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Abstract

This paper derives a diffusion approximation for a sequence of discrete-time one-sided limit order
book models with non-linear state dependent order arrival and cancellation dynamics. The discrete time
sequences are specified in terms of an R+-valued best bid price process and an L2

loc-valued volume process.
It is shown that under suitable assumptions the sequence of interpolated discrete time models is relatively
compact in a localized sense and that any limit point satisfies a certain infinite dimensional SDE. Under
additional assumptions on the dependence structure we construct two classes of models, which fit in the
general framework, such that the limiting SDE admits a unique solution and thus the discrete dynamics
converge to a diffusion limit in a localized sense.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Motivation and setup 1

In modern financial markets almost all transactions are settled through limit order books 2

(LOBs). A LOB is a record of unexecuted orders awaiting execution. Stochastic analysis provides 3

powerful tools for understanding the complex system of order aggregation and execution in limit 4

order markets via the description of suitable scaling (“high-frequency”) limits. Scaling limits 5
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allow for a tractable description of the macroscopic LOB dynamics (prices and standing volumes)1

from the underlying microscopic dynamics (individual order arrivals and cancellations). In this2

paper we prove a novel functional convergence result for a class of Markov chains arising in3

microstructure models of LOBs to an infinite dimensional diffusion.4

Scaling limits for LOBs have recently attracted considerable attention in the probability5

and financial mathematics literature. Depending on the scaling assumptions either fluid limits6

(cf. [8–11]) or diffusion limits (cf. [2,6,12]) can be derived. Fluid limits for the full order7

book were first studied in [11] and afterwards in [10], where it was shown that under certain8

assumptions on the scaling parameters the sequence of discrete-time LOB models converges9

in probability to the solution of a deterministic differential equation. Although there is some10

work on probabilistic LOB models that assumes an SPDE or measure-valued dynamics for the11

volume process (cf. [13,17]), there is little work on the derivation of a measure valued diffusion12

limit starting from a microscopic (“event-by-event”) description of the limit order book. Two13

exceptions are the particular models considered in [2,20]. The work [2] extends the models14

in [10,11] by introducing additional noise terms in the pre-limit in which case the dynamics15

can then be approximated by an SPDE in the scaling limit. The papers [2,10,11] rely on the16

same scaling assumptions. Our work is motivated by the question whether under different scaling17

assumptions the same event-by-event dynamics can be approximated by a diffusion process in18

the high frequency regime without adding additional noise terms in the pre-limit.19

1.1. The LOB dynamics20

The one-sided LOB models considered in this paper are specified by a sequence of discrete21

time R×L2(R+;R)-valued processes S̃(n)
=
(
B(n), v(n)

)
, where for each n ∈ N, the non-negative22

one dimensional process B(n) specifies the dynamics of the best bid price, and the L2(R+;R)-23

valued process v(n) specifies the dynamics of the bid-side volume density function.24

We fix some T > 0 and introduce the scaling parameters ∆x (n),∆v(n), and ∆t (n). They25

denote the tick-size, the impact of an individual order on the state of the book, and the time26

between two consecutive order arrivals, respectively. We put Tn :=
⌊

T/∆t (n)
⌋

, x (n)
j := j∆x (n)

27

and t (n)
j := j∆t (n)

∧ T for all j ∈ N0 and n ∈ N. For all n ∈ N and x ∈ R+ we define the interval28

I (n)(x) as29

I (n)(x) :=

[
x (n)

j , x (n)
j+1

)
for x (n)

j ≤ x < x (n)
j+1.30

The initial best bid price is given by B(n)
0 = bn∆x (n) for some bn ∈ N. The initial volume31

density function is given by a non-negative deterministic step function v
(n)
0 ∈ L2(R+;R) on the32

∆x (n)-grid. Following [10] we assume that there are three events that change the state of the book:33

price increases (event A), price decreases (event B) and limit order placements, respectively34

cancellations (event C). In terms of the placement operator35

M (n)
k (·) := 1C

(
φ

(n)
k

) ω
(n)
k

∆x (n) 1I (n)
(
π

(n)
k

)(·) (1)36

the dynamics of the one-sided LOB models can then be described by the following point process:37

for each n ∈ N and all k = 1, . . . , Tn ,38

B(n)
k = B(n)

k−1 + ∆x (n)
[
1B

(
φ

(n)
k

)
− 1A

(
φ

(n)
k

)]
v

(n)
k = v

(n)
k−1 + ∆v(n) M (n)

k

(2)39
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where the event indicator function φ
(n)
k is a random variable taking values in the set {A, B, C}, the 1

[−M, M]-valued random variable ω
(n)
k specifies the size of a placement or cancellation (M > 0), 2

and the non-negative random variable π
(n)
k specifies the location of a placement or cancellation. 3

1.2. Fluid or diffusion approximation: empirical evidence 4

An array of scaling limits for LOBs have recently been suggested in the financial mathematics 5

literature. These limits are (mostly) either of fluid or of diffusion type. Which type of limit is 6

appropriate for a specific stock or class of stocks will depend on the stock characteristics and/or 7

the considered time scales. In the sequel we provide preliminary empirical evidence that volume 8

dynamics over intermediate time scales (one second) of liquidly traded stocks such as MSFT are 9

best approximated by diffusion processes. 10

In [5,6] the authors argue that the volumes at the top of the book should be approximated by 11

a diffusion rather than a fluid limit if the fluctuations dominate the mean in the long run. To this 12

end, they compute the empirical distribution of the ratio 13

R :=

√
n · mean

std
, 14

where n denotes the average number of trades during a ten second interval and mean (resp. std) 15

stands for the average size of a submitted order (resp. the standard deviation thereof). They 16

provide empirical evidence that R concentrated around zero for certain stocks from the DowJones 17

index during June 2008 when the data is grouped into ten second intervals, suggesting that 18

volumes at the top should be modelled using a stochastic component on intermediate time 19

horizons. 20

We complement their analysis using LOBSTER data of MSFT from June 5, 20181: We 21

consider volumes at several price levels, group the orders into price baskets of five ticks (i.e. five 22

cents) and compute R separately for every price basket. As we are working with daily instead 23

of monthly data, we grouped the data into one second intervals.2 As the bid price took values 24

between $101,53 and $102,32 on June 5, 2018, we consider price level between $101,60 and 25

$101,24, grouped into intervals of five cents and let n be the average number of trades occurring 26

at a particular price basket during a one second interval, given that at least one trade occurred 27

in that interval.3 Our results are documented in Table 1. As in [6], the ratio R takes very small 28

values for our data sample across all price levels, suggesting that fluid approximations for the 29

MSFT order book are not appropriate on one-second time scales. 30

The question is, then, whether the volumes are best modelled by a stochastic process with 31

a diffusive component or a pure jump process. To this end, we apply a test proposed in [1]. 32

For a one-dimensional Itô semimartingale, whose small jumps essentially behave like those of 33

a stable process and whose volatility process itself is again an Itô semimartingale, that paper 34

constructs a test statistic involving the p-variation of the observed process for some p ∈ (0, 2), 35

which should converge to some value strictly larger than 1 under the null hypothesis that the Itô 36

semimartingale is driven by a Brownian motion (cf. the theoretical value reported in Table 2) 37

1 We considered all trades taking place on the bid side of the order book during that day except the execution of hidden
orders, since they do not have a visible effect on the limit order book.

