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Abstract

We consider sequences of random variables of the type Sn = n−1/2∑n
k=1{ f (Xk)− E[ f (Xk)]}, n ≥ 1,

where X = (Xk)k∈Z is a d-dimensional Gaussian process and f : Rd
→ R is a measurable function. It is

known that, under certain conditions on f and the covariance function r of X , Sn converges in distribution
to a normal variable S. In the present paper we derive several explicit upper bounds for quantities of the type
|E[h(Sn)] − E[h(S)]|, where h is a sufficiently smooth test function. Our methods are based on Malliavin
calculus, on interpolation techniques and on the Stein’s method for normal approximation. The bounds
deduced in our paper depend only on Var[ f (X1)] and on simple infinite series involving the components
of r . In particular, our results generalize and refine some classic CLTs given by Breuer and Major, Giraitis
and Surgailis, and Arcones, concerning the normal approximation of partial sums associated with Gaussian-
subordinated time series.
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1. Introduction

Fix d ≥ 1 and consider a d-dimensional centered stationary Gaussian process X = (Xk)k∈Z,
Xk = (X (1)

k , . . . , X (d)
k ), defined on a probability space (Ω , F , P). For any 1 ≤ i, l ≤ d and

j ∈ Z, we denote by

r (i,l)( j) = E[X (i)
1 X (l)

1+ j ], (1.1)

the covariance of X (i)
1 and X (l)

1+ j . Let f : Rd
→ R be a measurable function and write

Sn =
1

√
n

n−
k=1

{ f (Xk) − E[ f (Xk)]}, n ≥ 1, (1.2)

to indicate the sequence of normalized partial sums associated with the subordinated process
k → f (Xk). One crucial problem in Gaussian analysis is the following:

Problem P. Find conditions on f and on the covariance r in order to have that, as n → ∞, Sn
converges in distribution to a Gaussian random variable.

Although easily stated, Problem P is in fact quite subtle. For instance, as observed e.g. in
[8, p. 429], it is in general not possible to deduce a solution to Problem P by using standard central
limit results for dependent random variables (for instance, by applying techniques based on mix-
ing). More to the point, slight variations in the form of f and r may imply that either the normal-
ization by the factor n1/2 is inappropriate, or the limiting distribution is not Gaussian (or both ap-
ply): see Dobrushin and Major [15], Rosenblatt [31] and Taqqu [36,37] for several classic results
connected with this phenomenon, as well as Breton and Nourdin [7] for recent developments.

It turns out that an elegant solution to Problem P can be deduced by using the notion of
Hermite rank. Recall that the function f is said to have Hermite rank equal to q with respect
to X , where q ≥ 1 is an integer, if (a) E[( f (X) − E[ f (X)])pm(X)] = 0 for every polynomial
pm (on Rd ) of degree m ≤ q − 1; and (b) there exists a polynomial pq of degree q such that
E[( f (X) − E[ f (X)])pq(X)] ≠ 0.

Then, one has the following well-known statement:

Theorem 1.1 (Breuer–Major Theorem for Stationary Vectors). Let E[ f 2(X1)] < ∞, and
assume that the function f has Hermite rank equal to q ≥ 1. Suppose that−

j∈Z
|r (i,l)( j)|q < ∞, ∀i, l ∈ {1, . . . , d}. (1.3)

Then σ 2
:= Var[ f 2(X1)] + 2

∑
∞

k=1 Cov[ f (X1), f (X1+k)] is well-defined, and belongs to
[0, ∞). Moreover, one has that

Sn
d

−→ S ∼ N (0, σ 2), (1.4)

where N (0, σ 2) indicates a centered Gaussian distribution with variance σ 2, and
d

−→ stands for
convergence in distribution.

In the case d = 1, Theorem 1.1 was first proved by Breuer and Major in [8], whereas
Theorem 4 in Arcones [2] proves the statement for a general d (both proofs in [2,8] are based
on the method of cumulants and diagram formulae — see e.g. [29,34]). The reader is referred
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to Sun [33] for an early statement in the case of a Hermite rank equal to 2, and to Giraitis
and Surgailis [17] for some continuous-time analogues of Theorem 1.1. Note that any central
limit result involving Hermite ranks and series of covariance coefficients is customarily called a
‘Breuer–Major theorem’, in honor of the seminal paper [8].

Theorem 1.1 and its variations have served as fundamental tools for Gaussian approximations
in an impressive number of applications, of which we provide a representative (recent) sample:
renormalization of fractional diffusions [1], power variations of Gaussian and Gaussian-related
continuous-time processes [3,4,14,20,24], Gaussian fluctuations of heat-type equations [5],
estimation of Hurst parameters of fractional processes [9,12,13], unit-root problems in
econometrics [10], empirical processes of long-memory time series [22], level functionals of
stationary Gaussian fields [19], variations of multifractal random walks [21], and stochastic
programming [38]. See also Surgailis [34] for a survey of some earlier uses of Breuer–Major
criteria.

Despite this variety of applications, until recently the only available techniques for
proving results such as Theorem 1.1 were those based on combinatorial cumulants/diagrams
computations. These techniques are quite effective and flexible (see e.g. [23,32] for further
instances of their applicability), but suffer from a fundamental drawback, namely they do not
allow us to deduce Berry–Esseen relations of the typeE[h(Sn)] − E[h(S)]

 ≤ ϕ(n), n ≥ 1, (1.5)

where h is a suitable test function, and ϕ(n) → 0 as n → ∞. An upper bound such as (1.5)
quantifies the error that one makes when replacing Sn with S for a fixed n.

In [25, Section 4], the first two authors of this paper proved that one can combine Malliavin
calculus (see e.g. [28]) and Stein’s method (see e.g. [11]) to obtain relations such as (1.5) (for
some explicit ϕ(n)) in the case where: (i) d = 1, (ii) f = Hq is a Hermite polynomial of degree
q ≥ 2 (and thus has Hermite rank equal to q), (iii) X is obtained from the increments of a
fractional Brownian motion of Hurst index H < 1 − (2q)−1, and (iv) h is either an indicator of
a Borel set or a Lipschitz function. Since under (iii) one has that |r( j)| ∼ j2H−2, these findings
allow us to recover a very special case of Theorem 1.1 (see Example 2.5 below for more details
on this point).

