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Abstract

In the present work we characterize the existence of quasistationary distributions for diffusions on
(0,∞) allowing singular behavior at 0 and ∞. If absorption at 0 is certain, we show that there exists a
quasistationary distribution as soon as the spectrum of the generator is strictly positive. This complements
results of Cattiaux et al. (2009) and Kolb and Steinsaltz (2012) for 0 being a regular boundary point and
extends results by Cattiaux et al. (2009) on singular diffusions.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction and main results

Throughout this paper we consider the one-dimensional diffusion (X t )t≥0 that is the solution
to the stochastic differential equation (SDE)

d X t = d Bt − b(X t ) dt, (1.1)

where (Bt )t≥0 is a standard one-dimensional Brownian motion and b : (0,∞) → R is the drift.
We make the following assumption throughout the paper.
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Assumption 1.1. The drift is continuously differentiable on (0,∞), that is b ∈ C1((0,∞)).

The first hitting time of 0 by (X t )t≥0 is denoted by

T0 := inf{t ≥ 0 : X t = 0} (1.2)

We are interested in the existence of quasistationary distributions of (X t )t≥0 with absorption at
0. These are invariant measures of the evolution conditioned on not hitting zero.

Definition 1.2. A probability measure ν on (0,∞) satisfying

Pν(X t ∈ A | T0 > t) = ν(A)

for all Borel sets A ⊂ (0,∞) is called a quasistationary distribution of (X t )t≥0.

The probability measure Pν expresses the fact that X0 has initial distribution ν. Note that
the event {T0 > t} can be interpreted as survival until at least time t . Studying the existence,
uniqueness, and the properties of quasistationary distributions for one-dimensional diffusions as
well as for Markov chains are challenging tasks. In recent years, these problems have attracted
the interest of both probabilists and biologists. Quasistationary distributions have been used
in mathematical biology (see [5]), demography (see [28]) and in models of neutron transport
(see [9]). Some recent developments and a description of the role of quasistationary distributions
in models derived from ecology and population dynamics are described in the excellent survey
article [22].

One possible approach to analyzing the existence question for quasistationary distributions
(QSD) is to look at the following limit.

Definition 1.3. Let ν be a probability measure on (0,∞). The Yaglom limit of (X t )t≥0 is defined
(if it exists) by

lim
t→∞

Pν(X t ∈ · | T0 > t). (1.3)

It is easy to see that if a non-trivial Yaglom limit exists, the limit is a quasistationary
distribution (see for example [5]). Therefore, in order to analyze the existence problem for QSDs
it is reasonable to look at Yaglom limits. It will turn out that in many situations the Yaglom limit
is either non-trivial or trivial in the following sense.

Definition 1.4. We say that (X t )t≥0, started with the initial distribution ν, converges to the
quasistationary distribution u : (0,∞) → R, if u is a non-negative function and for all Borel
measurable sets A ⊂ (0,∞)

lim
t→∞

Pν(X t ∈ A | T0 > t) =

∫
A u(x)ρ(dx)∫
∞

0 u(x)ρ(dx)
, (1.4)

where ρ(dx) = ρ(x)dx = exp
(
−
∫ x

1 2b(s) ds
)

dx is the speed measure of the diffusion.
We say that (X t )t≥0, started with the initial distribution ν, escapes to infinity if for every

a ∈ (0,∞)

lim
t→∞

Pν(X t ∈ [0, a) | T0 > t) = 0.

In many cases the convergence to a quasistationary distribution is independent of the initial
distribution ν. This follows from our characterization of the convergence to a quasistationary
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distribution via the strict negativity of the exponential rate of decay of Pν(T0 > t) and Harnack’s
inequality.

The main contribution of this work is a better understanding of the Yaglom limit for one-
dimensional diffusions. While in [17] the existence problem has been solved for regular drift
functions b ∈ C1([0,∞)) and internal killing, the present work is concerned with drift functions
b ∈ C1((0,∞)) having a singularity at 0 — we will in particular look at variants of the Bessel
process corresponding to b(x) =

a
x .

An interesting application of the singular case is the study of generalized Feller diffusions of
the type

d Z t = h(Z t )dt −

√
Z t d Bt , (1.5)

where h is a smooth enough function. Such stochastic differential equations arise as scaling
limits of certain discrete population models as shown in [5]. If one lets Yt := 2

√
Z t then an easy

application of Itô’s Lemma together with (1.5) yields

dYt = −d Bt −
1
Yt

(
1
2

− 2h
(

Y 2
t

4

))
dt. (1.6)

The SDE for (Yt )t≥0 is therefore of the form (1.1) and the drift function has a singularity at zero.
The main arguments of the present work are based on analytic extensions of results given

in [20] to a wider class of diffusions. Using these analytic results one can understand the
convergence to quasistationary distributions on compact sets A ⊂ (0,∞). From this, with
the help of an elegant argument from [27], we can deduce that (X t )t≥0 either converges to
a quasistationary distribution or escapes to infinity. In many instances this dichotomy can
be reduced to understanding the exponential rate of decay of Pν(T0 > t). This leads to a
characterization of the convergence of (X t )t≥0 via the positivity of the bottom of the spectrum of
the diffusion operator L corresponding to

τ = −
1
2

d2

dx2 + b(x)
d

dx
.

Throughout this paper we denote the bottom of the spectrum by

λ0 := inf spec(L). (1.7)

After tackling the question of the existence of quasistationary distributions, one may also
want to consider the Q-process. This is the process that arises from the original diffusion when
conditioned on non-extinction

lim
t→∞

Px (X• ∈ · | T0 > t).

Our results can be used in conjunction with classical techniques to characterize the existence
of the Q-process for a large class of diffusions.

1.1. Main results

Let us start by recalling Feller’s boundary classification for one-dimensional diffusions.
Accessible boundary points (points which can be reached in finite time with positive probability)
are divided into regular and exit points, whereas inaccessible points (points which cannot be
reached in finite time with positive probability) are divided into entrance and natural points.

More specifically, we have the following.
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Definition 1.5. Let c ∈ (0,∞) be given and remember that the density of the speed measure of
(1.1) is

ρ(x) = exp
(

−

∫ x

1
2b(s) ds

)
, x ∈ (0,∞).

The point ∞ is accessible, if
∫

∞

c ρ(x)−1
∫ x

c ρ(y) dy dx < ∞, and otherwise inaccessible. If ∞ is
an accessible boundary point, then it is called regular if and only if

∫
∞

c ρ(x)
∫ x

c ρ(y)−1 dy dx <
∞. If ∞ is accessible and

∫
∞

c ρ(x)
∫ x

c ρ(y)−1 dy dx = ∞ then ∞ is called an exit boundary. If
∞ is inaccessible, then it is an entrance boundary, if and only if

∫
∞

c ρ(x)
∫ x

c ρ(y)−1 dy dx < ∞.
If ∞ is inaccessible and

∫
∞

c ρ(x)
∫ x

c ρ(y)−1 dy dx = ∞ then ∞ is called natural. A similar
classification holds for the boundary point 0.

We are interested in conditioning on not hitting zero. Therefore, only the case when 0 is
accessible needs to be considered because otherwise the conditioning would be redundant. The
Yaglom limit in the regular case, first discussed in [11] (a gap in the arguments was pointed out
in [27]), was fully classified in [17]. As a result, in this paper we only consider the singular case
when 0 is an exit boundary.

The boundary at ∞ is generally assumed to be inaccessible. This is a natural assumption as
far as biological applications (see [5]) are concerned since populations do not blow up to ∞ in
nature.

As already observed in [11] for 0 regular and ∞ natural, it is crucial if certain absorption in
the following sense holds or not.

Definition 1.6. We say that absorption is certain if Px (T0 < ∞) = 1 for any starting point
x ∈ (0,∞).

Equivalently, certain absorption can be reformulated by the finiteness of the speed measure

Px (T0 < ∞) < 1 ⇐⇒

∫
∞

1
ρ(s)−1 ds < ∞.

This quantifies the minimum strength of the drift towards 0 one needs in order to obtain certain
absorption. The cases in which absorption is not certain are easy to treat since one can show that
for a > 0,

Pν(X t ∈ [0, a), T0 > t) ↓ 0 as t → ∞.

Combining this with the boundedness from below of Pν(T0 > t), implies that

lim
t→∞

Pν(X t ∈ A | T0 > t) = lim
t→∞

Pν(X t ∈ A, T0 > t)
Pν(T0 > t)

= 0.

This shows that if absorption is not certain the process (X t )t≥0 escapes to infinity.
To get around uncertain absorption, one can condition on the event of eventual absorption.

This can be done using an h-transform. The h-transformed process will have certain absorption
and so one can then apply our main results. This is discussed in Remark 3.5.

For the case when ∞ is a natural boundary, we need a regularity condition on the semigroup
generated by the diffusion.

Assumption 1.7. Let z ∈ (0,∞) and t > 0. Then

e−t L1[0,z] ∈ L2((0,∞), ρ)
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and

lim
ε→0

e−t L1[ε,z] = e−t L1[0,z]

in L2((0,∞), ρ) :=
{

f : (0,∞) → R, f measurable and
∫

∞

0 | f (x)|2 ρ(dx) < ∞
}
.

The next result tells us under what conditions, when ∞ is a natural boundary point, we have
the convergence of (X t )t≥0 to a quasistationary distribution. As before, λ0 denotes the bottom of
the spectrum of L .

Theorem 1.8. Suppose that 0 is an exit boundary, ∞ is a natural boundary and Assumptions 1.1
and 1.7 hold. We have the following classification.

(i) If absorption is not certain and λ0 > 0, then (X t )t≥0 escapes to infinity exponentially fast.
(ii) If absorption is certain and λ0 > 0, then (X t )t≥0 converges to a quasistationary

distribution. This quasistationary distribution is the unique Yaglom limit and it attracts
all the compactly supported initial distributions of X0.

Remark 1.9. We do not claim that Assumption 1.7 is necessary but we were not able to prove
the result without it.

The following result gives sufficient conditions on the drift b guaranteeing that the spectrum
is positive.

Proposition 1.10. Assume that 0 is an exit boundary and that absorption is certain. The bottom
of the spectrum λ0 is strictly positive if and only if for some a ∈ (0,∞)

A(b, a) := sup
x>a

(∫ x

a
ρ(y)−1 dy

)(∫
∞

x
ρ(y) dy

)
< ∞

In particular the strict positivity of λ0 implies
∫

∞

1 ρ(y) dy < ∞.

Remark 1.11. In the proof of Theorem of 1.8 we show that if absorption is not certain, then
Pν(X t ∈ [0, a) | T0 > t) decays at least exponentially fast with rate λ0. When 0 is regular and ∞

natural this result was proved in Theorem 4 of [21].

Theorem 1.8 immediately implies the following Corollary.

Corollary 1.12. If 0 is an exit boundary, ∞ is a natural boundary, Assumption 1.7 is fulfilled
and absorption is certain, then there exists a quasistationary distribution if and only if λ0 > 0.

If 0 is an exit boundary, ∞ is a natural boundary, absorption is not certain and λ0 > 0 then
there are no quasistationary distributions.

Proof. If absorption is certain and λ0 > 0 then Theorem 1.8 gives the existence of a
quasistationary distribution.

If instead, one assumes that there exists a quasistationary distribution ν then it is known
that T0 must have an exponential moment (see Proposition 3 from [22]). This then implies that
λ0 > 0. □

Intuitively, convergence to a quasistationary distribution should become easier for entrance
boundaries at ∞ since this implies there is a strong drift towards 0. Hence, escape to infinity gets
more difficult and convergence to a quasistationary distribution more likely. The next theorem
shows that this is true even in the absence of Assumption 1.7.
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Theorem 1.13. Suppose Assumption 1.1 holds. If 0 is an exit boundary and ∞ is an entrance
boundary, then λ0 > 0 and (X t )t≥0 converges to the unique quasistationary distribution.

Note that we do not have to distinguish between certain and uncertain absorption. For ∞ being
an entrance boundary, absorption at 0 is certain. In [5], the authors have shown that (X t )t≥0
converges to a quasistationary distribution under a set of assumptions which ensure that the
spectrum of L is discrete and that the lowest eigenfunction is integrable. The fact that this is
always true is new and completes the picture. Furthermore, combined with [5][Theorem 7.3],
one can fully characterize the case when ∞ is an entrance boundary and 0 an exit boundary.

Corollary 1.14. Suppose Assumption 1.1 holds. If 0 is an exit boundary, then ∞ is entrance
if and only if there is precisely one quasistationary distribution ν̄. Furthermore, ν̄ attracts all
initial distributions ν, i.e. for any ν

lim
t→∞

Pν(X t ∈ · | T0 > t) = ν̄(·).

Our strategy is similar to the one from [17] but in contrast to [17], where the authors could rely
on analytic results available in the literature, it is necessary to develop, due to the singularity at 0,
a good deal of results concerning the spectral representation of L . The main problem is the fact
that the cone of positive λ0-harmonic functions might be two-dimensional. We have to choose a
proper λ0-harmonic function. Our analytic consideration will dictate the choice and finally allow
us to characterize the existence of quasistationary distributions. For clarity we chose to prove
most of the results for diffusions without internal killing. However, we expect that one can easily
generalize our results to also cover killed diffusions (see Remark 3.6).

