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Abstract

We establish a connection between the strong solution to the spatially periodic Navier–Stokes equations
and a solution to a system of forward–backward stochastic differential equations (FBSDEs) on the group of
volume-preserving diffeomorphisms of a flat torus. We construct representations of the strong solution to
the Navier–Stokes equations in terms of diffusion processes.
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1. Introduction

The classical Navier–Stokes equations read as follows:

∂

∂t
u(t, x) = −(u,∇)u(t, x)+ ν∆u(t, x)−∇ p(t, x),

div u = 0,

u(0, x) = −u0(x),

(1)
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where u0(x) is a divergence-free smooth vector field. We fix a time interval [0, T ], and rewrite
Eqs. (1) with respect to the function

ũ(t, x) = −u(T − t, x).

Problem (1) is equivalent to the following:

∂

∂t
ũ(t, x) = −(ũ,∇)ũ(t, x)− ν∆ũ(t, x)−∇ p̃(t, x),

div ũ = 0,

ũ(T, x) = u0(x),

(2)

where p̃(t, x) = p(T − t, x).
In what follows, system (2) will be referred to as the backward Navier–Stokes equations. To

this system we associate a certain system of forward–backward stochastic differential equations
on the group of volume-preserving diffeomorphisms of a flat torus. For simplicity, we work in
two dimensions. However, the generalization of most of the results to the case of n dimensions
is straightforward. The necessary constructions and non-straightforward generalizations related
to the n-dimensional case are considered in the Appendix.

Assuming the existence of a solution of (2) with the final data in the Sobolev space Hα for
sufficiently large α, we construct a solution of the associated system of FBSDEs. Conversely, if
we assume that a solution of the system of FBSDEs exists, then the solution of the Navier–Stokes
equations can be obtained from the solution of the FBSDEs. In fact, the constructed FBSDEs on
the group of volume-preserving diffeomorphisms can be regarded as an alternative object to the
Navier–Stokes equations for studying the properties of the latter.

The connection between forward–backward SDEs and quasi-linear PDEs in finite dimensions
has been studied by many authors, for example in [9,18,22].

Our construction uses the approach originating in the work of Arnold [3] which states
that the motion of a perfect fluid can be described in terms of geodesics on the group
of volume-preserving diffeomorphisms of a compact manifold. The necessary differential-
geometric structures were developed in later work by Ebin and Marsden [10]. We note here
that [3,10] deal only with differential geometry on the group of maps without involving
probability.

The associated system of FBSDEs is solved using the existence of a solution to (2), and
by applying results from the works of Gliklikh [12–15]. The latter works use, in turn, the
approach to stochastic differential equations on Banach manifolds developed by Dalecky and
Belopolskaya [5], and started by McKean [19]. Conversely, a solution of (2) is obtained using
the existence of a solution to the associated FBSDEs as well as some ideas and constructions
from [9]. However, unlike [9], we work in an infinite-dimensional setting.

Representations of the Navier–Stokes velocity field as a drift of a diffusion process were
initiated in [24,20]. A different system of stochastic equations (but not a system of two SDEs)
associated to the Navier–Stokes system was introduced and studied in [4]. This system also
includes an SDE on the group of volume-preserving diffeomorphisms, but is not a system
of forward–backward SDEs. Also, we mention here the works [1,2] discussing probabilistic
representations of solutions to the Navier–Stokes equations, and the work [6] establishing
a stochastic variational principle for the Navier–Stokes equations. Different probabilistic
representations of the solution to the Navier–Stokes equations were studied for example in [17,7].
We note that the list of literature on probabilistic approaches to the Navier–Stokes equations as
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well as connections between finite-dimensional FBSDEs and PDEs cited in this paper is by no
means complete.

The method of applying infinite-dimensional forward–backward SDEs in connection to the
Navier–Stokes equations is employed, to the authors’ knowledge, for the first time.

2. Geometry of the diffeomorphism group of the two-dimensional torus

Let T2
= S1

× S1 be the two-dimensional torus, and let Hα(T2), α > 2, be the space of
Hα-Sobolev maps T2

→ T2. By Gα we denote the subset of Hα(T2) whose elements are C1-
diffeomorphisms. Let G α

V be the subgroup of Gα consisting of diffeomorphisms preserving the
volume measure on T2.

Lemma 1. Let g be an Hα-map and a local diffeomorphism of a finite-dimensional compact
manifold M, F be an Hα-section of the tangent bundle T M. Then, F ◦ g is an Hα-map.

Proof. See [14] (p. 139) or [10] (p. 108). �

Let Rg denote the right translation on Gα , i.e. Rg(η) = η ◦ g.

Lemma 2. The map Rg is C∞-smooth for every g ∈ Gα . Furthermore, for every η ∈ Gα , the
tangent map T Rg restricted to the tangent space TηGα is defined by the formula:

T Rg : TηGα
→ Tη◦gGα, X 7→ X ◦ g.

Proof. The proof easily follows from the α-lemma (see [10,14,15]). �

Lemma 3. The groups Gα and G α
V are infinite-dimensional Hilbert manifolds. The group G α

V is
a subgroup and a smooth submanifold of Gα .

Lemma 4. The tangent space TeGα is formed by all Hα-vector fields on T2. The tangent space
TeG α

V is formed by all divergence-free Hα-vector fields on T2.

The proof of Lemmas 3 and 4 can be found for example in [10,14,15].

Lemma 5. Let X ∈ TeGα be an Hα-vector field on T2. Then the vector field X̂ on Gα defined
by X̂(g) = X ◦ g is right-invariant. Furthermore, X̂ is Ck-smooth if and only if X ∈ Hα+k .

Proof. The first statement follows from Lemma 2. The proof of the second statement can be
found in [10]. �

The vector field X̂ on Gα defined in Lemma 5 will be referred to below as the right-invariant
vector field generated by X ∈ TeGα .

Let g ∈ G α , X, Y ∈ TeGα . Consider the weak ( · , · )0 and the strong ( · , · )α Riemannian
metrics on Gα (see [15]):

(X̂(g), Ŷ (g))0 =
∫
T2
(X ◦ g(θ), Y ◦ g(θ))dθ, (3)

(X̂(g), Ŷ (g))α =
∫
T2
(X ◦ g(θ), Y ◦ g(θ))dθ

+

∫
T2
((d + δ)αX ◦ g(θ), (d + δ)αY ◦ g(θ))dθ (4)
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where d is the differential, δ is the codifferential, X̂ and Ŷ are the right-invariant vector fields on
Gα generated by the Hα-vector fields X and Y . Metric (3) gives rise to the L2-topology on the
tangent spaces of Gα , and metric (4) gives rise to the Hα-topology on the tangent spaces of Gα

(see [15]). If g ∈ G α
V , then scalar products (3) and (4) do not depend on g. Moreover, for the

strong metric on G α
V , we have the following formula:

(X̂(g), Ŷ (g))α =
∫
T2
(X ◦ g(θ), (1+∆)αY ◦ g(θ))dθ

where ∆ = (dδ + δd) is the Laplace–de Rham operator (see [23]).
Let us introduce the notation:

Z+2 = {(k1, k2) ∈ Z2
: k1 > 0 or k1 = 0, k2 > 0};

k = (k1, k2) ∈ Z+2 , k̄ = (k2,−k1), |k| =
√

k2
1 + k2

2, k · θ = k1θ1 + k2θ2,

θ = (θ1, θ2) ∈ T2, ∇ =

( ∂

∂θ1
,
∂

∂θ2

)
, (k̄,∇) = k2

∂

∂θ1
− k1

∂

∂θ2
,

and the vectors

Āk(θ) =
1

|k|α+1 cos(k · θ)
(

k2
−k1

)
, B̄k(θ) =

1

|k|α+1 sin(k · θ)
(

k2
−k1

)
,

Ā0 =

(
1
0

)
, B̄0 =

(
0
1

)
.

Let {Ak(g), Bk(g)}k∈Z+2 ∪{0}
be the right-invariant vector fields on Gα generated by { Āk,

B̄k}k∈Z+2 ∪{0}
, i.e.

Ak(g) = Āk ◦ g, Bk(g) = B̄k ◦ g, g ∈ Gα,

A0 = Ā0, B0 = B̄0.

By ω-lemma (see [14]), Ak and Bk are C∞-smooth vector fields on Gα .

Lemma 6. The vectors Ak(g), Bk(g), k ∈ Z+2 ∪ {0}, g ∈ G α
V , form an orthogonal basis of the

tangent space TgG α
V with respect to both the weak and the strong inner products in TgG α

V . In
particular, the vectors Āk , B̄k , k ∈ Z+2 ∪ {0}, form an orthogonal basis of the tangent space
TeG α

V . Moreover, the weak and the strong norms of the basis vectors are bounded by the same
constant.

Proof. It suffices to prove the lemma for the strong norm. Let us compute ∆α Āk . Note that
the vectors k

|k| and k̄
|k| form an orthonormal basis of R2. Let us observe that by the identity

(k̄,∇) cos(k · θ) = 0, δ Āk = 0. Hence dδ Āk = 0 which implies ∆ Āk = δd Āk . We obtain:

Āk =
1
|k|α

cos(k · θ)
k̄

|k|
,

d Āk = −
1

|k|α−1 sin(k · θ)
k

|k|
∧

k̄

|k|
,

∆ Āk = δd Āk =
1

|k|α−2 cos(k · θ)
k̄

|k|
= |k|2 Āk,
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∆α Āk = |k|
α cos(k · θ)

k̄

|k|
= |k|2α Āk .

This and the volume-preserving property of g ∈ G α
V imply that

(Bm(g), Ak(g))α = (B̄m, Āk)α = (1+ |k|2α)(B̄m, Āk)L2 = 0,

‖Ak(g)‖
2
α = ‖ Āk‖

2
α =

(
1+ |k|2α

)
‖ Āk‖

2
L2
= 2π2

(
|k|−2α

+ 1
)

where ‖ · ‖α is the norm corresponding to the scalar product ( · , · )α . Thus, 2π2 6 ‖Ak(g)‖2α 6
4π2. Clearly, for the ‖Bk(g)‖2α we obtain the same. �

It has been shown, for example, in [10] and [15] that the weak Riemannian metric has the
Levi-Civita connection, geodesics, the exponential map, and the spray. Let ∇̄ and ∇̃ denote the
covariant derivatives of the Levi-Civita connection of the weak Riemannian metric (3) on Gα

and G α
V , respectively. In [10] (see also [15,14]), it has been shown that

∇̃ = P ◦ ∇̄

where P : T Gα
→ T G α

V is defined in the following way: on each tangent space TgGα , P = Pg
where Pg = T Rg ◦ Pe ◦ T Rg−1 , T Rg and T Rg−1 are tangent maps, and Pe : TeGα

→ TeG α
V is

the projector defined by the Hodge decomposition.