The aim of the present work is to extend the techniques initiated in [25] in order to deduce sev-
eral complete quantitative Breuer–Major theorems, that is, statements providing explicit upper
bounds such as (1.5) for any choice of f and r satisfying the assumptions of Theorem 1.1. We
stress now that we will not require that the functions f enjoy any additional smoothness property,
so our results represent a genuine extension of the findings by Breuer and Major and by Arcones.

As anticipated, our techniques are based on the use of Malliavin operators on a Gaussian
space, that we combine both with Stein’s method and with an interpolation technique (already
applied in [27,30]) which is reminiscent of the ‘smart path method’ in spin glasses — see
e.g. Talagrand [35]. In particular, the use of Stein’s method allows us to deal with functions h
that are either Lipschitz or indicators of the type h = 1(−∞,z], whereas the use of interpolations
requires test functions that are twice differentiable and with bounded derivatives. Note that
this implies that the convergence (1.4) does indeed take place in the stronger topologies of the
Kolmogorov and Wasserstein distances.

The rest of the paper is organized as follows. Section 2 contains the statements of our main
results, some examples and applications. Section 3 presents some notions and results that are
needed to prove our main Theorem 2.1. Section 4 is devoted to proofs.
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2. Statement of the main results

We keep the assumptions and notation of the previous section. For the sake of notational
simplicity, in the following we shall assume that E[ f (X1)] = 0. Also, we shall assume that X1 ∼

Nd(0, Id), implying that X (1)
k , . . . , X (d)

k are independent N (0, 1) random variables for all k ∈ Z.
Note that this last assumption is not restrictive: indeed, by reduction of variables and at the cost of
possibly decreasing the value of d , we may always assume that Xk ∼ Nd(0,Σ ) for an invertible
matrix Σ ∈ Rd×d , and by a linear transformation we can further restrict ourselves to the case
Xk ∼ Nd(0, Id). Observe that, if f (x) has Hermite rank q with respect to X1, then f (Lx) has the
same Hermite rank q with respect to L−1 X1, for every invertible matrix L — see also [2, p. 2249].

Now, let Λ denote the set of all vectors α = (α1, . . . , αd) with αi ∈ N ∪ {0}. For any
multi-index α ∈ Λ, we introduce the notation |α| =

∑d
i=1 αi and α! =

∏d
i=1 αi !. When

E[ f 2(X1)] < ∞, the function f possesses the unique Hermite expansion

f (x) =

−
α∈Λ

aα

d∏
i=1

Hαi (xi ), aα = (α!)−1E


f (X1)

d∏
i=1

Hαi (X (i)
1 )


, (2.6)

where (H j ) j≥0 is the sequence of Hermite polynomials, recursively defined as follows: H0 = 1,
and

H j = δH j−1, j ≥ 1,

where δ f (x) = x f (x) − f ′(x) (for instance: H1(x) = x , H2(x) = x2
− 1, and so on). When f

has Hermite rank q ≥ 1 we introduce the decomposition

f (x) =

∞−
m=q

fm(x), fm(x) =

−
α∈Λ:|α|=m

aα

d∏
i=1

Hαi (xi ). (2.7)

Notation. Fix a function f such that E[ f 2(X1)] < ∞ and f has Hermite rank q ≥ 1. Our main
results are expressed in terms of the following collection of coefficients (2.8)–(2.12):

θ( j) = max
1≤i,l≤d

|r (i,l)( j)| (2.8)

K = inf
k∈N

{θ( j) ≤ d−1, ∀| j | ≥ k} (with inf ∅ = ∞), (2.9)

θ =

−
j∈Z

θ( j)q , (2.10)

σ 2
m = E[ f 2

m(X1)] + 2
∞−

k=1

E[ fm(X1) fm(X1+k)] (for m ≥ q), (2.11)

γn,m,e =


2θn−1

−
| j |≤n

θ( j)e
−
| j |≤n

θ( j)m−e (for m ≥ q and 1 ≤ e ≤ m − 1). (2.12)

The coefficients θ( j), K , θ , σ 2
m and γn,m,e will also be combined into the following expressions

(2.13)–(2.17):

A1,n =
E[ f 2(X1)]

2


2K 2

n
+ dq

−
| j |≤n

θ( j)q | j |

n
+

−
| j |>n

θ( j)q


(2.13)
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A2,N = 2(2K + dqθ)

E[ f 2(X1)]

∞−
m=N+1

E[ f 2
m(X1)] (2.14)

A3,n,N =
E[ f 2(X1)]

2

N−
m=q


dm

mm!

m−1−
l=1

ll!
m

l

2
(2m − 2l)!γn,m,l


(2.15)

A4,n,N =
E[ f 2(X1)](2K + dqθ)1/2

2

×

−
q≤p<s≤N

ds/2


p!

s!

p + s

p


s − 1
p − 1


(s − p)!γ

1/2
n,s,s−p (2.16)

A5,n,N =
E[ f 2(X1)]

2
√

2

−
q≤p<s≤N

(p + s)
p−1−
l=1

(l − 1)!


p − 1
l − 1


s − 1
l − 1


(p + s − 2l)!

×


ds

s!
γn,s,s−l +

d p

p!
γn,p,p−l


. (2.17)

Note that the coefficients K , θ and σm can in general be infinite, and also that, if E[ f (X1)
2
] < ∞,

if f has Hermite rank q , and if (1.3) is in order, then

σ 2
=

∞−
m=q

σ 2
m < ∞, (2.18)

where σ 2 is defined in Theorem 1.1.
The next statement, which is the main result of the paper, asserts that the quantities defined

above can be used to write explicit bounds of the type (1.5).