1.2. Comparison with existing results

We briefly discuss how our results are related to the existing literature.
We were partly inspired by [5] — this is one of the few papers which allows 0 to be a

singular boundary. One of the aims of [5] was to understand the existence and uniqueness of
quasistationary distributions for the generalized Feller diffusion (Z t )t≥0 that is given by (1.5).
We present their results for completeness. Their assumptions are as follows:

(H0) The drift satisfies b ∈ C1((0,∞)).
(H1) For all x > 0, Px (T0 < T∞) = 1.
(H2) The drift satisfies infs>0(b2(s) − b′(s)) > −∞ and lims→∞(b2(s) − b′(s)) = +∞.
(H3) The drift satisfies∫ 1

0

1
b2(s) − b′(s) + C + 2

ρ(s) ds < ∞

where C = −infs>0(b2(s) − b′(s)) < ∞.
(H4) The drift satisfies

∫
∞

1 ρ(x) dx < ∞ and
∫ 1

0 x
√
ρ(x) dx < ∞.

(H) Assumptions (H0), (H1) and (H2) hold and Assumption (H3) or (H4) holds.

The authors of [5] were able to prove the following result about the existence of quasistation-
ary distributions for singular drift functions.

Theorem 1.15 (Theorem 5.2 from [5]). Assume that hypothesis (H) holds. Then there is a
quasistationary distribution ν1 that is the unique Yaglom limit. Furthermore, ν1 attracts all the
compactly supported initial distributions of X0.
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We are able to generalize Theorem 1.15 and prove existence results under much weaker
assumptions. The most important result of our work consists in the fact that our assumptions
do not imply the discreteness of the spectrum of L . Note that the assumption

lim
x→∞

(b(x)2
− b′(x)) = ∞

from (H2) ensures the discreteness of the spectrum of L and thus rules out some interesting
examples, where the rate of convergence to quasistationarity is not geometric.

In Section 3.1.3 we show the following.

Proposition 1.16. Suppose that b ∈ C1((0,∞)), infs>0(b(s)2
− b′(s)) > −∞ and∫ 1

0
s
√
ρ(s)ds < ∞. (1.8)

Then Assumption 1.7 holds.

Condition (1.8) is one part of condition (H4) and the condition infs>0(b(s)2
− b′(s)) > −∞

is one half of condition (H2). We want to point out that in addition to these assumptions on the
behavior of the drift near 0 the authors of [5] also have to assume conditions concerning the
behavior of the drift near ∞ (see condition (H2)). We are able to remove the assumptions on the
behavior of the drift near ∞. Thus as far as the existence of quasistationary distributions and the
existence of the Yaglom limits are concerned our conditions are weaker than the ones in [5].

Also, contrary to the situation discussed in [5] the behavior of

Px (X t ∈ I, T0 > t), I ⊂ (0,∞) an interval

is in general not exactly exponential as t → ∞.
In the particular case of interest from [5], the generalized Feller diffusion, the existence of a

Yaglom limit for (Z t )t≥0 is equivalent to the existence of a Yaglom limit for solutions of (Yt )t≥0
of the transformed stochastic differential equation (1.6). As a result, it suffices to understand the
simpler operator

Lh
= −

1
2

d2

dx2 + bh(·)
d

dx
, (1.9)

where the drift has the form bh(x) =
1

2x −
2h(γ x2/4)

γ x . This motivated the study of convergence to
a quasistationary distribution of general perturbed Bessel processes of the type

L̃h
= −

1
2

d2

dx2 +
a
x

d
dx

+ c(x)
d

dx
discussed in Remark 4.6 of [5].

Theorem 1.13 first appeared in the second author’s Ph.D. thesis. The same result was
independently shown in [19]. We include this result as it follows in a rather straightforward
way given the general spectral theoretic tools developed in this work and previous ideas from [5]
and [17]. This makes this paper self-contained and all known results can be deduced from the
ones presented in this paper.

For some recent work on quasistationary distributions with 0 exit or regular and ∞ entrance
we refer the reader to [7–9]. Their approach is based on probabilistic and coupling methods while
ours is based on spectral theory. We note that in [7] the authors can study general one-dimensional
diffusions that are characterized by their speed measure, scale function and killing measure.
As such they are able to analyze the existence and uniqueness of quasistationary distributions
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for diffusions which are not solutions to SDEs. Our spectral methods would not work in their
setting. However, our methods can tackle the problem when ∞ is a natural boundary while the
methods from [7,8] have not been able to cover this situation. Partial results for the exponential
convergence to a quasistationary distribution for multi-dimensional Markov processes killed at
the boundary of a Riemannian manifold are obtained in [6]. Other recent developments involving
quasistationary distributions of Markov processes can be found in [2,10,12]

1.3. Outline

The paper is organized as follows. We divide the arguments into two parts separating the
analytic and the probabilistic results. In Section 2 we are going to discuss the analytic problems.
The spectral decomposition for singular one-dimensional diffusions is explored — for ∞

entrance the spectrum is analyzed in more detail. Section 3 is dedicated to the probabilistic
results regarding Yaglom limits. The case when ∞ is natural is treated in Section 3.1 while the
case when ∞ is entrance is in Section 3.3. Applications to generalized Bessel processes appear
in 3.2. Finally, in Section 3.4 we apply our results to an example from population dynamics.

2. Analytic results

2.1. One-dimensional diffusions on the half-line

In the following we specify our setting. We will use the following notation.

• C∞
c (R) is the set of smooth functions on R with compact support.

• L p((0,∞), ρ) :=
{

f : (0,∞) → R, f measurable and
∫

∞

0 | f (x)|p ρ(dx) < ∞
}
.

• If L is a selfadjoint operator then we denote by σ (L) its spectrum and by (EL (λ))λ∈R its
spectral resolution.

• ⟨ f, g⟩L2((0,∞),ρ) :=
∫

∞

0 f gρ(dx) is the inner product on the Hilbert space L2((0,∞), ρ).
• If q is a Dirichlet form we denote its domain by D(q).

Suppose b : (0,∞) → R is a continuous function. Consider the quadratic form q that is
defined as the closure of the map

C∞

c (R) ∋ φ ↦→
1
2

∫
∞

0
|φ′(x)|2 ρ(dx),

where ρ(dx) = ρ(x) dx = e−2
∫ x

1 2b(s) ds dx . It is easy to see that q is a Dirichlet form. The
generator of this Dirichlet form is given by the unique selfadjoint extension associated to the
form q in L2((0,∞), ρ). This selfadjoint realization of the formal differential operator

τ := −
1
2

d2

dx2 + b(x)
d

dx
(2.1)

will be denoted by L . We define e−t L using spectral calculus via

e−t L g =

∫
σ (L)

e−tλEL (dλ)g, g ∈ L2((0,∞), ρ).

By Stone’s formula the spectral resolution of L can be calculated from the resolvent (L −

z)−1, z ∈ C via

⟨ f, EL ((λ1, λ2])g⟩L2((0,∞),ρ)

= lim
δ→0+

lim
ε→0+

∫ λ2+δ

λ1+δ

dλ
⟨
f,
[
(L − (λ+ iε))−1

− (L − (λ− iε))−1] g
⟩
L2((0,∞),ρ).
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Let λ0 := inf spec(L) denote the bottom of the spectrum of L . From the general theory of
symmetric Markov semigroups we know that e−t L generates a consistent family of strongly
continuous semigroups on L p((0,∞), ρ), 1 ≤ p < ∞. Moreover, there exists a continuous
transition function

(0,∞)3
∋ (t, x, y) ↦→ p(t, x, y) ∈ (0,∞)

which is symmetric in x and y, such that for all f ∈ L p((0,∞), ρ) the semigroup can be
represented as

e−t L f (x) =

∫
∞

0
p(t, x, y) f (y)ρ(dy).

The general theory of Dirichlet forms (see for example [13]) implies that there is a ρ-symmetric
Hunt process (X t )t≥0 with continuous paths such that for every positive starting point and every
f ∈ C∞

c ((0,∞)) the process (Mt )t≥0 defined by

Mt := f (X t ) − f (X0) −

∫ t

0
L f (Xs) ds

is a martingale (up to some explosion time) with respect to the canonical filtration of (X t )t≥0.
One also gets that (Mt )t≥0 has quadratic variation

∫ t
0 | f ′(Xs)|2 ds. Moreover, a stochastic

representation of the semigroup is given by

e−t L f (x) = Ex [ f (X t ), T∞ ∧ T0 > t]

for f ∈ C∞
c ((0,∞)) and T∞ denoting the explosion time. Later on we will assume that ∞ is

inaccessible, in which case Px (T∞ = ∞) = 1.

Remark 2.1. The reader who is not familiar with the theory of Dirichlet forms should assume
that b is locally Lipschitz and should think of the process (X t )t≥0 as the solution to the stochastic
differential equation

d X t = d Bt − b(X t )dt.

We only consider the case where in the Feller classification of boundary points 0 is an exit
point which is characterized by∫ 0

1

(∫ t

1
ρ(s)ds

)
ρ(t)−1dt < ∞ and

∫ 0

1

(∫ t

1
ρ(s)−1ds

)
ρ(t)dt = ∞. (2.2)

We mainly look at the case when ∞ is inaccessible. Condition (2.2) implies that
∫ 1

0 ρ(t) dt = ∞

and
∫ 1

0 ρ(t)−1 dt < ∞. For any y ∈ (0,∞) let

Ty := inf{t ≥ 0 : X t = y}

be the first hitting time of y. If ∞ is natural one has

lim
x→∞

Px (Ty < t) = 0, y ∈ (0,∞), t > 0

whereas if ∞ is entrance one has

lim
x→∞

Px (Ty < t) > 0, y ∈ (0,∞), t > 0.

Note that in the latter case there is a more hands-on equivalent formulation in terms of the drift
function (see Remark 7.4 of [5]): If b(x) goes to infinity and b′(x) > 0 for x > x0 for some
x0 > 0, then ∞ being an entrance boundary is equivalent to

∫
∞

1
1

b(x) dx < ∞.
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Remark 2.2. We say the Sturm–Liouville expression τ is in the limit point case at infinity, if for
some c ∈ (0,∞) there exists a unique selfadjoint extension of τ satisfying Dirichlet boundary
conditions at 0. This is equivalent to saying that for all z ∈ C\R the ordinary differential equation

τu = zu

has (up to constant multiples) a unique solution u, which satisfies∫
∞

c
|u(x)|2ρ(dx) < ∞.

An analogous assertion applies to limit point case at 0. A detailed account of this topic can be
found in Section 13.3 of [31]. If 0 is exit and ∞ is inaccessible the differential expression τ from
(2.1) is in the limit point case at 0 and at ∞ (see Definition 2.4 in [17]), i.e. the restriction of
L to C∞

c (0,∞) is even essentially selfadjoint and hence has a unique selfadjoint extension. The
fact that we are in the limit point case at ∞ can be found in Lemma 3.1 from [17] while the
analogous statement for 0 is proved in [32].

In what follows we develop the spectral theory for the differential expression

τ = −
1
2

d2

dx2 + b(x)
d

dx
with b having a singularity at 0. If there is no singularity at 0 this has already been done in [20,27]
and [17]. In [14] the spectral theory was carried out for Schrödinger operators with strongly
singular potential V , i.e.

−
1
2

d2

dx2 + V (x)

where V is not locally integrable at 0. The straightforward approach to reduce the case of drift
to the case of a potential by exploiting the unitary equivalence of τ to

−
1
2

d2

dx2 + [b2
− b′](x)

was carried out in [5]. The disadvantage was that additional restrictions on b2
−b′ were required.

Namely, one had to assume that

C = − inf
y∈(0,∞)

(b(y)2
− b′(y)) < ∞ and lim

y→∞
(b(y)2

− b′(y)) = ∞.

We circumvent these additional assumptions on the behavior of b close to 0 and ∞ by doing the
spectral theory directly. In order to be as selfcontained as possible we provide all the details even
though some of them are known in the analytic literature.

We start by proving a spectral theorem for diffusions with exit boundary at 0 (Theorem 2.6)
and then show that if, in addition, ∞ is an entrance boundary then the spectrum is discrete.

2.2. Spectral theorem for diffusion operators with singularity at 0

Our aim is to show that one can transfer the results of Section 3 of [14] to diffusions with
singular drift (instead of a singular potential). The idea can be essentially summarized in the
following scheme:

• Using methods from functional analysis and the theory of ordinary differential equations
one deduces a formula for the resolvent of the selfadjoint realization of τ .
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• Recall from [30] (e.g. Satz B.2 in [30]) that the resolvent R(z) is a Herglotz function , i.e. it
is analytic on the upper half plane, satisfies ℑR(z) > 0 (where ℑz denotes the imaginary
part of the complex number z) and |ℑ(z) · R(z)| ≤ M for some M < ∞ and all z with
ℑz > 0. Using a theorem of Herglotz (see Satz B.2 in [30]) one concludes that the resolvent
can be represented as a Stieltjes transform of a measure.

