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Abstract

Two limit theorems on asymptotic behaviors of some processes related to some queueing
systems are investigated. In the �rst result (Theorem 1), sticky di�usions appear as limit processes
for queues with vacations. In the second result (Theorem 2), limiting behavior of occupation
times and counting processes related to open queueing networks is discussed. The core of the
arguments for obtaining our results is to discuss the convergence of stochastic integrals with
respect to renewal processes. c© 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we present two results (Theorems 1 and 2) on limiting behavior of some
processes related to some type of queueing systems. In the �rst result
(Theorem 1), we consider a single server queueing system which takes a vacation
or goes under repair when the system becomes vacant, and consider to approximate
such systems by re
ecting or sticky di�usions. In the second result (Theorem 2), we
investigate the limiting behavior of occupation times and counting processes related to
open queueing networks which operates under heavy tra�c condition. The two results
have no direct connection. However these results have a common feature that each
queueing system is based on the model in which arrival and departure processes are
renewal processes and hence queueing processes are not Markovian and we must deal
with the convergence problem of stochastic integrals with respect to renewal processes,
and that to discuss this convergence problem constitutes a main part in the arguments
for obtaining our results. For example, in Theorem 1 we discuss the convergence of
the following form of stochastic integrals:

In(t)=
∫ t

0
1(Xn(s−)¿0) d 1�n Ãn(s):
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Here (An(t)) is a sequence of renewal processes (arrival processes) and Ãn(t)=An(t)
−�nt where �n is the arrival rate. We have a situation (Xn; (1=�n)Ãn)→L (X; Ã) where
X is a sticky Brownian motion and Ã is a Brownian motion. We want to show the
convergence:

In(t)→L

∫ t

0
1(X (s)¿0) dÃ(s):

Similar problems were considered in Yamada (1993, 1994) for Markov processes. In
this case the stochastic integrals are martingales, and this made us to use the stochas-
tic calculus approach as in Jacod and Shiryaev (1987). Similar problems are also
discussed in, for example, Jakubowsky et al. (1989), Kurtz and Protter (1991) and
Slominsky (1989). They discussed the convergence of the stochastic integrals of the
type

∫ t
0 Zn(s) dXn(s) where (Xn) are semimartingales and the convergence (Zn; Xn)→L

(Z; X ) is assumed. Because of this joint convergence assumption, their results seem
not applicable to our problems. Our basic approach is, by using a typical property
of renewal processes, to decompose the above integral as the sum of two processes
Mn(t) and Nn(t), say, In(t)=Mn(t) +Nn(t) such that Mn(t) is a martingale and Nn(t)
becomes negligible as n tends to in�nity (see Lemmas 2.1 and 2.2). Thus, the conver-
gence of In(t) is reduced to that of Mn(t) and hence the stochastic calculus approach
is again available. Although the device for decomposing the integral In(t) as above is
very simple, it seems this decomposition has not been used in other works. We also
remark that the importance of such decomposition was stressed out in the invited lec-
ture delivered by Kurtz in the Conference on Applied Probability (1995, Atlanta), and
that our decomposition method seems applicable to stochastic integrals with respect to
more general processes such as regenerative processes and seems useful in lifting up
Markov property from models we build. However, we treat only the stochastic integrals
of the type for which, as we see in Eq: (1:1), Xn appearing in the integrand is only
one dimensional. This restriction is due to the following reasons; In Example 1, to
estimate occupation times of the limit process X of Xn, we use space–time formula for
local time of the process X which is a one-dimensional semimartingales. In Example
2, a version of Dynkin’s formula is used, but this works only when the occupation
function is a function of one-dimensional variable, say, the queue length at a service
station (see the de�nition of Bi

n(t) for scaled occupation time processes given just
above Theorem 2).
The usual presentation of the results of the problems like ours may be to give �rst

general results on the convergence of stochastic integrals and then to show applications
to some speci�c problems. However, our arguments depend in some points on the
special structure of the models and the author was not able to give such a presentation.
At the same time it should be pointed out that our approach, though oriented to speci�c
problems, seems applicable to other problems widely and that in spite of the importance
especially in applications, convergence problems for stochastic integrals with respect
to renewal processes have not been discussed fully.
We denote by D([0;∞);Rd) the space of functions f : [0;∞)→Rd that are right-

continuous and admit left limits, and we endow this space with Skorohod’s J1 topol-
ogy. We sometimes use the simple notation D if it causes no confusion. Also “→P”
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and “→L” denote convergence in probability and in law, respectively. Finally, for
z ∈D([0;∞);Rd), �z(t) denotes the jumpsize of z at t, i.e., �z(t)= z(t)− z(t−).

2. Example 1 – sticky di�usion limits for queueing systems with vacations

We consider the following sequence of state-dependent single-server queueing
systems:

Qn(t) =Qn(0) +
∫ t

0
1(Qn(s−)¿0) dAn(s) + Vn

(∫ t

0
1(Qn(s)= 0) ds

)

−Dn
(∫ t

0
1(Qn(s)¿0) ds

)
; n¿1:

Here Qn(t) is the number of customers at the service station at time t for the nth
queue. The above equation tells us the queueing system works as follows: As long
as the system is not empty, the arrival stream An(t), which represents the number of
persons who come to the system up to time t, is accepted as the customer arrival
to the queue. This is manifested by the stochastic intregral

∫ t
0 1(Qn(s−)¿0) dAn(s).

When the system becomes empty, it takes a vacation, and after a while, there is
an arrival of a customer and this ends the vacation. Let Vn(t) be a renewal process
formed by i.i.d. (independent and identically distributed) sequence of vacation lengths.
Then Vn(

∫ t
0 1(Qn(s)= 0) ds) represents the number of customers arriving at the end of

vacation up to time t. Note that even during vacations, there are arrivals of persons due
to An(t), but they do not join the queue. The sequence of service times constitutes a
renewal process Dn(t) and a customer leaves the system only when it is not empty. This
situation is represented by Dn(

∫ t
0 1(Qn(s)¿0) ds). An(t); Vn(t) and Dn(t) are renewal

processes de�ned respectively as follows:

An(t)=max

{
k;

k∑
l=1

�n(l)6t

}
;

where (�n(l)) is a sequence of i.i.d. (independent and identically distributed) random
variables and is interpreted as inter-arrival times and we let �n=1=E�n(l):

Vn(t)=max

{
k;

k∑
l=1

vn(l)6t

}
;

where (vn(l)) is a sequence of i.i.d. random variables which represent the lengths of
idle periods; let �n=1=E �n(l):

Dn(t)=max

{
k;

k∑
l=1

Sn(l)6t

}
;

where (Sn(l)) is a sequence of i.i.d. random variables representing the service times
for customers; let �n=1=ESn(l).