Theorem 2.1 (Quantitative Breuer–Major Theorem). Let the notation and assumptions of this
section prevail (in particular, E[ f (X1)] = 0 and X1 ∼ Nd(0, Id)), and assume that the
conditions of Theorem 1.1 are satisfied. Then, the coefficients appearing in formulae (2.8)–
(2.17) are all finite. Moreover, the following three bounds are in order.
(1) For any function h ∈ C2(R) (that is, h is twice continuously differentiable) with bounded

second derivative, and for every n > K ,

|E[h(Sn)] − E[h(S)]| ≤ ‖h′′
‖∞(A1,n + inf

N≥q
{A2,N + A3,n,N + A4,n,N + A5,n,N }). (2.19)

(2) For any Lipschitz function h, and for every n > K ,

|E[h(Sn)] − E[h(S)]| ≤
‖h′

‖∞

2

A2,n

 1
σ

+
1

(2K + dqθ) E


f 2 (X1)



+ 4 inf
N≥q

A1,n + A3,n,N + A4,n,N + A5,n,N
N∑

m=q
σ 2

m

 . (2.20)

(3) For any z ∈ R, and for every n > K ,
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|[P(Sn ≤ z)] − P(S ≤ z)| ≤

√
2

σ

×

A2,n

 1
σ

+
1

(2K + dqθ)E


f 2 (X1)

+ 4 inf

N≥q

A1,n + A3,n,N + A4,n,N + A5,n,N
N∑

m=q
σ 2

m

. (2.21)

We will now demonstrate that Theorem 2.1 implies a stronger version of Theorem 1.1, namely
that the convergence (1.4) takes place with respect to topologies that are stronger than the one
of convergence in distribution. To prove this claim, we need to show in particular that, under the
assumptions of Theorem 1.1, γn,m,e → 0 as n → ∞ for any choice of m ≥ q and 1 ≤ e ≤ m−1.
This is a consequence of the next Lemma 2.2. In what follows, given positive sequences bn, cn ,
n ≥ 1, we shall write bn . cn whenever bn/cn is bounded, and bn ∼ cn if bn . cn and cn . bn .

Lemma 2.2. Let (ak)k∈Z be a sequence of positive real numbers such that
∑

k∈Z am
k < ∞ for

some m ∈ N. If 1 ≤ e ≤ m − 1, then

n−1+
e
m
−
|k|≤n

ae
k → 0.

Proof. Fix δ ∈ (0, 1), and decompose the sum as
∑n

k=1 =
∑[nδ]

k=1 +
∑n

k=[nδ]+1. By the Hölder
inequality we obtain (recall that

∑
∞

k=1 am
k is finite)

n−1+e/m
[nδ]−
k=1

ae
k ≤ n−1+e/m (nδ)1−e/m


∞−

k=1

am
k

e/m

≤ cδ1−e/m,

where c is some constant, as well as

n−1+e/m
n−

k=[nδ]+1

ae
k ≤


n−

k=[nδ]+1

am
k

e/m

.

The first term converges to 0 as δ goes to zero (because 1 ≤ e ≤ m − 1), and the second also
converges to 0 for fixed δ and n → ∞. This proves the claim. �

Now recall that, if X, Y are two real-valued random variables, then the Kolmogorov distance
between the law of X and the law of Y is given by

dK ol(X, Y ) = sup
z∈R

|P(X ≤ z) − P(Y ≤ z)|. (2.22)

If E|X |, E|Y | < ∞, one can also meaningfully define the Wasserstein distance

dW (X, Y ) = sup
f ∈Lip(1)

|E[ f (X)] − E[ f (Y )]|, (2.23)

where Lip(1) indicates the collection of all Lipschitz functions with Lipschitz constant ≤1.
Finally, if X, Y have finite second moments, for every constant C > 0 one can define the distance

dC (X, Y ) = sup
f ∈D2

C

|E[ f (X)] − E[ f (Y )]|, (2.24)
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where D2
C stands for the class of all functions that are twice continuously differentiable and have

a second derivative bounded by C . Note that the topologies induced by dK ol , dW and dC , on the
probability measures on R, are strictly stronger than the topology of convergence in distribution
(see e.g. [16, Ch. 11]).

The next consequence of Theorem 2.1 provides the announced refinement of Theorem 1.1.

Corollary 2.3 (Breuer–Major, Strong Version). Let the notation and assumptions of this section
prevail (in particular, E[ f (X1)] = 0 and X1 ∼ Nd(0, Id)), and assume that the conditions
of Theorem 1.1 are satisfied. Then, the convergence (1.4) takes place with respect to the three
distances dK ol , dW and dC (for all C > 0), namely

lim
n→∞

dK ol(Sn, S) = lim
n→∞

dW (Sn, S) = lim
n→∞

dC (Sn, S) = 0.

Proof. Under the assumptions of Theorem 1.1, one has that A1,n → 0 as n → ∞ (because
θ < ∞,

∑
| j |≤n θ( j)q | j |

n → 0 as n → ∞ by bounded convergence). On the other hand, because

of (2.18) and since E[ f 2(X1)] < ∞, one has that A2,N → 0 as N → ∞. Moreover, since
γn,m,e → 0 for any m ≥ q and 1 ≤ e ≤ m−1 (due to Lemma 2.2), one has that A j,n,N → 0, j =

3, 4, 5, for any fixed N as n → ∞. We deduce that infN≥q{A2,N +A3,n,N +A4,n,N +A5,n,N } → 0
as n → ∞. To conclude the proof, it remains to apply (2.19)–(2.21). �

Next, we present a simplified version of Theorem 2.1 for d = 1 and f = Hq , where Hq
is the qth Hermite polynomial. Notice that in this case K = 0 and the constants A1,n and
A3,n,N = A3,n are given by

A1,n =
q!

2
θ

−
| j |≤n

|r( j)|q
| j |

n
+

−
| j |>n

|r( j)|q


, (2.25)

A3,n =
1

2q

q−1−
l=1

ll!
q

l

2
(2q − 2l)!γn,q,l , (2.26)

with γn,q,l defined by (2.12).

Corollary 2.4 (Hermite Subordination). Assume that d = 1, f = Hq and
∑

j∈Z |r( j)|q < ∞,
and let A1,n, A3,n be given by (2.25)–(2.26).

(1) For any function h ∈ C2(R) with bounded second derivative it holds that

|E[h(Sn)] − E[h(S)]| ≤ ‖h′′
‖∞(A1,n + A3,n). (2.27)

(2) For any Lipschitz function h it holds that

|E[h(Sn)] − E[h(S)]| ≤
2‖h′

‖∞

σ
(A1,n + A3,n). (2.28)

(3) For any z ∈ R it holds that

|[P(Sn ≤ z)] − P(S ≤ z)| ≤
2‖s′

z‖∞

σ
(A1,n + A3,n), (2.29)

where sz is the solution of the Stein’s equation associated with the function h(x) =

1(−∞,z](x), i.e. sz solves the differential equation

1(−∞,z](x) − Φ(z) = s′
z(x) − xsz(x), x ∈ R,
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with Φ being the distribution function of N (0, 1). Furthermore, we have that ‖s′
z‖∞ ≤ 1 for

all z ∈ R.