Lemma 7. Let Û be the right-invariant vector field on Gα generated by an Hα+1-vector field U
on T2, and let V̂ be the right-invariant vector field on Gα generated by an Hα-vector field V on
T2. Then ∇̄V̂ Û is the right-invariant vector field on Gα generated by the Hα-vector field ∇V U
on T2.

Lemma 8. Let Û be the right-invariant vector field on G α
V generated by a divergence-free

Hα+1-vector field U on T2, and let V̂ be the right-invariant vector field on Gα generated by
a divergence-free Hα-vector field V on T2. Then ∇̃V̂ Û is the right-invariant vector field on G α

V
generated by the divergence-free Hα-vector field Pe∇V U on T2.

The proofs of Lemmas 7 and 8 follow from the right-invariance of covariant derivatives on Gα

and G α
V (see [15]).

Remark 1. The basis { Āk, B̄k}k∈Z+2 ∪{0}
of TeG α

V can be extended to a basis of the entire tangent
space TeGα . Indeed, let us introduce the vectors:

Āk(θ) =
1

|k|α+1 cos(k · θ)
(

k1
k2

)
, B̄k(θ) =

1

|k|α+1 sin(k · θ)
(

k1
k2

)
, k ∈ Z+2 .

The system Āk , B̄k , k ∈ Z+2 ∪ {0}, Āk , B̄k , k ∈ Z+2 , form an orthogonal basis of TeGα . Further
let Ak and Bk denote the right-invariant vector fields on Gα generated by Āk and B̄k .

3. The FBSDEs on the group of diffeomorphisms of the two-dimensional torus

Let h : T2
→ R2 be a divergence-free Hα+1-vector field on T2, and let ĥ be the right-

invariant vector field on Gα generated by h. Further let the function V (s, · ) be such that
there exists a function p : [t, T ] → Hα+1(T2,R) satisfying V (s, · ) = ∇ p(s, · ) for all
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s ∈ [t, T ]. For each s ∈ [t, T ], V̂ (s, · ) denotes the right-invariant vector field on Gα generated
by V (s, · ) ∈ Hα(T2,R2).

Let E be a Euclidean space spanned on an orthonormal, relative to the scalar product in E ,
system of vectors {eA

k , eB
k , eA

0 , eB
0 }k∈Z+2 ,|k|6N . Consider the map

σ(g) =
∑

k∈Z+2 ∪{0},
|k|6N

Ak(g)⊗ eA
k + Bk(g)⊗ eB

k , g ∈ Gα,

i.e. σ(g) is a linear operator E → TgGα for each g ∈ Gα .
Let (Ω ,F ,P) be a probability space, and Ws , s ∈ [t, T ], be an E-valued Brownian motion:

Ws =
∑

k∈Z+2 ∪{0},
|k|6N

(β A
k (s)e

A
k + β

B
k (s)e

B
k )

where {β A
k , β

B
k }k∈Z+2 ∪{0},|k|6N is a sequence of independent Brownian motions. We consider the

following system of forward and backward SDEs:
dZ t,e

s = Y t,e
s ds + εσ (Z t,e

s )dWs,

dY t,e
s = −V̂ (s, Z t,e

s )ds + X t,e
s dWs,

Z t,e
t = e; Y t,e

T = ĥ(Z t,e
T ).

(5)

The forward SDE of (5) is an SDE on G α
V where G α

V is considered as a Hilbert manifold.
Stochastic differentials and stochastic differential equations on Hilbert manifolds are understood
in the sense of Dalecky and Belopolskaya’s approach (see [5]). More precisely, we use the
results from [14] which interprets the latter approach for the particular case of SDEs on Hilbert
manifolds. The stochastic integral in the forward SDE can be explicitly written as follows:∫ s

t
σ(Z t,e

r )dWr =
∑

k∈Z+2 ∪{0},|k|6N

∫ s

t
Ak(Z

t,e
r )dβ A

k (r)+ Bk(Z
t,e
r )dβB

k (r). (6)

Let us consider the backward SDE:

Y t,e
s = ĥ(Z t,e

T )+

∫ T

s
V̂ (r, Z t,e

r )dr −
∫ T

s
X t,e

r dWr . (7)

Note that the processes V̂ (s, Z t,e
s ) = V (s, · ) ◦ Z t,e

s and ĥ(Z t,e
T ) = h ◦ Z t,e

T are Hα-maps by
Lemma 1. Therefore, it makes sense to understand SDE (7) as an SDE in the Hilbert space
Hα(T2,R2). Let Fs = σ(Wr , r ∈ [0, s]). We would like to find an Fs-adapted triple of
stochastic processes (Z t,e

s , Y t,e
s , X t,e

s ) solving FBSDEs (5) in the following sense: at each time
s, the process (Z t,e

s , Y t,e
s ) takes values in an Hα-section of the tangent bundle T G α

V . Namely,
for each s ∈ [t, T ] and ω ∈ Ω , Z t,e

s ∈ G α
V , Y t,e

s ∈ TZ t,e
s

G α
V . Therefore, the forward SDE is

well-posed on both Gα and G α
V , and can be written in the Dalecky–Belopolskaya form:

dZ t,e
s = expZ t,e

s
{Y t,e

s ds + εσ (Z t,e
s )dWs} or

dZ t,e
s = ˜expZ t,e

s
{Y t,e

s ds + εσ (Z t,e
s )dWs}

where exp and ˜exp are the exponential maps of the Levi-Civita connection of the weak
Riemannian metrics (3) on Gα and resp. G α

V . Below, we will show that using either of these
representations leads to the same solution of FBSDEs (5).
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Finally, the process X t,e
s takes values in the space of linear operators L(E, Hα(T2,R2)), i.e.

X t,e
s =

∑
k∈Z+2 ∪{0},|k|6N

X k A
s ⊗ eA

k + X k B
s ⊗ eB

k (8)

where the processes X k A
s and X k B

s take values in Hα(T2,R2).

Remark 2. The results obtained below also work in the situation when the Brownian motion Ws
is infinite dimensional (as in [8]). Namely, when Ws =

∑
k∈Z+2 ∪{0}

akβ
A
k ⊗eA

k +bkβ
B
k ⊗eB

k where

ak , bk , k ∈ Z+2 ∪ {0}, are real numbers satisfying
∑

k∈Z+2 ∪{0}
|ak |

2
+ |bk |

2 < ∞. However, this
requires an additional analysis on the solvability of the forward SDE based on the approach of
Dalecky and Belopolskaya [5] since the results of Gliklikh [12,14,15] applied below are obtained
for the case of a finite-dimensional Brownian motion.

4. Constructing a solution of the FBSDEs

4.1. The forward SDE

Let us consider the backward Navier–Stokes equations in R2:

y(s, θ) = h(θ)+
∫ T

s

[
∇ p(r, θ)+

(
y(r, θ),∇

)
y(r, θ)+ ν∆y(r, θ)

]
dr,

divy(s, θ) = 0

(9)

where s ∈ [t, T ], θ ∈ T2, ∆ and ∇ are the Laplacian and the gradient.

Assumption 1. Let us assume that on the interval [t, T ] there exists a solution
(
y(s, · ), p(s, · )

)
to (9) such that the functions p : [t, T ] → Hα+1(T2,R) and y : [t, T ] → Hα+1(T2,R2) are
continuous.

Clearly, y(s, · ) ∈ TeG α
V . Let {Y t;k A

s , Y t;k B
s }k∈Z+2 ∪{0}

be the coordinates of y(s, · ) with

respect to the basis { Āk, B̄k}k∈Z+2 ∪{0}
, i.e.

y(s, θ) =
∑

k∈Z+2 ∪{0}
Y t;k A

s Āk(θ)+ Y t;k B
s B̄k(θ).

Let Ŷs( · ) denote the right-invariant vector field on Gα generated by the solution y(s, · ),
i.e. Ŷs(g) = y(s, · ) ◦ g. On each tangent space TgGα , the vector Ŷs(g) can be represented
by a series converging in the Hα-topology:

Ŷs(g) =
∑

k∈Z+2 ∪{0}
Y t;k A

s Ak(g)+ Y t;k B
s Bk(g). (10)

In this paragraph we will study the SDE:

d Z t,e
s = Ŷs(Z

t,e
s )ds + εσ (Z t,e

s )dWs . (11)

Later, in Theorem 6, we will show that the solution Z t,e
s to (11) and the process Y t,e

s = Ŷs(Z
t,e
s )

are the first two processes in the triple (Z t,e
s , Y t,e

s , X t,e
s ) that solves FBSDEs (5).
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Theorem 1. There exists a unique strong solution Z t,e
s , s ∈ [t, T ], to (11) on G α

V , with the initial
condition Z t,e

t = e.

Proof. Below, we verify the assumptions of Theorem 13.5 of [15]. The latter theorem will
imply the existence and uniqueness of the strong solution to (11). Note that, if sum (6)
representing the stochastic integral

∫ s
t σ(Z

t,e
s )dWs contains only the terms A0(β

A
0 (s) − β

A
0 (t))

and B0(β
B
0 (s) − β

B
0 (t)), i.e., informally speaking, if the Brownian motion runs only along the

constant vectors A0 and B0, then the statement of the theorem follows from Theorem 28.3 of [15].
If sum (6) contains also terms with Ak and Bk , k ∈ Z+2 , or, informally, when the Brownian motion
runs also along non-constant vectors Ak and Bk , k ∈ Z+2 , then the assumptions of Theorem 13.5
of [15] require the boundedness of Ak and Bk with respect to the strong norm. The latter fact
holds by Lemma 6.

Hence, all the assumptions of Theorem 13.5 of [15] are satisfied. Indeed, the proof of
Theorem 28.3 of [15] shows that the Levi-Civita connection of the weak Riemannian metric
(3) on G α

V is compatible (see Definition 13.7 of [15]) with the strong Riemannian metric
(4). The function σ(g) =

∑
k∈Z+2 ∪{0},|k|6N Ak(g) ⊗ eA

k + Bk(g) ⊗ eB
k is C∞-smooth since

Ak and Bk are C∞-smooth. Moreover, by Lemma 6, σ(g) is bounded on G α
V . Next, since

y : [t, T ] → Hα+1(T2,R2) is continuous, then it is also bounded with respect to (at least) the
Hα-norm. Hence, the generated right-invariant vector field Ŷs(g) is bounded in s with respect to
the strong metric (4), and it is at least C1-smooth in g. The boundedness of Ŷs in g follows from
the volume-preserving property of g. �

Theorem 2. There exists a unique strong solution Z t,e
s , s ∈ [t, T ], to (11) on Gα , with the initial

condition Z t,e
t = e. This solution coincides with the solution to SDE (11) on G α

V .