If the function f is a scalar valued Herglotz function then the theorem of Herglotz tells us that
there is a right continuous non-decreasing function w such that

f (z) :=

∫
R

1
t − z

dw(t)

and

w(t) = lim
δ→0+

lim
ε→0+

1
π

∫ t+δ

−∞

ℑ f (s + iε) dt

Using this result and properties of the resolvent we will be able to establish a spectral
representation of the selfadjoint realization of τ . With this in mind we define the concept of
a Weyl–Titchmarsh solution.

Definition 2.3. A solution ϕ̃ of

(τψ)(z, x) = zψ(z, x) (2.3)

is called an analytic Weyl–Titchmarsh solution in BR := {z ∈ C : |z| < R}, if ϕ̃ satisfies the
following conditions

(i) For every fixed z ∈ BR , ϕ̃(z, ·) is a non-trivial solution to (2.3) and for every fixed
x ∈ (0,∞) the function ϕ̃(·, x) is analytic in BR .

(ii) If (z, x) ∈ (−R, R) × (0,∞) then ϕ̃(z, x) ∈ R.
(iii) For every a ∈ (0,∞) and z ∈ BR one has∫ a

0
|ϕ̃(z, x)|2ρ(dx) < ∞.

The system of fundamental solutions of (2.3) is given by functions ϕ(z, ·, x0) and θ (z, ·, x0)
solving

(τϕ)(z, x) = zϕ(z, x),

ϕ(z, x0, x0) = ρ(x0)θ ′(z, x0, x0) = 0,

ρ(x0)ϕ′(z, x0, x0) = θ (z, x0, x0) = 1,

for z ∈ C and a fixed reference point x0 ∈ (0,∞). For every fixed x ∈ (0,∞) the solutions
ϕ(z, x, x0) and θ (z, x, x0) are analytic with respect to z ∈ C and satisfy

W (θ (z, ·, x0), ϕ(z, ·, x0))(x) = 1,

where W ( f, g) = f (x)ρ(x)g′(x) − ρ(x) f ′(x)g(x) denotes the Wronskian of f and g.
Later we will use the fact that for any fixed x ∈ (0,∞) the function ϕ̃(z, x) is analytic in

z ∈ BR . For this observe that

ϕ̃(z, x) = ϕ̄(z, x) := ϕ̃(z, x0)ρ(x0)ϕ(z, x, x0) + ϕ̃(z, x0)θ (z, x, x0),
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as both sides of the above equation are solutions of τu = zu satisfying ϕ̃(z, x0) = ϕ̄(z, x0) and
ρ(x0)ϕ̃(z, x0) = ρ(x0)ϕ̄(z, x0). Differentiating both sides of the last equation shows the required
analyticity of ϕ̃(z, x) in z ∈ BR .

We next introduce the Weyl–Titchmarsh solutions ψ±(z, ·, x0), x0 ∈ (0,∞), z ∈ C \ R, of
(2.3). As argued in Remark 2.2 we are in the limit-point case at 0 and at ∞. This implies that the
Weyl–Titchmarsh solutions are up to constant multiples characterized by

ψ−(z, ·, x0) ∈ L2((0, x0), ρ),

ψ+(z, ·, x0) ∈ L2((x0,∞), ρ)

for z ∈ C \ R. We normalize ψ±(z, ·, x0) by requiring

ψ±(z, x0, x0) = 1.

This yields

ψ±(z, x, x0) = θ (z, x, x0) + m±(z, x0)ϕ(z, x, x0), x, x0 ∈ (0,∞), z ∈ C \ R

where m±(z, x0) is defined by

m±(z, x) =
ρ(x)ψ ′

±
(z, x, x0)

ψ±(z, x, x0)
.

It is well-known that m±(z, x) are Herglotz- and anti-Herglotz-functions (see [20,30] for more
properties of Herglotz functions), respectively.

Lemma 2.4. Assume that there exists a Weyl–Titchmarsh solution ϕ̃(z, x) to (2.3) that is analytic
in BR . Then there exists a solution θ̃ (z, x) of (2.3) having the following properties:

(1) For every x ∈ (0,∞) the function θ̃ (·, x) is analytic in z ∈ BR .
(2) For every x ∈ (0,∞), z ∈ R one has θ̃ (z, x) ∈ R.
(3) For every x ∈ (0,∞), z ∈ BR

W (θ̃ (z, ·), ϕ̃(z, ·)) ≡ 1.

Proof. We follow the proof of Lemma 3.3 from [20]. Fix x0 ∈ (0,∞) and consider

θ̃ (z, x) =
ρ(x0)ϕ̃′(z, x0)

ϕ̃(z, x0)2 + (ρ(x0)ϕ̃′(z, x0))2 θ (z, x, x0)

−
ϕ̃(z, x0)

ϕ̃(z, x0)2 + (ρ(x0)ϕ̃′(z, x0))2 ϕ(z, x, x0)

Since the solution ϕ̃(z, ·) is non-trivial for every z ∈ BR we have ϕ̃(z, x0) ̸= 0 and
ρ(x0)ϕ̃′(z, x0) ̸= 0 for every z ∈ BR . Thus we conclude that θ̃ (z, ·) is well defined for z ∈ BR .
Due to the properties of ϕ̃(z, x0), θ(z, x, x0) and ϕ(z, x, x0) the function θ̃ (z, ·) is analytic in
z ∈ BR for every fixed x ∈ (0,∞). Moreover, we have

W (θ̃ (z, ·), ϕ̃(z, ·))(x) = W (θ̃ (z, ·), ϕ̃(z, ·))(x0)

= θ̃ (z, x0)ρ(x0)ϕ̃′(z, x0) − ρ(x0)θ̃ ′(z, x0)ϕ̃(z, x0)

=
(ρ(x0)ϕ̃′(z, x0))2

ϕ̃(z, x0)2 + (ρ(x0)ϕ̃′(z, x0))2 +
(ϕ̃(z, x0))2

ϕ̃(z, x0)2 + (ρ(x0)ϕ̃′(z, x0))2

= 1. □
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Let m̃+(z) be such that

ψ̃+(z, x) = θ̃ (z, x) + m̃+(z)ϕ̃(z, x), x ∈ (0,∞)

is a solution to (2.3) that satisfies for all a ∈ (0,∞), z ∈ BR \ R

ψ̃+(z, ·) ∈ L2((a,∞), ρ).

Since the differential expression is in the limit point case at infinity the solution ψ̃+(z, ·) is
proportional to ψ+(z, ·, x0). This gives

m+(z, x) =
ρ(x)θ̃ ′(z, x) + m̃+(z)ρ(x)ϕ̃′(z, x)

θ̃ (z, x) + m̃+(z)ϕ̃(z, x)

and by direct computation

m̃+(z) =
m+(z, x)θ̃ (z, x) − ρ(x)θ̃ ′(z, x)
ρ(x)ϕ̃(z, x) − m+(z, x)ϕ̃(z, x)

=
W (ϕ̃(z, ·), ψ+(z, ·, x0))
W (ϕ̃(z, ·), ψ+(z, ·, x0))

=
θ̃ (z, x)
ϕ̃(z, x)

m+(z, x)
m−(z, x) − m+(z, x)

−
ρ(x)θ̃ ′(z, x)
ϕ̃(z, x)

1
m−(z, x) − m+(z, x)

(2.4)

Since m− and m+ are Herglotz- and anti-Herglotz functions respectively, ϕ̃(x, z) and θ̃ (z, x) are
analytic, and since ϕ̃(z, x ̸= 0 we see that m̃+(z) is analytic in z ∈ BR . Note that ϕ̃(z, x) is
not 0, since if there would be an x0 with ϕ̃(z, x0) = 0, then the function ϕ̃(z, ·) would be an
eigenfunction to a non-real eigenvalue of the selfadjoint realization of τ in L2((0, x0), ρ) with
Dirichlet boundary condition at x0.

A direct computation for z ∈ BR \ σ (L) and x, y ∈ (0,∞) shows that the Green’s function
G(z, x, y) is given by

G(z, x, y) =

{
ϕ̃(z, x)ψ̃+(z, y) if 0 < x ≤ y,
ϕ̃(z, y)ψ̃+(z, x) if 0 < y ≤ x .

(2.5)

This means that for every x ∈ (0,∞) and f ∈ L2((0,∞), ρ)

((L − z)−1 f )(x) =

∫
∞

0
G(z, x, y) f (y)ρ(dy). (2.6)

The next lemma collects some important properties of m̃+. These will be crucial for the
spectral decomposition that is carried out in the next theorem.

Lemma 2.5. Assume that there exists an analytic Weyl–Titchmarsh solution of (2.3) in BR . Then
the function m̃+ satisfies the following conditions:

(i) m̃+(z) = m̃+(z̄) for z ∈ BR ,
(ii) For any ε0 > 0 and λ1 < λ2 there exists a constant C(λ1, λ2, ϵ0) such that ε|m̃+(λ+ iε)| ≤

C(λ1, λ2, ϵ0) for all λ ∈ [λ1, λ2], 0 < ε ≤ ε0,
(iii) For any ε0 > 0 and λ1 < λ2 one has ε|Re (ε(m̃+(λ+ iε)))| = o(1) for all λ ∈ [λ1, λ2], 0 <

ε ≤ ε0,
(iv) The limit

lim
ε↓0

(iε)m̃+(λ+ iε) = lim
ε↓0
εℑ(m̃+(λ+ iε))

exists for all λ ∈ (−R, R) and is nonnegative,
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(v) For a.e. λ ∈ [λ1, λ2] one has that

m̃+(λ+ i0) = lim
ε↓0

m̃+(λ+ iε)

exists and ℑ(m̃+(λ+ i0)) ≥ 0.

Moreover, there exists a measure σ such that

σ ((λ1, λ2]) = lim
δ↓0

lim
ε↓0

1
π

∫ λ2+δ

λ1+δ

ℑ(m̃+(λ+ iε))dλ. (2.7)

Proof. Since for (λ, x) ∈ (−R, R) × (0,∞) the numbers ϕ̃(λ, x) and θ̃ (λ, x) are real, we get for
(z, x) ∈ BR × (0,∞)

ϕ̃(z, x) = ϕ̃(z̄, x) , θ̃ (z, x) = θ̃ (z̄, x).

Let c, d ∈ (0,∞) with c < d. Then∫
σ (L)

d∥EL (λ)1[c,d]∥
2
L2((0,∞),ρ)

λ− z
=
⟨
1[c,d], (L − z)−11[c,d]

⟩
L2((0,∞),ρ)

=

∫ d

c
ρ(dx)

∫ x

c
ρ(dy)θ̃ (z, x)ϕ̃(z, y)

+

∫ d

c
ρ(dx)

∫ d

x
ρ(dy)θ̃ (z, y)ϕ̃(z, x)

+ m̃+(z)
[∫ d

c
ρ(dx)ϕ̃(z, x)

]2

.

(2.8)

Observe that we can find c, d in such a way that∫ d

c
ϕ̃(z, x)ρ(dx) ̸= 0

for all z in a sufficiently small complex open neighborhood of [λ1, λ2]. Note that Eq. (2.8) implies
(i). Define the function H via

C \ σ (L) ∋ z ↦→

∫
σ (L)

d∥EL (λ)1[c,d]∥
2
L2((0,∞),ρ)

λ− z
.

Then H is a Herglotz function and (ii)–(iv) follow from the basic properties of θ̃ (z, x) and ϕ̃(z, x).
By the Herglotz property of H we also have

lim
δ↓0

lim
ε↓0

1
π

∫ λ2+δ

λ1+δ

ℑ

(∫
σ (L)

d∥EL (λ)1[c,d]∥
2
L2((0,∞),ρ)

λ− (x + iε)

)
dx

= ∥EL ((λ1, λ2])1[c,d]∥
2
L2((0,∞),ρ)
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We next apply (2.8) to λ+ iε with λ ∈ (λ1, λ2) and ε > 0 small enough. Then the quantity σ
from (2.7) satisfies

σ ((λ1, λ2]) = lim
δ↓0

lim
ε↓0

1
π

∫ λ2+δ

λ1+δ
ℑ(m̃+(λ+ iε))dλ

= lim
δ↓0

lim
ε↓0

1
π

∫ λ2+δ

λ1+δ
dλℑ

{∫
σ (L)

d∥EL (λ̃)1[c,d]∥
2
L2((0,∞),ρ)

λ̃− (λ+ iε)

×

[(∫ d0

c0

ρ(dx)ϕ̃(λ, x)
)2

+ 2iε
(∫ d0

c0

ρ(dx)(d/dz)ϕ̃(z, x)
⏐⏐⏐
z=λ

)
+ O(ε2)

]−1

+ O(ε)
}

=

∫
(λ1,λ2]

d∥EL (λ)1[c,d]∥
2
L2((0,∞),ρ)

[∫ d0

c0

ρ(dx)ϕ̃(λ, x)
]−2

and therefore defines a measure on R. □

Part (iv) of the following theorem connects the measure σ from Lemma 2.5 with the spectral
measure of the operator L .