Proof. From Theorem 3.1 in [25] and Theorem 3.2 in Section 3.3 we obtain the estimate

|E[h(Sn)] − E[h(S)]| ≤ chE|σ 2
− ⟨DF, −DL−1 F⟩H|,

where ch =
‖h′′

‖∞

2 in (1), ch =
‖h′

‖∞

σ
in (2) and ch =

‖s′
z‖∞

σ
in (3). We readily deduce the

assertion since E|σ 2
− ⟨DF, −DL−1 F⟩H| ≤ 2(A1,n + A3,n), which follows from the proof of

Theorem 2.1. �

We remark that the upper bound in (2.29) of Corollary 2.4 is more efficient than the general
upper bound obtained in (2.21) of Theorem 2.1 as the latter one converges to 0 more slowly.

Next, we apply Corollary 2.4 to some particular classes of covariance functions r .

Example 2.5 (Covariance Functions with Polynomial Decay). Assume that d = 1 and f = Hq
with q ≥ 2, and consider a covariance function r which is regularly varying with parameter
a < 0. That is, for all |k| ≥ 1, |r(k)| = |k|

al(|k|), where l is a slowly varying function. Recall
that for any regularly varying function r with parameter α < 0, we have the following discrete
version of Karamata’s theorem (see e.g. [6]):

α > −1 :

n∑
k=1

|r(k)|

na+1l(n)
→ 1/(α + 1),

α < −1 :

∞∑
k=n

|r(k)|

na+1l(n)
→ −1/(α + 1),

as n → ∞. Assume now that a < −
1
q , which implies that the conditions of Theorem 2.1 are

satisfied, and ae ≠ −1 for any e = 1, . . . , q − 1. By the aforementioned convergence results we
immediately deduce the following estimates (1 ≤ e ≤ q − 1):−

| j |≤n

|r( j)|q
| j |

n
. n−1

+ naq+1l(n),−
| j |>n

|r( j)|q . naq+1l(n),

γn,q,e . n−1/2
+ na/2l(n) + n(aq+1)/2l2(n).

Thus, for all three cases of Corollary 2.4 we conclude that

|E[h(Sn)] − E[h(S)]| .


n−1/2

: a < −1

na/2l(n) : a ∈


−1, −

1
q − 1


n

aq+1
2 l2(n) : a ∈


−

1
q − 1

, −
1
q


.

Clearly, the same estimates hold for d(Sn, S), where d = dK ol , d = dW or d = dC .

Example 2.6 (The Fractional Brownian Motion Case). Let d = 1, f = Hq with q ≥ 2 and
consider the fractional Gaussian noise X i = B H

i − B H
i−1, where B H is a fractional Brownian
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motion with parameter H ∈ (0, 1). Recall that B H
= (B H

t )t≥0 is a centered Gaussian process
(with stationary increments) with covariance structure given by

E[Bt Bs] =
1
2
(|t |2H

+ |s|2H
− |t + s|2H ).

It is well-known that the correlation function r of the fractional Brownian noise has the following
form:

|r(k)| = |k|
2H−2l(|k|), k ≥ 1,

with l(|k|) → 2H |2H − 1| as |k| → ∞ when H ≠
1
2 , and l(|k|) = 0 for |k| ≥ 1 when H =

1
2 .

As in the previous example we immediately deduce that

|E[h(Sn)] − E[h(S)]| .



n−1/2
: H ∈


0,

1
2

]
nH−1/2

: a ∈

[
1
2
,

2q − 3
2q − 2

]
n(2q H−2q+1)/2

: a ∈

[
2q − 3
2q − 2

,
2q − 1

2q


and the same estimates hold for d(Sn, S) with d = dK ol , d = dW or d = dC . Let us remark that
these upper bounds coincide with those derived in Theorem 4.1 in [25].

We finally remark that the rate n−1/2 for H ∈ (0, 1
2 ] has been proved to be optimal in [26],

i.e. |E[h(Sn)]−E[h(S)]| ∼ n−1/2. For the other two cases the optimality question is still an open
problem.

3. The toolbox

3.1. Malliavin calculus on a Gaussian space

We shall now provide a short introduction to the tools of Malliavin calculus that are needed in
the proof of our main Theorem 2.1. The reader is referred to [28] for any unexplained definition
or result. Let H be a real separable Hilbert space. We denote by W = {W (h) : h ∈ H} an
isonormal Gaussian process over H, that is, W is a centered Gaussian family indexed by the
elements of H and such that, for every g1, g2 ∈ H,

E

W (g1)W (g2)


= ⟨g1, g2⟩H. (3.30)

In what follows, we shall use the notation L2(W ) = L2(Ω , σ (W ), P). For every q ≥ 1, we write
H⊗q to indicate the qth tensor power of H; the symbol H⊙q indicates the qth symmetric tensor
power of H, equipped with the norm

√
q!‖ · ‖H⊗q . We denote by Iq the isometry between H⊙q

and the qth Wiener chaos of X . It is well-known (see again [28, Ch. 1]) that any random variable
F belonging to L2(W ) admits the chaotic expansion:

F =

∞−
q=0

Iq( fq), (3.31)

where I0( f0) := E[F], the series converges in L2 and the kernels fq ∈ H⊙q , q ≥ 1, are uniquely
determined by F . In the particular case where H = L2(A, A , µ), with (A, A ) a measurable
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space and µ a σ -finite and non-atomic measure, one has that H⊙q
= L2

s (Aq , A ⊗q , µ⊗q) is
the space of symmetric and square integrable functions on Aq . Moreover, for every f ∈ H⊙q ,
Iq( f ) coincides with the multiple Wiener–Itô integral (of order q) of f with respect to W
(see [28, Ch. 1]). It is well-known that a random variable of the type Iq( f ), f ∈ H⊙q , has
finite moments of all orders (see [18, Ch. VI]). For every q ≥ 0, we write Jq to indicate the
orthogonal projection operator on the qth Wiener chaos associated with W , so, if F ∈ L2(W ) is
as in (3.31), then Jq F = Iq( fq) for every q ≥ 0.