Proof. Consider the identical imbedding ı : G α
V → Gα . By results of [5] (Proposition 1.3,

p. 146; see also [15], p. 64), the stochastic process ı(Z t,e
s ) = Z t,e

s , s ∈ [t, T ], is a solution
to SDE (11) on Gα , i.e. with respect to the exponential map exp. This easily follows from the
fact that T ı : T G α

V → T Gα , where T is the tangent map, is the identical imbedding, and
that ı

(
exp(X)

)
= ˜exp(T ı ◦ X). The solution Z t,e

s to (11) on Gα is unique. This follows from
the uniqueness theorem for SDE (11) considered on the manifold Gα equipped with the weak
Riemannian metric. Indeed, σ(g) and Ŷs(g) are bounded with respect to the weak metric (3) since
the functions Āk , B̄k , k ∈ Z+2 ∪ {0}, are bounded on T2, and y( · , · ) is bounded on [t, T ] × T2.
Moreover σ(g) is C∞-smooth and Ŷs is at least C1-smooth on Gα . �

One can also consider (11) as an SDE with values in the Hilbert space Hα(T2,R2).

Theorem 3. There exists a unique strong solution Z t,e
s to the Hα(T2,R2)-valued SDE (11) on

[t, T ], with the initial condition Z t,e
t = e where e is the identity of G α

V . This solution coincides
with the solution to SDE (11) on G α

V or Gα .

Proof. By Theorem 1, SDE (11) on G α
V has a unique strong solution Z t,e

s on [t, T ]. Let us prove
that the solution Z t,e

s to (11) solves this SDE considered as an SDE in Hα(T2,R2). Consider
the identical imbedding ıV : G α

V → Hα(T2,R2), g 7→ g. Applying Itô’s formula to ıV , and
taking into account that Ak(g) ıV (g) = ∇ Āk

θ ◦ g = Ak(g) and that Ak(g)Ak(g) ıV (g) =

Ak(g)Ak(g) = 0, we obtain that the solution Z t,e
s to (11) on G α

V solves the Hα(T2,R2)-valued
SDE (11). Note that by the uniqueness theorem for SDEs in Hilbert spaces, SDE (11) can have
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only one solution in L2(T2,R2). This proves the uniqueness of its solution in Hα(T2,R2) as
well. Thus the solutions to (11) on Gα , G α

V , and in Hα(T2,R2) coincide. �

Let us find the representations of SDE (11) in normal coordinates on Gα and G α
V . First, we

prove the following lemma.

Lemma 9. The following equality holds:∫ s

t
σ(Z t,e

r ) ◦ dWr =

∫ s

t
σ(Z t,e

r )dWr ,

i.e. instead of the Itô stochastic integral in (11) we can write the Stratonovich stochastic integral∫ s
t σ(Z

t,e
r ) ◦ dWr .

Proof. We have:

σ(Z t,e
r ) ◦ dWr = σ(Z

t,e
r )dWr +

∑
k∈Z+2 ∪{0},|k|6N

dAk(Z
t,e
r )dβ A

k (r)+ dBk(Z
t,e
r )dβB

k (r).

Hence, we have to prove that dAk(Z
t,e
r )dβ A

k (r) = 0 and dBk(Z
t,e
r )dβB

k (r) = 0. For simplicity
of notation we use the notation Aν for both of the vector fields Ak and Bk and the notation
Āν for Āk and B̄k , k ∈ Z+2 ∪ {0}. Also, we use the notation βν(s) for the Brownian motions
{β A

k (s), β
B
k (s)}k∈Z+2 ∪{0},|k|6N . We obtain:

d( Āν ◦ Z t,e
s ) =

∑
γ

Aγ (Z
t,e
s )
(

Āν ◦ Z t,e
s

)
◦ dβγ (s)+ Y t,e

s

(
Āν ◦ Z t,e

s

)
dt.

This implies

d( Āν ◦ Z t,e
s ) · dβν = Aν(Z

t,e
s )
(

Āν ◦ Z t,e
s

)
ds = 0

which holds by the identity (k̄,∇) cos(k · θ) = (k̄,∇) sin(k · θ) = 0 or by differentiating of
constant vector fields. �

Let Z̄ t
s = {Z

t;k A
s , Z t;k B

s }k∈Z+2 ∪{0}
be the vector of local coordinates of the solution Z t,e

s to (11)
on G α

V , i.e. the vector of normal coordinates provided by the exponential map ˜exp : TeG α
V →

G α
V . Let Ue be the canonical chart of the map ˜exp.

Theorem 4 (SDE (11) in Local Coordinates). Let

τ = inf{s ∈ [t, T ] : Z t,e
s 6∈ Ue}. (12)

On the interval [t, τ ], SDE (11) has the following representation in local coordinates:

Z t,k A
s∧τ =

∫ s∧τ

t
Y t;k A

r dr + δkε(β
A
k (s ∧ τ)− β

A
k (t)),

Z t,k B
s∧τ =

∫ s∧τ

t
Y t;k B

r dr + δkε(β
B
k (s ∧ τ)− β

B
k (t))

(13)

where δk = 1 if |k| 6 N, and δk = 0 if |k| > N.

Proof. Let ḡ = {gk A, gk B
}k∈Z+2 ∪{0}

be local coordinates in the neighborhood Ue provided by the

map ˜exp. Let f ∈ C∞(Gα
V), and let f̃ : TeG α

V → R be such that f̃ = f ◦ ˜exp. Since ˜exp is a
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C∞-map (see [10]), then f̃ ∈ C∞(U0), where U0 = ˜exp−1Ue. Note that ∂
∂gk A f̃ (ḡ) = Ak(g) f (g)

and ∂
∂gk B f̃ (ḡ) = Bk(g) f (g). By Itô’s formula, we obtain:

f (Z t,e
s∧τ )− f (e) = f̃ (Z̄ t,0

s∧τ )− f̃ (0)

=

∫ s∧τ

t
dr

∑
k∈Z+2 ∪{0}

∂ f̃

∂gk A (Z̄
t
r )Y

t;k A
r +

∫ s∧τ

t
ε

∑
k∈Z+2 ∪{0}

δk
∂ f̃

∂gk A (Z̄
t
r )Y

t;k A
r ◦ dβ A

k (r)

+

∫ s∧τ

t
dr

∑
k∈Z+2 ∪{0}

∂ f̃

∂gk B (Z̄
t
r )Y

t;k B
r +

∫ s∧τ

t
ε

∑
k∈Z+2 ∪{0}

δk
∂ f̃

∂gk B (Z̄
t
r )Y

t;k B
r ◦ dβB

k (r)

=

∫ s∧τ

t
dr

∑
k∈Z+2 ∪{0}

(
Y t;k A

r Ak(Z
t,e
r ) f (Z t,e

r )+ Y t;k B
r Bk(Z

t,e
r

)
f (Z t,e

r )
)

+

∫ s∧τ

t
ε

∑
k∈Z+2 ∪{0}

δk
(

Ak(Z
t,e
r ) f (Z t,e

r ) ◦ dβ A
k (r)+ Bk(Z

t,e
r ) f (Z t,e

r ) ◦ dβB
k (r)

)
.

Using representations (10) and (6) we obtain:

f (Z t,e
s∧τ )− f (e) =

∫ s∧τ

t
Ŷr (Z

t,e
r ) f (Z t,e

r )dr +
∫ s∧τ

t
εσ (Z t,e

r ) f (Z t,e
r ) ◦ dWr .

This shows that the process

exp
{ ∑

k∈Z+2 ∪{0}
Z t,k A

s∧τ Āk + Z t,k B
s∧τ B̄k

}
solves SDE (11) on the interval [t, τ ]. �

Let

ˇ̄Z
t

s = {Ž
t;k A
s , Ž t;k B

s , Ž t;kA
s , Ž t;kB

s , Ž t;0A
s , Ž t;0B

s }k∈Z+2

be the vector of local coordinates of the solution Z t,e
s to (11) on Gα , i.e. the vector of normal

coordinates provided by the exponential map exp : TeGα
→ Gα . Further let Ǔe be the canonical

chart of the map exp.

Theorem 5. Let

τ̌ = inf{s ∈ [t, T ] : Z t,e
s 6∈ Ǔe}.

Then, a.s. τ̌ = τ , where the stopping time τ is defined by (12), and on [t, τ ], Ž t;k A
s = Z t;k A

s ,
Ž t;k B

s = Z t;k B
s , k ∈ Z2

+ ∪ {0}, Ž t;kA
s = Ž t;kB

s = 0, k ∈ Z+2 , a.s.

Proof. Let us introduce additional local coordinates gkA, gkB , k ∈ Z+2 , and perform the same
computation as in the proof of Theorem 4. We have to take into account that Y kA

s = Y kB
s = 0,

k ∈ Z+2 , and that the components of the Brownian motion are non-zero only along divergence-

free and constant vector fields. We obtain that the coordinate process ˇ̄Z
t

s verifies SDEs (13) and
the equations Ž t;kA

s = Ž t;kB
s = 0, k ∈ Z+2 . �
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4.2. The backward SDE and the solution of the FBSDEs

We have the following result:

Theorem 6. Let Ŷs be the right-invariant vector field generated by the solution y(s, · ) to the
backward Navier–Stokes equations (9). Further let Z t,e

s be the solution to SDE (11) on G α
V .

Then there exists an ε > 0 such that the triple of stochastic processes

Z t,e
s , Y t,e

s = Ŷs(Z
t,e
s ), X t,e

s = εσ (Z
t,e
s )Ŷs(Z

t,e
s )

solves FBSDEs (5) on the interval [t, T ].