Theorem 2.6. Assume that 0 is an exit boundary. Then the following hold:

(i) For every λ ∈ R the ordinary differential equation (τ − λ)u = 0 has a fundamental system
(u1
λ, u2

λ) of solutions with

lim
x→0

u1
λ(x) = 0 and lim

x→0
u2
λ(x) = 0.

Furthermore, u1
λ ∈ L1((0,∞), ρ) ∩ L2((0,∞), ρ).

(ii) For every fixed R > 0 there exists a Weyl–Titchmarsh solution ϕ̃(z, x) for L, that is analytic
in BR .

(iii) Let R > 0 and ϕ̃(λ, ·) be as in (ii). If λ0 = inf spec(L), then ϕ̃(λ0, ·) is non-negative.
(iv) Let R > 0 and ϕ̃(λ, ·) be as in (ii). There is a measure σ = σR on R, such that for every

F ∈ C(R), every f, g ∈ C∞
c ((0,∞)), and every −R < λ1 < λ2 < R

⟨ f, F(L)EL ((λ1, λ2])g⟩L2((0,∞),ρ) =

⟨
f̂ ,MF1(λ1,λ2] ĝ

⟩
L2(R,σ )

,

where

ĥ(λ) :=

∫
∞

0
ϕ̃(λ, x)h(x)ρ(dx)

for h ∈ C∞
c ((0,∞)) and MF1(λ1,λ2] denotes the bounded operator, which acts by

multiplication with the function F1(λ1,λ2).
(v) Let R > 0 and ϕ̃(λ, ·) be as in (ii). Then

E([λ0, λ1])e−t L1A(x) =

∫
A

hλ1 (t, x, y) dy,

where

hλ1 (t, x, y) :=

∫ λ1

λ0

e−tλϕ̃(λ, x)ϕ̃(λ, y)σ (dλ).

Proof. We first construct the fundamental system for part (i). We have to show that there exists an
analytic Weyl–Titchmarsh function ϕ̃(z, ·), z ∈ BR . For z ∈ BR we construct a solution u R(z, x)
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of the equation (L − z)u = 0 in a certain neighborhood U of 0, which for every fixed x ∈ U
is analytic in z ∈ BR and which for every fixed z ∈ BR satisfies limx→0u R(z, x) = 1. Since the
ordinary differential equation (L − z)u = 0 is linear each u R(z, ·), z ∈ BR gives rise to a solution
of (L − z)u = 0 not only on U but also on (0,∞). As a result it is enough to construct u R(z, ·)
only on U . This will be done by a well-known iteration procedure.

For 0 < ε < 1 choose δ = δR > 0 such that for every z ∈ BR and x ∈ (0, δ)∫ x

0
ρ(r )−1 dr

∫ δ

r
ρ(s) ds < ε.

Set u R
0 (z, x) = 1 and recursively define

u R
n+1(z, x) = 1 + z

∫ x

0
ρ(r )−1 dr

∫ δ

r
u R

n (z, s)ρ(s) ds.

One can then easily see by induction that the sequence (u R
n (z, x))n∈N converges uniformly for

x ∈ [0, δR], z ∈ BR . This implies that the limit

u R(z, x) := lim
n→∞

u R
n (z, x)

is continuous for every x ∈ [0, δR] and for every fixed x is analytic in z ∈ BR . Moreover the
limit satisfies

u R(z, x) = 1 + 2z
∫ x

0
ρ(r )−1 dr

∫ δ

r
u R(z, s)ρ(s) ds

and solves for every z ∈ BR the equation (L − z)u = 0 in (0, δR) with limx→0u R(z, x) = 1. One
also has that for λ ∈ R ∩ BR the quantity u R(λ, x) is real.

Choose δ̃R such that u R(z, x) ̸= 0 for every (z, x) ∈ BR × (0, δ̃R) and set for every x ∈ (0, δ̃R)

ϕ̃R(z, x) := u R(z, x)
∫ x

0
u R(z, y)−2ρ(y)−1dy.

Observe that ϕ̃R(λ, x) ∈ R for real λ and that limx→0ϕ̃
R(z, x) = 0. For any simple closed path

γ in BR due to the analyticity of u R(z, x) in z ∈ BR∫
γ

(∫ x

0
u R(z, s)−2ρ(s)−1 ds

)
dz =

∫ x

0

(∫
γ

u R(z, s)−2ρ(s)−1 dz
)

ds = 0

so by Morera’s theorem we see that ϕ̃R(z, x) is analytic in z ∈ BR . The two solutions u R(z, ·)
and ϕ̃R(z, ·) are linearly independent and the solution ϕ̃(z, ·) is also integrable since⏐⏐⏐⏐∫ x

0
ϕ̃R(z, t) dt

⏐⏐⏐⏐ ≤
maxy∈[0,x]|u R(z, y)|

(miny∈[0,x]|u R(z, y)|)2

∫ x

0
ρ(t)

∫ t

0
ρ(s)−1 < ∞

and 0 is an exit boundary. It remains to observe that ϕ̃R(z, ·) ∈ L∞((0, 1), ρ). Since bounded and
integrable functions are square integrable we get that for every z ∈ BR and a ∈ (0,∞)∫ a

0
|ϕ̃R(z, x)|

2
ρ(dx) < ∞.
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For part (iv) we modify the techniques from [20]. We make use of Stone’s formula in order to
connect σ with the spectral resolution EL of L . Stone’s formula implies that

⟨ f, F(L)EL ((λ1, λ2])g, ⟩L2((0,∞),ρ)

= lim
δ↓0

lim
ε↓0

1
2π i

∫ λ2+δ

λ1+δ

dλF(λ)
[
⟨ f, (L − (λ+ iε))−1g⟩L2((0,∞),ρ)

− ⟨ f, (L − (λ− iε))−1g⟩L2((0,∞),ρ)

]
.

Using formula (2.6) for the kernel of the resolvent we get

⟨ f, F(L)EL ((λ1, λ2])g)L2((0,∞),ρ)

= lim
δ↓0

lim
ε↓0

1
2π i

∫ λ2+δ

λ1+δ

dλF(λ)

×

{∫
∞

0
ρ(dx)

[
f (x)ψ̃+(λ+ iε, x)

∫ x

0
ϕ̃(λ+ iε, y)g(y)ρ(dy)

+ f (x)ϕ̃(λ+ iε, x)
∫

∞

x
ρ(dy)ψ̃+(λ+ iε, y)g(y)

]
−

[
f (x)ψ̃+(λ− iε, x)

∫ x

0
ρ(dy)ϕ̃(λ− iε, y)g(y)

+ f (x)ϕ̃(λ− iε, x)
∫

∞

x
ρ(dy)ψ̃+(λ− iε, y)g(y)

]}
.

Since all integrals are on bounded sets and since the integrands are continuous we can interchange
integrals and limits to get

⟨ f, F(L)EL ((λ1, λ2])g)L2((0,∞),ρ)

=

∫
∞

0
ρ(dx) f (x)

{∫ x

0
ρ(dy)g(y) lim

δ↓0
lim
ε↓0

1
2π i

∫ λ2+δ

λ1+δ

dλF(λ)

× [ψ̃+(λ+ iε, x)ϕ̃(λ+ iε, y) − ψ̃+(λ− iε, x)ϕ̃(λ− iε, y)]

+

∫
∞

0
ρ(dy)g(y) lim

δ↓0
lim
ε↓0

1
2π i

∫ λ2+δ

λ1+δ

dλF(λ)[ϕ̃(λ+ iε, x)ψ̃+(λ+ iε, y)

− ϕ̃(λ− iε, x)ψ̃+(λ− iε, y)]
}
.

(2.9)

Due to the regularity properties of ϕ̃ and θ̃ we have that as ε ↓ 0

θ̃ (λ± iε) = θ̃ (λ, x) ± iε
d
dz
θ̃ (z, x)

⏐⏐⏐
z=λ

+ O(ε2),

ϕ̃(λ± iε) = ϕ̃(λ, x) ± iε
d
dz
ϕ̃(z, x)

⏐⏐⏐
z=λ

+ O(ε2)
(2.10)
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where O(ε) is locally uniform in (λ, x). Therefore we get by (2.10) and by (ii) of Lemma 2.5

ϕ̃(λ+ iε, x)ψ̃+(λ+ iε, y) − ϕ̃(λ− iε)ψ̃+(λ− iε, y)

= ϕ̃(λ, x)[θ̃ (λ, y) + m̃+(λ− iε)ϕ̃(λ, y)]

+ ϕ̃(λ, x)[θ̃ (λ, y) + m̃+(λ− iε)ϕ̃(λ, y)] + o(1),

where o(1) is locally uniform. The previous equation together with (2.9) gives

⟨ f, F(L)EL ((λ1, λ2])g)L2((0,∞),ρ)

=

∫
∞

0
ρ(dx) f (x)

∫
∞

0
ρ(dy)g(y) lim

δ↓0
lim
ε↓0

1
π

∫ λ2+δ

λ1+δ

dλF(λ)ϕ̃(λ, y)ℑ(m̃+(λ+ iε)).

By the definition of the measure σ we have for every h ∈ C(R)∫
(λ1,λ2]

h(λ)σ (dλ) = lim
δ↓0

lim
ε↓0

1
π

∫ λ2+δ

λ1+δ

dλℑ(m̃+(λ+ iε))h(λ)

which yields

⟨ f, F(L)EL ((λ1, λ2])g)L2((0,∞),ρ)

=

∫
∞

0
ρ(dx) f (x)

∫
∞

0
ρ(dy)g(y)

∫
(λ1,λ2]

σ (dλ)F(λ)ϕ̃(λ, x)ϕ̃(λ, y).

Part (v) follows directly from (iv) by taking a mollifier at x for f and a smoothing procedure for
g = 1A.

Finally, part (iii) can be shown similarly to when there is a regular boundary at 0 (see [17]).
If λ0 is an isolated eigenvalue then it follows by Section 17.4 from [31] that the function ϕ̃(λ0, ·)
does not change sign and can therefore be chosen to be non-negative.

Let us assume that there exists x0 ∈ (0,∞) where ϕ̃(λ0, ·) changes sign. Denote by L x0 the
selfadjoint realization of L in (x0,∞) with a Dirichlet boundary at x0 and by L x0 the selfadjoint
realization of L in (0, x0) with a Dirichlet boundary at x0. Using the spectral invariance of the
essential spectrum the direct sum L x0

⨁
L x0 has λ0 as the bottom of the spectrum. Using Lemma

2.2 from [27] we conclude that ϕ̃(λ0, ·) does not change sign on (x0,∞).
On the other hand using [19] one notes that the operator L x0 has compact resolvent and

therefore a purely discrete spectrum. Thus ϕ̃(λ0, ·) is an eigenfunction of L x0 with eigenvalue
λ0 and this must necessarily be the leading eigenvalue. If this were true then for r > 0 the
operator L x0+r would have the same leading eigenvalue as L x0 implying in particular that the
exit time of the considered diffusion from (0, x0) has the same exponential tails as the exit time
of the same diffusion from (0, x0 + r ). This is a contradiction. □

Remark 2.7. Observe that for different 0 < R1 < R2 the solutions ϕ̃R1 (λ, ·) and ϕ̃R2 (λ, ·) with
λ ∈ (0, R1) are linearly dependent and thus can only differ by a constant factor Cλ

ϕ̃R2 (λ, ·) = Cλϕ̃
R1 (λ, ·).

This implies that quotients of expressions involving ϕ̃R are well defined and independent of R.
In particular measures of the form

µR
(0,z)(B) =

∫
B ϕ̃

R(λ0, x)ρ(dx)∫ z
0 ϕ̃

R(λ0, x)ρ(dx)

with z ∈ (0,∞] and B a Borel subset of (0,∞) are independent of R. In such a situation we
omit the dependence of ϕ̃R on R.
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2.3. Spectral theorem for entrance boundary at ∞

We now consider the case when ∞ is an entrance boundary in more detail. It turns out that
this simplifies things. In [5] it was shown that when ∞ is an entrance boundary and 0 is not
singular the spectrum of L is discrete. We show how this result can be lifted to a singularity at 0
by splitting b into the singular part close to 0 and a regular part away from 0.

The following theorem gives us in particular an improved version of Theorem 2.6 (v). It tells
us that the probability Px (X t ∈ A, T0 > t) = e−t L1A(x) can be represented globally by the
eigenfunctions of L .

Theorem 2.8. Assume that 0 is an exit boundary and ∞ is entrance. Then the spectrum of L is
purely discrete, consisting of countably many eigenvalues λ0 < λ1 < . . . , and the eigenfunctions
(uλk ) belong to L1((0,∞), ρ). In particular, we obtain the representation

e−t L1A(x) =

∫
A

p(t, x, y) dy

with

p(t, x, y) =

∑
k≥0

e−tλk uλk (x)uλk (y),

where the series converges in L2((0,∞), ρ). Moreover, one has

lim
t→∞

eλ0t p(t, x, y) = uλ0 (x)uλ0 (y)

where the convergence is locally uniform in (x, y) ∈ (0,∞) × (0,∞).