106 K. Yamada / Stochastic Processes and their Applications 80 (1999) 103–128

Hereafter, we consider the situation that �n; �n and �n tend to in�nity as n→∞ and
assume that the system operates under heavy tra�c situation, that is
(A1) (heavy tra�c condition) There exists a sequence (�n) such that �n→∞ and

1
�n
(�n − �n)→ c

as n tends to in�nity.
De�ne

Xn(t)=
1
�n
Qn(t):

Our problem is to investigate the asymptotic behavior of Xn(t) as n tends to in�nity,
and, to this end, we make further assumptions:
(A2) (1) There exists �¿0 such that

�n
(�n)2

→ �¿0

and, for each t,

An(t)
(�n)2

→P �t:

(2) Let

�n(t)=
1
�n

[(�n)2t]∑
l=1

(1− �n�n(l));

Ṽn(t)=Vn(t)− �nt;
D̃n(t)=Dn(t)− �nt:

Then(
�n;

1√
�n
Ṽn;

1
�n
D̃n

)
→L (�; Ṽ; D̃)

in D([0;∞);R3) where (�; D̃) is a two-dimensional Brownian motion with 〈�〉 (t)=
�2t and Ṽ is a continuous process. (〈�〉 (t) is a (predictable) quadratic process of the
process �.)
(3) For each nth system, arrival and departure processes for busy cycles have no

common jumps with probability one. (This condition is satis�ed, for example, if An
and Dn are independent and inter-arrival times or service times have a density.) Note
that condition (A2) implies(

1
�n
Ãn;

1√
�n
Ṽn;

1
�n
D̃n

)
→L (Ã; Ṽ; D̃);

where Ã(t)= �(�t) and Ã and D̃ are independent Brownian motions.
(A3) (condition for instantaneous or sticky re
ection)

�n
�n

→ �; 0¡�6∞; and
√
�n
�n

→ �; 06�¡∞:
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We then have the following result:

Theorem 1. Under assumptions (A1)–(A3), if Xn(0)→L X (0), then Xn(t) →L X (t)
in D([0;∞);R1) where X (t) is the unique solution of the following Skorohod equation:

X (t) = X (0) +
∫ t

0
c1(X (s)¿0) ds+

∫ t

0
1(X (s)¿0) dÃ(s)

−D̃
(∫ t

0
1(X (s)¿0) ds

)
+ �(t); X (t)¿0 (2.1)

where �(t) is non-decreasing with �(0)= 0, and satis�es

0=
∫ t

0
1(X (s)¿0) d�(s)

and ∫ t

0
1(X (s)= 0) ds=

1
�
�(t):

To show this theorem, we proceed as follows. Xn(t) satis�es the following Skorohod
equation:

Xn(t)=Xn(0) + Zn(t) + �n(t); (2.2)

Zn(t) =
∫ t

0
1(Xn(s−)¿0) d 1�n Ãn(s) +

1
�n
Ṽn

(∫ t

0
1(Xn(s)= 0) ds

)

− 1
�n
D̃n

(∫ t

0
1(Xn(s)¿0) ds

)
+
∫ t

0
1(Xn(s)¿0)

1
�n
(�n − �n) ds;

�n(t)=
�n
�n

∫ t

0
1(Xn(s)= 0) ds; n¿1:

∫ t

0
1(Xn(s)¿0) d�n(s)= 0:

Then we prove tightness of (Zn), which implies tightness of (Zn; Xn; �n) as well. Then
we show that any weak limit (X; �) of (Xn; �n) satis�es Eq. (2.1). In proving tightness
of (Zn) and identifying the weak limit (X; �) as is shown in Theorem 1, the main part
of the discussion consists in showing the tightness of the stochastic integrals (In) with
respect to renewal processes:

In(t)=
∫ t

0
1(Xn(s−)¿0) d 1�n Ãn(s)

and showing the convergence:

In(t)→L

∫ t

0
1(X (s)¿0) dÃ(s) in D:
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The basic fact for this is that we can decompose the process In as the sum of a
stochastic integral, which is a martingale, and a process which becomes negligible as
n tends to in�nity. This will be shown in the next Lemma 2.1.

Remark 1. As for the uniqueness in law sense of the solution of Eq. (2.1), see Ikeda
and Watanabe (1981), (Theorem IV.7.2). When �=∞, X (t) is a re
ecting Brownian
motion, i.e.,

∫∞
0 1(X (s)= 0) ds=0; when �¡∞, X (t) is a sticky Brownian motion;

i.e. the boundary 0 is a sticky point and
∫∞
0 1(X (s)= 0) ds¿0.

Remark 2. According to assumption (A3), In and the process (1=�n)D̃n(
∫ t
0 1(Xn(s)

¿0) ds) have no common jumps.

Let us de�ne a stopping time for any process z ∈D([0;∞); R1) by

�z(t)= inf{s; s¿t; �z(s) 6=0}:

Then, we have

Lemma 2.1. We write In(t) as

In(t)=Mn(t)− Nn(t)

where

Mn(t)=
∫ �An (t)

0
1(Xn(s−)¿0) dÃn(s)=�n;

Nn(t)=
∫ �An (t)

t
1(Xn(s−)¿0) dÃn(s)=�n:

Then,
(1) Mn(t) is a martingale with respect to the �ltration Fn(t) which is de�ned as

Fn(t) = �
(
Qn(0); Xn(s); 06s6t; �n(l); 16l6An(t) + 1;

Sn(l); 16l6Dn

(∫ t

0
1(Xn(s)¿0) ds

)
+ 1;

vn(l); 16l6Vn

(∫ t

0
1(Xn(s)= 0) ds

)
+ 1
)
:

(2) sup06t6T |Nn(t)| →P 0 as n tends to in�nity for an arbitrary T.

Proof. (1) First we note that

Ãn(�An(t))=An(�An(t))− �n�An(t)
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is an Fn(t) martingale. Indeed,

Ãn(�An(t)) = An(t) + 1− �n
An(t)+1∑
l=1

�n(l)

=
An(t)+1∑
l=1

(1− �n�n(l)) (2.3)

and it su�ces to note that An(t) + 1 is an Fn(t) stopping time (see Ross, 1983,
Ch. 3,3.3, p. 60) and {1 − �n�(l)}l¿1 is an i.i.d. sequence. Then Mn(t) is an Fn(t)
martingale since Mn(t) is a stochastic integral with respect to a martingale Ãn(�An(t)):

Mn(t)=
∫ t

0
1(Xn(�An(s)−)¿0) dÃn(�An(s))=�n:

(2) We have

sup
06t6T

|Nn(t)| = sup
06t6T

∣∣∣∣∣
∫ �An (t)

t
1(Xn(s−)¿0) dÃn=�n(s)

∣∣∣∣∣
6 sup

06t6T

∫ �An (t)

t
d‖Ãn=�n‖(s)6 sup

06t6T

1
�n
(1 + �n�n(An(t) + 1))

6 sup
06t6T

(
2
�n
+
1
�n

|�Ãn(�An(·))(t)|
)
;

where ‖ · ‖ denotes the total variation of a sample path of processes. In obtaining the
last inequality in the above equation, we note that

�Ãn(�An(·))(t)= 1− �n�n(An(t) + 1):
Noting Eq. (2.3) and using (A2) (1) and (2), we have

