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Abstract

The paper is a continuation of our paper, Wang and Wang (2013) [13], Chen and Wang [4], and it studies
functional inequalities for non-local Dirichlet forms with finite range jumps or large jumps. Let & € (0, 2)
and py(dx) = Cve_v(x) dx be a probability measure. We present explicit and sharp criteria for the
Poincaré inequality and the super Poincaré inequality of the following non-local Dirichlet form with finite
range jump

2
S v (f, f) = // &) = 7)) dy py (dx);
{lx—yI<1}

e —ylte

on the other hand, we give sharp criteria for the Poincaré inequality of the non-local Dirichlet form with
large jump as follows

2
Dy (f. f) = /f Y= TON 1y @),
{lx—y|>1} [x — I

and also derive that the super Poincaré inequality does not hold for Z, y. To obtain these results above,
some new approaches and ideas completely different from Wang and Wang (2013), Chen and Wang (0000)
are required, e.g. the local Poincaré inequality for &, v and %, v, and the Lyapunov condition for & y .
In particular, the results about &, y show that the probability measure fulfilling the Poincaré inequality
and the super Poincaré inequality for non-local Dirichlet form with finite range jump and that for local
Dirichlet form enjoy some similar properties; on the other hand, the assertions for &,y indicate that even
if functional inequalities for non-local Dirichlet form heavily depend on the density of large jump in the
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associated Lévy measure, the corresponding small jump plays an important role for the local super Poincaré
inequality, which is inevitable to derive the super Poincaré inequality.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction and main results

Let C}° (R?) be the set of smooth functions with bounded derivatives of every order. This
paper is concerned with the following two bilinear forms:

2
bur (. ) = /[ YW= TO iy @), f e @Y,
(lr—yl<ly  |x — yléte

and
2
Dav (. ) = // B SO dy v, f < Crm),
x yi>

where o € (0,2), V is a locally bounded Borel measurable function such that eV e LY (dx),
and

1

ny(dx) == /‘—V—Oc)cie_V(X) dx = Cve—V(x) dx
4 X

is a probability measure on (R¢, Z(R%)). According to [4, Theorem 2.1], both (v, Cp° (R%))
and (Zy,v, Cp° (R%)) are closable bilinear forms on LZ(uy). Therefore, letting Z(&y.v) and
9 (D4,v) be the closure of C;° (R9) under the norms

1/2
1 ey = (1122, + Gav (£ )

and

1/2
102,01 = (1 2y + Zev (£ )

respectively, (u.v, Z(En,v)) and (Zu.v, Z(Za.v)) are regular Dirichlet forms on L?(wy). The
Hunt process associated with (&,v, Z(&,v)) is an R?-valued symmetric jump process with
the finite range jump, while the associated Hunt process for (Zy,v, Z(Zy.v)) is an R9-valued
symmetric jump process only with the jump larger than 1.

The purpose of this paper is to study the criteria about the Poincaré inequality and the super
Poincaré inequality for (&y.v, Z(&n.v)) and (Zy.v, Z(Za.v))- Recently, functional inequalities
have been established in [8,13,4] for non-local Dirichlet form whose jump kernel has full support
onRY, ie.

1
Dpy(f. f) = 5/ (f @) = FG)? p(x =y dy py (dx), (1.1)
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where p is a strictly positive measurable function on R := (0, oo) such that

/ p(r) (1 A r2> =V dr < oco.
(0,00)

Comparing with the methods of obtaining Poincaré type inequalities for D, v in [13,4],
in order to get the corresponding functional inequalities for &, v and %, v, there are two
fundamental differences.

(1) The efficient approach to yield functional inequalities for D, v is to check the Lyapunov type
condition for the generator associated with D, v, which heavily depends on the property of
p. For D, v the Lyapunov function ¢ we choose in [13,4] is of the form ¢ (x) = lx|# with
some constant § € (0, 1). Similar to [4], one can apply this test function ¢ into the generator
of 9, v, and verify the corresponding Lyapunov type condition; however, this test function
¢ is not useful for the generator of & v .

(2) Another point on obtaining the Poincaré inequality and the super Poincaré inequality for
D, v is to prove the local Poincaré inequality and the local super Poincaré inequality.
The local super Poincaré inequality for D, v is derived by the classical Nash inequality
of Besov space on R¢ and bounded perturbation of functional inequalities for non-local
Dirichlet form, while the local Poincaré inequality is easily obtained for D, y by applying
the Cauchy—Schwarz inequality. However we are unable to use these approaches here, since
the jump kernel is not positive pointwise for both & v and Z,.v .

Due to the above differences and difficulties, obtaining the criteria for the Poincaré inequality
and the super Poincaré inequality for & v and %, v requires new approaches and ideas, which
include the following three points.

(1) The new choice of the Lyapunov function for the generator associated with & vy, which is
efficient to yield the Lyapunov conditions for & v, and is completely different from that for
D, v (see Lemma 3.3).

(2) The local Poincaré inequality for both &, v and %, v (see Propositions 2.3 and 2.4), and the
local super Poincaré inequality for & v (not for 7, v), where we will use some results on
the Sobolev embedding theorem in Besov space, e.g. [3] (see Proposition 2.2).

(3) To show that the super Poincaré inequality does not hold for %, v with any locally bounded
V (see Section 4).

We are now in a position to state the main results in our paper, which will be split into the
following two parts.

1.1. Functional inequalities for &y v

For any r > 0, define

k(r) ;= inf eV, K(r) := sup e V™, (1.2)
lel<r+1 Ixl<r

Theorem 1.1. (1) Suppose that

inf e V@ |
—1<zI<|x[—1/2
};ﬁ“;&f |x| I;\lplx\ /e_v(z) - 522”1“(6—1—@1/2)(2“ —1). (1.3)

lx|<lzl<|x[+1
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Then the following Poincaré inequality

wy (£2) SCléav(f ) f e CERD, puy(f) =0 (1.4)
holds for some constant C1 > 0.
@ If
inf e V@
N R _
llicr\riflolof sup e V@ o (1.5)

Ix|<lzl<|x[+1

then there exist constants Ca, C3 > 0 such that the following super Poincaré inequality holds

1y (f2) < séuv(fs £+ BEuv(fDA s> 0, f e CPRY, (1.6)
where
B(s) = Co((1 + s~y 871 (C3s~ )"
< [K (& (C3s~ N1 k(N (Cas~ )1 ") (1.7)
and
&(r) == inf <eV(x) inf e—V@).
|x|=r [x[=1<zI<]x|=1/2

Though the constant on the right hand side of (1.3) is far from optimal, the criteria in
Theorem 1.1 are qualitatively sharp, which can be seen from the following typical examples.
For the proofs of examples, see Section 3.2.

Example 1.2. (1) Let
1
1o = 2log [—22d+1(e +e!'?)Y — 1)} .
o

Then, for any probability measure py, (dx) = Cre ¥ dx with A > A, the Poincaré
inequality (1.4) holds.

(2) For probability measure py;(dx) = C(;e_“*""a)dx with § > 0, the super Poincaré
inequality (1.6) holds if and only if 6 > 1, and in this case, it holds with

B(s) = ¢1 exp (cz (1 +log® 1 (1 + 1/s))) . 5>0 (1.8)

for some positive constants ¢; and ¢, and equivalently, the Markov semigroup Pf"va
associated with &, y; satisfies

5
||P,a’v‘3||L‘(/Lv5)—’L°°(#Va) < A exp (Az (1 +logs-T(1 + l/t))) , t>0

for some positive constants A; and 1. Moreover, (1.8) is sharp in the sense that (1.6) does
not hold with any rate function S(s) such that

I
lim —02F®) (1.9)
520 Jogs-T(1 4+s~1)
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(3) For probability measure jiy, (dx) = Cye¥1102"U+1xD g with 6 € R, the super Poincaré
inequality (1.6) holds if and only if 6 > 0, and in this case, it holds with

1
B(s) = c3exp (1 +e°‘4l°g9<1+1/s>) , s>0 (1.10)

for some positive constants ¢z and c4; moreover, (1.10) is sharp in the sense that (1.6) does
not hold with any rate function g (s) such that
logl
lim M = 0. (1.11)
520 10g7 (1 4+ 571)

In particular, the Markov semigroup P Yo associated with &u,v, is ultracontractive if 6 > 1,
and in this case

halogh (141
1P Nty Loy < A3 XD (1 +hloer m) 1>0
holds with some positive constants A3 and A4.