2 Since in [6] the authors considered ten second intervals, while we are working with one second intervals, our values
should be multiplied by

√
10 to compare with the values in [6]. Nonetheless, this still yields a very comparable result.

3 We are working with absolute coordinates instead of relative coordinates for convenience. Since MSFT is a very
liquid stock, we do not expect the results to differ much whether one looks at absolute or relative volumes.
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Table 1
Ratio R =

√
n · mean/std for different price ticks of MSFT data from June 5, 2018.

Price tick 101,60–64 101,65–69 101,70–74 101,75–79 101,80–84 101,85–89
Number of orders 11008 16299 28470 45503 29548 28176
Ratio R −0,0025 0,0076 0,0034 0,0011 0,0091 0,0031

Price tick 101,90–94 101,95–99 102,00–04 102,05–09 102,10–14 102,15–19 102,20–24
Number of orders 37091 40849 39464 44045 44001 34720 46098
Ratio R 0,0086 0,0073 0,0042 −0,0187 −0,0087 0,0004 0,0019

Table 2
Test statistics for H0 : Brownian motion present. For all values marked * (resp. **; ***; ****) the null hypothesis H0 is
not rejected at any chosen level of significance α ≤ 0, 5 (resp. 0,2; 0,1; 0,05).

H0 value H1 value 101,60–64 101,65–69 101,70–74 101,75–79 101,80–84 101,85–89

p = 1,25 1,297 1 1,305* 1,257** 1,246*** 1,323* 1,293** 1,226****
p = 1,5 1,189 1 1,235* 1,195* 1,189** 1,272* 1,237* 1,169**
p = 1,75 1,091 1 1,170* 1,140* 1,141* 1,231* 1,192* 1,122*

H0 value H1 value 101,90–94 101,95–99 102,00–04 102,05–09 102,10–14 102,15–19 102,20–24

p = 1,25 1,297 1 1,319* 1,260** 1,278** 1,230**** 1,264** 1,199*** 1,281**
p = 1,5 1,189 1 1,275* 1,204* 1,230* 1,173** 1,212* 1,147** 1,232*
p = 1,75 1,091 1 1,240* 1,159* 1,194* 1,127* 1,170* 1,106* 1,194*

and to 1 otherwise. In [1] the test is applied to INL and MSFT high frequency data from 2006,1

yielding empirical evidence that on an intermediate time scale (any sampling interval between2

five seconds and 30 min) the prices of liquidly traded stocks in electronic markets should indeed3

be modelled with a Brownian component. We test if volumes should also be modelled with a4

Brownian component using the same data set as above, i.e. MSFT data from June 5, 2018. We5

aggregate the data on the tick level building baskets of five ticks and use sampling intervals of6

one second. The computed test statistics together with their theoretical values under the null7

hypothesis are reported in Table 2 for different values of p.4 As one can see from our results, we8

will not reject the null hypothesis at any reasonable significance level. This suggests to consider9

diffusive limits for LOB dynamics of liquid stocks on intermediate time scales.10

1.3. Preview of the main results11

In deriving a diffusion limit for the sequence of LOB models (2), the first challenge is to12

define a suitable convergence concept. While for any π ∈ R+,13 1I (n)(π)


L2(R+) =

(
∆x (n))1/2

,14

we have for any bounded f ∈ L2(R+),15 ⟨
1I (n)(π), f

⟩
L2(R+) =

∫
I (n)(π)

f (x)dx = O
(
∆x (n)) .16

Hence, it seems impossible to formulate a scaling assumption with ∆x (n)
→ 0, ∆t (n)

→ 0,17

and ∆v(n)
→ 0 that allows to prove convergence of the volume density functions to an18

4 To compute the values in Table 2 we used a cutoff level of K = 2000 for the order sizes. However, the test does not
yield qualitatively different results if one varies the cutoff level within a reasonable range.
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L2(R+;R)-valued diffusion process. However, observe that for any m, π > 0 we have 1∆x (n)
⌊·/∆x (n)

⌋∑
j=0

1I (n)(π)

(
x (n)

j

)
1[0,m](·)


L2

= ∆x (n)
(

m − ∆x (n)
⌊ π

∆x (n)

⌋)1/2
= O

(
∆x (n))

2

and for any bounded f ∈ L2 also 3⟨
∆x (n)

⌊·/∆x (n)
⌋∑

j=0

1I (n)(π)

(
x (n)

j

)
, f 1[0,m]

⟩
L2

= ∆x (n)
∫ m

∆x (n)
⌊

π

∆x(n)

⌋ f (x)dx = O
(
∆x (n)) . 4

This suggests to study the convergence of the cumulated volume processes V (n)
=

(
V (n)

k

)
k≤Tn

5

with 6

V (n)
k (x) := ∆x (n)

⌊x/∆x (n)
⌋∑

j=0

v
(n)
k

(
x (n)

j

)
, x ∈ R+, (3) 7

instead of analysing directly the convergence of the volume density functions. To do this we will 8

choose a localized convergence concept, since the functions V (n) are not square integrable on the 9

whole line. 10

Our main contribution is to establish a convergence concept and a convergence result for the 11

sequence S(n)
:=
(
B(n), V (n)

)
, n ∈ N. In particular, we state sufficient conditions that guarantee 12

that (i) this sequence is relatively compact; (ii) any limit point solves an infinite dimensional SDE 13

driven by a standard Brownian and a cylindrical Brownian motion; (iii) the limiting SDE has a 14

unique solution. 15

Having established a convergence concept, the second major challenge is that the dynamics of 16

the process S(n), n ∈ N, is not given in standard SDE form, due to the event-by-event dynamics, 17

and that the system can only be controlled by specifying the conditional distribution of the 18

random variables π
(n)
k , ω

(n)
k , and φ

(n)
k . Much of our work is, therefore, devoted to the identification 19

of suitable integrands G(n)
(
S(n)(t)

)
and semimartingale random measures Y (n) such that S(n)(t) 20

can be represented as 21

S(n)(t) = S(n)
0 +

∫ t

0
G(n) (S(n)(u)

)
dY (n)(u), t ∈ [0, T ] (4) 22

after continuous time-interpolation. Once the dynamics of the sequence S(n), n ∈ N, has been 23

brought into standard SDE form, it remains to study its convergence. The convergence of infinite 24

dimensional stochastic integrals has been studied by several authors. Chao [4] and Walsh [22] 25

consider semimartingale random measures as distribution valued processes in some nuclear 26

space. Kallianpur and Xiong [16] prove diffusion approximations of nuclear space-valued 27

SDEs. Their approach requires a dependence structure that is incompatible with our spatial 28

pointwise dynamics, and is hence not applicable to our modelling framework. Jakubowski [15] 29

provides convergence results for Hilbert space valued semimartingales under a uniform tightness 30

condition. Kurtz and Protter [19] work with the same uniform tightness condition, but allow for 31

a more general setting. Especially, they also study the convergence of solutions of stochastic 32

differential equations in infinite dimension. The results are further extended by Ganguly [7] 33

to study the convergence of infinite dimensional stochastic differential equations when the 34

approximating sequence of integrators is not uniformly tight anymore. 35

Our proof relies on the results in [19]. We first establish sufficient conditions that guarantee 36

that the sequence Y (n), n ∈ N, converges to some L2(R+)#-semimartingale Y . Subsequently 37
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we prove that the sequence G(n), n ∈ N, satisfies a compactness property and converges in a1

localized sense to some function G. Finally, we show that the sequence of stochastic differential2

equations in (4) converges in law in a localized sense to a solution to an SDE of the form3