Remark 3. The expression σ(Z t,e
s )Ŷs(Z

t,e
s ) means the following:

σ(Z t,e
s )Ŷs(Z

t,e
s ) =

∑
k∈Z+2 ∪{0},|k|6N

Ak(Z
t,e
s )Ŷs(Z

t,e
s )⊗ eA

k + Bk(Z
t,e
s )Ŷs(Z

t,e
s )⊗ eB

k

where Ŷs( · ) is regarded as a function G α
V → Hα(T2,R2), and Ak(g)Ŷs(g)means differentiation

of Ŷs : G α
V → Hα(T2,R2) along the vector field Ak at the point g ∈ G α

V . Let γξ be the geodesic
in G α

V such that γ0 = e and γ ′0 = Āk . We obtain:

Ak(g)Ŷs(g)(θ) =
d

dξ
Ŷs(γξ ◦ g)(θ)|ξ=0 = Rg

d
dξ

y(s, γξ θ)|ξ=0

= Rg∇ Āk
y(s, θ) = ∇̄Ak Ŷs(g)(θ). (14)

Thus,

X t,e
s = ε

∑
k∈Z+2 ∪{0},|k|6N

[∇ Āk
y(s, · )⊗ eA

k +∇B̄k
y(s, · )⊗ eB

k ] ◦ Z t,e
s ,

(15)

and the stochastic integral in (7) can be represented as∫ T

s
X t,e

r dWr

= ε
∑

k∈Z+2 ∪{0},|k|6N

∫ T

s
∇ Āk

y(r, · ) ◦ Z t,e
r dβ A

k (r)+
∫ T

s
∇B̄k

y(r, · ) ◦ Z t,e
r dβB

k (r).

In particular, if N = 0,∫ T

s
X t,e

r dWr = ε

(∫ T

s

∂

∂θ1
y(r, · ) ◦ Z t,e

r dβ A
0 (r)+

∫ T

s

∂

∂θ2
y(r, · ) ◦ Z t,e

r dβB
0 (r)

)
.

A result similar to Lemma 10 was obtained in [6].

Lemma 10 (The Laplacian of a Right-invariant Vector Field). Let V̂ be the right-invariant
vector field on G α̃ generated by an H α̃+2-vector field V on T2. Further let ε > 0 be such

that ε
2

2

(
1+ 1

2

∑
k∈Z+2 ,|k|6N

1
|k|2α

)
= ν. Then for all g ∈ Gα̃ ,

ε2

2

∑
k∈Z+2 ∪{0},
|k|6N

(
∇̄Ak ∇̄Ak + ∇̄Bk ∇̄Bk

)
V̂ (g) = ν∆V ◦ g.

(16)

Here α̃ is an integer which is not necessary equal to α.
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Proof. By the right-invariance of the vector fields ∇̄Ak ∇̄Ak V̂ and ∇̄Bk ∇̄Bk V̂ (Lemma 7), it
suffices to show (16) for g = e. We observe that

(k̄,∇) cos(k · θ) = (k̄,∇) sin(k · θ) = 0.

Then, for k ∈ Z+2 , θ ∈ T2,

∇̄Ak ∇̄Ak V̂ (e)(θ) =
1

|k|2α+2 cos(k · θ)(k̄,∇)
[
cos(k · θ)(k̄,∇)V (θ)

]
=

1

|k|2α+2 cos(k · θ)2(k̄,∇)2V (θ).

Similarly, ∇̄Bk ∇̄Bk V̂ (e)(θ) = 1
|k|2α+2 sin(k · θ)2(k̄,∇)2V (θ). Hence, for each k ∈ Z+2 ,

(∇̄Ak ∇̄Ak + ∇̄Bk ∇̄Bk ) V̂ (e)(θ) =
1

|k|2α+2 (k̄,∇)
2V (θ). (17)

Note that for each k ∈ Z+2 , either k̄ or −k̄ is in Z+2 , and

(k̄,∇)2 + (k,∇)2 = |k|2∆.

Summation over k ∈ Z+2 , |k| 6 N , in (17), and coupling the terms numbered by k and k̄ (or −k̄)
gives: ∑

k∈Z+2 ,|k|6N

(∇̄Ak ∇̄Ak + ∇̄Bk ∇̄Bk )V̂ (e)(θ) =
1
2

∑
k∈Z+2 ,|k|6N

1

|k|2α
∆V (θ).

Note that (∇̄A0∇̄A0 + ∇̄B0∇̄B0)V̂ (e)(θ) = ∆V (θ). Finally, we obtain:∑
k∈Z+2 ∪{0},
|k|6N

(∇̄Ak ∇̄Ak + ∇̄Bk ∇̄Bk )V̂ (e)(θ) =
(

1+
1
2

∑
k∈Z+2 ,|k|6N

1

|k|2α

)
∆V (θ).

The lemma is proved. �

Corollary 1. Let the function ϕ : T2
→ R2 be C2-smooth. Further let Ak(g)[ϕ ◦ g] and

Bk(g)[ϕ ◦ g], k ∈ Z+2 , mean the differentiation of the function Gα̃
→ L2(T2,R2), g 7→ ϕ ◦ g

along Ak and resp. Bk . Then for all g ∈ Gα̃ ,

ε2

2

∑
k∈Z+2 ∪{0},
|k|6N

(
Ak(g)Ak(g)+ Bk(g)Bk(g)

)
[ϕ ◦ g] = ν∆ϕ ◦ g.

(18)

Proof. The computation that we made in (14) but applied to ϕ ◦ g implies that

Ak(g)[ϕ ◦ g] =
[ 1

|k|α+1 cos(k · θ)(k̄,∇)ϕ(θ)
]
◦ g.

Similarly, we compute Bk(g)[ϕ ◦ g]. Now we just have to repeat the proof of Lemma 10 to come
to (18). �

Lemma 11. Let Φr , r ∈ [t, T ], t ∈ [0, T ), be an Hα(T2,R2)-valued stochastic process
whose trajectories are integrable, and let φT be an Hα(T2,R2)-valued random element so that
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both Φr and φT possess finite expectations. Then there exists an Fs-adapted Hα(T2,R2) ×

L
(
E, Hα(T2,R2)

)
-valued pair of stochastic processes (Ys, Xs) solving the BSDE

Ys = φT +

∫ T

s
Φr dr −

∫ T

s
Xr dWr (19)

on [t, T ]. The Ys-part of the solution has the representation

Ys = E
[
φT +

∫ T

s
Φr dr |Fs

]
, (20)

and therefore is unique. The Xs-part of the solution is unique with respect to the norm ‖Xs‖
2
=∫ T

t ‖Xs‖
2
L(E,Hα(T2,R2))

ds.

The proof of the lemma uses some ideas from [21].

Proof. Representation (20) follows from (19). Let us extend the process Ys to the entire interval
[0, T ] by setting Ys = Yt for s ∈ [0, t], and note that the extended process Ys is a solution of the
SDE

Ys = φT +

∫ T

s
I[t,T ]Φr dr −

∫ T

s
Xr dWr

on [0, T ]. Let Xs ∈ L
(
E, Hα(T2,R2)

)
, s ∈ [0, T ], be such that

E
[
φT +

∫ T

0
I[t,T ] Φr dr − Y0 |Fs

]
=

∫ s

0
Xr dWr . (21)

The process Xs exists by the martingale representation theorem. Indeed, on the right-hand side
of (21) we have a Hilbert space valued martingale.

By Theorem 6.6 of [16], each component of the Hα(T2,R2)-valued martingale on the right-
hand side of (21) can be represented as a sum of real-valued stochastic integrals with respect to
the Brownian motions {β A

k (s), β
B
k (s)}k∈Z+2 ∪{0},|k|6N . Hence, there exist Fs-adapted stochastic

processes {X k A
s , X k B

s }k∈Z+2 ∪{0},|k|6N such that

E
[
φT +

∫ T

0
I[t,T ]Φr dr − Y0|Fs

]
=

∑
k∈Z+2 ∪{0},
|k|6N

∫ s

0
X k A

r dβ A
k (r)+

∫ s

0
X k B

r dβB
k (r).

Let the process Xs be defined by (8) via the processes X k A
s and X k B

s , k ∈ Z+2 ∪{0}, |k| 6 N . Itô’s

isometry shows that E
∫ T

0 ‖Xr‖
2
L(E,Hα(T2,R2))

< ∞. Note that for all s ∈ [0, t],
∫ s

0 Xr dWr =∫ t
0 Xr dWr . This shows that Xs = 0 for almost all ω ∈ Ω and almost all s ∈ [0, t], and therefore

can be chosen equal to zero on [0, t]. Thus, (21) takes the form:

E
[
φT +

∫ T

t
Φr dr − Yt |Fs

]
=

∫ s

t
Xr dWr . (22)

It is easy to verify that the pair (Ys, Xs) defined by (20) and (22) solves BSDE (19). To prove the
uniqueness, note that any Fs-adapted solution to (19) takes the form (20), (22). Moreover, if the
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processes Xs and X ′s satisfy (22), then∫ T

t
‖Xs − X ′s‖

2
L(E,Hα(T2,R2))

dr =

∥∥∥∥∫ T

t
(Xs − X ′s) dWr

∥∥∥∥2

Hα(T2,R2)

= 0. �

Proof of Theorem 6. Let us consider BSDE (7) as an L2(T2,R2)-valued SDE, and Ŷs as a
function G α

V → L2(T2,R2). Since for each s ∈ [t, T ], y(s, · ) ∈ Hα+1(T2,R2) and α > 2 by
assumption, then Ŷs : G α

V → L2(T2,R2) is at least C2-smooth. Eqs. (2) show that the function
∂s y( · , · ) : [t, T ] → L2(T2,R2) is continuous since ∇ p, ∆y, and (y,∇ y) are continuous
functions [t, T ] → L2(T2,R2) by Assumption 1. Taking into account that the diffeomorphisms
of G α

V are volume-preserving, we conclude that for each fixed g ∈ G α
V , ∂s Ŷs(g) : [t, T ] →

L2(T2,R2) is a continuous function. Hence, Ŷ• : [t, T ] × G α
V → L2(T2,R2) is C1-smooth in

s ∈ [t, T ] and C2-smooth in g ∈ G α
V . Itô’s formula is therefore applicable to Ŷs(Z

t,e
s ). Below we

use the fact that Z t,e
s is a solution to forward SDE (11) and the identity ∂Ŷs

∂s (Z
t,e
s ) =

∂y(s, · )
∂s ◦ Z t,e

s .
For the latter derivative we substitute the right-hand side of the first equation of (2). The
notation X̂(g)[Ŷs(g)] (sometimes without square brackets) means differentiation of the function
Ŷs : G α

V → L2(T2,R2) along the right-invariant vector field X̂ on G α
V at the point g ∈ G α

V . The
same argument as in Remark 3 implies that X̂(g)[Ŷs(g)] = ∇̄X̂ Ŷs(g). Taking into account this
argument, we obtain:

Ŷs(Z
t,e
s )− ĥ(Z t,e

T ) = −

∫ T

s
∂r Ŷr (Z

t,e
r ) dr −

∫ T

s
dr Ŷr (Z

t,e
r )[Ŷr (Z

t,e
r )]

−

∫ T

s
dr
ε2

2

∑
k∈Z+2 ∪{0},|k|6N

[
Ak(Z

t,e
r )Ak(Z

t,e
r )Ŷr (Z

t,e
r )+ Bk(Z

t,e
r )Bk(Z

t,e
r )Ŷr (Z

t,e
r )
]

−

∫ T

s
ε σ (Z t,e

r )Ŷr (Z
t,e
r ) dWr . (23)

Note that

Ŷr (Z
t,e
r )[Ŷr (Z

t,e
r )] = [(y(r, · ),∇)y(r, · )] ◦ Z t,e

r .