Remark 1.3. Example 1.2 above shows that the property of the probability measure py fulfilling
the Poincaré inequality and the super Poincaré inequality for &y v (f, f) is similar to that for
local Dirichlet form Dj, (f, f) = %f IV £ ()|? my (dx), e.g. see [10, Chapters 1 and 3]. On
the other hand, Example 1.2 also implies that the probability measure wy is easier to satisfy
some functional inequalities for &, v (f, f) than those for D}k,( f, f). For instance, given the

probability measure py, (dx) = C(ge_(“r'"‘s) dx with § > 0, Example 1.2(2) indicates that the
measure [Ly; satisfies the log-Sobolev inequality for & v, (f, f) if § > 1; however, py; satisfies
the log-Sobolev inequality for D’\k,‘S (f, f) only if § > 2, also see [10, Chapters 3 and 5].

1.2. Functional inequalities for Dy v

Theorem 1.4. (1) If
eV(x)
liminf —— > 0, (1.12)

|x|—00 |x|d+"‘

then the following weighted Poincaré inequality

V(x)
ff ( )1+| T @) SOy (£ 1) fECERD v (H=0 (113

holds for some constant C1 > 0. In particular, the following Poincaré inequality

wv(f) < C2%v (S ), feCE®RY, uy(f)=0 (1.14)

holds for some constant C, > 0.
(2) For any locally bounded function V, the following super Poincaré inequality

1wy (f3) < sDay (f. )+ BOuv(fD> s >0, f € CPRY) (1.15)
does not hold for any rate function § : (0, o0) — (0, 00).

We present the following three remarks on Theorem 1.4.

Remark 1.5. (1) The condition (1.12) is sharp for the Poincaré inequality (1.14). For instance,
let wy (dx) == pe(dx) = Ce(1 + |x|)_d_8 dx with ¢ > 0. According to [13, Corollary 1.2], the
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following Poincaré inequality

(f) = f)?

=y dy py (dx)

Cs
W (1) < G = 5 [
holds for all f € C;O(]Rd) with uy (f) = 0, if and only if ¢ > «. Note that Z, v (f, f) <
Dy v (f, f), which along with (1.12) indicates that for the probability measure p. above, the
Poincaré inequality (1.14) holds if and only if ¢ > «.
(2) The weighted function in the weighted Poincaré inequality (1.13) is

eV(x)

WO = e

which is optimal in the sense that, the inequality (1.13) fails if we replace w(x) above by a
positive function w*(x), which satisfies that

. 0" (x)

lim inf =

|x|—00 a)(x)
The proof is based on [4, Theorem 1.4] and the fact that Z, v (f, f) < Dg.v(f, f) for any
f e CPRY).

(3) A more important point indicated in Theorem 1.4 is that %, v satisfies the weighted
Poincaré inequality (1.13) (which is stronger than the Poincaré inequality (1.14)), but not the
super Poincaré inequality (1.15). The main reason for this statement is due to the fact that the
local super Poincaré inequality does not hold for &, v, while the local Poincaré inequality holds.
That is, to derive the super Poincaré inequality for non-local Dirichlet form, we also need some
assumption for the density of small jump for the associated Lévy measure.

The remaining part of this paper is organized as follows. In the next section we present the
local super Poincaré inequality for & v, and the local Poincaré inequality for both &, v and
Dy,v, which yields the weak Poincaré inequality for &, v and %, v. Section 3 is devoted to
functional inequalities for &, y. We first derive a new Lyapunov type condition for &} v, which
along with the results in Section 2 enables us to prove Theorem 1.1 and also gives us the weighted
Poincaré inequality for &, v (cf. Proposition 3.4). Then, we study the concentration of measure
about the functional inequalities for &, v, and present the proof of Example 1.2. To illustrate
the differences between &,y and the non-local Dirichlet forms in [13,4], we also compare these
criteria here. In particular, we give a sharp and new example about the Poincaré inequality and
the log-Sobolev inequality for Dy s v, which is defined in (1.1) by setting p(r) = e~% r~@+®
with § > 0 and a € (0, 2). In the last section, we give the proof of Theorem 1.4.

2. The local Poincaré-type inequalities for &,,v and 7, v

Let B(x, r) be the ball with center x € R? and radius » > 0. Let V be a locally bounded
measurable function on R? such thate=" € L1(dx) and uy(dx)=C ve V@ dxisa probability
measure. For r > 0, let K (r) and k(r) be the functions defined by (1.2).

We begin with the following (classical) local super Poincaré inequality for Lebesgue measure,
which has been used in the proof of Proposition 2.2.

Lemma 2.1. There exists a constant C1 > 0 such that the following local super Poincaré
inequality holds on any ball B(0, r) withr > 1:
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(f(x) — f()?
fZ(x)dx§S// MV q e dy dx
/B(O”) BO.+D)xBO+1) X — y[dFe {e—yI<t)

2
+Clrd+d2/(¥ (1 _i_sfd/ol) (/ |f(.x)|dx) ,
B(0,r+1)
s >0, f € CORY).

Proof. For z € R¢ and p > 1, let LP(B(z, 1/2), dx) be the L? space with respect to Lebesgue
measure for Borel measurable functions defined on the set B(z, 1/2). According to [3, (2.3)], for
any o € (0,d A 2), there is a constant ¢; > 0 such that for all z € R? and f € Cr (RY),

(f(x) = f(y)?
1112 20/ a <l (// _—
L2/ (B(z,1/2).dx) = B(1/2)xB(z1/2) |x — yldte
2
+ ||f||L2(B(z,l/2),dx)) .

Then, by Wang [10, Corollary 3.3.4(2)], also see [11, Theorem 4.5(2)], for any o € (0,d A 2),
there is a constant ¢, > 0 such that for each z € R? and fecCy (RY),

_ 2
/ Fydx < S// (f(x) J;(y)) dy dx
B(z,1/2) Bz, 1/)xB(z,1/2) X —y[4t

2
te (1 +s_d/°‘) <f |f(x)|dx> s> 0 (2.16)
BG.1/2)

On the other hand, according to [3, Propositions 3.1 and 3.3], for any « € [d, 2) (if d < 2),
there is a constant c3 > 0 such that for all z € R and fecC °°(]Rd ),

2
2(1+a/d) (fx) = fO)) dvd
LAt myany < €3 (//MMW) e dx

2 2a/d
1) 1V,

dydx

By Wang [10, Corollary 3.3.4(2)] again, we know that the inequality (2.16) also holds for
a € [d,2) (possibly with a different constant ¢; > 0). In particular, the constants ci, ¢z, ¢3
above do not depend on z € RY.

For any r > 1, we can find a finite set II. := {z;} € B(0, r) such that

BO,r) < | J BGi1/2), 811 <car’, 2.17)
zi€ll,

where 1 I, denotes the number of the element in the set /I, and c4 > 0 is a constant independent
of r. Therefore, by (2.16) (note that according to the argument above it holds for all @ € (0, 2))
and (2.17), we getforeachr > 1 and f € C;O(Rd).

[ pewa<y [ Pwd
B(O.r) T, IBGi2)

[ / / U@ =10
_ d+a ydx
z,EH B(zi,1/2)xB(zi,1/2)  1X — Yl
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2
+ oo (1 +s*d/a) (/ If(x)ldx) }
B(z;,1/2)
2
f/ (fx)— ]:153;)) Laey ety dy dx
z,eH B(zi,1/2)xB(zi,1/2) 1% — Y

¥ e (1 +s_d/°‘> (/ |f(x)|dx> }
BGi1/2)

(f(x) = fO)?
< C4rds// = Nyp—ycnndydx
A BO.r+1)xBOr+1)  |x — yldte (i<t

2
+cacur? (1 + s—d/“) ( / |f ()] dx) ,
B(0,r+1)

where in the equality above we have used the fact that for every x, y € B(z, 1/2) and z € R?,
|x — y| < 1; and the last inequality follows from the fact that B(z, 1/2) € B(0, r + 1) for each
z€ Il C BO,r)and # I, < car?.

The required assertion follows by replacing c4r?s with s in the inequality above. [

Now, we turn to the local super Poincaré inequality for & v .