S(t) = S0 +

∫ t

0
G (S(u)) dY (u), t ∈ [0, T ]. (5)4

The challenge in proving the converges of the SDEs is the verification of the conditions in [19]5

on the integrators and coefficient functions of the approximating sequence, and the fact that our6

convergence concept localizes in space, not time. Finally, we give sufficient conditions for the7

uniqueness of solutions to the above SDE. For instance, we show that uniqueness holds if only8

the drift but not the volatility is state-dependent.9

1.4. Structure of the paper10

The rest of the paper is structured as follows. In Section 2 we state conditions on the11

dynamics of the price processes that guarantee the converge of their normalized fluctuations to a12

standard Brownian motion. In Section 3 we state conditions on the dynamics of the order arrivals13

and cancellations that guarantee convergence of the standardized fluctuations of the volume14

processes to a cylindrical Brownian motion. While the analysis of the price is quite standard,15

deriving similar results for the volumes is much more tedious. First we show in Section 3.2 the16

convergence of the drift, volatility and correlation functions. Using an orthogonal decomposition17

of the covariance matrix we then establish in Section 3.3 a representation of the volume process18

as a discrete stochastic differential equation driven by “infinitely many discretized Brownian19

motions”. In Section 3.5 we prove the convergence in law of the “infinitely many discretized20

Brownian motions” to a cylindrical Brownian motion. In Section 4 we define the stochastic21

integrals and stochastic differential equations that describe the LOB dynamics and verify that22

the conditions from [19] are satisfied. This allows us to derive our results on the characterization23

of the limiting LOB dynamics as solutions to an infinite dimensional SDE in Section 5. We24

then provide two specific examples in which the LOB dynamics converges weakly to the unique25

solution of an infinite dimensional SDE. In Section 5.3 we conclude with a short discussion on26

how our result can explain the noise term in macroscopic SPDE models for limit order books27

found in the literature.28

1.5. Notation29

For each n ∈ N we fix a probability space
(
Ω (n),F (n),P(n)

)
5 with filtration30 {

∅,Ω (n)}
= F (n)

0 ⊂ F (n)
1 ⊂ · · · ⊂ F (n)

k ⊂ · · · ⊂ F (n)
Tn

⊂ F (n).31

We assume that the random vector
(
φ

(n)
k , ω

(n)
k , π

(n)
k

)
is F (n)

k -measurable for all n ∈ N and k ≤ Tn .32

We define the Hilbert space33

E := R × L2(R+;R), ∥(X1, X2)∥E := |X1| + ∥X2∥L234

and its localized version35

Eloc := R × L2
loc(R+;R)36

5 For ease of notation we will simply write P and E in the following instead of P(n) and E(n), since it is clear from the
context on which probability space we work.
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with 1

L2
loc(R+) :=

{
f : R+ → R

⏐⏐⏐⏐ ∫ m

0
f 2(x)dx < ∞ ∀ m ∈ N

}
. 2

Moreover, we define for all n ∈ N the Eloc-valued stochastic process S(n)
=

(
S(n)

k

)
k=0,...,Tn

via 3

S(n)
k :=

(
B(n)

k , V (n)
k

)
, 4

where B(n)
k and V (n)

k were defined in Eqs. (2) and (3). For all n ∈ N and k = 1, . . . , Tn we set

δV (n)
k := V (n)

k − V (n)
k−1, δB(n)

k := B(n)
k − B(n)

k−1,

δv̂
(n)
k (x) := E

(
δV (n)

k (x)
⏐⏐⏐F (n)

k−1

)
, δ B̂(n)

k := E
(
δB(n)

k

⏐⏐⏐F (n)
k−1

)
,

δv
(n)
k (x) := δV (n)

k (x) − δv̂
(n)
k (x), δB

(n)
k := δB(n)

k − δ B̂(n)
k .

W.l.o.g. we will assume that
(
∆x (n)

)−1
∈ N for all n ∈ N. 5

2. Fluctuations of the price process 6

In this section we analyse the fluctuations of the best bid price process B(n). To this end, we 7

introduce a fourth scaling parameter ∆p(n)
= o(1) that controls the proportion of price changes 8

among all events.6 The scaling limits in [2,10,11] require two time scales, a fast time scale for 9

limit order placements and cancellations and a comparably slow time scale for price changes. 10

The scaling parameter ∆p(n) introduces the “slow” time scale. 11

Assumption 2.1. For each n ∈ N there exist two functions p(n)
: Eloc → R and r (n)

: Eloc → 12

R+ satisfying the boundary condition 13(
r (n)(s)

)2
= ∆x (n) p(n)(s) ∀ s = (0, v) ∈ Eloc, (6) 14

such that for all k = 1, . . . , Tn , 15

P
(
φ

(n)
k ∈ {A, B}

⏐⏐⏐F (n)
k−1

)
= ∆p(n)

(
r (n)

(
S(n)

k−1

))2
a.s. (7) 16

and 17

P
(
φ

(n)
k = B

⏐⏐⏐F (n)
k−1

)
− P

(
φ

(n)
k = A

⏐⏐⏐F (n)
k−1

)
= ∆p(n)∆x (n) p(n)

(
S(n)

k−1

)
a.s. (8) 18

There exists η > 0 such that for all n ∈ N and s ∈ Eloc, 19

r (n)(s) +
(

p(n)(s)
)+

> η. (9) 20

Note that the conditional distribution of the event variables is uniquely determined by Eqs. (7) 21

and (8). Moreover, Eq. (6) guarantees that the price process B(n) will always stay positive. 22

Remark 2.2. The scaling parameter ∆p(n) corresponds to the proportion of market orders and 23

spread placements among all LOB events. It can easily be estimated from flow data; see [11]. 24

Conditioning the proportion on selected characteristics of the book such as spreads, volumes at 25

the top or volume imbalances yields the functions p(n)(·) and r (n)(·). 26

6 The proportion of price changes among all orders book events is typically quite small for liquidly traded stocks such
as APPL, MSFT or BAC; see [8,11] for empirical evidence.
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The next assumption controls the relative speed at which the different scaling parameters1

converge to zero. Since the discrete system dynamics are the same as in [10], we must use a2

different scaling to get a diffusion limit instead of a fluid limit. Intuitively, the average impact3

of all individual events must be of larger size to generate volatility. By comparing the scaling4

assumption from [10] with Assumption 2.3, we see that this is indeed the case.5

Assumption 2.3. For all n ∈ N,6

∆t (n)
= ∆p(n) (∆x (n))2

=
(
∆v(n))2

= o(1).7

Remark 2.4. The fact that the conditional distribution of the event variables is uniquely8

determined by Eqs. (7) and (8) is different from the corresponding assumption made in [10]9

to derive a large of large numbers in the high frequency regime. Indeed, while (7) can also be10

found in [10], (8) is the only important additional assumption – apart from the different scaling11

