and J and using (23) we have

KT < Cler Here Y+ (ca/e ) + eer Yy < Cladey Heye Hea /o) + eep '),
since 1 < ¢, /¢y. The choice of ¢ = ¢, (¢2/¢y ) concludes the proof. [
Proof of Remark 4. We start as in the proof of Theorem 2. In view of Lemmas 7 and 9.
we have to estimate sup, sup, |F,(x) — G,,(x)|, where

FulX) = PV, < x}. Gulx) =P{V,, + m 'Y < x},

and where the truncated random variable Y = XI{|X| < ¢;m'*}. Here we use the
smoothing Lemma 10. Recall that p,, denotes the characteristic functlon of V,,. Let
¢ denote the characteristic function of m~'*Y. Let us apply Lemma 10 with H = «
This i1s possible since Holder’s inequality and (24) together imply {,|p.(1)| dr < =
Using Taylor’s formula for the difference |1 — g{t)|, we easily get the estimate

Sup | F,u(x) — G(x)] < )J (m~VHEY| + [tIm™ *EY)p, ()] dt < C(0)L,,.

provided we again apply Holder’s inequality, and estimate the integrals as in (24).
For example, writing k = [m/2] and splitting p,(t) = AB, where 4 =/, ... f, and
B = fy+1 .. fm. We Obtain

1:2
J |t|[3m(t)|dt<<j t] A2 dtj |t| B2 dt> < Cla)ey 2
R R R

Proof of Theorem 5. By Lemma 7, we have to estimate
EsupsupP{x <V, <x+ im TY L)
The distribution of the random variable V,, has a density p,,, which is bounded from

above by 4 <= [_|p,(r)| dt. Using Holder’s inequality and (24), we get A < C(x)c
Consequently, we obtain

SUp PIx <V, < x + Am VAT 2 ey ) < Cloyey Yam 1PN
X
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Taking expectations and using EI'}/* < C(a)n'"
p <L

In the case p = 1 the proof becomes simpler since Lemma 7 can be replaced by
Lemma 6, and we can repeat the previous arguments with m =n. []

, we conclude the proof for the case
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