Proposition 2.2. There is a constant Cy > 0 such that for eachr > 1, s > 0and f € C}° RY),

2
/ 2 uydx) < s &y (fy )+ Br(s) (/ [f ()] Mv(dx)> . (2.18)
B(0,r) B(0,r+1)
where
rd+d2/c{K(r)l+d/C{ —d/a
fr(s) = Cr— o (14 579).

Proof. For any r > 1, by Lemma 2.1, we find that for each f € Cgo(Rd) and s > 0,
/ A py(dx) = CV/ F2)eV® ax
B B(O,r)

< CvK(r) FA(x)dx
B(0,r)

_ 2
< CyK() | [[ (f&x) =)
BO.r+1)xBOr+1) X — yldte

X Ljje—yi<1y dy dx

2
T+ Cyrdtde (1 +s_d/°‘) (/ |f(x)|dx) }
B(0,r+1)

sK(r) // (f(x) = f(y)?
s k(r) BO,r+D)xBO.r+1)  |1X - yldte

x Ljx—yi<1y dy pv (dx)
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2 2
Cir* 1K (r) _
+ = S (1) @)y )
Cyk=(r) BO,r+1)

where C| is a positive constant independent of r.
Replacing s with sk(r)/K (r) in the inequality above and according to the definition of 8, (s),
we arrive at

_ 2
f P20 v (@) < sf/ wﬂm-mm v (dx)
B(0,r) BO,r+1)xBO,r+1) X — Y

2
+ B () (/ If(x)luv(dx)> . 5>0,
B(O,r+1)

which implies the required assertion. [J

Next, we will present the local Poincaré inequality for &, v, which is inspired by the proofs
of [2, Theorem 5.1] and [5, Theorem 2.2], see also [7, Section 1].

Proposition 2.3. There is a constant C3 > 0 such that for eachr > 1 and f € C;° R4,

/ o — Js0.0) f ) 1y (dx)
B(0,r) wuy (B, r))
C3K(r)r3d (f(x) = f(y)?
S k() .//B(o A DxBOs4) X =yl Lteyicty dy s ()
C3K (r)r¥

< T‘%,V(ﬁ f) (2-19)

2
) ey (dx)

Proof. Let m(A) = [ 4 dx be the volume of a Borel set A C R? with respect to Lebesgue
measure. For any Borel set A withm(A) > O and f € Cgo (Rd), set

1
fa = m/f‘f(x)dx-

First, there are two positive constants c1, ¢z such that for any z € R4,

/ (f@) = feise)’ dx
B(z,1/6)

1 2
= (B, 1/6)? — fOndy) d
(m(B(z, 1/6)))? /B(Z’l/ﬁ) (/3(2’1/6)0”()6) ) y) x

(f(x) = f(y)?
cof ([ R
B 1/6) \JB( 1/6) 1X — I B(z,1/6)

2
<o [/ %ﬂ_{u_ﬂg]} dydx, (2.20)
B(z,1/6)xB(z,1/6) |x — Yl
where the first inequality follows from the Cauchy—Schwarz inequality, and in the second
inequality we have used the fact that [x — y| < 1 for every x, y € B(z, 1/6) and z € R?.
Second, for any z1, 22 € RY with B(z1,1/6) () B(z2, 1/6) # @, there are two constants c3,
c4 > 0 independent of 71, 7o € R such that
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(fBi.1/6) — fB(zz,l/é))2
1 2
= — dyd
(M(B(11,1/6))m(3(zz, 1/6)) /B<z.,1/6>/3<zz,1/6)(f @) = F O dy x)

_ 2
e (f@) = oD x— i ay) dx
dra %Y Y y
B(z1,1/6) \JB(z,1/6) X = I B(z2,1/6)

(f(x) = f(y)?
< // %1{,,‘_),,@}@@. 2.21)
B(z1,1/2)xB(z1,1/2)  1X — Y|

For the first inequality we have also used the Cauchy—Schwartz inequality, and the second
inequality follows from the fact that B(zy, 1/6) | B(z2, 1/6) € B(z1, 1/2).
As before, for each r > 1, we can find a finite set 11, := {z;} < B(0, r) such that

0ell,, BO,r)c |J B 1/6), £, <csr?,
ziell,

where c¢s5 > 0 is a constant independent of r.

Next, for a fixed z € II, we can find a sequence {zi}l'.’=1 C II, suchthat z; = z,z, = 0,
zi #zjifi # j,and B(z;, 1/6) () B(zi4+1, 1/6) # ¥ forevery 1 < i < n— 1. Hence, there exist
c6, c7 > 0 independent of r > 0 and z € II,. such that

2
- d
-/3(1,1/6) (f(x) fB(O,l/G)) X

1

2
.

= / ((f(X) = 1e) + Y (fBe1/6) — fB(zi+1,l/6))> dx
B@1/6) =

n—1
2
<n f &) — fBz,1/6))” dx + /
(B(z,l/é)( (2.1/6)) ; et/

n 2
(fx)— f()
<cer?) // Ly <y dydx
S s x—ydte IS

2
(fBGi.1/6) = fBzi41.1/6)) dX)

(f@) = fo)?
< e // S I 1<y dy dx, 2.22)
7 BO.+1)xBO,r+1)  |x — y[dte {lx—yl<1) @Y (
where in the second inequality we have used (2.20) and (2.21) and the fact that n < csrd, and
the last inequality follows from the facts that B(z;, 1/2) € B(0,r + 1) for any z; € Il and
n < C5rd.
Therefore, by (2.22), for each r > 1,

2
 J Oy (dx)
f (f(X)—fB(O’) 4 ) v (d)
B(0,r)

ny (B0, r))

<[ (0= faoge) wvian
B(0.r)
< CSK(F)/ (fx) — fB(O,l/G))2 dx
B(O.r)

< csK(r) Z /3( o) (f(x) — fB(o,1/6))2 dx

ziell,
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2
3d (fx) = f(y)
< oK (r)r // ———Tra Lx—yl<n dydx
BO,r+D)xBO,r+1) X — Yl

ClOK(V)V%d // (f(x) — f(y))2
S L —yi<1y dy v (dx),
k(r) B(0,r+1)x B(0, r+1) |_x — y|d+0{ {l YI<1} y “’V( x)

where cg, cg and c1g are some positive constants independent of r. This completes the proof. [J

We have derived the local super Poincaré inequality and the local Poincaré inequality for &,y .
In particular, for the local super Poincaré inequality we have used the embedding theorem for
subsets of R? in the Besov space, but one cannot apply such embedding theorem in the context
of Z4.v, since the part of the finite range jump in the associated kernel is removed. We believe
that the local super Poincaré inequality does not hold for &, v, see Remark 4.1(2). However, we
still can prove the following local Poincaré inequality for %,y .

Proposition 2.4. There exists a constant C4 > 0, such that for any r > 3 and f € C;° (RY),

2
) £ @) py (dx)
/ <f(x)—f3(°‘) g x) wy (dx)
B(0,r)

v (B(O,r))
C4K(I‘)r2d+a f/ (f(x) — f(y))2
S e Ly dy nv(d
k(r) B(OV+1)XB(Or+]) |x_y|d+ol {‘ )‘ 1} yl’LV( .X)
C.K 2d+o
T (£ ). 023

Proof. Throughout the proof, all the constants ¢;(i > 1) are positive and independent of r > 0
and z € RY. As before, for each r > 3, we can find a finite set 11, .= {z;} € B(0, r) such that

0Oell,, BO.nc | B@. 12, $1 <cir?
ziell,

Next, we split the set 1, as I, = H,1 U Hrz, where

1= {z € IT, : dist (B(z, 1/2), B(0, 1/2)) > 1},
II? .= {z € II, : dist (B(z, 1/2), B(0, 1/2)) < 1}

and dist(A, B) denotes the distance between the subsets A, B in R,
Foreach z € Hrl, we have

/ (f&x) - fB(O,]/Z))2 dx
B(z.1/2)

1 2
= m(B0.1/2))2 — dy) d
(m(B(0,1/2)))? -/B(z,l/Z) </;?(0,1/2) (&) =70 y) x

_ 2
<o (fx) =) J x — vt dy ) dx
dra Y y y
Bz1/2 \JBO,1/2) |*x — I B(0,1/2)

_ 2
< cyrdte /f Mﬂw_ﬂﬂ}dy dx. (2.24)
BO,r+1)xBO,r+1) X — y[4Te
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Here, the first inequality follows from the Cauchy—Schwartz inequality, and in the last inequality
we have used the facts that for all z € Hrl, B(z,1/2) Cc B(O,r +1),andif z € Hrl, then for each
x € B(z,1/2)andy € B(0,1/2),1 < |x —y| <2(r + 1).