– which is needed to derive a diffusion dynamic for the price process in the high frequency limit.12

A similar assumption can also be found in [2].13

Eqs. (7) and (8) of Assumption 2.1 yield together with Assumption 2.3 that for all n ∈ N and14

k ≤ Tn almost surely15

∆t (n)
[
r (n)

(
S(n)

k−1

)]2
= E

[(
δB(n)

k

)2
⏐⏐⏐⏐F (n)

k−1

]
,16

∆t (n) p(n)
(

S(n)
k−1

)
= E

[
δB(n)

k

⏐⏐⏐F (n)
k−1

]
= δ B̂(n)

k .17

Let us define the process of the (nearly) normalized increments of B(n) as18

δZ (n)
k :=

δB
(n)
k

r (n)
(

S(n)
k−1

) , Z (n)
k :=

k∑
j=1

δZ (n)
j for all k = 1, . . . , Tn. (10)19

Then we may write for all n ∈ N,20

B(n)(t) = B(n)
0 +

⌊t/∆t (n)
⌋∑

k=1

δB(n)
k

= B(n)
0 +

⌊t/∆t (n)
⌋∑

k=1

[
p(n)

(
S(n)

k−1

)
∆t (n)

+ r (n)
(

S(n)
k−1

)
δZ (n)

k

] (11)21

Through linear interpolation of the Z (n)
k , k = 1, . . . , Tn , we obtain the continuous time22

process23

Z (n)(t) :=

Tn∑
k=0

Z (n)
k 1[

t (n)
k ,t (n)

k+1

)(t), t ∈ [0, T ].24

By construction the process (Z (n)(t))t∈[0,T ] is a càdlàg martingale for each n ∈ N.25

Theorem 2.5. Under Assumptions 2.1 and 2.3, Z (n)
=
(
Z (n)(t)

)
t∈[0,T ] converges weakly in26

D ([0, T ];R) to a standard Brownian motion Z as n → ∞.27

Proof. By construction the field
(
δZ (n)

k

)
k≤Tn , n∈N

is a martingale difference array. Therefore,28

the claim will follow from the functional central limit theorem for martingale difference arrays,29
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once we show that the Lindeberg condition is satisfied and that for every t ∈ [0, T ] the sum of 1

the conditional second moments up to time t converges almost surely to t , which is the quadratic 2

variation of Brownian motion. 3

For this we first note that Eqs. (7) and (8) imply that for all n ∈ N and k ≤ Tn , 4

− 1 ≤

∆x (n) p(n)
(

S(n)
k−1

)
(

r (n)
(

S(n)
k−1

))2 ≤ 1 a.s. (12) 5

Moreover, by definition 6

∆t (n)
⏐⏐⏐p(n)

(
S(n)

k−1

)⏐⏐⏐ ≤ E
(⏐⏐⏐δB(n)

k

⏐⏐⏐⏐⏐⏐F (n)
k−1

)
≤ ∆x (n) n→∞

−→ 0 a.s. (13) 7

Hence, for any t ∈ [0, T ]

⌊t/∆t (n)
⌋∑

k=1

E
((

δZ (n)
k

)2
⏐⏐⏐⏐F (n)

k−1

)
=

⌊t/∆t (n)
⌋∑

k=1

∆t (n)
(

r (n)
(

S(n)
k−1

))2
−

(
∆t (n) p(n)

(
S(n)

k−1

))2

(
r (n)

(
S(n)

k−1

))2

→ t a.s.

Second, (9) and (12) imply that for all n ∈ N and k ≤ Tn , 8[
r (n)

(
S(n)

k−1

)]−2
≤

[
r (n)

(
S(n)

k−1

)]−2
1{

r (n)
(

S(n)
k−1

)
>

η
2

} +

[
r (n)

(
S(n)

k−1

)]−2
1{(

p(n)
(

S(n)
k−1

))+

>
η
2

}
9

≤
4
η2 +

[
r (n)

(
S(n)

k−1

)]−2
1{[

r (n)
(

S(n)
k−1

)]2
>∆x (n) η

2

}
10

≤
4
η2 +

2
∆x (n)η

a.s. 11

Therefore, there exists a deterministic sequence (cn) converging to zero such that for all k = 12

1, . . . , Tn , 13

⏐⏐⏐δZ (n)
k

⏐⏐⏐2 =

[
∆x (n)

(
1B

(
φ

(n)
k

)
− 1A

(
φ

(n)
k

))
− ∆t (n) p(n)

(
S(n)

k−1

)]2

[
r (n)

(
S(n)

k−1

)]2

≤ 2
[(
∆x (n))2

+

(
∆t (n) p(n)

(
S(n)

k−1

))2
]

2
η

(
2
η

+
1

∆x (n)

)
≤ cn a.s.

(14) 14

We conclude that for all ε > 0, 15

⌊t/∆t (n)
⌋∑

k=1

E
(⏐⏐⏐δZ (n)

k

⏐⏐⏐2 1{⏐⏐⏐δZ (n)
k

⏐⏐⏐>ε
}) ≤

cn

ε2

⌊t/∆t (n)
⌋∑

k=1

E
⏐⏐⏐δZ (n)

k

⏐⏐⏐2 ≤
t
ε2 · cn → 0, 16

i.e. the Lindeberg condition is satisfied. Therefore, the functional central limit theorem for 17

martingale difference arrays (cf. Theorem 18.2 in [3]) implies that Z (n) converges weakly to 18

a standard Brownian motion. □ 19

In order to obtain the convergence of the full price process in Section 5 we also have to assume 20

that the drift and volatility functions p(n) and r (n), n ∈ N, satisfy a continuity condition and that 21

they converge to some functions p and r as n → ∞. 22
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Assumption 2.6.1

(i) There exist functions p : Eloc → R, r : Eloc → R+, and C < ∞ such that for all2

s = (b, v), s̃ = (̃b, ṽ) ∈ Eloc,3

|p (s)| + r (s) ≤ C(1 + |b|)4

and for all m ∈ N,5

sup
s=(b,v)∈Eloc

⏐⏐p(n) ((b ∧ m, v)) − p ((b ∧ m, v))
⏐⏐+⏐⏐r (n) ((b ∧ m, v)) − r ((b ∧ m, v))

⏐⏐ → 0.6

(ii) There exists L < ∞ such that for all n ∈ N and s = (b, v), s̃ = (̃b, ṽ) ∈ Eloc,7

max
{⏐⏐p(n)(s) − p(n) (̃s)

⏐⏐ , ⏐⏐r (n)(s) − r (n) (̃s)
⏐⏐}

≤ L
(
1 + |b| + |̃b|

) (
1 +

v1[0,b∨b̃]


L2 +

ṽ1[0,b∨b̃]


L2

) {⏐⏐b − b̃
⏐⏐

+
(v − ṽ)1[0,b∨b̃]


L2

}
.