Let {ek, k ≥ 1} be a complete orthonormal system in H. Given f ∈ H⊙p and g ∈ H⊙q , for
every r = 0, . . . , p ∧ q , the r th contraction of f and g is the element of H⊗(p+q−2r) defined
as

f ⊗r g =

∞−
i1,...,ir =1

⟨ f, ei1 ⊗ · · · ⊗ eir ⟩H⊗r ⊗ ⟨g, ei1 ⊗ · · · ⊗ eir ⟩H⊗r . (3.32)

In the particular case where H = L2(A, A , µ) (with µ non-atomic), one has that

f ⊗r g =

∫
Ar

f (t1, . . . , tp−r , s1, . . . , sr )

× g(tp−r+1, . . . , tp+q−2r , s1, . . . , sr )dµ(s1) . . . dµ(sr ).

Moreover, f ⊗0 g = f ⊗ g equals the tensor product of f and g while, for p = q ,
f ⊗p g = ⟨ f, g⟩H⊗p . Note that, in general, the contraction f ⊗r g is not a symmetric element
of H⊗(p+q−2r). The canonical symmetrization of f ⊗r g is written as f ⊗r g. The following
multiplication formula is also very useful: if f ∈ H⊙p and g ∈ H⊙q , then

Ip( f )Iq(g) =

p∧q−
r=0

r !

 p

r

 q

r


Ip+q−2r ( f ⊗r g). (3.33)

Let S be the set of all smooth cylindrical random variables of the form

F = g

W (φ1), . . . , W (φn)


,

where n ≥ 1, g : Rn
→ R is a smooth function with compact support and φi ∈ H. The Malliavin

derivative of F with respect to W is the element of L2(Ω , H) defined as

DF =

n−
i=1

∂g

∂xi


W (φ1), . . . , W (φn)


φi .

Also, DW (φ) = φ for every φ ∈ H. As usual, D1,2 denotes the closure of S with respect to the
norm ‖ · ‖1,2, defined by the relation

‖F‖
2
1,2 = E[F2

] + E

‖DF‖

2
H


.

Note that, if F is equal to a finite sum of multiple Wiener–Itô integrals, then F ∈ D1,2. The
Malliavin derivative D verifies the following chain rule: if ϕ : Rn

→ R is in C 1
b (that is,

the collection of continuously differentiable functions with bounded partial derivatives) and if
{Fi }i=1,...,n is a vector of elements of D1,2, then ϕ(F1, . . . , Fn) ∈ D1,2 and
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Dϕ(F1, . . . , Fn) =

n−
i=1

∂ϕ

∂xi
(F1, . . . , Fn)DFi .

We denote by δ the adjoint of the operator D, also called the divergence operator. A random
element u ∈ L2(Ω , H) belongs to the domain of δ, denoted as Domδ, if and only if it verifies

|E⟨DF, u⟩H| ≤ cu‖F‖L2 for any F ∈ S ,

where cu is a constant depending only on u. If u ∈ Domδ, then the random variable δ(u) is
defined by the duality relationship (sometimes called the ‘integration by parts formula’)

E[Fδ(u)] = E⟨DF, u⟩H, (3.34)

which holds for every F ∈ D1,2.
The operator L , acting on square integrable random variables of the type (3.31), is defined

through the projection operators {Jq}q≥0 as L =
∑

∞

q=0 −q Jq , and is called the infinitesimal
generator of the Ornstein–Uhlenbeck semigroup. It verifies the following crucial property: a
random variable F is an element of DomL (=D2,2) if, and only if, F ∈ DomδD (i.e. F ∈ D1,2

and DF ∈ Domδ), and in this case, δDF = −L F . Note that a random variable F as in (3.31) is
in D1,2 if and only if

∞−
q=1

(q + 1)!‖ fq‖
2
H⊗q < ∞,

and also E

‖DF‖

2
H


=
∑

q≥1 qq!‖ fq‖
2
H⊗q . If H = L2(A, A , µ) (with µ non-atomic), then the

derivative of a random variable F as in (3.31) can be identified with the element of L2(A × Ω)

given by

Da F =

∞−
q=1

q Iq−1


fq(·, a)

, a ∈ A. (3.35)

We also define the operator L−1, which is the pseudo-inverse of L , as follows: for every
F ∈ L2(W ), we set L−1 F =

∑
q≥1

1
q Jq(F). Note that L−1 is an operator with values in D2,2

and that L L−1 F = F − E[F] for all F ∈ L2(W ).

3.2. Assessing norms and scalar products

The following statement plays a crucial role in the proof of Theorem 2.1.

Lemma 3.1. Let F = Ip(h) and G = Is(g) with h ∈ H⊙p, g ∈ H⊙s and p < s (p, s ≥ 1).
Then

Var
[

1
s
‖DG‖

2
H

]
=

1

s2

s−1−
l=1

l2l!2
 s

l

4
(2s − 2l)!‖g⊗l g‖

2
H⊗2s−2l , (3.36)

and

E


1
s

⟨DF, DG⟩H

2


≤ p!


s − 1
p − 1

2

(s − p)!E[F2
]‖g ⊗s−p g‖H⊗2p



804 I. Nourdin et al. / Stochastic Processes and their Applications 121 (2011) 793–812

+
p2

2

p−1−
l=1

(l − 1)!2


p − 1
l − 1

2  s − 1
l − 1

2

(p + s − 2l)!

× (‖h ⊗p−l h‖
2
H⊗2l + ‖g ⊗s−l g‖

2
H⊗2l ). (3.37)

Proof of 3.36. We have DG = s Is−1(g), and so, by using (3.33),

1
s
‖DG‖

2
H = s‖Is−1(g)‖2

H = s
s−1−
l=0

l!


s − 1

l

2

I2s−2−2l(g⊗l+1g)

= s
s−

l=1

(l − 1)!


s − 1
l − 1

2

I2s−2l(g⊗l g)

= s!‖g‖
2
H⊗s + s

s−1−
l=1

(l − 1)!


s − 1
l − 1

2

I2s−2l(g⊗l g)

= E[G2
] + s

s−1−
l=1

(l − 1)!


s − 1
l − 1

2

I2s−2l(g⊗l g).