Foreach z € Hrz, since r > 3, there exists zo € B(0, r) such that for each x € B(zg, 1/2) and
y € B(z,1/2)J B(0, 1/2), it holds that |x — y| > 1. Hence,

2 2
/ (f &) = fBo.1/2) dx < 2/ (f ) = fBz.1/2)) dx
B(z,1/2) B(z,1/2)

2
+2/ (fBGzo.1/2) — [B0.1/2))” dx.
B(z,1/2)
Since for x € B(zp, 1/2) and y € B(z,1/2),1 < |x —y| < 2(r + 1), we can follow the proof of
(2.24) and get that

(S = f)?

2 d+o
£ = foim)’ dx < esr ff Y = 7y
/B(z,l/z) ( ca1/2) h BOr+1)xBO.+1) X — y|dte
X ]l{|x_y|>1} dy dx.

On the other hand, according to the argument of (2.21) and noticing that for each x € B(zg, 1/2)
andy € B(0,1/2),1 < |x — y| < 2(r + 1), we have

2
(fBO.1/2) = [Bo12)) < car®™ //
B(O,r+1)x BO,r+1)

X Lyx—y>1ydydx.

(f ) = fFO)?

|x — y|d+e

Combining both estimates above, we obtain that for each z € 112,

/ (f) — ]“13((),1/2))2 dx
B(z,1/2)

_ 2
Lesrt // Mﬂ{u—ybl} dydx. (2.25)
BO.r+1)xBO,r+1) X — y[dTe

Therefore, by (2.24) and (2.25), for each r > 3,

50 f@uy @)\
— . d
/B(o,n <f B, ()

< / (f(x) — fB(o,l/z))2 wy(dx)
B(0,r)
< 6K (1) / (FC) = from)’ dx
<ek() Y / (F) = fooa2)’ d

el / BGi1/2)

_ 2
< C7K(F)V2d+a /f —(f(X) j;(y)) ]l{|x_y|>1} a’y dx
BO,r+1)xBO,r+1)  |x — yldte

ch(r)r2d+"‘ /‘/‘ (f(x) — f(y))2
g IL X—Yy|> d d s

which completes the proof.
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Remark 2.5. The constants 3¢ and 724 in the local Poincaré inequalities (2.19) and (2.23)

are not optimal, and they come from counting the number of elements in II,. By taking a cover
with some intersection property, we can expect to get better estimates, e.g. see [2, Lemma 5.11].
However, the estimates here are enough for our application.

As a direct consequence of Propositions 2.3 and 2.4, we can derive the following weak
Poincaré inequality for &,y and %, v, by the local Poincaré inequality (2.19) and (2.23),
respectively.

Proposition 2.6. (1) There is a constant Cs > 0 such that for every s > 0 and f € Cp° (RY)
with py (f) =0,

1y (f3) < Csa1()Euv (f. )+ 51 £ 115
where
K (r)
k(r)

al(s):=inf{ -y (B(0, r)©) < — andr>1}.
1+s

(2) There is a constant Ce > 0 such that for every s > 0 and f € Cp° RY) with py (f) =0,

v () < Coaa(s)Zuv (fy ) + 51 f 1,
where
r2d+aK(r)

ay(s) = inf{T v (BO.N) < 5 is

andr>3}.

Proof. The proof is based on [10, Theorem 4.3.1] (see also [9, Theorem 3.1]). Here we only
prove assertion (1), since the proof of assertion (2) is similar. First, according to (2.19), there
exists a constant ¢; > O such that forany r > 1 and f € C;;O(]Rd),

c1K (r)r3d wy (fLpo.n)?
— & ) _—
ki Cev D B0, )
1

For any s > 0, let r > 1 such that uy (B(0, r)¢) < IS?, ie. uy (B0, r)) > - Then, for any
f e CP(RY) with uy (f) = 0, one has

wv (f* o) <

2
2 _ 2 S 2
v (fLpo.rn)™ = uv(fLpo.rn)” < e /15
Therefore,
wv (f3 = wy (F o) + nv (A leo.re)
1K (r)rd v (fLpo,r)? s 2
< Wga,v(f’ -+ (B, 1) 1_‘_s”f”oo
K 3d
< WO 5 D+ 511,
(r)

which yields the required assertion. [
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3. Functional inequalities for Dirichlet forms with finite range jumps
3.1. Lyapunov type condition for &y vy

Forany f, g € CZO(]Rd), let

1 _ _
Sov(fg) = - // (fx) = fONEx) —gly) dy oy (dx).
2 JJx—yi<y

x — yldte

We define the corresponding truncated Dirichlet form as follows:

~ 1 _ _
Zov(fg) =~ [/ (fx) = fONEx) —gly) dy iy (dx),
2 JJpe<ix—yi<ny

|x_y|d+a

Let CX* (R) be the set of smooth functions on R? with compact supports. The following
result presents the explicit expression for the generator associated with the truncated Dirichlet
form &, v on CX°(RY).

Lemma 3.1. For each f, g € C*° RY),

Gy (f.g) = — / FEOLavg() py(dx) = - / (O Ly £ () py (d),

where

(14 eV @=V0))

~ 1
Lg == — — " dy. 3.26
V@) =5 /{ ey FO = OV = dy (3.26)

Proof. According to [4, Theorem 2.1], for each f, g € C° (Rd),

v (fig) = — / FOLE yg(x) uy (dx) = — f gCOLY y f(x) v (dx),

where

1

I fe) =2 / (FGx+2)— f(0)
2 Jue<ii<y

1_|_eV(x)7V(x+Z)
— V) - zly<n) dTa )dz

! 1
+-=VfKx)- / z (eV(x)—V(x+z) _ eV(x)—V(x—z)) dz
4 LJ{1/2<|z|<1} |Z|d+a |

1 (1 eV(X)fV(y))
== - Ty
. /WKM| N

N\

X

! 1
—=-Vfx)- / z (eV(x)fV(erz) + eV(x)fv(xfz)) dz
4 LJ{1/2<|z|<1} |Z|d+°‘ |

= Lovif(x)+ Lavaf(x).

It is easy to see that for any f € Cfo(Rd), Za,v,lf(x) anqua,v,zf(x) are well defined.
Changing variable from z to —z, we can see that for all x € R4, Ly v.2f(x) =0, which gives us
the desired expression (3.26). [
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_ According to (3.26), forevery f € C (RY) (the set of continuous functions on R%) and x € RY,
Ly.v f(x) is well defined, and the function x = L, v f(x) is locally bounded. Then, repeating
the proof of [4, Proposition 3.2], we get the following.

Lemma 3.2. For every f € C°(R?) and ¢ € C(R?) with ¢ > 0,

Lo ~
—/ fZTV"’duv <éav(f ).

Now we present the Lyapunov type condition for va.

Lemma 3.3. Let ¢ € C(R?) such that ¢ > 1 and ¢ (x) = e™! for |x| > 1. If

inf e V@ !
—1<|z|<]x[=1/2
llil"ll:glof |x| <|SZl|1;|X‘ /E_V(Z) > &22d+1(€ + 61/2)(20{ _ 1)’ (327)

lx|<lz|<[x]+1

then there are positive constants C1, b and ro > 0 such that for all x € R4,

Love(x) < —C <eV(x> e—V@) & (x) 4+ b1 (0.r) (X). (3.28)

x| —1<]zI< x| —1/2

Proof. It is easy to check that Za,vqﬁ is locally bounded. Thus, it suffices to prove (3.28) for |x|
large enough. First, for x € R? with |x| > 2,

/ (¢(X +z)— (b(X)) ; dz = / (e|X+Z\ _ e‘x|> 1 dz
{1/2<kz1<1) |z|d+ (1/2<k1<1) 7|4 +e

1
IxI/ < lz| _ 1) d
e e Z
(1/2<]2/<1) |z|4+e

x|

N

= cCie

c <ev(x) sup e_V(Z)) o (x),

|x|<lzI<|x]+1

N

where

c1 :=/ (e'zl —1) ;+ d
{1/2<]zI<1} 7|4+

Second, for x € R? with |x| > 2,

(V) =V(x+2))