Also, let us observe that

ε2

2

∑
k∈Z+2 ∪{0},|k|6N

[
Ak(Z

t,e
r )Ak(Z

t,e
r )Ŷr (Z

t,e
r )+ Bk(Z

t,e
r )Bk(Z

t,e
r )Ŷr (Z

t,e
r )
]

=
ε2

2

∑
k∈Z+2 ∪{0},|k|6N

[
∇̄Ak ∇̄Ak Ŷr (Z

t,e
r )+ ∇̄Bk ∇̄Bk Ŷr (Z

t,e
r )
]

= ν[∆y(s, · )] ◦ Z t,e
r

where the latter equality holds by Lemma 10, and ε > 0 is chosen so that ε2

2

(
1 +

1
2

∑
k∈Z+2 ,|k|6N

1
|k|2α

)
= ν. Note that the terms ∇̄Ak ∇̄Ak Ŷr (Z

t,e
r ) and ∇̄Bk ∇̄Bk Ŷr (Z

t,e
r ) are

elements of T Gα−1, and therefore are well defined in L2(T2,R2). Continuing (23), we obtain:

Ŷ t
s (Z

t,e
s )− ĥ(Z t,e

T )
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=

∫ T

s
dr
[
V̂ (r, Z t,e

r )+ [(y(r, · ),∇)y(r, · )] ◦ Z t,e
r + ν[∆y(r, · )] ◦ Z t,e

r

]
−

∫ T

s
[(y(r, · ),∇)y(r, · )] ◦ Z t,e

r dr −
∫ T

s
ν[∆y(r, · )] ◦ Z t,e

r dr

−

∫ T

s
ε σ (Z t,e

r )Ŷr (Z
t,e
r ) dWr

=

∫ T

s
V̂ (r, Z t,e

r ) dr −
∫ T

s
ε σ (Z t,e

r )Ŷr (Z
t,e
r ) dWr . (24)

Thus the pair of stochastic processes (Ŷs(Z
t,e
s ), ε σ (Z t,e

s )Ŷs(Z
t,e
s )) is a solution to BSDE (7)

in L2(T2,R2). It is Fs-adapted since Z t,e
s is Fs-adapted. By Lemma 11, we know that there

exists a unique Fs-adapted solution (Y t,e
s , X t,e

s ) to (7) in Hα(T2,R2). Clearly, (Y t,e
s , X t,e

s ) is
also a unique Fs-adapted solution to (7) in L2(T2,R2). Hence, Y t,e

s = Ŷs(Z
t,e
s ) and

∫ T
t ‖X

t,e
s −

ε σ (Z t,e
s )(Ŷs(Z

t,e
s ))‖2L(E,Hα(T2,R2))

ds = 0, and therefore the pair of stochastic processes(
Ŷs(Z

t,e
s ), ε σ (Z t,e

s )Ŷs(Z
t,e
s )
)

is a unique Fs-adapted solution to BSDE (7) in Hα(T2,R2). The
theorem is proved. �

5. Some identities involving the Navier–Stokes solution

The backward SDE allows us to obtain the representation below for the Navier–Stokes
solution. Also, it easily implies the well-known energy identity for the Navier–Stokes equations.

5.1. Representation of the Navier–Stokes solution

Theorem 7. Let t ∈ [0, T ], and let Z t,e
s be the solution to SDE (11) on [t, T ] with the initial

condition Z t,e
t = e. Then the following representation holds for the solution y(t, · ) to (9).

y(t, · ) = E
[
ĥ(Z t,e

T )+

∫ T

t
∇ p(s, · ) ◦ Z t,e

s ds
]
.

Proof. Note that Ŷt (Z
t,e
t ) = y(t, · ), and E[

∫ T
t X t,e

r dWr ] = 0. Taking the expectation from the
both parts of (7) at time s = t we obtain the above representation. �

5.2. A simple derivation of the energy identity

Itô’s formula applied to the squared L2(T2,R2)-norm of Y t,e
s gives:

‖Y t,e
s ‖

2
L2
= ‖ĥ(Z t,e

T )‖2L2
+ 2

∫ T

s
(Y t,e

r , V̂ (Z t,e
r ))L2dr

− 2
∫ T

s
(Y t,e

r , X t,e
r dWr )L2 −

∫ T

s
‖X t,e

s ‖
2
L2

dr. (25)

Using representation (15) for the process X t,e
s we obtain:

‖X t,e
s ‖

2
L2
= ε2

 ∑
k∈Z+2 ∪{0},|k|6N

‖∇ Āk
y(s, · )‖2L2

+ ‖∇B̄k
y(s, · )‖2L2


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= ε2

 ∑
k∈Z+2 ,|k|6N

1

|k|2α+2 ‖(k̄,∇ y(s, · ))‖2L2
+ ‖∇ y(s, · )‖2L2


= ε2

[ 1
2

∑
k∈Z+2 ,|k|6N

1

|k|2α+2

(
‖(k̄,∇ y(s, · ))‖2L2

+ ‖(k,∇ y(s, · ))‖2L2

)
+ ‖∇ y(s, · )‖2L2

]
= ε2

(
1+

1
2

∑
k∈Z+2 ,|k|6N

1

|k|2α

)
‖∇ y(s, · )‖2L2

= 2 ν ‖∇ y(s, · )‖2L2
.

Taking the expectation in (25) and using the volume-preserving property of Z t,e
s , we obtain:

‖y(s, · )‖2L2
+ 2ν

∫ T

s
‖∇ y(r, · )‖2L2

dr = ‖h‖2L2
.

6. Constructing the solution to the Navier–Stokes equations from a solution to the FBSDEs

Let us prove now a result which is, in some sense, a converse of Theorem 6. In this section
we consider (5) as a system of forward and backward SDEs in the Hilbert space Hα(T2,R2),
where α ≥ 3. As before, let V̂ (s, Z t,e

s ) denote ∇ p(s, · ) ◦ Z t,e
s , and let Fs denote the filtration

σ {Wr , r ∈ [0, s]}.

Theorem 8. Assume, for an Hα+1-smooth function p(s, · ), s ∈ [0, T ], and for any t ∈ (0, T ),
the existence of an Fs-adapted solution (Z t,e

s , Y t,e
s , X t,e

s ) to (5) on [t, T ] such that the processes
Z t,e

s and Y t,e
s have a.s. continuous trajectories and such that Z t,e

s take values in G α
V . Then there

exists T0 > 0 such that for all T < T0 there exists a deterministic function y(s, · ) ∈ TeG α
V on

[0, T ], such that a.s. on [t, T ] the relation Y t,e
s = y(s, · ) ◦ Z t,e

s holds. Moreover, the pair of
functions (y, p) solves the backward Navier–Stokes equations (9) on [0, T ].

Lemma 12–18 are the steps in the proof of Theorem 8.

Lemma 12. For all t ∈ [0, T ) and for any Ft -measurable G α
V-valued random variable ξ , the

triple of stochastic processes

(Z t,ξ
s , Y t,ξ

s , X t,ξ
s ) = (Z t,e

s ◦ ξ, Y t,e
s ◦ ξ, X t,e

s ◦ ξ) (26)

is Fs-adapted and solves the FBSDEs
Z t,ξ

s = ξ +

∫ s

t
Y t,ξ

r dr +
∫ s

t
σ(Z t,ξ

r ) dWr

Y t,ξ
s = h(Z t,ξ

T )+

∫ T

s
V̂ (r, Z t,ξ

r )dr −
∫ T

s
X t,ξ

r dWr

(27)

on the interval [t, T ] in the space Hα(T2,R2).

Proof. Let us apply the operator Rξ of the right translation to the both sides of FBSDEs (5). We
only have to prove that we are allowed to write Rξ under the signs of both stochastic integrals in
(5). Let us prove that it is true for an Ft -measurable stepwise function ξ =

∑
∞

i=1 gi IAi , where
gi ∈ G α

V and the sets Ai are Ft -measurable. Indeed, let s and S be such that t 6 s < S 6 T , and
let Φr be an Fr -adapted stochastically integrable process. We obtain:
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s
Φr dWr ◦

∞∑
i=1

gi IAi =

∞∑
i=1

IAi

∫ S

s
Φr ◦ gi dWr =

∞∑
i=1

∫ S

s
IAi Φr ◦ gi dWr

=

∫ S

s
Φr ◦

∞∑
i=1

gi IAi dWr .

Next, we find a sequence of Ft -measurable stepwise functions converging to ξ in the space of
continuous functions C(T2,R2). This is possible due to the separability of C(T2,R2). Indeed, let
us consider a countable number of disjoint Borel sets On

i covering C(T2,R2), and such that their
diameter in the norm of C(T2,R2) is smaller than 1

n . Let An
i = ξ

−1(On
i ) and gn

i ∈ On
i ∩ G α

V .
Define ξn =

∑
∞

i=1 gn
i IAn

i
. Then it holds that for all ω ∈ Ω , ‖ξ − ξn‖C(T2,R2) <

1
n . Let I (Φ) and

I (Φ◦ξ) denote
∫ S

s Φr dWr and resp.
∫ S

s Φr◦ξ dWr . We have to prove that a.s. I (Φ)◦ξ = I (Φ◦ξ).
For this it suffices to prove that

lim
n→∞

E‖I (Φ) ◦ ξn − I (Φ) ◦ ξ‖2L2(T2,R2)
= 0, (28)

lim
n→∞

E‖I (Φ ◦ ξn)− I (Φ ◦ ξ)‖2L2(T2,R2)
= 0. (29)

Due to the volume-preserving property of ξ and ξn , ‖I (Φ)◦ξn‖
2
L2(T2,R2)

= ‖I (Φ)◦ξ‖2
L2(T2,R2)

=

‖I (Φ)‖2
L2(T2,R2)

. Hence, by Lebesgue’s theorem, in (28) we can pass to the limit under the

expectation sign. Relation (28) holds then by the continuity of I (Φ) in θ ∈ T2. To prove (29)
we observe that by Itô’s isometry, the limit in (29) equals to limn→∞ E

∫ S
s ‖Φr ◦ ξn − Φr ◦

ξ‖2
L2(T2,R2)

dr . The same argument that we used to prove (28) implies that we can pass to the
limit under the expectation and the integral signs. Relation (29) follows from the continuity of
Φr in θ ∈ T2.