The orthogonality property of multiple integrals leads to (3.36).

Proof of 3.37. Thanks once again to (3.33), we can write

⟨DF, DG⟩H = ps

Ip−1(h), Is−1(g)


H

= ps
p∧s−1−

l=0

l!


p − 1

l


s − 1

l


Ip+s−2−2l(h⊗l+1g)

= ps
p∧s−
l=1

(l − 1)!


p − 1
l − 1


s − 1
l − 1


Ip+s−2l(h⊗l g).

It follows that

E


1
s

⟨DF, DG⟩H

2


= p2
p−

l=1

(l − 1)!2

×


p − 1
l − 1

2  s − 1
l − 1

2

(p + s − 2l)!‖h⊗l g‖
2
H⊗(p+s−2l) . (3.38)

If l < p, then

‖h⊗l g‖
2
H⊗(p+s−2l) ≤ ‖h ⊗l g‖

2
H⊗(p+s−2l) = ⟨h ⊗p−l h, g ⊗s−l g⟩H⊗2l

≤ ‖h ⊗p−l h‖H⊗2l ‖g ⊗s−l g‖H⊗2l

≤
1
2
(‖h ⊗p−l h‖

2
H⊗2l + ‖g ⊗s−l g‖

2
H⊗2l ).

If l = p, then

‖h⊗p g‖
2
H⊗(s−p) ≤ ‖h ⊗p g‖

2
H⊗(s−p) ≤ ‖h‖

2
H⊗p‖g ⊗s−p g‖H⊗2p .

By plugging these last expressions into (3.38), we deduce immediately (3.37). �
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3.3. Estimates via interpolations and Stein’s method

The forthcoming Theorem 3.2 contains two bounds on normal approximations, that are
expressed in terms of Malliavin operators. As anticipated, the proof of Point (1) uses an
interpolation technique already applied in [27,30], which is close to the ‘smart path method’
of spin glasses [35]. Point (2) uses estimates from [25].

Theorem 3.2. Let F be a centered element of D1,2 and let Z ∼ N (0, σ 2), σ > 0.

(1) Suppose that h : R → R is twice continuously differentiable and has a bounded second
derivative. Then,E[h(F)] − E[h(Z)]

 ≤
‖h′′

‖∞

2
E|σ 2

− ⟨DF, −DL−1 F⟩H|. (3.39)

(2) Suppose that h : R → R is Lipschitz. Then,E[h(F)] − E[h(Z)]
 ≤

‖h′
‖∞

σ
E|σ 2

− ⟨DF, −DL−1 F⟩H|. (3.40)

Proof. (1) Without loss of generality, we may assume that F and Z are independent and
defined on the same probability space. Fix h as in the statement, and define the function
Ψ(t) = E[h(

√
1 − t F +

√
t Z)], t ∈ [0, 1]. Standard results imply that Ψ is differentiable

for every t ∈ (0, 1), and that

Ψ ′(t) =
1

2
√

t
E

h′

√
1 − t F +

√
t Z


Z


−
1

2
√

1 − t
E

h′

√
1 − t F +

√
t Z


F

.

By using independence and integration by parts, we obtain immediately that

1

2
√

t
E

h′

√
1 − t F +

√
t Z


Z


=
σ 2

2
E

h′′

√
1 − t F +

√
t Z


.

On the other hand, the relation F = L L−1 F = −δDL−1 F and (3.34) imply that

1

2
√

1 − t
E

h′

√
1 − t F +

√
t S


F


=
1

2
√

1 − t
E

h′

√
1 − t F +

√
t Z


δ(−DL−1 F)


=
1
2

E

h′′

√
1 − t F +

√
t Z


⟨DF, −DL−1 F⟩H


.

The conclusion follows from the fact thatE[h(F)] − E[h(Z)]
 =

Ψ(1) − Ψ(0)
 ≤

∫ 1

0

Ψ ′(t)
dt.

(2) Here we follow the arguments contained in the proof of Theorem 3.1 in [25]. Define
hσ (x) = h(σ x), Fσ = σ−1 F , and Zσ = σ−1 Z ∼ N (0, 1). Let s be the solution of the Stein
equation associated with hσ , i.e. s solves the differential equation

hσ (x) − E[hσ (Zσ )] = s′(x) − xs(x), x ∈ R.

It is well-known that such a solution is given by s(x) =
1

ϕ(x)

 x
−∞

(hσ (t)−Φ(t))ϕ(t)dt , where ϕ

and Φ are the density and the distribution function of N (0, 1), respectively, and ‖s′
‖∞ ≤ ‖h′

σ ‖∞.
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Since Fσ is a centered element of D1,2 it holds that Fσ = L L−1 Fσ = −δDL−1 Fσ . By the
integration by parts formula (3.34) we deduce thatE[h(F)] − E[h(Z)]

 =
E[hσ (Fσ )] − E[hσ (Zσ )]


=
E[s′(Fσ ) − Fσ s(Fσ )]


=
E[s′(Fσ )(1 − ⟨DFσ , −DL−1 Fσ ⟩H)]


≤ ‖s′

‖∞E|1 − ⟨DFσ , −DL−1 Fσ ⟩H|

≤ ‖h′
σ ‖∞E|1 − ⟨DFσ , −DL−1 Fσ ⟩H|.

We conclude by using the relations ‖h′
σ ‖∞ = σ‖h′

‖∞ and

⟨DFσ , −DL−1 Fσ ⟩H = σ−2
⟨DF, −DL−1 F⟩H. �

When applied to the special case of a Gaussian random variable F , Theorem 3.2 yields the
following neat estimates.

Corollary 3.3. Let F ∼ N (0, γ 2) and Z ∼ N (0, σ 2), γ, σ > 0.