+D) ) 4
/{1/2<z|<1}(¢(x 9=t |z|d+e ¢

e*V(x+Z)
EAEY / (e\x+z| _ elxl) S
{1/2<1z1<1) |z| e

e—V(x+Z)
L / (e|x+z|_e|x|) iz
(1/2< 1< 1 x 2l — x| <—1/2) Izl
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e*V(erZ)
+ / <e|x+z| _ e‘xl) dz
{1/2<]2/< 1 [x-+2/— x>0} |z|d+

e—V(x+Z)
<V / (e|x|—1/2 _ e|x|> —
(172<121< 1, [x+z]— x| <—1/2) |z|4+e

e—V(x—i—z)
n / <e|x\+|z\ _ e‘xl) e«
(1/2< 121 <1 e 421~ x]20) |z|4te

e~V (x+2)
= ¢V Well —/ (=) S dz
(1/2<I2l< L Ix-Hel—Ixl<—1/2) M
o e~V +2)
. f (1) e
{1/2<)2I<1, [x+2]—|x|>0} ||+
< VWl [_ (1 _ efl/z)
. —V(2) —1
X inf e : d+ dz
lx|—1<]zI< x| —1/2 {1/2<]zI<1, |x+z]—|x|<—1/2} |z|@r

1
V@ g
+ sup e / (e —1) dz |,
<|x<|z<|x|+1 ) (1/2<R1<1) ||t

where in the first inequality we have removed the subset {z € RY : 1 /2 <zl £1,-1/2 <
|x + z| — |x] < 0} in the domain of integral, since the integrand is negative on this subset. For
x € RY with |x| > 2, let zo = —3x/(4|x|). Then,

||_3 and |x +zol — x| = >
20l = X+ 20l = Ixl = —.

Hence, for every z € B(zo, ;lt),

1 1
2 __2_7 g _:1’
|z| = |zol 177 |z| |20|+4
3 1
|X+Z|—|x|<(|x+Z0|—|x|)+(|x+Z|—|x+Zo|)<—Z+|Z—Z0|<—§,

which implies that

1 1 1
B(ZO,Z)E{ZGR”]:§<IZI<1,IX+ZI—|XI<—§}.

According to both conclusions above, we get that
V() =V (x+2)

+D) )
/{1/2<z|<1}(¢(x Q=90 |z]d+e ¢

< eV @elxl | _ (l — eil/z) inf e VO Ym (B 20 l
x| —1<zl< x| ~1/2 4
+ sup e V® / (e‘zl — 1) ! dz
lxI<lel<lxl+1 (1/2<]21<1) |z|d+
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<—m¢un””<

x| —1<]zI< x| =1/2 Ix|<zI< x| +1

eV(Z)) + c1¢(x)ev(x) ( sup eV(Z)) ,

where m(A) is Lebesgue measure for the Borel measurable set A, and

c=0—em (B (0, %)) )

Combining both estimates above with (3.26), we know that for any x € R? with [x| > 2, it
holds that

~ 1
Lav¢() < 5 —c2( inf em)>+2c1 sup e ) T pre .
2 lx|-1<]zI<|x[=1/2 IxI<lzI<]x]+1

Therefore, if

in e V@
R BB RS RS R V) 2¢y
lim inf % > —
x|— 00 sup e V@ )

Ix|<lzl<|x[+1

)

then for |x| large enough,

Za,V¢(x) < —C1¢(x)ev(x) ( inf e—V(Z))
[x|=1<zI< x| =1/2

holds with some constant C; > 0. The required assertion follows from the fact that

2 22d+ld 1 1
= 17 f (" — Dr'"dr < —22*! (e + /2% — 1)
2 1 — e 1/2 o

and (3.27). O
Now we present the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof is the same as that of [1, Theorem 2.10] and [4, Theorem 3.6]
(see also [13, Theorem 1.1]), and it is based on Lemma 3.3 and the local (super) Poincaré
inequality for & v. Here, we only show the super Poincaré inequality (1.6). Based on the local
Poincaré inequality in Proposition 2.3, the proof for the Poincaré inequality (1.4) is similar and
even simpler.

According to Lemma 3.3, there are constants cq, ¢c» and rg > 1 such that

Love(x) < —cip(x)e’® ( e‘”z)) + 21 B(0.r) (%),

[x|—=1<zI<|x]—1/2

where ¢ (x) is the function given in Lemma 3.3.
Forr > 0, set

&(r) = inf |'® inf e V)|,
x| > x|~ 1<zl <Ix|~1/2

By Lemma 3.2, for any f € Cé?o(]Rd) andr > ro,

1

2 d g -
/B(O’r)cf (x) v (dx) )

/ FA) @(Ix]) v (dx)
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1 2 V(x) < . —V(z)>
: o) —/f e |x|—1<|?|1<f|x\_1/ze pv(dx)
! Lavo ) .,
S T80 00 J7 () v (dx)
€2 frx)
d
c19(r) JB©,rg) ¢X) wv (dx)
< C_S[(’gajx’v(f’ f)+/ fz(_x)uv(dx)il
@(}") B(0,rg)
<> [gfx,v(f, )] +/ fz(x),uv(dx)] , (3.29)
o(r) B(0,r)

where in the fourth inequality we have used the fact that ¢ > 1.
Forevery f € C;° (R%), there is a sequence of functions { fuloo, S CX (R%) such that

lim f,(x) = f(x), sup || fulloo < 00, sup |V fulloo < 00.
n—00 n n

Thus, by the dominated convergence theorem, we get
lim &g v (fur f) = éav(f, ),
n—oo
lim sy = [
n—oQ

F2(x) py (dx),
B(0,r)¢ B(0,r)¢

and

lim

fH0) py(dx) = / 0 v (dx).
=00 JB(0,r) B(0,r)

Since (3.29) holds for each f;,, letting n tend to infinity and using the estimates above, we show
that (3.29) holds for f € C;° RY).

Hence, foreveryr > rgand f € C ;;O (Rd ),

f FA) pydx) = fB o )fz(x)uv(dx)+ f F2(x) v (dx)

B(0,r)c
3

c3 2
< _(g)a ) 1 N d )
s (f f)+< + @(r))/mr)f () oy (d)

where in the inequality above we have used the fact that %,V( 5 f) < éuv(f, f) for any
f € CPRY.

Applying the local super Poincaré inequality (2.18) into the inequality above, we can obtain
that forany r > rg and f € Cgo(Rd),

/ F2() v (dx) < (% + %) G (f )

d+d2/aK 1+d /o 2
bea (105700e) S (/ If(X)IMv(dx)),

where we have used the fact that sup,.,,, &(r)~1 < oo, thanks to (1.5).

If (1.5) holds, then lim, _, oo #(r) = oo. By taking r = &~!(2¢3/s) in the estimate above, the
required inequality (1.6) follows. [
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To close this part, we present the following weighted Poincaré inequality for & v. The proof
is similar to that of [4, Theorem 3.6], and it is based on the local Poincaré inequality (2.19) and
Lemma 3.3. We omit the details here.

Proposition 3.4. Under (1.3), there exists a constant C1 > 0 such that
ff2(x) <ev(x) |x\—1<|izr|1<f|x|—1/2 e_V(Z)) wy(dx) < C1Eu v (f, 1)

holds for all f € C3°(RY) with wy (f) = 0.

3.2. Concentration of measure about functional inequalities for &y, v

Recall that V is a locally bounded measurable function on R4 such that eV € L!(dx), and
wy(dx) = Cve VW dxisa probability measure.

Proposition 3.5. (1) Suppose that there exists a constant C1 > 0 such that the Poincaré
inequality holds

v (5 < Ciéav(f, ), feCP®RY, uv(f) =0.

Then there exists a constant Lo > 0 such that

/ek‘)"" uy (dx) < oo.
(2) Assume that the following super Poincaré inequality holds
wy () < séav(f )+ BErv(fD? s> 0, f € CGPRY,

where B : (0, 00) — (0, 00) is a decreasing function. Then, for any ) > 0,
/e)“xl wy (dx) < oo.
Furthermore, for each r > 0, define
o
F(r) = / e h(n) da,
1

where for every A > 1,

1
qszez‘)] ds} ’

s
h(A) == exp {—(l + o)A — )»/ lz log |:2ﬁ <
1 S

co := log (/ el Mv(dx)> ,

/ dz
c1 = —_—.
i<y lzldte—2

Then
/F(le)ﬂv(dx) < oo.

and
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Proof. (1) For any n > 1, define g,(x) = eMIXIA) where A > 0 is a constant to be determined
later. Clearly, g, is a Lipschitz continuous bounded function. By the approximation procedure in
the proof of Theorem 1.1, we can apply the function g, into the Poincaré inequality. Thus,

[ @eonvan <[ / @) =8OV )
fe—yl<ty =l

2
+ (/ gn(X)uv(dX)) .