1
�n
Ãn(�An(t))=

1
�n

An(t)+1∑
l=1

(1− �n�n(l))→L�(�t): (2.4)

Then the continuity of �(t) implies

sup
06t6T

1
�n

|�Ãn(�An(·))(t)|→P 0: (2.5)

Thus

sup
06t6T

∫ �An (t)

t
d
∣∣∣∣
∣∣∣∣ Ãn�n

∣∣∣∣
∣∣∣∣ (s)→P 0:

Remark 3. We can show, by using the same argument as in the proof of Lemma 2.1,
that

sup
06t6T

|�An(t)− t| →P 0:
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Indeed,

sup
06t6T

|�An(t)− t|6 sup
06t6T

�n(An(t) + 1)

= sup
06t6T

1
�n
(1−�Ãn(�An(·))(t))

6
1
�n
+
�2n
�n

1
�n

sup
06t6T

∣∣∣∣ 1�n�Ãn(�An (·))(t)
∣∣∣∣→P 0:

where the last convergence is due to Eq. (2.5) and (A2)(1).
For an arbitrary sequence of processes (zn) where zn ∈D([0;∞);Rd), de�ne zRn (t)

by

zRn (t)= zn(t) if t¡Hn(R); = zn(HRn −); if t¿HRn ;

where HRn is de�ned as

HRn = inf{t; |�(1=�n)Ãn(�An(·))(t)|¿R}:
We note that by Eq. (2.5), Hn(R)→P ∞ as n→∞.

Lemma 2.2. We have the following results:
(1) (X Rn (t); M

R
n (t)) is tight in D([0;∞);R2)

(2) Let (XR;MR) be any weak limit of (X Rn ;M
R
n ). Then

MR(t)=
∫ t

0
1(XR(s)¿0) dÃ(s):

Proof of (1). We will show that (MR
n ) is C-tight and (X

R
n ) is tight. The tightness of

(MR
n ) is a consequence of Lemma 2.3, which will be given at the end of this section,

and we will show that the following conditions of Lemma 2.3 hold:
(a) [MR

n ] is C-tight, where [·] expresses the optional quadratic process (see Jacod and
Shiryaev, 1987, Ch. I, Section 4e).

(b) E sup06t6T �[M
R
n ](t)→ 0.

Proof of (a): We note that MR
n (t) can be written as

MR
n (t)=

∫ t

0
1(X Rn (�An(s)−)¿0)1(s¡Hn(R)) d

1
�n
Ãn(�An(s)):

We then have

[MR
n ](t)=

∫ t

0
1(X Rn (�An(s)−)¿0)1(s¡Hn(R)) d

1
(�n)2

[Ãn(�An(·))](s): (2.6)

Putting

Ln(t)=
∫ t

0
1(s¡Hn(R)) d

1
�n
Ãn(�An(s))
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we have

[MR
n ](t)− [MR

n ](s)6
∫ t

s
1(u¡Hn(R)) d

1
�2n
[Ãn(�An(·))](u)

= [Ln](t)− [Ln](s):

But, since Hn(R)→∞ as n tends to ∞, Ln →L Ã. Moreover, |�Ln(t)|6R identically.
Thus, [Ln] →L [Ã] (see Theorem 6.1, Corollary 6.6 in Jacod and Shiryaev, 1987).
Since [Ã] =

〈
Ã
〉
is a continuous process, we conclude ([MR

n ]) is C-tight.

Proof of (b): We have, from Eq. (2.6),

�[MR
n ](t)= 1(X

R
n (�An(t)−)¿0)1(t¡Hn(R))

1
(�n)2

(1− �n�n(An(t) + 1))2:

Note that if t¡Hn(R),∣∣∣∣� 1
�n
Ãn(�An(·))(t)

∣∣∣∣6R;
which implies∣∣∣∣ 1�n (1− �n�n(An(t) + 1))

∣∣∣∣6R:
Thus, for an arbitrary T¿0,

sup
06t6T

|�[MR
n ](t)|6R2:

On the other hand, by (a), we have

sup
06t6T

�[MR
n ](t)→P 0:

Hence, we have, by the bounded convergence theorem,

E sup
06t6T

�[MR
n ](t)→ 0:

Now we have proved (a) and (b), and (MR
n ) is tight. Actually it is C-tight since

Eq. (2.5) implies sup06T |�MR
n (t)|→P 0.

Next we prove the tightness of (X Rn ). X
R
n (t) satis�es the following Skorohod equation:

X Rn (t)=Xn(0) + Z
R
n (t) + �

R
n (t);

where �Rn (t) is increasing with �
R
n (0)= 0, and∫ t

0
1(X Rn (s)¿0) d�

R
n (s)= 0:

Write Zn(t) as Zn(t)=In(t) + �Zn(t). Then

ZRn (t)=IR
n (t) + �Z

R
n (t):
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Since

IR
n (t)=M

R
n (t)− NRn (t)

and since MR
n is C-tight as we have shown, due to Lemma 2.1(2), (I

R
n ) is C-tight.

While, ( �Z
R
n ) is clearly tight by assumption (A2). It follows that (Z

R
n ) is tight. Thus

(X Rn ; �
R
n ) is also tight owing to the continuity property of the solutions of Skorohod

equation (2:2) (Liptser and Shiryaev, 1989, Ch. 10, Theorem 1).
Proof of (2). For the proof of assertion (2), it su�ces to show the following:

(c) MR(t) is a continuous martingale,
(d) it holds that

〈MR〉(t)=
∫ t

0
1(XR(s)¿0) d〈Ã〉(s):

Proof of (c): That MR(t) is a martingale is a consequence of the fact that MR
n (t)

is a martingale for each n¿1 and |�MR
n (t)|6R identically (see Proposition 1.17, IX,

in Jacod and Shiryaev, 1987). To see that MR(t) is continuous, it su�ces to note that
it was previously shown that sup06t6T |�MR

n (t)|→P 0. Thus sup06t6T |�MR(t)|=0,
which implies the continuity of the path of the process MR(t).
Proof of (d): To prove (d), we will show that the following hold:

(e) For any Borel set A in R1 with Lebesgue measure zero,∫ t

0
1(XR(s)∈A) d〈MR〉(s)= 0:

(f) We have∫ t

0
1(XR(s)¿0) d〈Ã〉(s)=

∫ t

0
1(XR(s)¿0) d〈MR〉(s):

With (e) and (f), we get the result (d) as we see in the following calculations:∫ t

0
1(XR(s)¿0) d〈Ã〉(s) =

∫ t

0
1(XR(s)¿0) d〈MR〉(s) (from (f ))

= 〈MR〉(t)−
∫ t

0
1(XR(s)= 0) d〈MR〉(s)

= 〈MR〉(t) (from (e))

Proof of (e): Let(
X Rn (t); �

R
n (t); M

R
n (t);

∫ t

0
1(X Rn (s)¿0) ds

)
→L (XR(t); �R(t);MR(t); �(t))

in D([0;∞); R4). Then XR(t) satis�es the following equation:
XR(t)=X (0) +MR(t)− D̃(�(t)) + c�(t) + �R(t)

where �R(t) is non-decreasing and �R(0)= 0, and∫ t

0
1(XR(s)¿0) d�R(s)= 0:



K. Yamada / Stochastic Processes and their Applications 80 (1999) 103–128 113

In obtaining the above result, we have used the fact that vRn (t)→L 0 where

vn(t)=
1
�n
Ṽn

(∫ t

0
1(Xn(s)= 0) ds

)
:

Indeed, �rst consider the case �=∞ in assumption (A3). We know that �Rn (t) can be
written as

�Rn (t)=
�n
�n

∫ t

0
1(s¡Hn(R))1(X Rn (s)= 0) ds

and that (�Rn ) is tight. Then �=∞ implies∫ t

0
1(s¡Hn(R))1(X Rn (s)= 0) ds→L 0:

On the other hand, we note that

vRn (t)=
1
�n
Ṽn

(∫ t

0
1(X Rn (s)= 0)1(s¡Hn(R)) ds

)

and (1=�n)Ṽn→L �Ṽ . Thus, vRn (t)→L �Ṽ (0)= 0. Next consider the case where �¡∞.
In this case, since

√
�n=�n→ 0, (1=�n)Ṽn→L 0 and vRn (t)→L 0.

Now we note that MR(t) and D̃(�(t)) are orthogonal martingales. Indeed we will
show that 〈MR; D̃(�(·))〉=0. Owing to Remark 2, MR

n (t) and (1=�n)D̃n(�Dn (
∫ t
0 1

(X Rn (s)¿0) ds)) are orthogonal and hence we have〈
MR
n ; (1=�n)D̃n

(
�Dn

(∫ ·

0
1(X Rn (s)¿0) ds

))〉
(t) = 0:

(Note that D̃n(t) is not a martingale, but D̃n(�Dn (t)) is a martingale.) Letting n tend to
in�nity, by a standard argument, we deduce 〈MR; D̃(�(·))〉=0: Then, since XR(t) is a
semimartingale, it has a local time Ltx(XR) and, for any Borel set A in R with Lebesgue
measure zero, we have

(∗)
∫ t

0
1(XR(s)∈A) d〈MR − D̃(�(·))〉(s)

=
∫ t

0
1A(x)Ltx(XR) dx=0

(see Jacod, 1979, p. 188). Since MR and D̃(�(·)) are orthogonal, it follows that∫ t

0
1(XR(s)∈A) d〈MR〉(s)= 0:

This completes the proof of (e).
Proof of (f): First, we remark the following fact. Suppose XR(s)¿0. Then, since

we may assume that with probability one X Rn (�An(t))→XR(t) uniformly on t-compact
sets, there exists a �¿0 such that X Rn (�An(u))¿0 for all u∈ [s − �; s + �] and for all
su�ciently large n. On the other hand, since Hn(R)→∞ as n→∞, We have

[Ln](t)=
∫ t

0
1(s¡Hn(R)) d

1
(�n)2

[Ãn(�An(·))](s)→L 〈Ã〉(t)
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(see the proof of (a)). Thus we have, by Eq. (2.6),

∫ t

0
1(X Rn (�An(s)−) = 0)1(s¡Hn(s)) d

1
(�n)2

[Ãn(�An(·))](s)

= [Ln](t)− [MR
n ](t)

→L 〈Ã〉(t)− 〈MR〉(t)(≡ �(t)):

To obtain the last convergence, we note that MR
n →L MR and |�MR

n (t)|6R imply
[MR

n ]→L [MR] (see Theorem 6.1, Corollary 6.6 in Jacod and Shiryaev, 1987). Now,
since the above convergence may be assumed as uniform convergence on compact
t-sets with probability one, we have

∫ s+�

s−�
1(Xn(�An(s)−) = 0)1(s¡Hn(R)) d

1
(�n)2

[Ãn(�An(·))](s)

→ �(s+ �)− �(s− �):

But the left-hand side in the above convergence is zero for su�ciently large n as was
remarked at the beginning of the proof of (f). Hence �(s+ �)− �(s− �)= 0 and the
conclusion of (f) follows.

With the help of Lemmas 2.1 and 2.2, it is now easy to prove Theorem 1.

Proof of Theorem 1. Let us consider Eq. (2.2). We have shown that (ZRn ) is tight and
this implies the joint tightness of (X Rn ; Z

R
n ; �

R
n ) (see the proof of (1)(b) of Lemma 2.2).

Next, we will show that

�(t)=
∫ t

0
1(XR(s)¿0) ds; (2.7)

where �(t) was the weak limit of
∫ t
0 1(X

R
n (s)¿0) ds (see the proof of (e)). Indeed,

from the discussion in the proof of (e)(see (∗)) we see that
∫ t

0
1(XR(s)∈A) d¡D̃(�(·))¿(s)= 0

for any Borel set A with Lebesgue measure zero. Then this implies

∫ t

0
1(XR(s)∈A) d�(s)= 0:

On the other hand, we can show, as in the proof of (f), that

∫ t

0
1(XR(s)¿0) d�̃(s)= 0

where �̃(t)= t − �(t). From these two equations, we get Eq. (2.7).
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Now combining all previously obtained facts, we see that the limit process XR sat-
is�es the following equation:

XR(t) = X (0) +
∫ t

0
1(XR(s)¿0) dÃ(s)− D̃

(∫ t

0
1(XR(s)¿0) ds

)

+
∫ t

0
c1(XR(s)¿0) ds+ �R(t);

where �R(t) is non-decreasing and �R(0)= 0, and∫ t

0
1(XR(s)¿0) d�R(s)= 0

Hence, by the uniqueness in law of the solution of Eq. (2.1), XR(t) is equivalent in
law to X (t). Thus, we have shown that

(X Rn (t); M
R
n (t))→L (X (t);

∫ t

0
1(X (s)¿0) dÃ(s))

On the other hand, since Hn(R)→P∞, we have
sup

06t6T
|MR

n (t)−Mn(t)|→P 0;

sup
06t6T

|X Rn (t)− Xn(t)|→P 0:

Thus,

(Xn(t); Mn(t))→L (X (t);
∫ t

0
1(X (s)¿0) dÃ(s))

and

(Xn(t);In(t))→L (X (t);
∫ t

0
1(X (s)¿0) dÃ(s)):

Lemma 2.3. Let (Mn) be a sequence of locally square integrable martingales. Then
the sequence (Mn) is tight in D([0;∞); R) if ([Mn]) is C-tight and E sups6T �[Mn]
(s)→ 0 for any T¿0.

Proof. The proof is almost the same as in Jacod and Shiryaev (1987), (VI, Theo-
rem 4.13, p. 322); we note M 2

n is L-dominated by [Mn] and use the second Lenglart
inequality (3:32) in Jacod and Shiryaev (1987), (I, Lemma 3.30, p. 35).