(1) For every h twice continuously differentiable and with a bounded second derivative,E[h(F)] − E[h(Z)]
 ≤

‖h′′
‖∞

2
|σ 2

− γ 2
|. (3.41)

(2) For every Lipschitz function h,E[h(F)] − E[h(Z)]
 ≤

‖h′
‖∞

σ ∨ γ
|σ 2

− γ 2
|. (3.42)

4. Proof of Theorem 2.1

4.1. Preparation

First, let us remark that the process X = (Xk)k∈Z can always be regarded as a subset of an
isonormal Gaussian process {W (u) : u ∈ H}, where H is a separable Hilbert space with scalar
product ⟨·, ·⟩H. More precisely, we shall assume (without loss of generality) that, for every k ∈ Z
and every 1 ≤ l ≤ d, there exists uk,l ∈ H such that

X (l)
k = W (uk,l), and consequently ⟨uk,l , uk′,l ′⟩H = r (l,l ′)(k − k′),

for every k, k′
∈ Z and every 1 ≤ l, l ′ ≤ d . Observe also that H can be taken of the form

H = L2(A, A , µ), where µ is σ -finite and non-atomic.
Using the Hermite expansion (2.6) of the function f we obtain the Wiener chaos representa-

tion

Sn =

∞−
m=q

Im(gn
m), gn

m ∈ H⊙m,

where the kernels gn
m have the form

gn
m =

1
√

n

n−
k=1

−
t∈{1,...,d}m

bt uk,t1 ⊗ · · · ⊗ uk,tm (4.43)
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for certain coefficients bt such that the mapping t → bt is symmetric on {1, . . . , d}
m . One also

has the identities

E[ f 2
m(X1)] = m!

−
t∈{1,...,d}m

b2
t , m ≥ q, E[ f 2(X1)] =

∞−
m=q

m!

−
t∈{1,...,d}m

b2
t .

Here is a useful preliminary result.

Lemma 4.1. For the kernels gn
m defined in (4.43) and any 1 ≤ e ≤ m−1 we obtain the inequality,

valid for every n,

‖gn
m ⊗e gn

m‖H⊗2(m−e) ≤
dm

m!
E[ f 2

m(X1)]γn,m,e, (4.44)

where γn,m,e is defined by (2.12). Furthermore, we have that, for every n,

m!‖gn
m‖

2
H⊗m ≤ E[ f 2

m(X1)](2K + dqθ), (4.45)

where the constants K and θ are defined, respectively, in (2.9) and (2.10).

Proof of 4.44. Fix 1 ≤ e ≤ m − 1. Observe that

gn
m ⊗e gn

m =
1
n

n−
k1,k2=1

−
t,s∈{1,...,d}m

bt bs

e∏
j=1

r (t j ,s j )(k1 − k2)

× uk1,tp+1 ⊗ · · · ⊗ uk1,tm ⊗ uk2,sp+1 ⊗ · · · ⊗ uk2,sm .

We obtain

‖gn
m ⊗e gn

m‖
2
H⊗2(m−e) ≤


dm

m!
E[ f 2

m(X1)]

2

× n−2
n−

k1,...,k4=1

θ(k1 − k2)
eθ(k3 − k4)

eθ(k1 − k3)
m−eθ(k2 − k4)

m−e,

where θ( j) is defined in (2.8). Since θ(k3 − k4)
eθ(k1 − k3)

m−e
≤ θ(k3 − k4)

m
+ θ(k1 − k3)

m

we deduce that

n−2
n−

k1,...,k4=1

θ(k1 − k2)
eθ(k3 − k4)

eθ(k1 − k3)
m−eθ(k2 − k4)

m−e

≤ 2n−1
−
k∈Z

θ(k)m
−
|k|≤n

θ(k)e
−
|k|≤n

θ(k)m−e
≤ γ 2

n,m,e.

Hence, we obtain (4.44). �

Proof of 4.45. By the Cauchy–Schwarz inequality we have

m!


 −

t∈{1,...,d}m

bt uk,t1 ⊗ · · · ⊗ uk,tm ,
−

t∈{1,...,d}m

bt uk+l,t1 ⊗ · · · ⊗ uk+l,tm


H⊗m


≤ E[ f 2

m(X1)].
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We deduce, for any m ≥ q,

m!‖gn
m‖

2
H⊗m =

m!

n

n−
k1,k2=1

−
t,s∈{1,...,d}m

bt bs

m∏
j=1

r (t j ,s j )(k1 − k2)

≤

2HE[ f 2
m(X1)] + m!

−
|k|≥K

θ(k)m

 −
t∈{1,...,d}m

|bt |

2


≤ E[ f 2
m(X1)]


2K +

−
|k|≥K

(dθ(k))m


≤ E[ f 2

m(X1)](2K + dqθ),

which implies (4.45). �

The proofs of Point 1 and Point 2 in Theorem 2.1 are similar, and are detailed in the subsequent
two sections.

4.2. Proof of Theorem 2.1-(1)

First of all, we remark that θ( j) → 0 as | j | → ∞, because
∑

j∈Z θ( j)q < ∞. This implies

that K < ∞, where the constant K is defined in (2.9). Moreover, the asymptotic variance σ 2 is
finite. Indeed we have that σ 2

=
∑

∞

m=q m!‖gn
m‖

2
H⊗m ≤ E[ f 2(X1)](2K + dqθ) due to (4.45).

The main proof is composed of several steps.
(a) Reduction to a finite chaos expansion. We start by approximating Sn by a finite sum of

multiple integrals. Define

Sn,N =

N−
m=q

Im(gn
m).

Now, let h ∈ C2(R) be a function with bounded second derivative. Since

|h(x) − h(y) − h′(0)(x − y)| ≤
1
2
‖h′′

‖∞(y − x)2
+ ‖h′′

‖∞|x ||y − x |

for all x, y ∈ R, we immediately obtain that

|E[h(Sn)] − E[h(Sn,N )]| ≤ ‖h′′
‖∞

×


1
2
‖Sn − Sn,N ‖

2
L2(P) + ‖Sn‖L2(P)‖Sn − Sn,N ‖L2(P)


.