By the mean value theorem and the fact that for any x, y € RY n>1,
[lx| An— |yl An| < |x =yl

we know that for any x € R4,

/ (gn(x) — gn(»))? / (eMIxIAm) — r(lylnn)y2
(r—yl<1) X —yldte {lx—yl<1) |x — y|d+e
2
< 326200xlAn+0) / %dy
{l—yl<1) [x — y|eFe
< CIKZeZ()»(lx\/\n)+)\.)

12 2e2 2HxIAm)

where
/ dz dnd/?
Ccl = = )
o<y 2142 Q—a)[(d/2+ 1)
Therefore,
(gn(x) — g (y))
/ /{ e oy ypv@o s ertel [y o). (3.30)

Foranyn > 1 and A > 0, set
lh(A) = f gr(x) py (dx) = / eIy (dx).
Then, combining all the estimates above, for each A > 0,
(W) < 5 cl)\z L) + 2(0)2).
Furthermore, using the Cauchy—Schwarz inequality, for any R > 0, we have
2
[(1/2) < (e” + f M Mv(dX)) <2e”F +2p(R) 1, (M),
{lx|>R}
where p(R) := wy (Jx| > R). Therefore, foreach R > 0 and A > 0,

C
1L,(W) < (7%1,\%2* + 2p(R)) Li(A) + 22K,
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Now, we fix Ry > 0 large enough such that p(Rg) < 1/8, and then take Ay > 0 small enough
such that Cjc1A3e**0 < 1/2. Then, we arrive at

I, (M) < de*oRo,

Letting n — oo, we obtain the first desired assertion.
(2) We still use the same test function g, as that in part (1). By applying this test function g,
into the super Poincaré inequality and by using (3.30), we have

2
/ G0 pvin) < S22s / 2200) v (dx) + B(s) ( / gn(x)Mv(dx)) ,

s > 0. (3.31)

Following the argument in the proof of part (1), we can get that for any A, s and R > 0,
1,00 < s,\z 240, (3) + B(s) [2&“* +2p(R)l, (x)]

where /,, (1) and p(R) are the same functions defined in the proof of part (1).
Now, for any fixed A > 0, choose 59 > 0 small enough such that c;sor%e>* < 1/2, and then
take R large enough such that B(so) p(Rp) < 1/8, we get

1, (1) < 8B(s0)e** M.

Letting n — 00, we show fe’\‘)" ny (dx) < oo for any A > 0.
In the remaining part, we will follow the method adopted in the proof of [10, Theorem 3.3.20],
see also [12, Theorem 6.1]. For every A > 0, set [(A) := ,uv(e)"x‘). For any ¢ > 0, it holds that

I'(n) = py(lxle*™)

= uy [( (Alx| +1loge) — ge)em]
= ( <A|x|+1ogs)e“') lf py (e

( 2)\|X‘) _

log(eA
g eny (e %e)

py ()
log(eA
= £l(23) — @l(x),
where in the inequality above we have applied the Young inequality

stéslogs—s+e’, seR4,teR

with s = % and ¢t = A|x| 4+ loge.
On the other hand, according to (3.31) and letting n — oo,

123) < %xze”sl(zx) +BEINE, 5> 0.

Taking s = (cl)nze”‘)f1 , we obtain that

1 2
120 < ,3( > m)zm .
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Combining all the estimates above,

I'(0) < 2¢B <%) I(W)? — @M)'

-1
Choosing € = <2kl(k),3 (c 2, zx)) , we derive

' < ™) |:logl()») + log <2ﬂ <;>>:|
Y ci e ’

hence

d (logl(}X) 1 1
i (757) < e (o ()

which implies that for any A > 1,

A
I(A) < exp <A log /(1) + Af i log (2,3 <;>> ds) .
| 52 c1s2e2s

Then, by the Fubini theorem, we have

+oo o0
/F(|x|)uv(dx) =/ /e’\lx‘uv(dx)h(k)dk g/ e dn < oo.
1 1

This finishes the proof. O

Now, we turn to the proof of Example 1.2.

Proof of Example 1.2. (1) Let uy, (dx) = Cre ¥l dx =: Cye™"*™ dx with A > 0, we have
inf eV
[x[=1<]z|< x| =1/2 1/2
sup e_V)\(Z) 2 ¢
eIzl < x|+ 1

Then, for A defined in Example 1.2(1), if > > Ao,

x> 1.

inf e—VA(Z) 1
. X1zl x| =12 2d+1 1/25 H
liminf > =2 e+e 2 —1).
|x|—00 sup e~ V1@ o (et ) )

|x|<lzl<[x]+1

According to Theorem 1.1(1), the Poincaré inequality (1.4) holds for y, (dx) with A > Ag.

(2) If the super Poincaré inequality (1.6) holds for wy, (dx) = Cse= ) gy = Cse= Vs
dx, then, by Proposition 3.5(2), [ e)‘p“‘pw(S (dx) < oo forany A > 0, which implies that the super
Poincaré inequality (1.6) holds only if § > 1.

On the other hand, for every § > 1 and for |x| large enough,

Vi inf e V@ > 0O
lzI<|x|—1/2
where C; and C; are two positive constants independent of x. Hence, for r large enough,

d(r) > CleCZ’H. Therefore, according to Theorem 1.1(2), we know that the super Poincaré
inequality (1.6) holds with the rate function 8 given by (1.8).
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According to [10, Theorem 3.3.14] (also see [12, Theorem 5.1]), if the rate function B(s)
satisfies that

® g(r)
U() = / dr < oo foranyt > inf (s), (3.32)
t r s>0
then
Vi -
1P L Gy 2o uy) < 22710, 1> 0, (3.33)
where

1) = inf{r > inf B(s) : W(r) > t}.
s>0
It follows from (1.8) that
B(r) < expl—C(logr +Ca) 7}

holds for r large enough and some positive constants C3 and C4. Hence, for ¢ large enough,

& 1
v < [ o
¢ rexp{Cs(logr + Cy4) 7 }

o 1
< / ; ——dr
t  r(ogr + Cs)s exp{Cs(logr + C4) 7 }
Ce

exp{Cs(logt + C4)5571 } .

This along with (3.33) gives us the desired estimate for the associated semigroup Pt“’v‘s.

Furthermore, assume that the super Poincaré inequality (1.6) holds for py, with the rate
function B(s) satisfying (1.9). Then for any ¢ > 0 small enough, there is a so := so(¢) > 0
such that for any s < s,

log B(s) < ¢ logsT (1 + 5 1).
Hence, there is a constant C7 > 0 (independent of ¢) such that for every ¢ > Oand s > 1,
1
log <2/3 (T)) < Cres™T + Ca(e),
cisce-s

where Cg(¢) > 0 may depend on ¢. Let F(r) be the function defined in Proposition 3.5(2).
Therefore, for every r > 0 large enough and ¢ > 0 small enough,
A )
S—

F(r) > / exp{rk — (co+ DA —x/ l2 (c7es*1 +C8(8)> ds} dx
1 1 S

o0 s
> / exp {—Cge,\m + - Clo(s))k} dx
1

r

(7)671
2 / 2Cge e %*Cll(g)))‘ d)\,,
1

1
where in the last inequality we have used the fact that if A < (259 8 )3_1, then Coers=T < r/2.

The inequality above shows that, for any ¢ > 0 small enough there are two constants C12 > 0




146 X. Chen, J. Wang / Stochastic Processes and their Applications 124 (2014) 123-153

(independent of ¢ and r) and C3(¢) > O (independent of r) such that for r > 0 large enough,

6—1
F(r) > Cis(e) exp [(ﬁ) r6:| .
r &

This, along with Proposition 3.5(2), yields that for any x > 0,

/e'(lxls Hys(dx) < oo.

However, the statement above cannot be true since py, (dx) = C(se_““’“a) dx. That is, there is a
contradiction, so the super Poincaré inequality (1.6) does not hold for wy, with the rate function
B(s) satisfying (1.9).