8

Assumption 2.6(ii) is similar to a local Lipschitz assumption. It will play a key role in the9

proof of the main theorem later on. The following example illustrates the assumed dependence10

structure.11

Example 2.7. In order to model dependence on standing volumes we can integrate a Lipschitz12

continuous function h : R → R against cumulated volumes standing to the left of the price13

process. If we suppose that h has compact support in R−, then for all s = (b, v), s̃ = (̃b, ṽ) ∈14

Eloc,15 ⏐⏐⟨v(· + b)1[−b,0], h
⟩
−
⟨̃
v
(
· + b̃

)
1[−b̃,0], h

⟩⏐⏐ =
⏐⏐⟨v, h(· − b)1[0,b]

⟩
−
⟨̃
v, h

(
· − b̃

)
1[0,̃b]

⟩⏐⏐16

≤
⏐⏐⟨v − ṽ, h

(
· − b̃

)
1[0,̃b]

⟩⏐⏐+ ⏐⏐⟨v1[0,b∨b̃], h(· − b) − h
(
· − b̃

)⟩⏐⏐17

≤ ∥h∥L2 ·
(v − ṽ)1[0,b∨b̃]


L2 +

v1[0,b∨b̃]


L2 · L

1[0,b∨b̃]
(
b − b̃

)
L218

≤ ∥h∥L2 ·
(v − ṽ)1[0,b∨b̃]


L2 + L

v1[0,b∨b̃]


L2

(
1 + |b| + |̃b|

) ⏐⏐b − b̃
⏐⏐ .19

Now if P, R are Lipschitz continuous functions, we may define for all s = (b, v) ∈ Eloc,20

p(n) (s) := P
(⟨
v(· + b)1[−b,0], h

⟩)
, r (n) (s) := R

(⟨
v(· + b)1[−b,0], h

⟩)
21

and the so defined functions p(n) and r (n) satisfy Assumption 2.6(ii).22

3. Fluctuations of the volume process23

In this section we analyse the fluctuation of the infinite dimensional volume process V (n). In24

a first step we compute its conditional moments and prove their convergence as n → ∞. Sub-25

sequently, we represent it as the solution to a stochastic differential equations driven by infinite26

dimensional martingale that converges in distribution to a cylindrical Brownian motion as n →27

∞. Since V (n) is not an L2-valued process, but only L2
loc-valued, we need to localize the analysis.28

We make the following assumption on the joint distribution of the random variables ω
(n)
k29

and π
(n)
k .30

Assumption 3.1. There exists an M > 0 such that for all n ∈ N and k ≤ Tn ,31

P
(
ω

(n)
k ∈ [−M, M], π

(n)
k ∈ [0, ∞)

)
= 1. (15)32
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For every n ∈ N there exist two measurable functions g(n), h(n)
: Eloc ×R+ → R+ such that for 1

all k = 1, . . . , Tn and all D ∈ B(R+), 2

E
((

ω
(n)
k

)2
1C

(
φ

(n)
k

)
1D

(
π

(n)
k

) ⏐⏐⏐⏐ F (n)
k−1

)
=

∫
D

g(n)
(

S(n)
k−1; y

)
dy a.s. 3

and 4

E
(
ω

(n)
k 1C

(
φ

(n)
k

)
1D

(
π

(n)
k

) ⏐⏐⏐ F (n)
k−1

)
= ∆v(n)

∫
D

h(n)
(

S(n)
k−1; y

)
dy a.s. 5

Remark 3.2. The functions ∆v(n)h(n)(·) describe the average net arrivals (placements minus 6

cancellations) of limit orders at a particular price interval as a function of the state of the 7

book. Estimating arrival intensities of limit orders and cancellations at different price levels 8

conditionally on the spread, volumes at the top, etc. yields point estimates h(n)
i (·) for different 9

price levels. The function h(n) can then be derived from these estimates through any ‘smoothing 10

procedure’ as e.g. in [11]. The same applies to the functions g(n)(·) that describe the (state- 11

dependent) second moments of volume changes across different price levels. 12

According to Assumptions 2.1 and 3.1 the process
(

S(n)
k

)
k=0,...,Tn

is a homogeneous Markov 13

chain for each n ∈ N. Furthermore, (15) and Assumption 2.3 imply that for all m > 0, n ∈ N, 14

and k ≤ Tn , 15δV (n)
k 1[0,m]

2

L2
≤
(
∆v(n))2

M2


⌊·/∆x (n)

⌋∑
j=0

1
I (n)

(
π

(n)
k

) (x (n)
j

)
1[0,m]


2

L2

16

≤ ∆t (n) M2m a.s. 17

and therefore for all m > 0 also 18δv(n)
k 1[0,m]

2

L2
≤

δv̂(n)
k 1[0,m]

2

L2
+

δV (n)
k 1[0,m]

2

L2

≤ E
(δV (n)

k 1[0,m]

2

L2

⏐⏐⏐⏐F (n)
k−1

)
+

δV (n)
k 1[0,m]

2

L2

≤ 2M2m∆t (n) a.s.

(16) 19

The next two assumptions deal with the convergence and continuity of g(n) and h(n). 20

Assumption 3.3. 21

(i) There exists a measurable function g : Eloc × R+ → R+ satisfying 22

inf
s∈Eloc

g(s; y) > 0 ∀ y ∈ R+ 23

such that 24

sup
s∈Eloc

∫
∞

0

⏐⏐g(n)(s; y) − g(s; y)
⏐⏐ dy → 0. 25

(ii) There exists an L < ∞ such that for all n ∈ N and s = (b, v), s̃ = (̃b, ṽ) ∈ Eloc, 26∫
∞

0

⏐⏐g(n)(s; y) − g(n) (̃s; y)
⏐⏐ dy

≤ L
(
1 + |b| + |̃b|

) (
1 +

v1[0,b∨b̃]


L2 +

ṽ1[0,b∨b̃]


L2

) {⏐⏐b − b̃
⏐⏐

+
(v − ṽ)1[0,b∨b̃]


L2

}
.

27
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The next assumption is key to the derivation of a diffusion limit for the L2
loc-valued functions1

V (n). It states that order placements and cancellations are expected to be approximately of the2

same size and that the expected disbalance between both also scales in n. This guarantees that3

the cumulated volume process will not explode when passing to the scaling limit.4

Assumption 3.4.5

(i) There exists a measurable function h : Eloc × R+ → R satisfying6

sup
s∈Eloc

∫
∞

0
|h(s; y)|2 dy < ∞7

such that8

sup
s∈Eloc

∫
∞

0

⏐⏐h(n)(s; y) − h(s; y)
⏐⏐2 dy → 0.9

(ii) There exists an L < ∞ such that for all n ∈ N and s = (b, v), s̃ =
(̃
b, ṽ

)
∈ Eloc,10 (∫

∞

0

⏐⏐h(n)(s; y) − h(n) (̃s; y)
⏐⏐2 dy

)1/2

≤ L
(
1 + |b| + |̃b|

) (
1 +

v1[0,b∨b̃]


L2 +

ṽ1[0,b∨b̃]


L2

) {⏐⏐b − b̃
⏐⏐

+
(v − ṽ)1[0,b∨b̃]


L2

}
.

11

3.1. Basis functions12

Our goal is to represent the volume function as a stochastic differential equation driven by an13

infinite dimensional martingale whose increments are orthogonal across different basis functions14

of L2(R+;R). We choose the Haar basis, i.e. we specify the basis functions ( fi ) as follows: for15

each k ∈ N0 we set gk
−1(x) = 1[k,k+1)(x). Moreover, we set for all k, l ∈ N0,16

gk
l (x) :=

⎧⎪⎨⎪⎩
2l/2

: x ∈
[
k2−l ,

(
k +

1
2

)
2−l
)

−2l/2
: x ∈

[(
k +

1
2

)
2−l , (k + 1)2−l

)
0 : else.