3. Example 2: A limit theorem for occupation times and counting processes for busy
cycles in queueing networks – an approach by a Dynkin’s formula

We consider a sequence of open queueing networks with K stations described in
Reiman (1984). Let Qin(t) be the queue length at time t at station i for the nth net-
work. Then Qn(t)= (Q1n(t); Q

2
n(t); : : : ; Q

K
n (t)) satis�es the following equation: for each
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i; 16i6K ,

Qin(t) =Q
i
n(0) + A

i
n(t) +

K∑
j=1

�D
ji
n (t)− �D

i
n(t);

�D
i
n(t) =D

i
n

(∫ t

0
1(Qin(s)¿0) ds

)
;

�D
ji
n (t) =D

ji
n

(∫ t

0
1(Qj

n (s)¿0) ds
)
:

In the above equation, Ain(t) is an arrival process to station i and is a renewal process
de�ned by

Ain(t)= max

{
k;

k∑
l=1

uin(l)6t

}
;

where (uin(l)) is a sequence of random variables with �
i
n=1=Eu

i
n(1): D

i
n(t) is a potential

departure process from station i and is a renewal process de�ned by

Din(t)= max

{
k;

k∑
l=1

vin(l)6t

}

with �in=1=Ev
i
n(l). Finally, D

ji
n (t) is a potential stream of customers from station j to

station i and is de�ned as

Djin (t)=
D j
n (t)∑
l=1

�ji(l);

where (�j(l)); 16j6K; are sequences of i.i.d. K-dimensional vector random variables
taking the values {e1; : : : ; eK} where ei is the K-dimensional vector whose ith compo-
nent is 1 and others are 0. We let P(�j(l)= ei)=pji. The matrix P=(pij) is called a
routing matrix.
We assume the following conditions:
(B1) (Heavy tra�c condition): For 16i6K ,

√
n


�in + K∑

j=1

pji� jn − �in


 → ci

and

�in→ �i; �in→ �i

(B2) (1) For each t and i¿1,

Ain(t)
n

→P �it;
Din(t)
n

→P �it

(2) For 16i6K , put

Ui
n(t)=

[nt]∑
l=1

(1− �inuin(l)); Un(t)= (U 1
n (t); : : : ; U

K
n (t));
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D̃
i
n(t)=D

i
n(t)− �int; D̃n(t)= (D̃

1
n(t); : : : ; D̃

K
n (t));

Rn(t)=

(
[nt]∑
l=1

(�1(l)− p(1)); : : : ;
[nt]∑
l=1

(�K (l)− p(K))
)
;

where p(i)= (pi1; : : : ; piK).
Then(

1√
n
Un(t);

1√
n
D̃n(nt);

1√
n
Rn(t)

)
→L (Ũ (t); D̃(t); R(t)) in D

where Ũ , D̃, and R are Brownian motions with 〈Ũi〉(t)= �2i t; 16i6K:

Remark. (B2) implies that(
1√
n
Ãn(nt);

1√
n
D̃n(nt);

1√
n
Rn(t)

)
→L (Ã(t); D̃(t); R(t));

where Ã(t)= (Ũ1(�1t); : : : ; ŨK (�K t)).

(B3) The routing matrix P has spectral radius strictly smaller than unity.

Then we have the following result (Reiman, 1984).

Proposition 1 (Di�usion approximation theorem). Assume the conditions (B1)–(B3)
and assume that Xn(0)→L X (0). Let us consider a sequence of scaled processes
(Xn; In) de�ned by

Xn(t)=
(
1√
n
Q1n(nt); : : : ;

1√
n
QKn (nt)

)
; n¿1;

In(t)=
(
1√
n
�1n

∫ nt

0
1(Qin(s)= 0) ds; : : : ;

1√
n
�Kn

∫ nt

0
1(QKn (s)= 0) ds

)
; n¿1:

Then (Xn; In)→L (X; I) in D([0;∞);R2) where the limit process (X (t); I(t)) is the
unique solution of the following Skorohod equation:

Xi(t) = Xi(0) + cit + Ãi(t) +
K∑
j=1

D̃ji(t)− D̃i(t)

+ Ii(t)−
K∑
j=1

pjiIj(t); Xi(t)¿0; 16i6K;

where

D̃ji(t)= R̃ji(�jt) + pjiD̃j(t)

and Rji(t) is the ith component of the K-dimensional vector process Rj(t) where
R(t)= (R1(t); : : : ; RK (t)) is the weak limit process of Rn(t).
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Moreover Ii(t); 16i6K; are non-decreasing with Ii(0)= 0 and satisfy∫ t

0
1(Xi(s)¿0) dIi(s)= 0:

Our problem in this section is to investigate the limiting behavior of occupation times
for the above queueing networks. That is, for each station i, we de�ne a sequence of
scaled processes (Bi

n) de�ned by

Bi
n(t)=

1√
n

∫ nt

0
f(Qin(s)) ds;

where f is assumed to have a compact support and f may be di�erent for each
station. A typical example of f is f(x)= 1 (x6�); Bi

n(t) expresses the scaled process
of occupation time at station i when the queue length Qin(t) is under �.
Then we have

Theorem 2. Let �(f)=
∑∞

q=0 f(q) and ��i= �i+
∑K

j=1 pji�j for 16i6K . Then under
assumptions (B1)–(B3), Bn→L B in D([0;∞);RK) where the ith component Bi(t) of
the process B(t) is de�ned as

Bi(t)=
1
��i
(�(f)(1− pii) + piif(0))Ii(t):

Corollary 1. Let f be as in Theorem 2, and let for each i (16i6K),

Cin(t)=
1√
n

∫ nt

0
f(Qin(s−)) dAi

n(s);

where

Ai
n(t)=A

i
n(t) +

K∑
j=1

Djin

(∫ t

0
1(Qj

n (s)¿0) ds
)
:

(That is, Ai
n(t) is the arrival process to station i.) Then Cn(t)→L C(t) in D([0;∞);

RK) where the ith component of the process C(t) is given by

Ci(t)= (�(f)(1− pii))Ii(t):
Let, as a special case, f(Q)= 1(Q=0). Then

∫ t
0 f(Q

i
n(s−)= 0) dAi

n(s) expresses the
number of busy cycles up to time t at station i. In this case, Ci(t)= (1− pii)Ii(t).