By inequality (4.45) we deduce that

‖Sn‖
2
L2(P) ≤ (2K + dqθ)‖ f (X1)‖

2
L2(P)

and

‖Sn − Sn,N ‖
2
L2(P) ≤ (2K + dqθ)

∞−
m=N+1

‖ fm(X1)‖
2
L2(P)

≤ (2K + dqθ)‖ f (X1)‖L2(P)


∞−

m=N+1

‖ fm(X1)‖
2
L2(P)

1/2

,
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where θ is defined by (2.10). We conclude that

|E[h(Sn)] − E[h(Sn,N )]| ≤
3(2K + dqθ)

2
‖h′′

‖∞‖ f (X1)‖L2(P)

×


∞−

m=N+1

‖ fm(X1)‖
2
L2(P)

1/2

, (4.46)

which completes the first step. �

(b) Bounds based on the interpolation inequality (3.39). Let Z N be a centered Gaussian
random variable with variance

∑N
m=q σ 2

m . By using (3.39) in the special case F = Sn,N , Z = Z N
and by applying e.g. (3.35), we obtain

E[[h(Z N )] − E[h(Sn,N )]] ≤
1
2
‖h′′

‖∞

 N−
m=q

σ 2
m − ⟨DSn,N , −DL−1Sn,N ⟩H


L2(P)

≤
1
2
‖h′′

‖∞

N−
p,s=q

‖δpsσ
2
p − s−1

⟨DIp(g
n
p), DIs(g

n
s )⟩H‖L2(P), (4.47)

where δps is the Kronecker symbol. This completes the second step. �

(c) The final estimates. Here we give the approximation of the term on the right-hand side of
(4.47). By (4.45) and the dominating convergence theorem we immediately deduce that

E[s−1
‖DIs(g

n
s )‖2

H] = s!‖gn
s ‖

2
H⊗s → σ 2

s = s!
−
k∈Z

−
t,l∈{1,...,d}s

bt bl

m∏
j=1

r (t j ,l j )(k).

As in the proof of (4.45) we conclude that (recall that we assumed n > K )

|E[s−1
‖DIs(g

n
s )‖2

H] − σ 2
s | ≤ s!

−
|k|<K

 −
t,l∈{1,...,d}s

bt bl

m∏
j=1

r (t j ,l j )(k)

 |k|

K

+ s!
−

K≤|k|<n

 −
t,l∈{1,...,d}s

bt bl

m∏
j=1

r (t j ,l j )(k)

 |k|

K

+ s!
−
|k|≥n

 −
t,l∈{1,...,d}s

bt bl

m∏
j=1

r (t j ,l j )(k)


≤ E[ f 2

s (X1)]


2K 2

n
+ dq

−
| j |≤n

θ( j)q | j |

n
+

−
| j |>n

θ( j)q


.

Thus we have

N−
s=q

‖σ 2
s − s−1

‖DIs(g
n
s ) ‖

2
H ‖L2(P)

≤

N−
s=q


|E[s−1

‖DIs(g
n
s )‖2

H] − σ 2
s | +


Var[s−1‖DIs(gn

s )‖2
H]


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≤ E[ f 2
s (X1)]


2H2

n
+ dq

−
| j |≤n

θ( j)q | j |

n
+

−
| j |>n

θ( j)q



+

N−
s=q


Var[s−1‖DIs(gn

s )‖2
H]

≤ 2(A1,n + A3,n,N ),

where the last inequality follows directly from Lemmas 3.1 and 4.1. On the other hand, using the
approximation (4.45) and Lemmas 3.1 and 4.1 once again we deduce that−

q≤p<s≤N

‖s−1
⟨DIp(g

n
p), DIs(g

n
s )⟩H‖L2(P) +

−
q≤s<p≤N

‖s−1
⟨DIp(g

n
p), DIs(g

n
s )⟩H‖L2(P)

=

−
q≤p<s≤N

p + s

p
‖s−1

⟨DIp(g
n
p), DIs(g

n
s )⟩H‖L2(P) ≤ 2(A4,n,N + A5,n,N ).

Thus, we conclude that

Eh N−
m=q

σmYm


− h(Sn,N )

 ≤ ‖h′′
‖∞(A1,n + A3,n,N + A4,n,N + A5,n,N ), (4.48)

which finishes this step. �
(d) Putting things together. We have the inequality

|E[h(Sn)] − E[h(S)]| ≤ |E[h(Sn)] − E[h(Sn,N )]| + |E[h(Sn,N )] − E[h(Z N )]|

+ |E[h(Z N )] − E[h(S)]|. (4.49)

We are left with the derivation of a bound for the third term. By using (3.41) in the special case
F = Z N , we deduce thatE[h(Z N )] − E[h(S)]

 ≤
1
2
‖h′′

‖∞

∞−
m=N+1

σ 2
m

≤
2H + dqθ

2
‖h′′

‖∞

∞−
m=N+1

E[ f 2
m(X1)], (4.50)

where the last inequality is deduced by Lemma 4.1. The latter is smaller than 1
4‖h′′

‖∞ A2,N ,
which together with (4.46)–(4.48) completes the proof of Theorem 2.1-(1). �

4.3. Proof of Theorem 2.1-(2)

Take h Lipschitz and write the inequality (4.49). Like for (4.46), standard computations yield

|E[h(Sn)] − E[h(Sn,N )]| ≤ ‖h′
‖∞‖Sn − Sn,N ‖L2(P) ≤ ‖h′

‖∞(2K + dqθ)1/2

×

 ∞−
m=N+1

‖ fm(X1)‖
2
L2(P).
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By applying inequality (3.40) in the case F = Sn,N , Z = Z N , one has that

|E[h(Sn,N )] − E[h(Z N )]| ≤
‖h′

‖∞
N∑

m=q
σ 2

m

1/2

×

N−
p,s=q

‖δpsσ
2
p − s−1

⟨DIp(g
n
p), DIs(g

n
s )⟩H‖L2(P)

≤
‖h′

‖∞
N∑

m=q
σ 2

m

1/2 2(A1,n + A3,n,N + A4,n,N + A5,n,N ),

where the last inequality is obtained by reasoning as in Part (c) of Section 4.2. Finally, an
application of inequality (3.42) in the case F = Z N yields (since θ ≥ 1)

|E[h(Z N )] − E[h(S)]| ≤
‖h′

‖∞

σ

∞−
m=N+1

σ 2
m ≤

‖h′
‖∞

2σ
A2,N .

Putting the above estimates together yields the desired conclusion. �

4.4. Proof of Theorem 2.1-(3)

From [11, Theorem 3.1], one can deduce that

dK ol(Sn, S) ≤ 2


dW (Sn/σ, S/σ).

Hence, we get the desired conclusion by combining this inequality with (2.20). �
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