17

To define the ( fi ) we now reorder the (gk
l ) in a diagonal procedure:18

f1 := g0
−1, f2 := g1

−1, f3 := g0
0, f4 := g2

−1, f5 := g1
0, f6 := g0

1, . . .19

In the following we denote by k(i) ∈ N0 and l(i) ∈ N−1 := N0 ∪ {−1} the indices such that20

fi ≡ gk(i)
l(i) .21

Let us define for each i ∈ N the functions Fi : R+ → R and F (n)
i : R+ → R, n ∈ N, via22

Fi (y) :=

∫
∞

y
fi (x)dx, F (n)

i (y) :=

∫
∞

∆x (n)⌊y/∆x (n)⌋

fi (x)dx .23

We shall see that the drift and the volatility of the volume processes can be expressed in terms of24

the functions Fi and F (n)
i . We notice that |Fi (y)| ∨

⏐⏐⏐F (n)
i (y)

⏐⏐⏐ ≤ 1 for all y ∈ R+ and i, n ∈ N. In25

addition, we will often use the fact that if l(i) ≥ 0, then26

supp(Fi ) =
[
k(i)2−l(i), (k(i) + 1)2−l(i)] ,27
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i.e. |supp(Fi )| ≤ 1. Similarly, also
⏐⏐⏐supp

(
F (n)

i

)⏐⏐⏐ ≤ 1 for all i, n ∈ N with l(i) ≥ 0. We also 1

notice that if l(i) = −1, then supp(Fi ) = supp
(

F (n)
i

)
= [0, k(i) + 1]. Moreover, we have the 2

L2
loc-representation 3

1[y,∞)(x) =

∑
i

Fi (y) fi (x), 1[∆x (n)⌊y/∆x (n)⌋,∞)(x) =

∑
i

F (n)
i (y) fi (x). 4

Finally, for all m ∈ N we define the index set 5

Im := {i ∈ N : supp( fi ) ∩ (0, m) ̸= ∅}. (17) 6

Note that for all m ∈ N, ( fi )i∈Im is a basis of L2([0, m]). Furthermore, for all n, m ∈ N and 7

y ∈ R+, 8∑
i∈Im

[
F (n)

i (y)
]2

≤ m and
∑
i∈Im

[Fi (y)]2
≤ m. 9

We shall repeatedly use the following technical lemma. It allows us to approximate the 10

conditional moments of volume increments using finitely many basis functions after localization. 11

Lemma 3.5. For each ε > 0 and m ∈ N there exists a finite subset J ⊂ Im such that for all 12

y ∈ R+, 13∑
i∈Im\J

(Fi (y))2
≤ ε and

∑
i∈Im\J

(
F (n)

i (y)
)2

≤ ε ∀ n ∈ N. 14

Proof. For fixed ε > 0 and m ∈ N set l0 := min
{
l ∈ N : 2−l

≤ ε
}

and J := 15

{i ∈ Im : l(i) ≤ l0}. Now note that for all i ∈ N, 16

|Fi (y)| =

⏐⏐⏐⏐∫ ∞

y
fi (x)dx

⏐⏐⏐⏐ ≤ 2−l(i)/2
∀ y ∈ R+. 17

Furthermore for every l ∈ N and y ∈ R+ there exists exactly one i ∈ N with l(i) = l such that 18

Fi (y) ̸= 0. Therefore, 19∑
i∈Im\J

(Fi (y))2
≤

∑
l>l0

2−l(i)
= 2−l0 ≤ ε ∀ y ∈ R+. 20

Since this is true for all y ∈ R+, it is also true for all ∆x (n)
⌊y/∆x (n)

⌋ with n ∈ N and y ∈ R+. 21

Hence, 22∑
i∈Im\J

(
F (n)

i (y)
)2

≤ ε ∀ y ∈ R+, n ∈ N. □ 23

3.2. Convergence of drift, volatility and correlation functions 24

We are now going to analyse the convergence of the conditional expectations and variances 25

of the volume increments. It will turn out that in the limit they can be described in terms of the 26

functions µi : Eloc → R and σi : Eloc → R+ (i ∈ N) defined by: 27

µi (s) :=

∫
∞

0
h(s; y)Fi (y)dy, (σi (s))2

:=

∫
∞

0
g(s; y) [Fi (y)]2 dy. 28
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Lemma 3.6. Given Assumption 3.3(i) we have for all i ∈ N, infs∈Eloc σi (s) > 0.1

Proof. By definition Fi (y) ̸= 0 for all y ∈
(
k(i)2−l(i), (k(i) + 1)2−l(i)

)
. Thus, the claim2

follows from the fact that g(·; y) is bounded away from zero for each y ∈ R+ according to3

Assumption 3.3(i). □4

In view of the preceding lemma we can define for all i, j ∈ N the function ρi j : Eloc →5

[−1, 1] via6

σi (s)σ j (s)ρi j (s) :=

∫
∞

0
g(s; y)Fi (y)F j (y)dy.7

Moreover, we define for each n, i, j ∈ N the following functions from Eloc to R,8

µ
(n)
i (s) :=

∫
∞

0
h(n)(s; y)F (n)

i (y)dy,9

σ
(n)
i (s) :=

(∫
∞

0
g(n)(s; y)

[
F (n)

i (y)
]2

dy − ∆t (n)
(
µ

(n)
i (s)

)2
)1/2

,10

ρ
(n)
i j (s) :=

1(0,∞)

(
σ

(n)
i (s)σ (n)

j (s)
)

σ
(n)
i (s)σ (n)

j (s)
11

×

(∫
∞

0
g(n)(s; y)F (n)

i (y)F (n)
j (y)dy − ∆t (n)µ

(n)
i (s)µ(n)

j (s)
)

,12

and the L2
loc(R+)-valued functions13

µ(n)(s; ·) :=

∑
i

µ
(n)
i (s) fi (·) and µ(s; ·) :=

∑
i

µi (s) fi (·).14

Note that with this notation we have for all x ∈ R+ and n ∈ N, making use of Assumption 2.3,15

δv̂
(n)
k (x) = ∆v(n)E

⎛⎝∆x (n)
⌊x/∆x (n)

⌋∑
j=0

M (n)
k

(
x (n)

j

)⏐⏐⏐⏐⏐⏐F (n)
k−1

⎞⎠
= ∆v(n)

∫
∞

0
∆v(n)h(n)

(
S(n)

k−1; y
) ⌊x/∆x (n)

⌋∑
j=0

1I (n)(y)

(
x (n)

j

)
dy

= ∆t (n)
∫

∞

0
h(n)

(
S(n)

k−1; y
)
1[∆x (n)⌊y/∆x (n)⌋,∞)(x)dy = ∆t (n)µ(n)

(
S(n)

k−1; x
)

(18)16

as well as17

E
(⟨

δV (n)
k , fi

⟩2⏐⏐⏐⏐F (n)
k−1

)

= ∆t (n)E

⎛⎜⎝1C

(
φ

(n)
k

)⎡⎣ω
(n)
k

∫
R+

fi (x)
⌊x/∆x (n)