The proof of this theorem can be done in the same way as in Yamada (1993), where
we have used a Dynkin’s formula for Markov processes. Though our process Qn(t) is
not Markovian, we can still use a similar approach and the general idea is as follows:
For simplicity, we consider the single station case, and let Qn(t) be a sequence of
G=G=1 processes with arrival rate �n and service rate �n. For an arbitrary function F
de�ned on {0; 1; 2; : : :}, we de�ne a sequence of the processes Mn(t) by

Mn(t)≡F(Qn(t))− F(Qn(0))−
∫ t

0
LnF(Qn(s)) ds;
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where Ln is an operator on a function space de�ned by

LnF(Q)= (F(Q + 1)− F(Q))�n − (F(Q)− F(Q − 1))1(Q¿0)�n:

Thus if we can �nd a function F satisfying LnF(q)=f(q), the investigation of lim-
iting behavior of occupation time 1=

√
n
∫ nt
0 f(Qn(s)) ds is reduced to that of limiting

behavior of ((1=
√
n)F(Qn(nt)) and (1=

√
n)Mn(nt)). Suppose (Qn(t)) is a Markov pro-

cess. Then Ln is the generator of the process Qn(t) and Dynkin’s formula tells us that
(Mn(t)) is a sequence of martingales and hence we can apply the stochastic calculus
approach to the investigation of limiting behavior of the sequence of the martingales
(1=

√
n)Mn(nt); n¿1. Unfortunately, the process Qn(t) is not a Markov process, and

hence Mn(t) is no more martingale. However, as in Section 2, the process Mn(t) is
expressed as a stochastic integral with respect to renewal processes and (1=

√
n)Mn(nt)

can be expressed as

1√
n
Mn(nt)=mn(t) + ln(t)

such that (mn) is a sequence of martingales and (ln) converges in law to the null
process. Thus, similar arguments as in Section 2 can be applied. In this step the
convergence of martingales (mn), which are stochastic integrals with respect to renewal
processes, and the identi�cation of the limit process are the main part of the discussion
in the proof of Theorem 2 and this is contained in Step 4.

Proof of Theorem 2. For an arbitrary function F on {0; 1; 2; : : :}, we have

F(Qin(t)) = F(Q
i
n(0)) +

∑
s6t;�Qin(s) 6= 0

(F(Qin(s)− F(Qin(s−))

= F(Qin(0)) +
∫ t

0
�F(Qin(s−) + 1) d(Ain(s) +

K∑
j=1

�D
ji
n (s))

−
∫ t

0
�F(Qin(s−)) d �Din(s)

where �F(Q)=F(Q)− F(Q − 1) for Q¿1.
We put

��
i
n= �

i
n +

K∑
j=1

�jnpji;

Bin(t)=
∫ t

0
1(Qin(s)¿0) ds;

D̃
ji
n (t)=D

ji
n (t)− �jnpjit:
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Then

F(Qin(t)) = F(Q
i
n(0)) +

∫ t

0
(�F(Qin(s) + 1) ��

i
n − �F(Qin(s))�in1(Qin(s)¿0)) ds

+Mn(t)−
∫ t

0
�F(Qin(s) + 1)

K∑
j=1

�jnpji1(Q
j
n (s)= 0) ds; (3.1)

where

Mn(t) =
∫ t

0
�F(Qin(s−) + 1) d


Ãin(s) + K∑

j=1

D̃
ji
n (B

j
n(s))




−
∫ t

0
�F(Qin(s−)) dD̃

i
n(B

i
n(s)):

Since f has a compact support, there exists a number Q0 such that f(Q)= 0 if Q¿Q0.
We choose a function F such that F(0)= 0 and

�F(Q)=
1
��
i
n


f(Q − 1) + �

i
n

��
i
n

f(Q − 2) + · · ·+
(
�in
��
i
n

)Q−1
f(0)




for Q6Q0 + 1 and �F(Q)= �F(Q0 + 1) for Q¿Q0 + 1. Then F satis�es

�F(Q + 1)��in − �F(Q)�in1(Q¿0)=f(Q)
for Q6Q0 + 1. Then Eq. (3.1) can be written as

F(Qin(t)) = F(Q
i
n(0)) +

∫ t

0
f(Qin(s)) ds+

∫ t

0
1(Qin(s)¿Q0)�F(Q0 + 1)(��

i
n−�in) ds

+Mn(t)−
K∑
j=1

pji

∫ t

0
�F(Qin(s) + 1)�

j
n1(Q

j
n (s)= 0) ds:

This leads to the following equation:

1√
n
F(

√
nX in (t)) =

1√
n
F(

√
nX in (0)) +Bi

n(t)

+
∫ t

0
1
(
X in (s)¿

Q0√
n

)
�F(Q0 + 1)

√
n(��in − �in) ds+

1√
n
Mn(nt)

−
K∑
j=1

pji

∫ t

0
�F(

√
nX in (s) + 1) dI

j
n (s); (3.2)

where

I jn (t)=
∫ t

0

√
n�jn1(X

j
n (s)= 0) ds:

Thus, the limit process of Bi
n can be obtained by considering the limit processes of

the other terms in Eq. (3.2). Especially the investigation of the limit of the process
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(1=
√
n)Mn(nt), which is the scaled stochastic integral with respect to renewal processes,

is the main part of our discussion as in Section 2. Hereafter, in view of Skorohod’s
representation theorem, we may assume that the convergence in (B2) holds w.p.1. We
may also assume that in Reiman’s di�usion approximation theorem (Proposition 1),
(Xn; In)→ (X; I) w.p.1. Note that since in these convergences the limit processes are
continuous, the above assumption implies the uniform convergence on compact t-sets
(abbreviated as u.o.c.).
Step 1. In this step we note that the following facts hold:

(a) �F(Q0 + 1)→ (1=��i)
∑
(f) as n→∞. (Note that �F(·) depends on n.)

(b) �F(
√
nX in (s) + 1)→ (1=��i)

∑
(f) as n→∞ if Xi(s)¿0.

(c) As n→∞, for each t,
1√
n
F(

√
nX in (t))→

1
��i

∑
(f)Xi(t):

All these facts are deduced easily from the de�nition of F .
Step 2. Note that w.p.1, Xi(t)¿0 for a.e. t. Hence w.p.1, 1(X in (s)¿(Q0=

√
n))→ 1

for a.e. s. Thus we have that w.p.1,∫ t

0
1
(
X in (s)¿

Q0√
n

)
�F(Q0 + 1)

√
n(��in − �in) ds→

1
��i

∑
(f)cit

for any t.
Step 3. We will show that w.p.1,∫ t

0
�F(

√
nX in (s) + 1) dI

j
n (s)→

1
��i

(∑
(f)Ij(t)1(i 6= j) + f(0)Ii(t)1(i= j)

)
for any t. We have∫ t

0
�F(

√
nX in (s) + 1) dI

i
n(s)= �F(1)I

i
n(t)→

1
��i
f(0)Ii(t) u:o:c

as n tends to ∞. We also have, by (b) of Step 1, that w.p.1,
�F(

√
nX in (s) + 1)1(Xi(s)¿0)→ 1(Xi(s)¿0)(1=��i)

∑
(f)

for all s¿0. We also note that the function t→ 1(Xi(t)¿0) is approximated by a se-
quence of step functions. Indeed we let, for each k, [0;∞)=⋃∞

l=1 I
l
k where I

l
k = [(l−1)=

2k ; l=2k). We de�ne a sequence of step functions (fk) as follows: For an arbitrarily
�xed s, suppose s∈ I lk . Then fk(s)= 0 if there exists a u∈ I lk such that Xi(u)= 0, and
fk(s)= 1 if Xi(u)¿0 for all u∈ I lk . Then since Xi(·) is continuous, it is evident that
fk(s)→ 1(Xi(s)¿0) as k→∞ for all s. Hence with these facts, by Lemma 3.1, which
is to appear in the last part of this section, we have∫ t