(3) Let wy, (dx) = Cge™ ™! log? (1)) g7 —. Cge™ V6™ dx. Suppose that in this case the super
Poincaré inequality (1.6) holds. Then, according to Proposition 3.5, f oMl v, (dx) < oo for
any A > 0, which implies the super Poincaré inequality (1.6) holds for 1y, only with 6 > 0.

On the other hand, for every 6 > 0, there exist two positive constants C1 and C such that for
|x| large enough,

6
0O inf oY@ 5 0 Calog (D),
lzl<Ix|—1/2

Then, for r large enough, we have &(r) > C 1e©2 log” (14 ). Therefore, by Theorem 1.1(2), we
can get that the super Poincaré (1.6) holds for py, with the rate function S(s) given by (1.10).
On the other hand, according to (1.10), we have

B~'(r) < exp{—C3log’ (Callogr + Cs))}
for r large enough and some positive constants C; (i = 3, 4, 5). Let ¥ (¢) be the function defined
by (3.32). Then, for ¢ large enough, we have
e 1
v < [ g
i rexp{Cslog’ (C4(logr + Cs))
_ /OO log?~! (C4(logr + Cs))
= r(logr + Cs) exp{C610g9 (C4(10gr+C5))}
exp {Cslog” (Ca(logt + Cs))}’

where in the second inequality we have used the fact thatif 6 > 1, then

exp {C3 log9 (Ca(logr + C5))} > (logr + Cs) exp {C6 10g9 (C4(logr + C5))}

}dr

holds for r large enough and some positive constants C3 > Cg. Combining the estimate above

with (3.33), we get the desired estimate for the associated semigroup P, Ve,
Next, we assume that (1.6) holds for py, with the rate function B(s) satisfying (1.11). Then
for any ¢ > 0 small enough, there is a constant sy := so(¢) > 0 such that for any s < s,

log B(s) < exp [slogé(l —i—s*l)} .

Hence for every s > 1 and ¢ > 0 small enough,

log (2,3 (%)) <exp {cgss% + Cg(e)} :

cise
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where Cg > 0 is independent of ¢, and Cy(¢) > 0 may depend on ¢. Therefore, by a similar
argument in the proof of part (2), for r > 0 large enough and & > 0 small enough,

e’} A 1 1
F(r) > / exp{m— (co+ m-x/ —zepoC3€s§ +C9(8)} ds} dx
1 1 S

00 1
> / exp{—clo@)xeSW +(V—C11(8)))»} a
1

(logrflog(ZC]O(s)))e
> ) Gmenon g
1
Ciz(e C
> —]3( ) exp {%rloger} ,
r e

where C12 > 0 is independent of ¢, , and Ci3(¢) > 0 is independent of r. Thus, according to
Proposition 3.5(2), for any « > 0,

0
/elclxllog (1+]x]) MVg(dx) < 00,

which however cannot be true, since py, (dx) = Cq ¢~ Ix110g” A+1xD 7 This contradiction shows
that the super Poincaré inequality (1.6) does not hold for wy, with the rate function B(s)
satisfying (1.11).

3.3. Comparison of the functional inequalities for &, v and D,y

In this subsection, we aim to compare the criteria for the Poincaré inequality and the super
Poincaré inequality between &, v and D, y. First, we take p(r) = r=d=%e= with a € (0, 2)
and § > 0in (1.1), and set

1 - 2
Dasv(f. f) = 5 / %

e W dy py (dx).
We denote Dy o,v by Dg,v for simplicity. Theorem 1.1 yields the following.

Corollary 3.6. Let @ € (0,2) and § € [0, 00). For any a > 0, set Va(x) = V(ax).
(1) If there is a constant a > O such that

il’lf e—Va(Z)
—1<|zI< x| —1/2 1
liminf MISEISIIT2 2 p2d41 12y 00 _ (3.34)
|x]—00 sup e_Va(Z) o

lx[<lz|<[x]+1

then there is a constant ¢y > 0 such that for any f € C° (RY),

wy ((f = v (D) < e1Dasv (£ ),

(2) Suppose there is a constant a > 0 such that

inf e Va@
—1<)zI< x|-1/2
liminf HIZISEISHZT2 (3.35)
|x]—o00 sup e_Va(Z)

lx|<lzl<x]+1
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Let Ba (s) be the rate function defined by (1.7) with Vi(x) = V(ax) in place of V(x). If
moreover there is a constant co > 0 such that

Bas) < exp( (1 +s—1)), 50, (3.36)
then the following log-Sobolev inequality holds

pv (fAlog f2) — uy (fHloguy (f?) < e3Das v (f, ), f € CPRY).

Proof. (a) For any function f € Cgo(Rd) with f fduy = 0, define f (x) = f(ax) for all
x € RY. By changing the variable, it is easy to check that f fd wy, = 0. According to (3.34)
and Theorem 1.1(1), we know that

2
) ey // (f(x) — f(y)) -
/f () py, (dx) < e T =y dy py (dx)

holds for some constant Cy > 0 independent of f. Then, by changing the variable again, we
arrive at

a“C 2
[ roman <2 [ ERE av .
{lx—y|<a} |X - | «

Combining this inequality with the fact that

1 _ 2
_// Y = JOW 4y 1y (@) < e D v (£ ), (3-37)
(x—yl<a) X =l

2

we can get the first required conclusion.

(b) Suppose that (3.35) holds and the rate function ﬁa (s) defined by (1.7) with respect to Va (x)
satisfies (3.36). By Theorem 1.1(2) and [10, Corollary 3.3.4] (see also [12, Corollary 3.3]), the
following defective log-Sobolev inequality holds for any g € C;° (RY),

2 22 2 (g(x) — g(y))2 )
y, (87 logg%) — uy (87) loguy (8%) < //Ix B dy py, (dx)

+Capy (&), (3.38)

where Ci and C, are two positive constants. Hence, for any f € C;O(Rd), by applying
f (x) = f(ax) into (3.38) and by the change of variable and (3.37), we get that

wv (fAlog f2) — py (fHlog uy (f?) < 2a%e“CiDys v (f, f)
+(Ca2 — dloga)y (f3). (3.39)

If Co—dloga < 0, then, by (3.39), we get the second required conclusion. If Co—d loga > 0,
then (3.39) indeed is a defective log-Sobolev inequality. On the other hand, according to (3.35)
and (1), we know that the Poincaré inequality holds for D, s v (f, f), which along with (3.39)
yields the real log-Sobolev inequality, e.g. see [10, Theorem 5.1.8]. [

Corollary 3.6 improves [4, Theorem 1.1] for Dy 5,v when § > 0 large enough. The detail also
can be seen from the following example.



X. Chen, J. Wang / Stochastic Processes and their Applications 124 (2014) 123-153 149

Example 3.7. (1) Let puy (dx) = uy(dx) = Cre **Idx with A > 0. Then, (3.34) is satisfied
for such wy, and hence the Poincaré inequality holds for Dy sy with any § > 0, while
[4, Theorem 1.1] only yields that the Poincaré inequality holds for Dy s, v with § € [0, A].

(2) Let uy (dx) = Cye Mo+ xD gy with o > 0. Then, (3.35) and (3.36) hold for such
v, and hence the log-Sobolev inequality holds for D, 5, v with any § > 0.

Remark 3.8. Indeed, according to the arguments of Example 1.2 and Corollary 3.6, we can find
the following two statements. (i) Let py, (dx) = C 5e M dx with & > 0. Then, there are two
positive constants a; and C| (may depend on 1) such that

2
() = (< /I § }(f w lf;i{l)) dy v, @), f e CE®Y,
{lx—y|<a;

(ii) Let 1y, (dx) = Cj.eMx1og(+1xD gx with A > 0. Then, there are two positive constants ay
and C, (may depend on A) such that

g, (12108 2) = g, (1) log g, (1)
_ 2
<G /f Y= TOW 4y s @), f e CE@Y,
{lx—yl<az}

|x _y|d+oz

In particular, a close inspection of the computation in Example 1.2 shows that, if A is large
enough then one can take both the jump sizes a; and a, in two inequalities above to be less than
1; however, for small A we cannot expect the jump sizes a1 and a; to be less than 1.

To compare the different properties of the functional inequalities for Dy 5, v and &, v, we will
take the following three examples.