Hence, (Z t,e
s ◦ ξ, Y t,e

s ◦ ξ, X t,e
s ◦ ξ) is a solution to (27). This solution is clearly Fs-adapted.

�

Lemma 13–17 use some ideas and constructions from [9].

Lemma 13. The map [0, T ] × T2
→ R2, (t, θ) 7→ Y t,e

t (θ) is deterministic.

Proof. Let us extend the solution (Z t,e
s , Y t,e

s , X t,e
s ) to the interval [0, t] by setting Z t,e

s = e,
Y t,e

s = Y t,e
t , X t,e

s = 0 for all s ∈ [0, t]. The extended process solves the problem:
Z t,e

s = e +
∫ s

0
I[t,T ](r)Y t,e

r dr +
∫ s

0
I[t,T ](r)σ (Z t,e

r ) dWr

Y t,e
s = h(Z t,e

T )+

∫ T

s
I[t,T ](r)V̂ (r, Z t,e

r ) dr −
∫ T

s
X t,e

r dWr .

(30)

The random vector Y t,e
0 is F0-measurable, and hence is deterministic by Blumenthal’s zero–one

law. Since Y t,e
t = Y t,e

0 , the result follows. �

Lemma 14. There exists a constant T0 > 0 such that for T < T0 the function [0, T ] →
H2(T2,R2), t 7→ Y t,e

t is continuous.

Proof. Let (Z t,e
s , Y t,e

s , X t,e
s ) and (Z t ′,e

s , Y t ′,e
s , X t ′,e

s ) be solutions to (27) which start at the identity
e at times t and resp. t ′, and let t < t ′. These solutions can be regarded as solutions of (30) if
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we extend them to the entire interval [0, T ] as it was described in Lemma 13. The application
of Itô’s formula to ‖Y t,e

s ‖
2
L2(T2,R2)

and the backward SDE of (27) imply that the expectation

E‖Y t,e
s ‖

2
L2(T2,R2)

is bounded. The forward SDE of (30), Gronwall’s lemma, and usual stochastic
integral estimates imply that there exists a constant K1 > 0 such that

E‖Z t,e
s − Z t ′,e

s ‖
2
L2(T2,R2)

< K1

[∫ s

0
I[t,T ]E‖Y t,e

r − Y t ′,e
r ‖

2
L2(T2,R2)

dr + (t ′ − t)
]
.

Let us apply Itô’s formula to ‖Y t,e
s − Y t ′,e

s ‖
2
L2(T2,R2)

when using the backward SDE of (30).

Again, Gronwall’s lemma, usual stochastic integral estimates and the above estimate for E‖Z t,e
s −

Z t ′,e
s ‖

2
L2(T2,R2)

imply that there exists a constant K2 > 0 such that

E‖Y t,e
s − Y t ′,e

s ‖
2
L2(T2,R2)

< K2

[∫ T

0
E‖Y t,e

r − Y t ′,e
r ‖

2
L2(T2,R2)

dr + (t ′ − t)
]
.

We take T0 smaller than 1
K2

. Then there exists a constant K > 0 such that

sup
s∈[0,T ]

E‖Y t,e
s − Y t ′,e

s ‖
2
L2(T2,R2)

< K (t ′ − t). (31)

Evaluating the right-hand side at the point s = t , and taking into account that Y t ′,e
t = Y t ′,e

t ′ we
obtain that

‖Y t,e
t − Y t ′,e

t ′ ‖
2
L2(T2,R2)

< K (t ′ − t). (32)

Differentiating (30) with respect to θ we obtain the following system of forward and backward
SDEs:

∇Z t,e
s = I +

∫ s

0
I[t,T ](r)∇Y t,e

r dr +
∫ s

0
I[t,T ](r)∇σ(Z t,e

r )∇Z t,e
r dWr

∇Y t,g
s = ∇h(Z t,e

T )∇Z t,e
T +

∫ T

s
I[t,T ](r)∇ V̂ (r, Z t,g

r )∇Z t,e
r dr −

∫ T

s
∇X t,e

r dWr .

Again, standard estimates imply the boundedness of E‖∇Z t,e
s ‖

2
L2(T2,R2)

and E‖∇Y t,e
s ‖

2
L2(T2,R2)

.

The same argument that we used to obtain (32) as well as the estimate for the sups∈[0,T ] E‖Z
t,e
s −

Z t ′,e
s ‖

2
L2(T2,R2)

, which easily follows from (31), and the forward SDE imply that there exists a

constant L > 0 such that for all t and t ′ from the interval [0, T ],

‖∇Y t,e
t −∇Y t ′,e

t ′ ‖
2
L2(T2,R2)

< L|t ′ − t |. (33)

Differentiating (30) the second time and using the same argument once again we obtain that there
exist a constant M > 0 such that for all t and t ′ belonging to [0, T ],

‖∇∇Y t,e
t −∇∇Y t ′,e

t ′ ‖
2
L2(T2,R2)

< M |t ′ − t |. (34)

Now (32)–(34) imply the continuity of the map t 7→ Y t,e
t with respect to the H2(T2,R2)-

topology. �

Everywhere below we assume that T < T0 where T0 is the constant defined in Lemma 14.
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Lemma 15. For every t ∈ [0, T ) and for every Ft -measurable random variable ξ , the solution
(Z t,ξ

s , Y t,ξ
s , X t,ξ

s ) to (27) is unique on [t, T ].

Proof. Let us assume that there exists another solution (Z̃ t,ξ
s , Ỹ t,ξ

s , X̃ t,ξ
s ) to (27) on [t, T ].

The same argument as in the proof of Lemma 14 implies the uniqueness of solution to
(27). Specifically, the argument that we applied to the pair of solutions (Z t,e

s , Y t,e
s , X t,e

s ) and
(Z t ′,e

s , Y t ′,e
s , X t ′,e

s ) has to be applied to (Z t,ξ
s , Y t,ξ

s , X t,ξ
s ) and (Z̃ t,ξ

s , Ỹ t,ξ
s , X̃ t,ξ

s ), and it has to be
taken into account that t = t ′. �

Lemma 16. Let the function y : [0, T ] × T2
→ R2 be defined by the formula:

y(t, θ) = Y t,e
t (θ). (35)

Then, for every t ∈ [0, T ], y(t, · ) is Hα-smooth, and a.s.

Y t,e
u = y(u, · ) ◦ Z t,e

u . (36)

Proof. Note that (26) implies that if ξ is Ft -measurable then

Y t,ξ
t = y(t, · ) ◦ ξ. (37)

Further, for each fixed u ∈ [t, T ], (Z t,e
s , Y t,e

s , X t,e
s ) is a solution of the following problem on

[u, T ]:
Z t,e

s = Z t,e
u +

∫ s

u
Y t,e

r dr +
∫ s

u
σ(Z t,e

r )dWr

Y t,e
s = h(Z t,e

T )+

∫ T

s
V̂ (r, Z t,e

r )dr −
∫ T

s
X t,e

r dWr .

By uniqueness of solution, it holds that Y t,e
s = Y u,Z t,e

u
s a.s. on [u, T ]. Next, by (37), we obtain

that Y u,Z t,e
u

u = y(u, · ) ◦ Z t,e
u . This implies that there exists a set Ωu (which depends on u) of full

P-measure such that (36) holds everywhere on Ωu . Clearly, one can find a set ΩQ, P(ΩQ) = 1,
such that (36) holds on ΩQ for all rational u ∈ [t, T ]. But the trajectories of Z t,e

s and Y t,e
s are

a.s. continuous. Furthermore, Lemma 14 implies the continuity of y(t, · ) in t with respect to
(at least) the L2(T2,R2)-topology. Therefore, (36) holds a.s. with respect to the L2(T2,R2)-
topology. Since both sides of (36) are continuous in θ ∈ T2 it also holds a.s. for all θ ∈ T2. �

Lemma 17. The function y defined by formula (35) is C1-smooth in t ∈ [0, T ].

Proof. Let δ > 0. We obtain:

y(t + δ, · )− y(t, · ) = Y t+δ,e
t+δ − Y t,e

t = Y t+δ,e
t+δ − Y t,e

t+δ + Y t,e
t+δ − Y t,e

t .

Let Ŷs be the right-invariant vector field on Gα generated by y(s, · ). Lemma 16 implies that a.s.

Y t,e
t+δ = Ŷt+δ(Z

t,e
t+δ).

Thus we obtain that a.s.

y(t + δ, · )− y(t, · ) =
(
Ŷt+δ(e)− Ŷt+δ(Z

t,e
t+δ)

)
+ (Y t,e

t+δ − Y t,e
t ).
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We use the backward SDE for the second difference and apply Itô’s formula to the first difference
when considering Ŷt+δ as a C2-smooth function G α

V → L2(T2,R2). We obtain:

Ŷt+δ(Z
t,e
t+δ)− Ŷt+δ(e) =

∫ t+δ

t
dr Ŷ t,e

r (Z t,e
r )[Ŷt+δ(Z

t,e
r )] +

∫ t+δ

t
ε σ (Z t,e

r ) Ŷt+δ(Z
t,e
r ) dWr

+

∫ t+δ

t
dr

∑
k∈Z+2 ∪{0}

[Ak(Z
t,e
r )Ak(Z

t,e
r )+ Bk(Z

t,e
r )Bk(Z

t,e
r )] Ŷt+δ(Z

t,e
r ).

The same argument as in Theorem 6 implies:

Ŷt+δ(Z
t,e
t+δ)− Ŷt+δ(e) =

∫ t+δ

t
dr ∇y(r, · ) y(t + δ, · ) ◦ Z t,e

r

+

∫ t+δ

t
dr ν∆ y(t + δ, · ) ◦ Z t,e

r +

∫ t+δ

t
ε σ (Z t,e

r ) Ŷt+δ(Z
t,e
r ) dWr .