0
�F(

√
nX in (s) + 1)1(Xi(s)¿0) dI

j
n (s)→

1
��i

∑
(f)

∫ t

0
1(Xi(s)¿0) dIj(s):

However, owing to Reiman and Williams (1988), (Theorem 1), we have∫ t

0
1(Xi(s)¿0) dIj(s)= Ij(t)−

∫ t

0
1(Xi(s)= 0) dIj(s)= Ij(t)1 (i 6= j):
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Similarly, since �F(Q) is bounded uniformly in n (i.e., there exists a constant C such
that |�F(Q)|6C for all n and Q), using Lemma 3.1 we have, if i 6= j,∣∣∣∣

∫ t

0
�F(

√
nX in (s) + 1)1(Xi(s)= 0) dI

j
n (s)

∣∣∣∣
6C

∫ t

0
1(Xi(s)= 0) dI jn (s)→C

∫ t

0
1(Xi(s)= 0) dIj(s)= 0; u:o:c:

Combining these facts, we have the conclusion for Step 3.
Step 4 (Convergence of stochastic integrals): We will show that

1√
n
Mn(nt)→L

1
��i

∑
(f)


Ãi(t) + K∑

j=1

D̃ji(t)− D̃i(t)

 in D([0;∞); R1):

Note that

1√
n
Mn(nt) =

∫ t

0
�F(

√
nX in (s−) + 1) d


 1√

n
Ãin(ns) +

K∑
j=1

1√
n
D̃ jin (B

j
n(ns))




−
∫ t

0
�F(

√
nX in (s−)) d

1√
n
D̃in(B

i
n(ns)):

We must consider the convergence of stochastic integrals in the above equation, and,
for example, we will consider the convergence of the stochastic integral:

Wn(t)≡
∫ t

0
�F(

√
nX in (s−) + 1) d

1√
n
D̃ jin (B

j
n(ns)): (3.3)

We proceed in the same way as in Section 2. We put

�n; j(t)=
∫ t

0
1(X jn (s)¿0) ds:

Then we have

Wn(t)=
∫ �n; j(t)

0
�F(

√
nX in (�

−1
n; j (s)−) + 1) d

1√
n
D̃ jin (ns):

Since w.p.1 �n; j(t)→ t u.o.c., it su�ces to consider the convergence

�Wn(t)≡
∫ t

0
�F(

√
nX in (�

−1
n; j (s)−) + 1) d

1√
n
D̃ jin (ns):

Recalling the de�nition of D̃ jin (t), we de�ne, as in Section 2, a stopping time �
j
n(t) by

�jn(t)= inf (s; s¿t; �D
j
n(ns) 6=0):

We then have the following decomposition:

�Wn(t)=W 1
n (t)−W 2

n (t);
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where

W 1
n (t) =

∫ � jn (t)

0
�F(

√
nX in (�

−1
n; j (s)−) + 1) d

1√
n
D̃ jin (ns)

=
∫ t

0
�F(

√
nX in (�

−1
n; j (�

j
n(s))−) + 1) d

1√
n
D̃ jin (n�

j
n(s));

W 2
n (t) =

∫ � jn (t)

t
�F(

√
nX in (�

−1
n; j (s)−) + 1) d

1√
n
D̃ jin (ns):

Under assumption (B2), as in Section 2 we have

sup
06t6T

|W 2
n (t)|→P 0:

We also note that W 1
n (t) is an Fn(t)-martingale, where the �ltration Fn(t) is de�ned

by

Fn(t) = �(Qn(0); uin(l); 16l6A
i
n(nt) + 1; v

i
n(l); 16l6D

i
n(nt) + 1;

�ij(l); 16l6Dijn (nt) + 1; 16i; j6K):

Thus the convergence of the stochastic integral Wn(t) in Eq. (3.3) is reduced to that
of the martingale W 1

n (t). However, since it holds that �
j
n(s)→ s, �n; j(s)→ s u.o.c. and

Xi(s)¿0 for a.e. s,

�F(
√
nX in (�

−1
n; j (�

j
n(s))−) + 1)− �F(

√
nX in (s−))→ 0; for a:e: s:

(See Step 1(b).). Then noting that 1=
√
nD̃ jin (n�

j
n(t))→L D̃ji(t) in D, it is easy to see

that W 1
n (t) is the sum of

∫ t
0 �F(

√
nX in (s−)) d(1=

√
n)D̃ jin (n�

j
n(s)) and a process which

is convergent to the null process as n tends to in�nity. Thus summarizing the above
discussion, we come to the conclusion that to show the convergence of (1=

√
n)Mn(nt),

it su�ces to show the convergence:

An(t)≡
∫ t

0
�F(

√
nX in (s−)) d�in(s)→L A(t)≡ 1

��i
�(f)


Ãi(t)+ K∑

j=1

D̃ji(t)−D̃i(t)

;

where

�in(t) =
1√
n
Ãin(n


i
n(t)) +

K∑
j=1

1√
n
D̃ jin (n�

j
n(t))−

1√
n
D̃in(n�

i
n(t)):


in(t) = inf (s; s¿t;�Ã
i
n(ns) 6=0):

As in Section 2, de�ne a stopping time Hn(R) by

HRn (t)= inf (t; |��in(t)|¿R)
and we will show the convergence:

AR
n (t)≡

∫ t

0
�F(

√
nX in (s−))1(s¡Hn(R)) d�in(s)→L A(t)=

1
��i
�(f)�i(t); (3.4)

where �i(t)=Ãi(t) +
∑K

j=1 D̃ji(t)− D̃i(t).
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Write AR
n (t) as

AR
n (t) =

∫ t

0
�F(

√
nX in (s−))1(Xi(s)¿0)1(s¡Hn(R)) d�in(s)

+
∫ t

0
�F(

√
nX in (s−))1(Xi(s)= 0)1(s¡Hn(R)) d�in(s)

≡AR;1
n (t) +AR;2

n (t):

We note that by assumption (B2) and the fact �in(t)→ t u.o.c. as n tends to in�nity,
�in→L �i. Since 1(s¡Hn(R))→ 1 as n tends to in�nity, this implies that∫ t

0
1(s¡Hn(R)) d�in(s)→L �i(t):

Moreover,∣∣∣∣�
∫ t

0
1(s¡Hn(R)) d�in(s)

∣∣∣∣6R:
Hence,∫ t

0
1(s¡Hn(R)) d[�in](s)→L [�i](t)

(see Jacod, 1987, VI, Theorem 6.1, Cororally 6.6, p. 342). Since this convergence may
be assumed to be the uniform convergence on compact t-sets and since [�i](t)=C0t
where C0 is a positive constant, by Lemma 3.1,

[AR;2
n ](t) =

∫ t

0
(�F(

√
nX in (s−)))21(Xi(s)= 0)1(s¡Hn(R)) d[�in](s)

6C 2
∫ t

0
1(Xi(s)= 0)1(s¡Hn(R)) d[�in](s)

→C 2
∫ t

0
1(Xi(s)= 0) d[�i](s)= 0 u:o:c:

as n tends to in�nity (recall that C was the bound for |�F(Q)|). Thus AR;2
n →L 0.