Proof. Let us first introduce the splitting by defining the operators La and La associated to the
closure of the quadratic forms qa

C∞

c ((0,∞)) ∋ f ↦→ qa( f ) =
1
2

∫
∞

a
| f ′(t)|2ρ(dt)

and qa

C∞

c ((0,∞)) ∋ f ↦→ qa( f ) =
1
2

∫ a

0
| f ′(t)|2ρ(dt)

It was shown in [5] that for every a ∈ (0,∞) the spectrum of La is discrete (note that by the
continuity of b the boundary a is regular). Due to the decomposition principle (see section 131
in [1]) it is thus enough to prove that the spectrum of the remaining operator La is discrete at
0. This will be done by using a well-known result of Hartmann (see e.g. Theorem 1.1 in [29]),
which says that the essential spectrum is empty if for every λ ∈ R every solution of the equation
(τ − λ)u = 0 has only finitely many zeros in (0, a).

We argue by contradiction. Assume that λ > 0 and that v is a nontrivial solution of
(τ − λ)u = 0 and that v has infinitely many zeros in (0, a). Observe that no x0 with v(x0) = 0
is a local extremum since v is assumed to be nontrivial solution. Between two successive zeros
there is necessarily a local extremum. As λ > 0 and v satisfies τv = λv, local maxima of v are
necessarily positive and local minima negative. As a result we can pick two sequences (xn)n∈N
and (x̃n)n∈N such that

(1) For all n ∈ N

xn < x̃n,
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(2)

lim
n→∞

xn = 0,

(3) For all n ∈ N the function v is non-increasing on (xn, x̃n) and v(xn) > 0.

This implies that

0 < v(xn) =

∫ x̃n

xn

ρ(s)−1 ds
∫ s

xn

ρ(t)2λv(t)dt ≤ 2λv(xn)
∫ x̃n

xn

ρ(s)−1 ds
∫ s

xn

ρ(s) dt

and therefore
1

2λ
≤

∫ x̃n

xn

ρ(s)−1 ds
∫ s

xn

ρ(s) dt. (2.11)

Since 0 is an exit boundary we must have
∫ 0

1 ρ(s)−1 ds
∫ s

1 ρ(t) dt < ∞. This contradicts
Eq. (2.11). Thus every solution of the eigenvalue equation (τ −λ)u = 0 has only a finite number
of zeros in (0, a).

It remains to prove the integrability of the eigenfunction vλ0 corresponding to the lowest
eigenvalue λ0. First observe that limx→0vλ0 (x) = 0. This follows from the fact that by the
definition of L there exists a sequence (ϕn)n∈N ⊂ C∞

c ((0,∞)) which converges to vλ0 with
respect to the norm

D(q) ∋ f ↦→

(
∥ f ∥

2
L2((0,∞),ρ) +

∫
∞

0
| f ′(x)|2ρ(dx)

) 1
2
.

The elementary inequality

sup
x∈[0,a]

|ϕ(x)| ≤ Ca

(∫
∞

0
|ϕ′(x)|2ρ(dx)

) 1
2

implies that for a ∈ (0,∞), ∥ϕn − ϕm∥C([0,a)) → 0 as n,m → ∞ and therefore limx→0vλ0 (x) =

0.
By Theorem 2.6 there exist solutions uλ0 and ũλ0 of the equation (τ − λ0)u = 0 with the

following properties

(1) limx→0uλ0 (x) = 1,
(2) limx→0ũλ0 (x) = 0 and ũλ0 ∈ L1((0, a), ρ) for all a ∈ (0,∞),
(3) (uλ0 , ũλ0 ) forms a basis for the space of solutions of (τ − λ0)u = 0.

We conclude that vλ0 ∈ L1((0, a), ρ). Since ∞ is entrance we also have
∫

∞

1 ρ(dy) < ∞

which implies

vλ0 ∈ L1((1,∞), ρ) ⊂ L2((0,∞), ρ).

Note that we used that vλ0 is an L2-eigenfunction. Summing everything up, we have shown that
vλ0 ∈ L1((0,∞), ρ).

Since we have proved that the spectrum is discrete and that the eigenfunctions are integrable,
the spectral representation of p(t, x, y) now follows directly from the spectral theorem. The last
assertion of the theorem can be proved exactly as in [26]:

One first observes that a direct spectral theoretic consequence is the fact that for all f, g ∈

L2((0,∞), ρ) we have that as t → ∞

eλ0t
⟨

f,
∫

∞

0
p(t, ·, y)g(y)ρ(dy)

⟩
→ ⟨uλ0 , f ⟩L2((0,∞),ρ)⟨uλ0 , g⟩L2((0,∞),ρ).
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Then arguing as in [26] we conclude that p(t, x, ·) ∈ L2((0,∞), ρ) and therefore

p(s + t, x, z) =

⟨
p(s/2, x, ·),

∫
∞

0
p(t, y, z)p(s/2, z, ·)ρ(dz)

⟩
L2((0,∞),ρ)

.

This concludes the proof. □

2.4. Positivity criterion for the spectrum

The main results are based on the positivity of the spectrum of L , that is λ0 > 0. Because
this criterion is not very hands-on we include a criterion that is only in terms of the drift b. For
a regular boundary at 0 the following criterion was proved in [25] (also see [23] for a closely
related result). To adjust it to our singular setting we use, just like in previous proofs, a splitting
(or decomposition) method.

Proposition 1.10. Assume that 0 is an exit boundary and that absorption is certain. The bottom
of the spectrum λ0 is strictly positive if and only if for some a ∈ (0,∞)

A(b, a) := sup
x>a

(∫ x

a
ρ(y)−1 dy

)(∫
∞

x
ρ(y) dy

)
< ∞

In particular the strict positivity of λ0 implies
∫

∞

1 ρ(y) dy < ∞.

Proof. If λ0 is an isolated eigenvalue, then we have λ0 > 0. This follows from the transience
of L and general criticality theory (see section 5.1 in [24]). A simple proof of the assertion that
0 cannot be an isolated eigenvalue adapted to our setting uses exactly the same strategy as in
assertion vi) of [5]. Therefore λ0 = 0 if and only if λ0 = inf σess(L) = 0 and it remains to
prove that the bottom of the essential spectrum of L , i.e. the complement of the set of isolated
eigenvalues, is positive if and only if A(b, a) < ∞ for some a ∈ (0,∞).

Observe that by the decomposition principle (see Section 131 in [1]) and the proof of
Theorem 2.8 the essential spectrums of the operators L and La coincide. Note that due to our
assumptions the boundary point a is regular for the La-diffusion and absorption at a is certain
for the La-diffusion. In Theorem 1 equation (1.11) from [25] it is shown that

1
8A(b, a)

≤ inf σ (La) ≤
1

2A(b, a)
.

Thus, if A(b, a) < ∞ for some a ∈ (0,∞), then

inf σess(L) = inf σess(La) ≥ inf σ (La) > 0

On the other hand if A(b, a) = ∞ for some a ∈ (0,∞), then we have

0 = inf σess(La) = inf σess(L) ≥ inf σ (L) ≥ 0. □

Of course, if one does not assume that absorption is certain it might happen that λ0 > 0 and∫
∞

1 ρ(y) dy = ∞. We will see that in such a situation mass escapes towards infinity with an
exponential rate given by λ0.

3. Yaglom limits

This section is dedicated to proofs of the main existence results. We make use heavily of
the machinery developed in Section 2. The section is structured according to the boundary
classification at ∞. We start with ∞ being a natural boundary and then consider entrance and
exit boundaries.
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3.1. Natural boundary at ∞

For a natural boundary at ∞ the main strategy is as follows: First, we prove that a local form
of convergence to a quasistationary distribution holds by restricting to compact sets which, in the
notation of [27], is called convergence to a quasistationary distribution on compacta. In a second
step, we prove that either (non-local) convergence to a quasistationary distribution or escape to
infinity occurs.

3.1.1. Convergence on compacta
We show how one can use spectral calculus to derive convergence to the quasistationary

distribution ϕ̃(λ,·) for compact sets.

Theorem 3.1. Suppose that 0 is an exit boundary, ∞ is natural and Assumption 1.7 holds. If
A ⊂ B are compact subsets of [0,∞) and ν is a compactly supported initial distribution on
(0,∞), then

lim
t→∞

Pν(X t ∈ A | X t ∈ B) =

∫
A ϕ̃(λ0, x)ρ(dx)∫
B ϕ̃(λ0, x)ρ(dx)

,

where ϕ̃(λ0, ·) is the generalized eigenfunction from Definition 2.3.

We start by sketching how to use the general form of the spectral theorem (Theorem 2.6) to
find the Yaglom limit. First, to get from probability to spectral analysis note that

Px (X t ∈ A | X t ∈ B) =
Px (X t ∈ A)
Px (X t ∈ B)

=
e−t L1A(x)
e−t L1B(x)

=
E[[λ0, λ1]]e−t L1A(x) + E[(λ1,∞)]e−t L1A(x)
E[[λ0, λ1]]e−t L1B(x) + E[(λ1,∞)]e−t L1B(x)

To make the latter rigorous we need to impose Assumption 1.7 as 1A does not need to be square
integrable with respect to ρ(x). To show that the right hand side of the last equation converges to∫

A ϕ̃(λ0, x) ρ(dx)∫
B ϕ̃(λ0, x) ρ(dx)

,

we show that the part determined by the spectrum away from its bottom λ0 is negligible,
i.e. E[(λ1,∞)]e−t L1B(x) and E[(λ1,∞)]e−t L1A(x) converge to zero fast enough. The spectral
part at the bottom determines the limit, as we show that

lim
t→∞

E([λ0, λ1])e−t L1A(x)
E([λ0, λ1])e−t L1B(x)

=

∫
A ϕ̃(λ0, x) ρ(dx)∫
B ϕ̃(λ0, x) ρ(dx)

. (3.1)

In this step the spectral theorem plays a significant role as by Theorem 2.6 (v) one has

E([λ0, λ1])e−t L1A(x) =

∫ λ1

λ0

e−tλϕ̃(λ, x)
∫

A
ϕ̃(λ, y)ρ(dy)σ (dλ).

As we have some intuition for what the correct limit is we now carry on the rigorous proof.

Proof. First note that the generalized eigenfunctions of L exist due to Theorem 2.6 . We first
show that for z > 0 and subsets A, B ⊂ (0, z] with A ⊂ B we have

lim
t→∞

Pν(X t ∈ A | X t ∈ B) =

∫
A ϕ̃(λ0, x)ρ(dx)∫
B ϕ̃(λ0, x)ρ(dx)

,
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as sketched above. This can be done as in [5] (see also [27]) with some additional work in
order to avoid the complication that 1A does not necessarily belong to L2((0,∞), ρ), which
causes the problem that e−t L as an operator in L2 cannot be applied to the functions 1A and 1B .
Assumption 1.7 will be used to circumvent this issue.

For a subset A ⊂ [0, z] and ε > 0 define the set Aε := {x ∈ A : |x | > ε}. By Assumption 1.7,
limε→0e−t L1Aε = e−t L1A in L2((0,∞), ρ) for any t > 0. This allows us to decompose e−t L1A
as

e−t L1A(x) = E([λ0, λ1])e−t L1A(x) + E((λ1,∞))e−t L1A(x)

in L2 and hence for almost every x ∈ (0,∞) which by continuity extends to every x ∈ (0,∞).
Observe moreover that as sketched above, Theorem 2.6 (iv) yields for λ1 ∈ (0,∞) that the
continuous integral kernel hλ1 (t, x, y) of the operator E((λ0, λ1))e−t L is given by

hλ1 (t, x, y) =

∫
[λ0,λ1]

e−tλϕ̃(λ, x)ϕ̃(λ, y)σ (dλ).

We will sometimes simplify notation and write ⟨, ⟩ instead of ⟨, ⟩L2((0,∞),ρ).
If ν is an initial distribution with compact support in (0,∞), then due to the continuity of the

functions e−t L1A, E([λ0, λ1])e−t L1A, and E((λ1,∞))e−t L1A the expressions

⟨e−t L1A, ν⟩, ⟨E([λ0, λ1])e−t L1A, ν⟩ and ⟨E((λ1,∞))e−t L1A, ν⟩

are well-defined and we get

⟨e−t L1A, ν⟩ = ⟨E([λ0, λ1])e−t L1A, ν⟩ + ⟨E((λ1,∞))e−t L1A, ν⟩

Using Fubini’s theorem we see that

⟨E([λ0, λ1])e−t L1A(·), ν⟩ =

⟨∫
∞

0
hλ1 (t, ·, y)1Aρ(dy), ν

⟩
=

∫
∞

0

∫
[λ0,λ1]

e−λt ϕ̃(λ, x)
∫

A
ϕ̃(λ, y)ρ(dy)σ (dλ)ν(dx)

=

∫
[λ0,λ1]

e−λt
∫

∞

0
ϕ̃(λ, x)ν(dx)

∫
A
ϕ̃(λ, y)ρ(dy)σ (dλ).