⌋∑
j=0

1
I (n)

(
π

(n)
k

) (x (n)
j

)
dx

⎤⎦2
⏐⏐⏐⏐⏐⏐⏐F (n)

k−1

⎞⎟⎠18
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1

= ∆t (n)E
(
1C

(
φ

(n)
k

) (
ω

(n)
k

)2 [
F (n)

i

(
π

(n)
k

)]2
⏐⏐⏐⏐F (n)

k−1

)
= ∆t (n)

∫
∞

0
g(n)

(
S(n)

k−1; y
) [

F (n)
i (y)

]2
dy

= ∆t (n)
[(

σ
(n)
i

(
S(n)

k−1

))2
+ ∆t (n)

(
µ

(n)
i

(
S(n)

k−1

))2
]

,

2

i.e. 3

E
(⟨

δv
(n)
k , fi

⟩2⏐⏐⏐⏐F (n)
k−1

)
= ∆t (n)

(
σ

(n)
i

(
S(n)

k−1

))2
. (19) 4

Similar calculations show that 5

ρ
(n)
i j

(
S(n)

k−1

)
=

E
(⟨

δv
(n)
k , fi

⟩ ⟨
δv

(n)
k , f j

⟩⏐⏐⏐F (n)
k−1

)
σ

(n)
i

(
S(n)

k−1

)
σ

(n)
j

(
S(n)

k−1

) 1(0,∞)

(
σ

(n)
i

(
S(n)

k−1

)
σ

(n)
j

(
S(n)

k−1

))
. (20) 6

The next three lemmata establish the convergence of the drift, the volatility and the covariance 7

functions introduced above. 8

Lemma 3.7. Given Assumption 3.4(i) we have for all m ∈ N, 9

sup
s∈Eloc

µ(s)1[0,m]


L2 < ∞ and sup
s∈Eloc

(µ(n)(s) − µ(s)
)
1[0,m]


L2 → 0. 10

Proof. Since supp(Fi ) ⊂ [0, m] for all i ∈ Im , 11

sup
s∈Eloc

µ(s)1[0,m]
2

L2 = sup
s∈Eloc

∑
i∈Im

(∫
∞

0
h(s; y)Fi (y)dy

)2

12

≤ sup
s∈Eloc

m
∑
i∈Im

∫ m

0
(h(s; y))2 (Fi (y))2 dy 13

≤ m2
· sup

s∈Eloc

∫
∞

0
(h(s; y))2 dy < ∞. 14

By a similar reasoning we can estimate for all m ∈ N, 15

sup
s∈Eloc

∑
i∈Im

(∫
∞

0
h(s; y)

(
F (n)

i (y) − Fi (y)
)

dy
)2

16

≤ sup
s∈Eloc

m
∑
i∈Im

∫
∞

0
(h(s; y))2

(
F (n)

i (y) − Fi (y)
)2

dy 17

= m · sup
s∈Eloc

∫
∞

0
(h(s; y))2

1[∆x (n)⌊y/∆x (n)⌋,y](·)
2

L2
dy 18

≤ m∆x (n) sup
s∈Eloc

∫
∞

0
(h(s; y))2 dy → 0 19
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and by Assumption 3.4(i) also1

sup
s∈Eloc

∑
i∈Im

(∫
∞

0

(
h(n)(s; y) − h(s; y)

)
F (n)

i (y)dy
)2

2

≤ sup
s∈Eloc

m
∑
i∈Im

∫
∞

0

(
h(n)(s; y) − h(s; y)

)2
(

F (n)
i (y)

)2
dy3

≤ m2 sup
s∈Eloc

∫
∞

0

(
h(n)(s; y) − h(s; y)

)2
dy → 0. □4

Lemma 3.8. Given Assumptions 3.1, 3.3(i) and 3.4(i) we have for all m ∈ N,5

sup
s∈Eloc

∑
i∈Im

(
σ

(n)
i (s)

)2
≤ mM2 and sup

s∈Eloc

∑
i∈Im

⏐⏐⏐σ (n)
i (s) − σi (s)

⏐⏐⏐2 → 0.6

Proof. First, it follows from Assumption 3.1 and Eq. (19) that for all m ∈ N and s ∈ Eloc,7 ∑
i∈Im

(σi (s))2
≤

∑
i∈Im

∫
∞

0
g(s; y) [Fi (y)]2 dy ≤ mM2.8

Second, by Assumption 3.3(i) for all m ∈ N,

sup
s∈Eloc

∑
i∈Im

⏐⏐⏐⏐∫ ∞

0

(
g(n)(s; y) − g(s; y)

)
[Fi (y)]2 dy

⏐⏐⏐⏐
≤ m · sup

s∈Eloc

∫
∞

0

⏐⏐g(n)(s; y) − g(s; y)
⏐⏐ dy → 0

and it follows from Lemma 3.7 that for all m ∈ N,9

∆t (n) sup
s∈E

∑
i∈Im

(
µ

(n)
i (s)

)2
→ 0.10

Next fix m ∈ N and let ε > 0. By Lemma 3.5 we find a finite subset J ⊂ Im such that for all11

n ∈ N and y ∈ R+,12 ∑
i∈Im\J

[
F (n)

i (y)
]2

≤
ε

4M2 and
∑

i∈Im\J

[Fi (y)]2
≤

ε

4M2 .13

Now we choose n0 = n0(ε, m) such that for all i ∈ N, y ∈ R+, and n ≥ n0,⏐⏐⏐⏐[F (n)
i (y)

]2
− [Fi (y)]2

⏐⏐⏐⏐ ≤ 2
⏐⏐⏐F (n)

i (y) − Fi (y)
⏐⏐⏐

≤ 2
1[∆x (n)⌊y/∆x (n)⌋,y]


L2

≤ 2
(
∆x (n))1/2

<
ε

2M2|J |
.

We deduce that for all n ≥ n0 and s ∈ Eloc,14 ∑
i∈Im

⏐⏐⏐⏐∫ ∞

0
g(n)(s; y)

([
F (n)

i (y)
]2

− [Fi (y)]2
)

dy
⏐⏐⏐⏐15

≤
ε

2M2

∫
∞

0
g(n)(s; y)dy +

∫
∞

0
g(n)(s; y)

∑
i∈J

⏐⏐⏐⏐[F (n)
i (y)

]2
− [Fi (y)]2

⏐⏐⏐⏐ dy16

<
ε

2
+

ε

2M2

∫
∞

0
g(n)(s; y)dy ≤ ε.17
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Therefore, we have, 1

lim
n→∞

sup
s∈Eloc

∑
i∈Im

⏐⏐⏐σ (n)
i (s) − σi (s)

⏐⏐⏐2 2

≤ lim
n→∞

sup
s∈Eloc

∑
i∈Im

⏐⏐⏐⏐(σ (n)
i (s)

)2
− (σi (s))2

⏐⏐⏐⏐ 3

≤ lim
n→∞

sup
s∈Eloc

∑
i∈Im

⏐⏐⏐⏐(σ (n)
i (s)

)2
+ ∆t (n)

(
µ

(n)
i (s)

)2
− (σi (s))2

⏐⏐⏐⏐ 4

+ lim
n→∞

∆t (n) sup
s∈Eloc

∑
i∈Im

(
µ

(n)
i (s)