Further we have:

Y t,e
t − Y t,e

t+δ =

∫ t+δ

t
dr ∇ p(r, · ) ◦ Z t,e

r −

∫ t+δ

t
X t,e

r dWr .

Finally we obtain that

1
δ

(
y(t + δ, · )− y(t, · )

)
= −

1
δ

E
[∫ t+δ

t
dr [ (y(r, · ),∇) y(t + δ, · )

+ ν∆ y(t + δ, · )+∇ p(r, · )] ◦ Z t,e
r

]
. (38)

Note that Z t,e
r , ∇ p(r, · ), and (y(r, · ),∇) y(t + δ, · ) ◦ Z t,e

r are continuous in r a.s. with respect
to the L2(T2,R2)-topology. By Lemma 14, ∇ y(t, · ) and ∆ y(t, · ) are continuous in t with
respect to the L2(T2,R2)-topology. Formula (38) and the fact that Z t,e

t = e imply that in the
L2(T2,R2)-topology

∂t y(t, · ) = −[∇y(t, · ) y(t, · )+ ν∆ y(t, · )+∇ p(t, · )]. (39)

Since the right-hand side of (39) is an Hα−2-map, so is the left-hand side. This implies that
∂t y(t, · ) is continuous in θ ∈ T2. Relation (39) is obtained so far for the right derivative of
y(t, θ) with respect to t . Note that the right-hand side of (39) is continuous in t which implies
that the right derivative ∂t y(t, θ) is continuous in t on [0, T ). Hence, it is uniformly continuous
on every compact subinterval of [0, T ). This implies the existence of the left derivative of y(t, θ)
in t , and therefore, the existence of the continuous derivative ∂t y(t, θ) everywhere on [0, T ].
�

Lemma 18. For every t ∈ [0, T ], the function y(t, · ) : T2
→ R2 is divergence-free. Moreover,

the pair (y, p) verifies the backward Navier–Stokes equations.

Proof. Fix a t > 0, and consider the TeGα
V-valued curve γζ = E[exp−1 Z t,e

ζ ], ζ > t , in a
neighborhood of the origin of TeGα

V. The forward SDE of (27) can be represented as an SDE on
Gα: {

dZ t,e
s = exp{Ŷs(Z

t,e
s )ds + σ(Z t,e

s )dWs},

Z t,e
t = e,
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where Ŷs is the right-invariant vector field on Gα generated by y(s, ·). This implies that

∂

∂ζ
γζ

∣∣∣∣
ζ=t
= y(t, ·),

and therefore y(t, ·) ∈ TeGα
V. Next, the backward SDE of (27) implies that Y t,e

T = h(Z t,e
T ). This

and relation (36) imply that y(T, · ) = h. Since we already obtained (39) in Lemma 17 the proof
of the lemma is now complete. �

7. The backward SDE as an SDE on a tangent bundle

Let (Z t,e
s , Y t,e

s , X t,e
s ) be a solution to FBSDEs (5). We will show that the backward SDE

can be represented as an SDE on the tangent bundle T G α
V as well as an SDE on T Gα . We will

construct a backward SDE in the Dalecky–Belopolskaya form (see [5]) and show that the process
Y t,e

s is its unique solution.

7.1. The representation of the backward SDE on T G α
V

Let y(s, · ), s ∈ [t, T ], be the solution to the backward Navier–Stokes equations (9). Let
Ŷs be the right-invariant vector field on G α

V generated by y(s, · ). The connection map on the
manifold G α

V generates the connection map on the manifold T G α
V as it was shown in [5], p.

58 (see also [11]). As before, we consider the Levi-Civita connection of the weak Riemannian
metric (3) on G α

V . Let exp denote the exponential map of the generated connection on T G α
V .

More precisely, exp is given as follows:

exp( x
a )

(
α

β

)
=

(
γα(1)
ηβ(1)

)
where

(
γα(t)
ηβ (t)

)
is the geodesic curve on T G α

V with the initial data γ ′α(0) = α, η′β(0) = β,

γα(0) = x , ηβ(0) = a. Let the vector fields AH
k and BH

k be the horizontal lifts of Ak and
Bk onto T T G α

V . Further let ∂s Ŷ `s be the vertical lift of ∂s Ŷs onto T T G α
V . Let us consider the

backward SDE on T G α
V :

dY t,e
s = expY t,e

s

{
∂s Ŷ `s (Y

t,e
s )ds + S(Y t,e

s )ds

+ ε
∑

k∈Z+2 ∪{0},|k|6N

[
AH

k (Y
t,e
s )⊗ eA

k + BH
k (Y

t,e
s )⊗ eA

k

]
dWs

}
, (40)

Y t,e
T = ĥ(Z t,e

T )

where S is the geodesic spray of the Levi-Civita connection of the weak Riemannian metric (3)
on G α

V (see [14] or [15]), and Z t,e
s , s ∈ [t, T ], is the solution to (11) on G α

V with the initial
condition Z t,e

t = e.

Theorem 9. There exists a solution to (40) on [t, T ]. Moreover, if ∂s y(s, · ) ∈ Hα(T2,R2),
then this solution is unique and coincides with the Y t,e

s -part of the unique Fs-adapted solution
(Y t,e

s , X t,e
s ) to (7).

Proof. From the proof of Theorem 6 we know that the pair of stochastic processes
(Ŷs(Z

t,e
s ), ε σ (Z t,e

s )Ŷs(Z
t,e
s )) is the unique Fs-adapted solution to (7) in Hα(T2,R2). Let us
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prove that Ŷs(Z
t,e
s ) is a strong solution to (40). First we describe a system of local coordinates

(gk A, X k A, gk B, X k B)k∈Z+2 ∪{0}
in a neighborhood Ueg× TeG α

V of the point X̂(g) ∈ T G α
V where

Ue ⊂ G α
V is the canonical chart. The vector ḡ = (gk A, gk B)k∈Z+2 ∪{0}

is the vector of normal

coordinates in the neighborhood Ueg, g ∈ G α
V . The vector X̄ = (X k A, X k B)k∈Z+2 ∪{0}

represents

the coordinates of the decomposition of the vector X̂(g) ∈ T G α
V in the basis {Ak, Bk}k∈Z+2 ∪{0}

:

X̂(g) =
∑

k∈Z+2 ∪{0}
(X k A Ak(g) + X k B Bk(g)). Let f be a smooth function on T G α

V , and let

f̃ (X̄ , ḡ) = f (X̂(g)), where X̂(g) ∈ T G α
V . Let τ be the exit time of the process Z t,e

r from the
neighborhood Ue Z t,e

s . We will compute the difference f (Y t,e
s ) − f (Y t,e

τ ) using Itô’s formula.
Let (Z̄r , Ȳr ) = (Z k A

r , Z k B
r , Y k A

r , Y k B
r )k∈Z+2 ∪{0}

be the vector of local coordinates of the process

Ŷr (Z
t,e
r ) on [s, τ ]. Using SDE (40), we obtain:

f (Y t,e
s )− f (Y t,e

τ ) = −
∑

k∈Z+2 ∪{0}

∫ τ

s

[
(Y k A

r )′
∂ f̃ (Ȳr , Z̄r )

∂Y k A
r

+ (Y k B
r )′

∂ f̃ (Ȳr , Z̄r )

∂Y k B
r

+ Y k A
r
∂ f̃ (Ȳr , Z̄r )

∂Z k A
r

+ Y k B
r
∂ f̃ (Ȳr , Z̄r )

∂Z k B
r

+
ε2

2
δk

( ∂2

∂(Z k A
r )2
+

∂2

∂(Z k B
r )2

)
f̃ (Ȳr , Z̄r )

]
dr

− ε
∑

k∈Z+2 ∪{0},|k|6N

∫ τ

s

[∂ f̃ (Ȳr , Z̄r )

∂Z k A
r

⊗ eA
k +

∂ f̃ (Ȳr , Z̄r )

∂Z k B
r

⊗ eA
k

]
dWr (41)

where δk = 1 if |k| 6 N , and δk = 0 otherwise. Since f is a smooth function on T G α
V , all

its restrictions to the tangent spaces of G α
V are smooth. Hence, one can talk about derivatives

of f restricted to a tangent space along the vectors of this tangent space. Namely, the following
relation holds:

∂ f̃ (Ȳr , Z̄r )

∂Y k A
r

= f ′(Ŷr (Z
t,e
r ))Ak(Z

t,e
r ).

Note that the differentiation of f̃ with respect to Z k A
r and Z k B

r can be regarded as the

differentiation of the composite function f ◦Ŷr along the vectors Ak and Bk . Namely, ∂ f̃ (Ȳr ,Z̄r )

∂Zk A
r
=

Ak(Z
t,e
r )[( f ◦ Ŷr )(Z

t,e
r )]. This implies:

f (Y t,e
s )− f (ĥ(Z t,e

T )) = −

∫ T

s
dr

[
∂r ( f ◦ Ŷr )(Z

t,e
r )+ Ŷr (Z

t,e
r )( f ◦ Ŷr )(Z

t,e
r )

+
ε2

2

∑
k∈Z+2 ∪{0},|k|6N

(
Ak(Z

t,e
r )Ak(Z

t,e
r )+ Bk(Z

t,e
r )Bk(Z

t,e
r )
)
( f ◦ Ŷr )(Z

t,e
r )


− ε

∑
k∈Z+2 ∪{0},|k|6N

∫ T

s
[Ak(Z

t,e
r )( f ◦ Ŷr )(Z

t,e
r )⊗ eA

k

+ Bk(Z
t,e
r )( f ◦ Ŷr )(Z

t,e
r )⊗ eB

k ]dWr . (42)

We extended the integration to the entire interval [s, T ] since the local coordinates no longer
appear under the integral signs. This is also possible since (41) holds also with respect to the
local coordinates in the neighborhood Ue Z t,e

τ and a new exit time τ1. The same argument can be
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repeated with respect to the local coordinates in the neighborhood Ue Z t,e
τ1