The use of Fubini’s theorem can be justified by using the properties of the generalized
eigenfunctions ϕ̃. Now observe that, just as in the regular case (see [27] and [5])

lim
t→∞

⟨
E([λ0, λ1])e−t L1A, ν

⟩⟨
E([λ0, λ1])e−t L1[0,z], ν

⟩ =

∫
A ϕ̃(λ0, x)ρ(dx)∫ z
0 ϕ̃(λ0, x)ρ(dx)

(3.2)

We are left to show that the remainder terms corresponding to the spectrum away from its bottom
are negligible, i.e.

lim
t→∞

Pν(X t ∈ A | X t ≤ z) = lim
t→∞

⟨
E([λ0, λ1])e−t L1A, ν

⟩⟨
E([λ0, λ1])e−t L1[0,z], ν

⟩ .
We use ideas that are similar to the ones used in the case of a regular boundary at 0. Observe that

Pν(X t ∈ A)
⟨E([λ0, λ1])e−t L1A, ν⟩

=
⟨E([λ0, λ1])e−t L1A, ν⟩ + ⟨E((λ1,∞))e−t L1A, ν⟩

⟨E([λ0, λ1])e−t L1A, ν⟩

= 1 +
⟨E((λ1,∞))e−t L1A, ν⟩

⟨E([λ0, λ1])e−t L1A, ν⟩
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Using e−t L1A ∈ L2((0,∞), ρ) and the elementary inequality

|g(x)| ≤

(∫ x

0
ρ(x)−1dx

) 1
2
(∫

∞

0
|g′(x)|2ρ(dx)

) 1
2
, g ∈ D(

√
L)

yields

⟨E((λ1,∞))e−t L1A, ν⟩ ≤ Cν

(∫
∞

0
|g′

t (x)|2ρ(dx)
) 1

2

=

(∫
∞

λ1

e−2(t−ε)λ
∥E(dλ)e−εL1A∥L2((0,∞),ρ)

) 1
2

where gt = E((λ1,∞))e−t L1A and ε > 0 is small enough. As a result the map

t ↦→ ⟨E((λ1,∞))e−t L1A, ν⟩

decays exponentially with an exponential rate which is strictly larger than the exponential rate of
decay of

t ↦→ ⟨E([λ0, λ1])e−t L1A, ν⟩.

We can now finish the proof noting that

lim
t→∞

Pν(X t ∈ A | X t ∈ B) = lim
t→∞

Pν(X t ∈ A)
Pν(X t ∈ B)

= lim
t→∞

E[[λ0, λ1]]e−t L1A(x) + E[(λ1,∞)]e−t L1A(x)
E[[λ0, λ1]]e−t L1B(x) + E[(λ1,∞)]e−t L1B(x)

= lim
t→∞

E[[λ0, λ1]]e−t L1A(x)
E[[λ0, λ1]]e−t L1B(x)

=

∫
A ϕ̃(λ0, x)ρ(dx)∫
B ϕ̃(λ0, x)ρ(dx)

. □

Having proved the existence of the Yaglom limit for compact sets A, we now have a good
guess as to which quasistationary distribution is the correct limit. All we have to do is extend the
reasoning from compact A to arbitrary A.

3.1.2. Proof of Theorem 1.8
We now present an elegant argument, which in the case when 0 is regular, is due to Steinsaltz

and Evans [27].

Lemma 3.2. Suppose ∞ is a natural boundary point, the initial distribution ν is compactly
supported, and λ0 > 0. Then one of the following two properties holds

(i) (X t )t≥0 converges to the quasistationary distribution ϕ̃(λ0, ·).
(ii) (X t )t≥0 escapes to infinity.

Proof. Let

f (z, t) :=
Pν(X t > z)
Pν(X t ≤ z)

,
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and note that

lim
t→∞

f (z, t) = ∞, z ≥ 0 ⇐⇒ (X t )t≥0 escapes to infinity,

lim
z→∞

lim
t→∞

f (z, t) = 0, z ≥ 0 ⇐⇒ (X t )t≥0 converges to the quasistationary

distribution ϕ̃(λ0, ·).

In order to prove the dichotomy one has to make sure that no other limits of f other than 0 and
∞ are possible. First note that for fixed 0 ≤ a ≤ z

Pν(Xn+1 > z) = Pν(Xn+1 ≥ a) − Pν(a ≤ Xn+1 ≤ z)

≥ Pν(Xn+1 ≥ a | Xn > z)Pν(Xn > z) − Pν(a ≤ Xn+1 ≤ z)

≥ Pz(∀t ∈ [0, 1] : X t ≥ a)Pν(Xn > z) − Pν(a ≤ Xn+1 ≤ z)

where we used the strong Markov property. Due to ∞ being natural, Pz(∀t ∈ [0, 1] : X t ≥ a)
converges to 1 as z → ∞. Further, if we use the convergence to the quasistationary distribution
ϕ̃(λ0, ·) on compacta from Theorem 3.1 we get

lim
n→∞

Pν(a ≤ Xn+1 ≤ z)
Pν(Xn+1 ≤ z)

=

∫ z
a ϕ̃(λ0, x)ρ(dx)∫ z
0 ϕ̃(λ0, x)ρ(dx)

≤

∫
∞

a ϕ̃(λ0, x)ρ(dx)∫ z
0 ϕ̃(λ0, x)ρ(dx)

.

For each ε > 0 we can find n′, z0, a such that for all n ≥ n′ and z ≥ z0

Pz(∀t ∈ [0, 1] : X t ≥ a) > 1 − ε

and

Pν(a ≤ Xn+1 ≤ z)
Pν(Xn+1 ≤ z)

< ε.

Since λ0 > 0 we can find some n′′ such that for n ≥ n′′ and z ≥ z0 and ε small enough

Pν(Xn ≤ z)
Pν(Xn+1 ≤ z)

≥ q > 1/(1 − ε).

We get that if a, n, z are large enough then

f (z, n + 1) =
Pν(Xn+1 > z)
Pν(Xn+1 ≤ z)

≥
Pz(∀t ∈ [0, 1] : X t ≥ a)Pν(Xn > z)

Pν(Xn+1 ≤ z)
−

Pν(a ≤ Xn+1 ≤ z)
Pν(Xn+1 ≤ z)

≥ Pz(∀t ∈ [0, 1] : X t ≥ a)
Pν(Xn > z)
Pν(Xn ≤ z)

Pν(Xn ≤ z)
Pν(Xn+1 ≤ z)

−
Pν(a ≤ Xn+1 ≤ z)
Pν(Xn+1 ≤ z)

≥ q(1 − ε) f (z, n) − ε.

Since ε is arbitrarily small, taking limits on both sides yields

• lim supn→∞ f (n, z) = ∞,∀z ≥ 0; or
• limz→∞lim supn→∞ f (n, z) = 0.
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We still have to extend the above to real times t ≥ 0. First note that

lim
z→∞

lim sup
t→∞

Pν(X t > z)
Pν(X t ≤ z)

= lim
z→∞

lim sup
t→∞

Pν(X t > z)
Pν(Xn ≤ z)

Pν(Xn ≤ z)
Pν(X t ≤ z)

≤ lim
z→∞

lim sup
n→∞

Pν(∃t ∈ [n, n + 1) : X t > z)
Pν(Xn ≤ z)

sup
t∈[n,n+1)

Pν(Xn ≤ z)
Pν(X t ≤ z)

.

We also have

Pν(∃t ∈ [n, n + 1) : X t > z)

= Pν(∃t ∈ [n, n + 1) : X t > z, Xn ≥ z) + Pν(∃t ∈ [n, n + 1) : X t > z, Xn < z)

≤ Pν(Xn ≥ z) + Pν(∃t ∈ [n, n + 1) : X t > z | Xn < z)Pν(Xn ≤ z)

≤ Pν(Xn ≥ z) + Pν(∃t ∈ [n, n + 1) : X t > z | Xn < z).

The second summand tends to 0 due to the convergence to the quasistationary distribution ϕ̃(λ0, ·)
on compacta. One can see that

lim
n→∞

Pν(∃t ∈ [n, n + 1) : X t > z | Xn < z) =

∫ z
0 P

x (∃t ∈ [0, 1) : X t > z)ϕ̃(λ0, x)ρ(dx)∫
∞

0 ϕ̃(λ0, x)ρ(dx)
.

Without loss of generality we may assume
∫

∞

0 ϕ̃(λ0, x)ρ(dx) < ∞ since otherwise (X t )t≥0

escapes to infinity. As a result, due to dominated convergence the limit in z can be taken inside
and we get 0 since ∞ is inaccessible. We therefore get

lim
z→∞

lim
t→∞

Pν(X t > z)
Pν(X t ≤ z)

= 0.

The second case is similar. For any a > z

lim inf
t→∞

f (z, t)

≥ lim inf
n→∞

Pν(Xn > a) − Pν(a < Xn, ∃t ∈ [n, n + 1) : X t ≤ z)
Pν(Xn ≤ a) + Pν(a < Xn, ∃t ∈ [n, n + 1) : X t ≤ z)

≥ lim inf
n→∞

f (a, n)(1 − Pν(∃t ∈ [n, n + 1) : X t ≤ z | a < Xn))
1 + f (a, n)Pν(∃t ∈ [n, n + 1) : X t ≤ z | a < Xn)

= lim inf
n→∞

Pν(∃t ∈ [n, n + 1) : X t ≤ z | a < Xn)−1
− 1

where the last equality is true since limn→∞ f (a, n) = ∞. Hence, the right hand side diverges as
a tends to infinity since ∞ is natural. We thus showed that for all z ≥ 0

lim
t→∞

f (z, t) = ∞. □

Remark 3.3. We highlight two important features of Lemma 3.2. First, we obtained a dichotomy
of escape to infinity and convergence to a quasistationary distribution which, thus far, does not
give any criterion that helps to decide. Second, the initial distribution ν is fixed, whereas the
main theorems are formulated for arbitrary compactly supported initial conditions. As shown
in the next proposition the important observation is that the dichotomy does lead to a precise
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criterion: true exponential decrease of survival probabilities, i.e.

lim
t→∞

1
t

logPν(T0 > t) < 0

turns out to imply convergence to the quasistationary distribution ϕ̃(λ0, ·).

Proposition 3.4. Suppose 0 is an exit boundary, ∞ is natural, absorption is certain, ν is a
compactly supported initial distribution, and λ0 > 0. Then

lim
t→∞

1
t

logPν(T0 > t) < 0

implies the convergence to the quasistationary distribution ϕ̃(λ0, ·).

Proof. It suffices to show that escape to infinity implies non-exponential decrease of the survival
probability. This is true since then exponential decrease implies no escape to infinity which due to
the dichotomy from Lemma 3.2 implies convergence to the quasistationary distribution ϕ̃(λ0, ·).

Note that escape to infinity implies the weak convergence of the measures Pν(X t ∈ · | T0 > t)
to δ∞. We apply this result to f (x) = Px (T0 > t) (the continuity of f follows as in the proof of
Lemma 7.2 of [5]). Combined with the Chapman–Kolmogorov relation this yields

lim
s→∞

Pν(T0 > t + s | T0 > t) = lim
s→∞

∫
∞

0
Py(T0 > t)Pν(Xs ∈ dy | T0 > s)

= lim
y→∞

Py(T0 > t).

The right hand side equals 1 since ∞ is a natural boundary point. Finally, since

Pν(T0 > t + s | T0 > t) =
Pν(T0 > t + s)
Pν(T0 > s)

the survival probabilities cannot decrease exponentially fast. □

We are now ready to prove our main result

Theorem 1.8. Suppose that 0 is an exit boundary, ∞ is a natural boundary and Assumptions 1.1
and 1.7 hold. We have the following classification.

(i) If absorption is not certain and λ0 > 0, then (X t )t≥0 escapes to infinity exponentially fast.
(ii) If absorption is certain and λ0 > 0, then (X t )t≥0 converges to a quasistationary

distribution. This quasistationary distribution is the unique Yaglom limit and it attracts
all the compactly supported initial distributions of X0.

In particular, Proposition 3.4 shows that in order to prove Theorem 1.8, it suffices to check
that λ0 > 0 implies the exponential decay of survival probabilities for some compactly supported
initial distribution. This can be done using a martingale argument.

Proof. By Proposition 3.4 it is enough to show that for every initial distribution ν with compact
support in (0,∞)

lim
t→∞

1
t

logPν(T0 > t) < 0.

The bottom of the spectrum of the operator L − λ0/2 is λ0/2 which implies that the operator
L−λ0/2 is subcritical or equivalently there exit two linearly independent positive solutions u1, u2
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of the equation (τ − λ0/2)u = 0 (see for example Proposition 1.2 in [24]). Thus, by assertion (i)
of Theorem 2.6 there exists a positive solution u of (τ − λ0/2)u = 0 with limx→0+u(x) = 1.