Example 3.9 (Poincaré Inequalities and Super Poincaré Inequalities hold for Dy v but not for
Dy, 5,v with § > 0 and &,v). Let py, (dx) = Co(1 + Ix|)?*¢ dx with ¢ > «. Then, according
to [13, Corollary 1.2], the Poincaré inequality holds for D, v, with e > «, and the super Poincaré
inequality holds for D, v, with ¢ > o. However, by Chen and Wang [4, Proposition 1.3], the
Poincaré inequality and so the super Poincaré inequality do not hold for Dy s v, with any § > 0.
On the other hand, according to Proposition 3.5, the Poincaré inequality and the super Poincaré
inequality either do not hold for &y, .

Example 3.10 (Super Poincaré Inequalities hold for Dy s.v with § > 0 but not & y). Let
ny, (dx) = Cre Ml dx with A > 0. For every 0 < § < A, according to [4, Lemma 4.3]
and the argument of [13, Theorem 1.1(2)], the super Poincaré inequality holds for Dy s v, with
the rate function B(s) = c1(1 + s~P!) for some positive constants ¢; and p;. However, by
Proposition 3.5, the super Poincaré inequality does not hold for &, v, .

Example 3.11 (Super Poincaré Inequalities hold for both Dy s v and &y, but with Different
Rate Function). Let wy, (dx) = CKe_(H‘x'K) dx with ¥ > 1. Also according to [4, Lemma 4.3]
and the argument of [13, Theorem 1.1(2)], the super Poincaré inequality holds for Dy s v, with
the rate function B(s) = ¢ (1 + s~72) for some positive constants ¢, and p,. On the other hand,
according to Example 1.2 (2), the super Poincaré holds for & v, with the rate function

B(s) = c3exp (04 (l + log’(/("*l)(l + sil))> .
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4. Functional inequalities for non-local Dirichlet forms with large jumps

Proof of Theorem 1.4. (1) The proof of (1.13) is almost the same as that of [4, Theorem 3.6].
For reader’s convenience, here we write it in detail. Let L¢, |, be the generator associated with

Dy, v - Then, according to [4, Lemma 4.2], we know that for any f € C° (RY),

_1 _ V(0)—-V(x+2) dz
Loy f0) = 5 /“M (et - e (e 1) S

For ag € (0, 1), let ¢ € C®(R?) such that ¢ > 1 and ¢(x) = 1 + |x|® for |x| > 1. By (1.12)
and [4, Lemma 4.3], L %,V¢ is well defined, and there exist rq, ¢; and ¢ > 0 such that

V(x)

WMX) + 21 B (0.ry) ().

This, along with [4, Proposition 3.2], yields that there are c3,c4 > 0 such that for any
feCr®Y,

Lg,,¢(x) < —ci

V(x)
/ PO g ) < a T (F )+ / 267 duy.

+ |x|)dte B(0,r0)

In particular, for any f € leo (Rd) with uy (f) =0,

V(x)
/f( )2(1 ‘ v (dx) < 3Dy, v(f, f)+64/ o Vduy.

+ |x])dte B(0,r0)

On the other hand, since ¢ > 1, by the local Poincaré inequality (2.23), there is a constant
¢s > 0 such that for any r > rg Vv 3,

/ ot duy < / Fduy
B(0,rp) B(0,rg)

g/ fzduv
B(0,r)
esK (ryr2dte : (/ >2
— v (L )+ — ‘
) wv(f f)"‘MV(B(O, ) B(O,r)f Y

csK (r)ridta

1 2
= —901 ) YR d )
k() VD A+ B0, (/B«),r)cf o V)

where in the equality above we have used the fact that

f fduv=—/ Fduy.
B(0,r) B(0,r)¢

Using the Cauchy—Schwarz inequality, we find

2 d+a
1
/ fduy <f U DT )
BO,r)* Bore  e'W

) eV
_— dx).
x /B«),r)c PO e kv @0
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Therefore, for any f € C,;X’(Rd) with f fduy =0andanyr > rog Vv 3,

e’/™ ce K (r)r2d+e
[ 1w T ) < <03+T) Duv (f, )

1+ d+a
C6 fB(o,r)v e e'éi'ﬁ) wy (dx)

1y (BO. 1)
V(x)
x [ re? T o).

d+a
Due to (1.12), f ajf—k)+ wy (dx) < oo, and so we can choose r; > rg Vv 3 large enough such
that

(+|xpdte
€6 [0,y — v — Hv(dx)

<172,
v (B(O, 1)

which gives us the inequality (1.13) with C; =2 <C3 + %o

(2) Let D be a bounded compact subset of R?. For any f € Cf"(Rd ) such that supp f C D,
we find

1 _ 2
Duv(f. f) = —// YO = TN )
2 JJipxD,jx=y|>1)

|x — y|d+e

: (f () = f()*

+ = U@ =f? ;
2//{D><DC,|x_y|>1} |x—y|d+oc Yy py(dx)
: (f () = f()*

+ = G =fo? ;
2 //{DUXD,|)C—)|>1} |_x — y|d+a yl’LV( .x)

2
—————dy v (dx)
/KDXD,|X—)’|>1} |x - |d+a

2)
+ // ————dy uy(dx)
(DxD.jx—y|=1} |x — y|9F+e
1 )
+‘// —————dy ny(dx)
2 JJipxpe, jx—yj=1y Ix — y|4t+e
1 2
+‘// —————dy ny(dx)
2 JJipexp,jx—y=1y lx — y|4te

4
= Z Ji
i=1

coK (ryrp )

N

Note that

1
hs /D </{|X—y|>1} mdy) F(x) ey (dx)
) <[| 1) |z|d+‘¥ )/ F2(x) v (dx).
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Since

1
/{.xy>l} mﬂv(dx) < /Mv(dx) =1,

we have

1
s [ ([ ey o) Poras
x—y|>

< (C\71 sup ev(y))/sz()’)liv(dy)-

yeD

Following the same way as above, we can get the similar estimates for J3 and J4, respectively.
Therefore, for every f € Cfo(Rd) with suppf C D,

Dav (f> ) < Cv.puyv(f?),

where Cy p is a positive constant independent of f.
Thus, according to (1.15), for every f € CS’O(R") with suppf C D,

wy (f2) < sCyvpuy (f2) + B fH

By taking s = ﬁ, we derive that

uv(f?) <28 < ) uv(IfD*. (4.40)

2Cvy,p

On the other hand, since the function V is locally bounded, there exist a point xg € D and a
constant r¢g > 0 such that B(xg, ro) C D, and

) -1
dx) < |4 .
/B(xo,ro)MV( ) [ P (2CV,D)]

Let fo € Cé’o(Rd) such that supp fo C B(xp,ro) and fo(x) > O for every x € B(xp, ro/2).
Hence, by the Cauchy—Schwartz inequality,

mv (f)

wy (fo)? = v (1 fol Lpeso.r)? < v (v (Bo. r0) < ——— .
4 (xi5)

This along with (4.40) yields that

1
nv (f) < Euwf&).

However, due to the fact that fy(x) > O for x € B(xg,r0/2), uv(foz) # 0, which is a
contradiction, and so the super Poincaré inequality (1.15) does not hold for 7, ,y. U

Remark 4.1. (1) As the same way, we can also prove that the super Poincaré inequality does not
hold for the following Dirichlet form

1
Do ) =5 / / () = FON*(1x =y dy wy (),

where p is a positive measurable function on R4 such that f(o ) p(rré~ldr < oo and
sup p(r) < oo.
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(2) As shown in Theorem 1.4(1), if (1.12) holds, then we can get the weighted Poincaré
inequality for &, v. However, different from the case for Dy v (see [4, Proposition 1.6]) and due
to the lack of local super Poincaré inequality for 7, v, the global super Poincaré inequality fails
for Yy, v, which reveals that in some situations, to derive the global super Poincaré inequality,
the local super Poincaré inequality is inevitable.
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Note added in Proof. After the submission of this paper, we know the recent work [6] by
P. T. Gressman about the fractional L? Poincaré inequality and the generalized log-Sobolev
inequality on general metric measure space. Although our findings on the Poincaré inequality
for a class of non-local Dirichlet forms with finite range jumps partially overlap, the methods
used here and in [6] are essentially different. The generalized log-Sobolev inequality in [6] is
used to characterize some embedding properties and it is different from the standard log-Sobolev
inequality in our paper.
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