It follows that to see Eq. (3.4) it su�ces to show the convergence AR;1
n →L A. But

for this, since

|�AR;1
n (t)|6 1√

n
(K + 2);

it su�ces to show [AR;1
n ](t)→P [A](t) for each t. We have

[AR;1
n ](t)=

∫ t

0
(�F(

√
nX in (s−)))21(Xi(s)¿0)1(s¡Hn(R)) d[�in](s):

Since, by Step 1(b) in the proof of Theorem 2,

(�F(
√
nX in (s−)))21(Xi(s)¿0)→

(
1
��i
�(f)

)2
1(Xi(s)¿0);
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for all s, by Lemma 3.1 we have, for each t,

[AR;1
n ](t)→

(
1
��i
�(f)

)2 ∫ t

0
1(Xi(s)¿0) d[�i](s)=

(
1
��i
�(f)

)2
[�i](t)= [A](t):

Thus we have shown (3.4), and we come to the conclusion of Step 4.
Step 5: Combining the results in Steps 1–4, from Eq. (3.2) it follows that for each t,

Bi
n(t)→

1
��i

∑
(f)


Xi(t)−Xi(0)−cit − Ãi(t)− K∑

j=1

D̃ji(t)+D̃i(t)+
K∑

j=1; j 6=i
pjiIj(t)




+
1
��i
piif(0)Ii(t)=

1
��i

∑
(f)(1− pii)Ii(t) + 1

��i
piif(0)Ii(t):

Thus, we conclude that

Bi(t)=
1
��i
(�(f)(1− pii) + f(0)pii)Ii(t):

Proof of Corollary. We have

C i
n(t) =

1√
n

∫ nt

0
f(Qin(s))(�

i
n +

K∑
j=1

pji� jn) ds

−
K∑
j=1

1√
n

∫ nt

0
f(Qin(s))pji�

j
n1(Q

j
n (s)= 0) ds

+
1√
n

∫ nt

0
f(Qin(s−)) dÃin(s)

+
K∑
j=1

1√
n

∫ nt

0
f(Qin(s−)) dD̃ jin

(∫ s

0
1(Qj

n (u)¿0) du
)

≡ Z1n (t)− Z 2n (t) + Z 3n (t) + Z4n (t):

By Theorem 2, we have

Z1n (t)→L (�(f)(1− pii) + piif(0))Ii(t):

As for Z 3n (t), we have

Z 3n (t)=
∫ t

0
f(

√
nX in (s−)) d

1√
n
Ãin(ns):

Since f has a compact support and Xi(s)¿0 for a.e. s, f(
√
nX in (s−))→ 0 for a.e.s.

Moreover, (1=
√
n)Ãn(nt)→L Ã(t). Hence by using the same argument as in Section 1

(Lemmas 2.1 and 2.2) and Section 2 (Step 4), Z 3n (t)→L 0. A similar argument also
yields the convergence: Z4n (t)→L 0. As for the convergence of Z 2n (t), we have, using
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the same argument as in Step 3 in the proof of Theorem 2,

Z 2n (t) =
K∑
j=1

pji

∫ t

0
f(

√
nX in (s))

√
n�jn1(X

j
n (s)= 0) ds

=piif(0)I in(t) +
K∑

j=1; j 6=i
pji

∫ t

0
f(

√
nX in (s))1(Xi(s)¿0) dI

j
n (s)

+
K∑

j=1; j 6=i

∫ t

0
f(

√
nX in (s))1(Xi(s)= 0) dI

j
n (s)→L piif(0)Ii(t):

In obtaining the above convergence, note that f(
√
nX in (s))1(Xi(s)¿0)→ 0 as n→∞

since f has a compact support.

Lemma 3.1. Let us assume that (1) yn(t); n¿1, and y(t), both of which belong to
D([0;∞); R1), are non-decreasing functions with yn(0)=y(0)= 0, yn(t)→y(t) uni-
formly on compact t-sets, (2) fn(t)→f(t) for each t and fn and f are bounded.
Then we have∫ t

0
|fn(s)− f(s)| dyn(s)→ 0 u:o:c:

Moreover, suppose that there exists a sequence of step functions (fk(t)) such that
f(t)= limk→∞ fk(t) for each t. (A function f is said to be a step function if it has
the form

f(t)= ci; �i−1¡t¡�i

for a subdivision of [0;∞).) Then we have∫ t

0
fn(s) dyn(s)→

∫ t

0
f(s) dy(s) u:o:c:

Proof. To prove the �rst convergence, let t be �xed. Given an arbitrary �¿0, there
exists a Borel set A⊂ [0; t] and an integer N such that y(A)¡� and |fn(s)− f(s)|¡�
for all s∈Ac and all n¿N where y(A) represents the measure of the set A induced
by y(·) (see Royden, 1968, (Ch. 3, Section 6, Proposition 23, p. 71)). Note that there
exists a �nite union of intervals B such that A⊂B and y(B)¡�. Then we have for
n¿N ,

∫ t

0
|fn(s)− f(s)| dyn(s)

=
∫ t

0
|fn(s)− f(s)|1Bc(s) dyn(s) +

∫ t

0
|fn(s)− f(s)|1B(s) dyn(s)

6�yn(t) + 2Cyn(B);
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where C is the bound for fn and f. Since yn(B)→y(B) and yn(t)→y(t), we have
the �rst convergence. To see the second convergence, owing to the �rst convergence
it su�ces to show∫ t

0
f(s) dyn(s)→

∫ t

0
f(s) dy(s) u:o:c:

We have∫ t

0
f(s) dyn(s)=

∫ t

0
(f(s)− fk(s)) dyn(s) +

∫ t

0
fk(s) dyn(s):

Then using the same argument as in the proof of the �rst convergence, for any �¿0,
there exists a K such that for k¿K ,∫ t

0
|f(s)− fk(s)| dyn(s)¡� uniformly in n

and ∫ t

0
|f(s)− fk(s)| dy(s)6�:

Then

�n(t) ≡
∣∣∣∣
∫ t

0
f(s) dyn(s)−

∫ t

0
f(s) dy(s)

∣∣∣∣6
∣∣∣∣
∫ t

0
f(s) dyn(s)−

∫ t

0
fk(s) dyn(s)

∣∣∣∣
+
∣∣∣∣
∫ t

0
fk(s) dyn(s)−

∫ t

0
fk(s) dy(s)

∣∣∣∣+
∣∣∣∣
∫ t

0
fk(s) dy(s)−

∫ t

0
f(s) dy(s)

∣∣∣∣
6 2�+

∣∣∣∣
∫ t

0
fk(s) dyn(s)−

∫ t

0
fk(s) dy(s)

∣∣∣∣ :
Letting n tend to in�nity, for a step function fk(s) we have∫ t

0
fk(s) dyn(s)−

∫ t

0
fk(s) dy(s)→ 0 u:o:c:

Hence

lim sup
n

�n(t)62� u:o:c:

Since � was arbitrary, we have limn�n(t)= 0 u.o.c.
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