Consider the stochastic process defined by Yt := e
λ0
2 t∧T0u(X t∧T0 ), t ≥ 0. Using Ito’s formula

one sees that (Yt∧TM )t≥0 is a martingale with respect to Px for all M > 0. This forces for all
x ∈ (0,∞)

Ex
[
e
λ0
2 t∧T0∧TM u(X t∧T0∧TM )

]
= u(x).

We let M → ∞ and t → ∞ and apply Fatou’s lemma twice to get

Ex
[
e
λ0
2 T0

]
≤ u(x).

Now we integrate with respect to the initial distribution ν, use the exponential Markov inequality
and the integrability of e

λ0
2 T0 for all x > 0 to get that

lim
t→∞

1
t

logPν(T0 > t) ≤ lim
t→∞

1
t

log
Eν
[
e
λ0
2 T0

]
e
λ0
2 t

≤ −
λ0

2

which is strictly negative by assumption. Thus in the case of certain absorption the condition
λ0 > 0 implies the convergence to the Yaglom limit independently of the initial distribution ν.

We next show that if absorption is not certain, (X t )t≥0 escapes exponentially fast to infinity,
that is, for all a ∈ (0,∞) and every compact subset K ⊂ (0,∞)

lim sup
t→∞

sup
x∈(0,a)

eλ0tPx (X t ∈ K | T0 > t) < ∞.

Note, that as we mentioned before, for any fixed a > 0 there exists a constant Ca > 0 such
that for all f ∈ D(q)

sup
x∈(0,a)

| f (x)| ≤ Ca

(∫
∞

0
| f ′(t)|2ρ(dt)

) 1
2
.

By spectral calculus we conclude that e−t L g ∈ D(q) for every g ∈ L2((0,∞), ρ) and therefore

sup
x∈(0,a)

Px (X t ∈ K , T0 > t) = sup
x∈(0,a)

(e−t L1K )(x)

≤ Ca

(∫
∞

0
|(e−t L1K )′(x)|

2
ρ(dt)

) 1
2

= Ca

(∫
∞

λ0

e−2tλd∥Eλ1K ∥
2
L2((0,∞),ρ)

)
We obtain

lim sup
t→∞

sup
x∈(0,a)

eλ0tPx (X t ∈ K , T0 > t) ≤ Ca lim sup
t→∞

(∫
∞

λ0

e2λ0t e−2tλd∥Eλ1K ∥
2
L2((0,∞),ρ)

)
.

The right hand side is finite and even equal to 0 if λ0 does not belong to the point spectrum of L .
Since ν is compactly supported we have

Pν(X t ∈ K , T0 > t) =

∫
∞

0
Px (X t ∈ K , T0 > t)ν(dx)
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which extends the exponential decay to the initial distribution ν. Finally, since Pν(T0 > t) is
bounded away from zero, we obtain the exponential decay of

Pν(X t ∈ K | T0 > t) =
Pν(X t ∈ K , T0 > t)

Pν(T0 > t)
. □

Remark 3.5. We discuss how one can circumvent the assumption of certain absorption. Since 0
is an exit boundary, (X t )t≥0 hits zero in finite time with positive probability and we can condition
on eventual absorption:

Px (X t ∈ · | T0 < ∞).

This way one includes the condition that absorption happens in finite time. We can then reduce
this problem to ours by using a Doob h-transform. The function h(x) = Px (T0 < ∞) is harmonic
and by the general theory of h-transforms (see [24] and Section 4.4 in [5]) the process (X t )t≥0
conditioned to hit 0 corresponds to the generator Lh whose action is given by

τ h f =
1
h
τ (h f ) = −

1
2

d2

dx2 f +

(
b −

h′

h

)
d

dx
f.

The process associated to the operator Lh can again be defined by Dirichlet form techniques. The
associated measures on path space are given by the family (Qx )x∈(0,∞) that is defined via

Qx (·) = Px (· | T0 < ∞).

The operator Lh can be realized as a selfadjoint operator in the Hilbert space L2((0,∞,

h(x)ρ(dx)).
Since the spectrum is invariant under h-transforms, we conclude that the positivity of the

bottom of the spectrum of L implies the positivity of the spectrum of Lh .
Note that conditioning on hitting 0 implies that 0 is accessible and absorption is certain.

Hence, if 0 is an exit boundary with respect to the measure Qx we can apply our results (if 0 is
regular use the results of [17]) in order to conclude that for every Borel set A ⊂ (0,∞)

lim
t→∞

Qx (X t ∈ A | T0 > t) =

∫
A ϕ̃

h(λ0, x)h(x)ρ(dx)∫
∞

0 ϕ̃h(λ0, x)h(x)ρ(dx)

where ϕ̃h(λ0, x) is the unique solution of (τ h
− λ0)u = 0 satisfying

∫ a
0 |u(x)|2h(x)ρh(dx) < ∞

for a ∈ (0,∞), where ρh is the speed measure for the drift b −
h′

h .

Remark 3.6. We want to point out that our methods allow to include killing in the interior of
(0,∞). Let κ : (0,∞) → (0,∞) be the killing rate and define the operator τκ via

τκ := −
1
2

d2

dx2 + b(·)
d

dx
+ κ(·).

This corresponds to a regular diffusion (X t )t≥0 killed in the interior of (0,∞) using the rate κ .
If U is a mean one exponential random variable that is independent of the diffusion X we define
the killing time to be

Tκ := inf
{

t > 0 :

∫ t

0
κ(Xs) ds > U

}
.

and we set

T∂ := min(T0, Tκ ).
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Then one can define the concepts of quasistationary distribution and Yaglom limit using the
random time T∂ instead of T0 in Definitions 1.2 and 1.3.

Our process can in this case die due to the internal killing and not only due to the absorption at
0. It therefore makes sense to also look at the case when both 0 and ∞ are inaccessible (whereas
until now we always wanted 0 to be accessible). In order to prove the analogues of our results
with internal killing one has to follow the steps which have been worked out in detail in [17].
See [7] for when one has internal killing and 0 is exit or regular and ∞ is entrance.

3.1.3. Sufficient conditions for Assumption 1.7
We next give some necessary conditions for Assumption 1.7, Unfortunately, these conditions

are not minimal. A complete understanding of Assumption 1.7 remains open. Furthermore, it is
very natural to conjecture that Assumption 1.7 is not necessary in the proof of Theorem 1.8.

Proposition 1.16. Suppose that b ∈ C1((0,∞)), infs>0(b(s)2
− b′(s)) > −∞ and∫ 1

0
s
√
ρ(s)ds < ∞. (1.8)

Then Assumption 1.7 holds.

Proof. We use several ideas from [5]. First observe that it is enough to prove that e−t L1[0,ε] ∈

L2((0,∞), ρ) for 0 < ε < 1 as for every 0 < ε < z the function 1(ε,z) obviously belongs to
L2(ρ). By Girsanov’s theorem (see Proposition 2.2 of [5]) and our assumptions we have

e−t L1[0,ε](x) = Ex
[
1[0,ε](Bt )e

1
2 Q(x)− 1

2 Q(Bt )− 1
2
∫ t

0 (b2
−b′)(Bs ) ds, t < T0

]
≤ e−

c
2 t e

1
2 Q(x)

∫ ε

0
pD(t, x, y)e−

1
2 Q(y)dy,

(3.3)

where (Bt )t≥0 is a standard Brownian motion, Q(x) := 2
∫ x

1 b(s) ds and pD(t, x, y) denotes the
heat kernel for the Laplacian on (0,∞) with Dirichlet boundary conditions at 0, i.e.

pD(t, x, y) =
1

√
2π t

(
e

(x−y)2
2t − e

(x+y)2
2t

)
=

√
2

√
π t

e
−x2

2t e
−y2

2t sinh
( xy

t

)
We obtain from (3.3) that

e−t L1[0,ε](x) ≤ e−
c
2 t e

1
2 Q(x)

√
2

√
π t

e
−x2

2t e
x
t

∫ ε

0
ye−

1
2 Q(y) dy, (3.4)

where we used the convexity of sinh to get sinh( xy
t ) ≤ y sinh( x

t ) ≤
y
2 e

x
t . Finally, Eq. (3.4)

implies that e−t L1[0,ε] ∈ L2((0,∞), ρ) as well as limε→0
e−t L1[0,ε]


L2((0,∞),ρ) = 0. □

3.2. Applications to Bessel processes

We apply our results to Bessel processes, i.e. diffusions associated to

τ ν = −
1
2

d2

dx2 −
2ν + 1

2x
d

dx
,
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where ν ∈ R (see [4] for basic facts). For ν ≤ −1 (the drift is pointing strongly enough to 0) it
is known that 0 is an exit boundary — we will make use of this fact. We will consider regular
perturbations

τ ν,c = τ ν + c(x)
d

dx
of Bessel generators and give sufficient conditions for Assumption 1.7 to be satisfied. In
particular we show that the case c ≡ 0 and the examples given in Remark 4.6 of [5] fulfill
Assumption 1.7.

Proposition 3.7. Consider the diffusion associated to the generator

τ ν,c = τ ν + c(x)
d

dx
.

Assume that ν ≤ −1 and c ∈ C1((0,∞)) is such that infs>0(c(s)2
− c′(s)) > −∞ and

inf
s≥1

c(s)
s

> −∞.

If, in addition, Px (T0 < ∞) = 1 for all x ∈ (0,∞), then Assumption 1.7 holds.

Proof. We have to show, that for ε > 0 the function e−t L1[0,ε] belongs to L2 with respect to the
speed measure of the diffusion. Without loss of generality we can assume that ε < 1.

The strategy for the proof is as follows. First, we perform the reduction to a Bessel generator
with potential term. Applying the Feynman–Kac representation of the Bessel semigroup with the
new potential we consider the semigroup and the potential term separately. For the semigroup
part we use facts about Bessel functions whereas for the potential part we perform a Khasminski-
type argument.

The semigroup and generator corresponding to the differential expression τ ν,c will be denoted
by (Pt )t≥0 and L .

Step 1 (reduction of drift to potential): Let C(x) :=
∫ x

1 c(s) ds and denote by ρν,c the
speed measure of the diffusion associated to τ ν,c. Define the family of operators (P̃t )t≥0 on
L2((0,∞), ρν,c) via

P̃t f (x) = e−C(x)/2 (Pt eC(·)/2 f (·)
)

(x).

Since ∫
∞

0

⏐⏐ f (x)e−C(x)/2
⏐⏐ ρν,c(dx) =

∫
∞

0
| f (x)|2ρν,0(x) < ∞,

we have that P̃t f ∈ L2((0,∞), ρν,0). We see by a simple calculation that the generator L̃ of the
semigroup (P̃t )t≥0 acts on smooth functions with compact support via

L̃ f (x) = τ ν f (x) +

[
1
2

(c2(x) − c′(x)) −
(−2ν + 1)c(x)

x

]
f (x).

As a result (P̃t )t≥0 is nothing but the Bessel semigroup corresponding to the index ν with
additional potential. Let us see what we gain from this by inverting the transformation

e−t L1[0,ε](x) = Pt1[0,ε](x)

= eC(x)/2 P̃t (e−C(·)/21[0,ε])(x)

= eC(x)/2Ex
ν

[
e−C(X t )/21[0,ε](X t )e

−
∫ t

0
1
2 (c2(Xs )−c′(Xs ))− (−2ν+1)c(Xs )

Xs
ds
, T0 > t

]
,

(3.5)
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where for the final step we used the Feynman–Kac representation for the Bessel semigroup with
potential

[
1
2 (c2(x) − c′(x)) −

(−2ν+1)c(x)
x

]
. The right hand side of (3.5) can be split using Hölder’s

inequality into the product of the following two terms

eC(x)/2Ex
ν

[
1[0,ε](X t ), T0 > t

] 1
2 (3.6)

Ex
ν

[
e−C(X t )/2e−

∫ t
0 (c2(Xs )−c′(Xs ))−2 (−2ν+1)c(Xs )

Xs
ds1[0,ε](X t ), T0 > t

] 1
2
. (3.7)

In the following two steps we estimate the two factors (3.6) and (3.7) separately, in order to show
the square integrability in x .

Step 2 (estimating the semigroup factor (3.6)): To estimate this factor we need to collect some
facts on Bessel processes. Let Iν denote the modified Bessel function of the first kind, i.e.

Iν =

∞∑
k=0

(x/2)ν+2k

k!Γ (ν + k + 1)

and let Rν denote the Bessel process. For ν ≥ 0 the process Rν has the transition function

pν(t, x, y) =
1
2t

(xy)−νe−
x2

+y2
2t Iν

( xy
t

)
with respect to the measure m(dy) = 2y2ν+1dy. From the h-transform property (see page 75
of [4]) we get that the transition function for the process R−ν is given by

p−ν(t, x, y) =
1

h(x)
pν(t, x, y)h(y) = x2ν 1

2t
(xy)−νe−

x2
+y2
2t Iν

( xy
t

)
y−2ν

=
1
2t

xνe−
x2

+y2
2t Iν

( xy
t

)
y−3ν

(3.8)

where h(x) :=
1

2ν x−2ν . Note that since we need 0 to be an exit boundary, we are only interested in
R−ν with ν ≥ 1. For the estimates we need some more basic facts on Bessel functions. Observe
that for y ∈ (0, 1):

Iν
( xy

t

)
=

∞∑
k=0

( xy
2t

)ν+2k

k!Γ (ν + k + 1)
≤ yν

∞∑
k=0

( x
2t

)ν+2k

k!Γ (ν + k + 1)
= yν Iν(x/t).