, etc. Let us consider

now f ◦ Ŷs as a time-dependent function of g ∈ G α
V . Applying Itô’s formula to ( f ◦ Ŷs)(Z

t,e
s ) on

the interval [s, T ] and using SDE (11) on G α
V , we obtain exactly the above identity. This proves

that Y t,e
s = Ŷs(Z

t,e
s ) is a strong solution to (40) on T G α

V . By results of [14], ∂s Ŷ `s is C1-smooth.
Moreover S, AH

k and BH
k , k ∈ Z+2 , are C∞-smooth. Again, by results of [14], the solution of

BSDE (40) on T G α
V is unique. �

7.2. The representation of the backward SDE on T Gα

Applying Proposition 1.3 (p. 146) of [5] (see also [15], p. 64) to the manifolds T G α
V and T Gα

and the identical imbedding ıV : T G α
V → T Gα , we obtain that the process ıV

(
Ŷs(Z

t,e
s )
)
=

Ŷs(Z
t,e
s ) solves the following backward SDE on T Gα:

dY t,e
s = ¯expY t,e

s

{
∂s Ŷ

¯̀

s (Y
t,e
s )ds + S̄(Y t,e

s )ds

+ ε
∑

k∈Z+2 ∪{0},|k|6N

[
AH̄

k (Y
t,e
s )⊗ eA

k + BH̄
k (Y

t,e
s )⊗ eA

k

]
dWs

}
,

Y t,e
T = ĥ(Z t,e

T ) (43)

where S̄ is the geodesic spray of the Levi-Civita connection of the weak Riemannian metric on
Gα , ∂s Ŷ ¯̀s denotes the vertical lift of ∂s Ŷs onto T T Gα , AH̄

k and BH̄
k denote the horizontal lifts of

Ak and Bk onto T T Gα , the process Z t,e
s , s ∈ [t, T ], is the solution to (11) on Gα with the initial

condition Z t,e
t = e. The exponential map ¯exp on T T Gα is defined similarly to the map exp on

T T G α
V . Namely, the Levi-Civita connection of the weak Riemannian metric on Gα generates

a connection on T Gα . The latter gives rise to the exponential map ¯exp on T T Gα as it was
described in Section 7.1. We actually have obtained the following theorem.

Theorem 10. Backward SDE (43) has a unique strong solution. Moreover, this solution
coincides with the unique strong solution to BSDE (40) on T G α

V , and with the Y t,e
s -part of the

unique Fs-adapted solution (Y t,e
s , X t,e

s ) to (7).

Proof. We have already shown that the process Ŷs(Z
t,e
s ) solves BSDE (43). The uniqueness of

solution can be proved in exactly the same way as the uniqueness of solution to (40) on T G α
V

(see the proof of Theorem 9). �
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Appendix

A.1. Geometry of the group of volume-preserving diffeomorphisms of the n-dimensional torus

Let Tn
= S1

× · · · × S1︸ ︷︷ ︸
n

denote the n-dimensional torus. Let us describe the basis of the

tangent space TeG α
V of the group G α

V of volume-preserving diffeomorphisms of Tn . We introduce
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the following notation:

Z+n = {(k1, k2, . . . , kn) ∈ Zn
: k1 > 0 or k1 = · · · = ki−1 = 0, ki > 0,

i = 2, . . . , n};

k = (k1, . . . , kn) ∈ Z+n , |k| =

√√√√ n∑
i=1

k2
i , k · θ =

n∑
i=1

kiθi ,

θ = (θ1, . . . , θn) ∈ Tn, ∇ =

( ∂

∂θ1
,
∂

∂θ2
, . . . ,

∂

∂θn

)
.

For every k ∈ Z+n , (k̄1, . . . , k̄n−1) denotes an orthogonal system of vectors of length |k| which is
also orthogonal to k. Introduce the vector fields on Tn :

Āi
k =

1

|k|α+1 cos(k · θ) k̄i , B̄i
k =

1

|k|α+1 sin(k · θ) k̄i , i = 1, . . . , n − 1, k ∈ Z+n ,

and the constant vector fields Āi
0, i = 1, . . . , n, whose i th coordinate is 1 and the other

coordinates are 0. Let Ai
k, Bi

k , i = 1, . . . , n − 1, k ∈ Z+n , denote the right-invariant vector
fields on G α

V generated by Āi
k, B̄i

k , i = 1, . . . , n − 1, k ∈ Z+n , respectively, and let Ai
0 = Āi

0,
i = 1, . . . , n, stand for constant vector fields on G α

V . The following lemma is an analog of
Lemma 6.

Lemma 19. The vectors Ai
k(g), Bi

k(g), k ∈ Z+n , i = 1, . . . , n − 1, g ∈ G α
V , Ai

0, i = 1, . . . , n,
form an orthogonal basis of the tangent space TgG α

V with respect to both the weak and the
strong inner products in TgG α

V . In particular, the vectors Āi
k , B̄i

k , k ∈ Z+n , i = 1, . . . , n − 1, Āi
0,

i = 1, . . . , n, form an orthogonal basis of the tangent space TeG α
V . Moreover, the weak and the

strong norms of the basis vectors are bounded by the same constant.

The other lemmas of Section 2 hold in the n-dimensional case, with respect to the system Ai
k ,

Bi
k , k ∈ Z+n , i = 1, . . . , n − 1, Ai

0, i = 1, . . . , n, without changes. The index α of the Sobolev
space Hα has to be chosen bigger than n

2 + 1.

A.2. The Laplacian of a right-invariant vector field on Gα(Tn)

One of the most important steps in the proof of Theorems 6 and 8 is Lemma 10, i.e. the
computation of the Laplacian of a right-invariant vector field on Gα with respect to the subsystem
{Ak, Bk}k∈Z+2 ∪{0},|k|6N where N can be fixed arbitrary. Below we prove an n-dimensional analog
of this lemma.

Lemma 20. Let V̂ be the right-invariant vector field on G α̃(Tn) generated by an H α̃+2-vector
field V on Tn . Further let ε > 0 be such that

ε2

2

(
1+

n − 1
n

∑
k∈Z+n ,|k|6N

1

|k|2α

)
= ν.

Then for all g ∈ Gα̃ ,

ε2

2

[ ∑
k∈Z+n ,|k|6N

n−1∑
i=1

(
∇̄Ai

k
∇̄Ai

k
+ ∇̄Bi

k
∇̄Bi

k

)
+

n∑
i=1

∇̄Ai
0
∇̄Ai

0

]
V̂ (g) = ν∆V ◦ g.
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Proof. As it was mentioned in the proof of Lemma 7, it suffices to consider the case g = e. We
observe that for all i = 1, . . . , n − 1,

(k̄i ,∇) cos(k · θ) = − sin(k · θ)(k̄i , k) = 0.

Similarly, (k̄i ,∇) sin(k · θ) = 0. Then, for k ∈ Z+n , θ ∈ Tn ,

n−1∑
i=1

∇̄Ai
k
∇̄Ai

k
V̂ (e)(θ) =

1

|k|2α+2

n−1∑
i=1

cos(k · θ)(k̄i ,∇)
[
cos(k · θ)(k̄i ,∇)V (θ)

]
=

1

|k|2α+2 cos(k · θ)2
n−1∑
i=1

(k̄i ,∇)2V (θ)

=
1

|k|2α+2 cos(k · θ)2(|k|2∆− (k,∇)2)V (θ).

The latter equality holds by the identity
∑n−1

i=1 (k̄
i ,∇)2 + (k,∇)2 = |k|2∆ that follows, in turn,

from the fact that the system
{ k̄i

|k| ,
k
|k|

}
, i = 1, . . . , n − 1, forms an orthonormal basis of Rn .

Similarly,

n−1∑
i=1

∇̄Bi
k
∇̄Bi

k
V̂ (e)(θ) =

1

|k|2α+2 sin(k · θ)2(|k|2∆− (k,∇)2)V (θ).

Hence, for each k ∈ Z+n ,

n−1∑
i=1

(∇̄Ai
k
∇̄Ai

k
+ ∇̄Bi

k
∇̄Bi

k
)V̂ (e)(θ) =

1

|k|2α+2 (|k|
2∆− (k,∇)2)V (θ). (44)

Further we have:∑
k∈Z+n ,|k|6N

1

|k|2α+2 (k,∇)
2
=

1
2

∑
k∈Zn ,|k|6N

1

|k|2α+2 (k,∇)
2

=
1
2

∑
k∈Zn ,|k|6N

1

|k|2α+2

n∑
i=1

k2
i ∂

2
i +

∑
k∈Zn ,|k|6N

1

|k|2α+2

∑
i 6= j

ki k j∂i∂ j

where ∂i =
∂
∂θi

, and due to the factor 1
2 we perform the summation over all k ∈ Zn . Clearly, the

second sum is zero. To show this, we have to specify the way of summation. Let us collect in
a group the terms ki k j∂i∂ j attributed to those k ∈ Zn whose coordinates except the i th and the
j th coincide, while the i th and the j th coordinates satisfy the following rules: they are obtained
from ki and k j attributed to one of the vectors of the group by means of an arbitrary assignment
of a sign. This operation specifies four vectors. The other four vectors are obtained from the first
four vectors of the group by means of the permutation of the i th and the j th coordinates. In total,
we get eight vectors in the group. Clearly, the summands ki k j∂i∂ j attributed to these vectors
cancel each other. Let us compute the first sum.∑

k∈Zn ,|k|6N

1

|k|2α+2

n∑
i=1

k2
i ∂

2
i =

n∑
i=1

[ ∑
k∈Zn ,|k|6N

1

|k|2α+2 k2
i

]
∂2

i .
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Note that ∑
k∈Zn ,|k|=const

k2
1 = · · · =

∑
k∈Zn ,|k|=const

k2
n =

1
n

∑
k∈Zn ,|k|=const

|k|2.

This implies:∑
k∈Zn ,|k|6N

1

|k|2α+2

n∑
i=1

k2
i ∂

2
i =

1
n

∑
k∈Zn ,|k|6N

1

|k|2α
∆ =

2
n

∑
k∈Z+n ,|k|6N

1

|k|2α
∆.

Together with (44) it gives:∑
k∈Z+n ,|k|6N

n−1∑
i=1

(∇̄Ai
k
∇̄Ai

k
+ ∇̄Bi

k
∇̄Bi

k
)V̂ (e)(θ) =

n − 1
n

∑
k∈Z+n ,|k|6N

1

|k|2α
∆V (θ).

We also have to take into consideration the term
n∑

i=1

∇̄Ai
0
∇̄Ai

0
V̂ (e)(θ) = ∆V (θ).

Finally, we obtain:[ ∑
k∈Z+n ,|k|6N

n−1∑
i=1

(∇̄Ai
k
∇̄Ai

k
+ ∇̄Bi

k
∇̄Bi

k
)+

n∑
i=1

∇̄Ai
0
∇̄Ai

0

]
V̂ (e)(θ)

=

(
1+

n − 1
n

∑
k∈Z+n ,|k|6N

1

|k|2α

)
∆V (θ).

The lemma is proved. �
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