We can then obtain (recalling that ν is negative) an upper bound for (3.6)

eC(x)/2Ex
ν

[
1[0,ε](X t ), T0 > t

]
= eC(x)/2

∫ ε

0
pν(t, x, y) m(dy)

= eC(x)/2
∫ ε

0

1
2t

xνe−
x2

+y2
2t Iν

( xy
t

)
y−3ν y2ν+1 dy

≤ eC(x)/2 1
2t

xνe−
x2
2t Iν(x/t)

∫ ε

0
e−

y2
2t y dy.

As such, it suffices to show that eC(x)/2
(

xνe−
x2
2t Iν(x/t)

) 1
2

∈ L2((0,∞), ρ−ν,c). This follows

from the asymptotics

Iν(z) ∼
1

Γ (ν + 1)

( z
2

)ν
for small z
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and

Iν(z) ∼
ez

√
2π z

for large z.

Step 3 (estimating the Bessel potential factor (3.7)): As (3.6) is square integrable it suffices to
show that (3.7) is bounded in x . By the assumptions on c, it suffices to show that

sup
x∈(0,∞)

Ex
ν

[
e2
∫ t

0 1[0,1/2](Xs ) (−2ν+1)c(Xs )
Xs

ds1[0,ε](X t ), T0 > t
]
< ∞.

By the explicit expression for the heat kernel pν(t, x, y) for negative ν we see that

lim
t→0

sup
x∈(0,∞)

Ex
ν [ f (X t ), T0 > t] = lim

t→0
sup

x∈(0,∞)

∫
∞

0
pν(t, x, y) f (y) m(dy) = 0, (3.9)

where the function f : (0,∞) → (0,∞) is defined by

f (y) = C1(0,ε)(y)y−1,

Observe that (3.9) gives for t > 0 small enough and some 0 < a < 1

Ex
ν

[
e
∫ t

0 f (Xs ) ds, T0 > t
]

=

∑
n≥0

1
n!
Ex
ν

[(∫ t

0
f (Xs) ds

)n

, T0 > t
]

≤

∑
n≥0

an < ∞.

This implies that for small t > 0

sup
x∈(0,∞)

Ex
ν

[
e2
∫ t

0 1[0,1/2](Xs ) (−2ν+1)c(Xs )
Xs

ds1[0,ε](X t ), T0 > t
]
< ∞.

By the Markov property the above remains true for every t > 0. This completes the proof of
the first assertion from Assumption 1.7. The L2 convergence of e−t L1[ε,z] follows from similar
computations which are left to the reader. □

3.3. Entrance boundary at ∞

We are now ready to prove the main result for entrance boundaries at ∞.

Theorem 1.13. Suppose Assumption 1.1 holds. If 0 is an exit boundary and ∞ is an entrance
boundary, then λ0 > 0 and (X t )t≥0 converges to the unique quasistationary distribution.

The strategy used is similar to the proof of Theorem 1.8. Things are simplified because by the
spectral representation of Theorem 2.6 we obtain

lim
t→∞

e−t L1A(x)
e−t L1(0,∞)(x)

= lim
t→∞

eλ0t
∫

A p(t, x, y)ρ(dy)

eλ0t
∫

∞

0 p(t, x, y)ρ(dy)

= lim
t→∞

∫
A

∑
k e(λ0−λk )t uλk (x)uλk (y)ρ(dy)∫

∞

0

∑
k e(λ0−λk )t uλk (x)uλk (y)ρ(dy)

which by the order of the eigenvalues already proves the theorem if we are allowed to interchange
the limit and the integration. We make use of the parabolic Harnack inequality, which in this
setting seems to go back to [5].
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Proof. We have seen in Theorem 2.6 that for ∞ being an entrance boundary the spectrum of L is
purely discrete and the lowest eigenfunction is integrable with respect to ρ. Moreover, it follows
from the spectral representation of Theorem 2.6 that

lim
t→∞

eλ0t p(t, x, y) = cuλ0 (x)uλ0 (y), (3.10)

where c is a normalizing and uλ0 is the unique positive eigenfunction, normalized to
∥uλ0∥L2((0,∞),ρ) = 1, corresponding to the lowest eigenvalue λ0. Using the parabolic Harnack
principle as in [5] (see the proof of their Lemma 5.3) and [17] we get for some locally bounded
function Θ0 : (0,∞) → (0,∞), every z ∈ (0,∞) with |z − x | < δ(x) =

1
2 ∧

x
4 and every

y ∈ (0,∞) that

p(t, x, y) ≤ Θ0(x)p(t + 1, z, y).

This implies

p(t, x, y) =

∫
|z−x |<δ(x) p(t, z, y)uλ0 (z)ρ(dz)∫

|z−x |<δ(x) uλ0 (z)ρ(dz)

≤ Θ0(x)

∫
|z−x |<δ(x) p(t + 1, z, y)uλ0 (z)ρ(dz)∫

|z−x |<δ(x) uλ0 (z)ρ(dz)

≤ Θ0(x)

∫
p(t + 1, z, y)uλ0 (z)ρ(dz)∫

|z−x |<δ(x) uλ0 (z)ρ(dz)

≤
Θ0(x)∫

|z−x |<δ(x) uλ0 (z)ρ(dz)
e−λ0(t+1)uλ0 (y)

(3.11)

which is integrable as uλ0 is integrable. We translate the probabilistic object of interest to the
above. For any compactly supported initial distribution ν one has

lim
t→∞

Pν(X t ∈ A | T0 > t) = lim
t→∞

Pν(X t ∈ A, T0 > t)
Pν(X t ∈ (0,∞), T0 > t)

= lim
t→∞

⟨
e−t L1A(·), ν

⟩⟨
e−t L1(0,∞) A(·), ν

⟩
= lim

t→∞

eλ0t
⟨∫

A p(t, ·, y)ρ(dy), ν
⟩

eλ0t
⟨∫

∞

0 p(t, ·, y)ρ(dy), ν
⟩

Taking account of the above bounds we can use dominated convergence to obtain

lim
t→∞

Pν(X t ∈ A | T0 > t) =

∫
∞

0

∫
A limt→∞ eλ0t p(t, x, y)ν(dx)ρ(dy)∫

∞

0

∫
∞

0 limt→∞ eλ0t p(t, x, y)ν(dx)ρ(dy)

=

∫
∞

0

∫
A uλ0 (x)uλ0 (y)ν(dx)ρ(dy)∫

∞

0

∫
∞

0 uλ0 (x)uλ0 (y)ν(dx)ρ(dy)

=

∫
A uλ0 (y)ρ(dy)∫
∞

0 uλ0 (y)ρ(dy)

which completes the proof.
The above proof made use of the fact that ν is compactly supported. One can extend this to

any initial distribution ν1 on (0,∞) by using the methods from [5][Proposition 7.7]. As a result
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the quasistationary distribution is unique and attracts all initial distributions ν1 with support on
(0,∞). □

3.4. An application to a diffusion coming from population dynamics

We apply Theorem 1.13 to study a process arising in population dynamics. Consider the SDE

d Nt = (µNt − κN 2
t ) dt + σNt dWt +

√
γ Nt d Bt (3.12)

where (Wt )t≥0 and (Bt )t≥0 are independent Brownian motions, µ, κ, σ, γ ∈ (0,∞) and N0 >

0. This process comes up naturally as a scaling limit of branching diffusions in a random
environment. See [3,15,18] for more details.

The quadratic variation of the process (Nt )t≥0 is

d[N ]t = (γ Nt + σ 2 N 2
t ) dt.

As a result, there exists a Brownian motion (Ut )t≥0 such that

d Nt = (µNt − κN 2
t ) dt +

√
γ Nt + σ 2 N 2

t dUt . (3.13)

Our diffusion (Nt )t≥0 has drift b(z) = µz−κz2 and diffusion coefficient σ (z) =
√
γ z + σ 2z2.

If a, c > 0 we can find the scale function

s(x) =

∫ x

c
exp

(
−

∫ y

a

2b(z)
σ 2(z)

dz
)

dy

=

∫ x

c
exp

(
−

∫ y

a

2(µz − κz2)
γ z + σ 2z2 dz

)
dy

=

∫ x

c

(
γ + σ 2 y
γ + σ 2a

)−2
(
µ

σ2 +
γ κ

σ4

)
e

2κ
σ2 (y−a) dy.

and the density of the speed measure

m(z) =
1

σ 2(z)s ′(z)

=

(
γ + σ 2z
γ + σ 2a

)2
(
µ

σ2 +
γ κ

σ4

)
e−

2κ
σ2 (z−a) 1

γ z + σ 2z2 .

We make use of [16] to classify the boundary points 0 and ∞.

Proposition 3.8. Consider the diffusion given by (3.13). The point 0 is an exit boundary and the
point ∞ is an entrance boundary.

Proof. Define

M(0, x] := lim
l↓0

∫ x

l
m(z) dz

and

Σ (0) :=

∫ x

0

(∫ ξ

0
s ′(η) dη

)
m(ξ ) dξ.



Please cite this article in press as: A. Hening, M. Kolb, Quasistationary distributions for one-dimensional diffusions with singular boundary points,
Stochastic Processes and their Applications (2018), https://doi.org/10.1016/j.spa.2018.05.012.

36 A. Hening, M. Kolb / Stochastic Processes and their Applications ( ) –

Note that for small z > 0

m(z) ∼
1

γ z + σ 2z2

and s ′(z) is bounded. It is therefore easy to see that

M(0, x] ∼ lim
l↓0

∫ x

l

1
γ z + σ 2z2 dz

∼ lim
l↓0

ln
z

γ + σ 2z

⏐⏐x
l

∼ lim
l↓0

(
− ln

l
γ + σ 2l

)
= ∞

and

Σ (0) =

∫ x

0

⎛⎝∫ ξ

0

(
γ + σ 2η

γ + σ 2a

)−2
(
µ

σ2 +
γ κ

σ4

)
e

2κ
σ2 (η−a) dη

⎞⎠m(ξ ) dξ

∼

∫ x

0
ξm(ξ ) dξ

∼

∫ x

0
ξ

1
γ ξ + σ 2ξ 2 dξ

=

∫ x

0

1
γ + σ 2ξ

dξ

< ∞.

According to Table 6.2 in [16] the above imply that 0 is an exit boundary.
Let us look at the boundary at ∞. To simplify notation, without loss of generality, for any

ξ > a we can write

s ′(ξ ) = (1 + ξ )−C eDξ

m(ξ ) =
1

γ ξ + σ 2ξ
(1 + ξ )C e−Dξ

for some D,C > 0. Then, for some fixed large x ∈ (0,∞) with x > a compute

N̄ (∞) :=

∫
∞

x

(∫
∞

ξ

m(ξ ) dξ
)

s ′(η) dη

=

∫
∞

x

(∫
∞

η

1
γ ξ + σ 2ξ 2 (1 + ξ )C e−Dξ dξ

)
(1 + η)−C eDη dη

≤

∫
∞

x

(∫
∞

η

(1 + ξ )C e−Dξ dξ
)

1
γ η + σ 2η2 (1 + η)−C eDη dη

Using integration by parts∫
∞

η

(1 + ξ )C e−Dξ dξ =
1
D

e−Dη(1 + η)C
+

∫
∞

η

1
D

e−DξC(1 + ξ )−C−1 dξ

and therefore∫
∞

η

(1 + ξ )C e−Dξ dξ ≃
1
D

e−Dη(1 + η)C for η → ∞.
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As a result we see that

N̄ (∞) ≃

∫
∞

x

(
1
D

e−Dη(1 + η)C
)

1
γ η + σ 2η2 (1 + η)−C eDη dη

≃

∫
∞

x

1
γ η + σ 2η2 dη

< ∞.

One also clearly has

s(∞) =

∫
∞

c

(
γ + σ 2 y
γ + σ 2a

)−2
(
µ

σ2 +
γ κ

σ4

)
e

2κ
σ2 (y−a) dy

= ∞.

Making use of Table 6.2 from [16] we conclude that ∞ is an entrance boundary. □

Combining Proposition 3.8 and Theorem 1.13 one gets the following result.

Corollary 3.9. Consider the diffusion given by (3.12). Then (Nt )t≥0 converges to its unique
quasistationary distribution.

Remark 3.10. We note that the methods from [5] are not easy to use for the diffusion from
(3.12) because one needs to check extra assumptions. In our case having that 0 is exit and ∞ is
entrance is enough to give us the desired result.
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