)2
= 0. □ 5

Lemma 3.9. Given Assumptions 2.3, 3.1, 3.3(i) and 3.4(i) we have for all i, j ∈ N, 6

sup
s∈Eloc

⏐⏐⏐ρ(n)
i j (s) − ρi j (s)

⏐⏐⏐ → 0. 7

Proof. One can show similarly to the proof of Lemma 3.8 that for every fixed i, j ∈ N, 8

ρ
(n)
i j (s)σ (n)

i (s)(n)σ j (s) =

∫
∞

0
g(n)(s; y)F (n)

i (y)F (n)
j (y)dy − ∆t (n)µ

(n)
i (s)µ(n)

j (s) 9

converges to ρi j (s)σi (s)σ j (s) uniformly in s ∈ Eloc. Since σ
(n)
i and σ

(n)
j converge to σi 10

respectively σ j uniformly by Lemma 3.8 and since both, σi and σ j are uniformly bounded from 11

below by Lemma 3.6, the claim follows. □ 12

3.3. Orthogonal decomposition 13

In order to identify the volume as the solution of some stochastic differential equation we need 14

to decorrelate the normalized volume increments. To this end, we introduce in this subsection an 15

orthogonal decomposition of the increments using the algorithm from Appendix A. We assume 16

that the probability spaces are rich enough to support i.i.d. Bernoulli random variables. 17

Assumption 3.10. For every n ∈ N there exists a field of i.i.d. random variables
(

U (n),i
k

)
k,i∈N

18

on
(
Ω (n),F (n),P(n)

)
, which are independent of S(n), such that 19

P
(

U (n),i
k = −1

)
= P

(
U (n),i

k = 1
)

=
1
2
. 20

In (20) we introduced the correlation coefficients ρ
(n)
i j (·), n, i, j ∈ N, j ≤ i . Now if we define 21

for any n, i ∈ N and k ≤ Tn the normalized random variables 22

Z (n),i
k :=

⎧⎪⎨⎪⎩
⟨
δv

(n)
k , fi

⟩
σ

(n)
i

(
S(n)

k−1

) : σ
(n)
i

(
S(n)

k−1

)
> 0(

∆t (n)
)1/2 U (n),i

k : σ
(n)
i

(
S(n)

k−1

)
= 0,

23

then by construction the conditional covariance between Z (n),i
k and Z (n), j

k is precisely ρi j

(
S(n)

k−1

)
. 24

Next we have to decorrelate the Z (n),i
k , i ∈ N, for all k ≤ Tn , so that we can express the 25

volume process V (n) as a discrete stochastic integral, cf. Eq. (22). This is achieved by the 26

algorithm in Appendix A, which provides for each n ∈ N an array
(

c(n)
i j (·)

)
j≤i

of measurable
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functions from Eloc to [−1, 1] together with an “inverse” array
(
α

(n)
i j (·)

)
j≤i

in terms of the Borel1

measurable correlation coefficients
(
ρ

(n)
i j (·)

)
j,i

, such that the following result holds true – being2

an immediate corollary of Lemma A.1 in Appendix A – for the random variables δW (n),i
k , i ∈ N,3

given for all k ≤ Tn, n ∈ N, by4

δW (n),1
k := Z (n),1

k

(
S(n)

k−1

)
5

and for i > 1,6

δW (n),i
k :=

⎧⎪⎨⎪⎩
1

c(n)
i i

(
S(n)

k−1

) (Z (n),i
k

(
S(n)

k−1

)
−
∑

j<i c(n)
i j

(
S(n)

k−1

)
δW (n), j

k

)
: c(n)

i i

(
S(n)

k−1

)
> 0(

∆t (n)
)1/2 U (n),i

k : c(n)
i i

(
S(n)

k−1

)
= 0.

(21)7

Corollary 3.11. Let Assumptions 2.3, 3.1 and 3.10 be satisfied. Then for all n, i ∈ N and8

k = 1, . . . , Tn ,9

Z (n),i
k

(
S(n)

k−1

)
=

∑
j≤i

c(n)
i j

(
S(n)

k−1

)
δW (n), j

k10

as well as

E
(

Z (n),i
k δW (n), j

k

⏐⏐⏐F (n)
k−1

)
= ∆t (n)c(n)

i j

(
S(n)

k−1

)
and

E
(
δW (n),i

k δW (n), j
k

⏐⏐⏐F (n)
k−1

)
= ∆t (n)δi j .

In order to see that the random variables δW (n),i
k , i ∈ N, allow us to represent the volume pro-11

cess as a stochastic integral, we define for all i, j, n ∈ N a function d (n)
i j : Eloc → [−M, M] via12

d (n)
i j (s) :=

{
σ

(n)
i (s)c(n)

i j (s) : j ≤ i
0 : j > i.

13

Note that for each m ∈ N, the matrix
(

d (n)
i j (s)

)
i, j≤m

is the triangular matrix that one14

obtains from the Cholesky factorization of the covariance matrix
(
σ

(n)
i (s)σ (n)

j (s)ρ(n)
i j (s)

)
i, j≤m

.15

Therefore, the functions
(

d (n)
i j (s)

)
i, j∈N

will serve as the volatility operator in the stochastic16

equation representing V (n). Indeed, Eqs. (18), (19) and Corollary 3.11 imply that almost surely17

V (n)(t, x) = V0(x) +

∑
i

fi (x)
⌊t/∆t (n)

⌋∑
k=1

⟨
δV (n)

k , fi

⟩
= V0(x) +

∑
i

fi (x)
⌊t/∆t (n)

⌋∑
k=1

[
µ

(n)
i

(
S(n)

k−1

)
∆t (n)

+ σ
(n)
i

(
S(n)

k−1

)
δZ (n),i

k

]
= V0(x) +

∑
i

fi (x)
⌊t/∆t (n)

⌋∑
k=1

⎡⎣µ
(n)
i

(
S(n)

k−1

)
∆t (n)

+ σ
(n)
i

(
S(n)

k−1

)∑
j≤i

c(n)
i j

(
S(n)

k−1

)
δW (n), j

k

⎤⎦

(22)18
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The convergence of the drift has already been established. In the following two subsections we 1

prove the convergence of the volatility operator and the martingale driving the SDE. 2

3.4. Convergence of the volatility operator 3

In this section we prove convergence of the functions c(n)
i j (·) and d (n)

i j (·). As a byproduct we 4

obtain a key estimate for the functions α
(n)
i j (·). This estimate allows, for instance, to verify that the 5

random variables δW (n),i
k , k ∈ N, satisfy the Lindeberg condition in the proof of Theorem 3.16. 6

Lemma 3.12. Suppose that Assumptions 2.3, 3.1, 3.3(i) and 3.4(i) are satisfied. Then there exist 7

for every i ∈ N and j ≤ i functions ci j , αi j : Eloc → R such that 8

sup
s∈Eloc

⏐⏐⏐c(n)
i j (s) − ci j (s)

⏐⏐⏐ → 0 and sup
s∈Eloc

⏐⏐⏐α(n)
i j (s) − αi j (s)

⏐⏐⏐ → 0. 9

Moreover, for all i ∈ N and j ≤ i , 10

inf
s∈Eloc

ci i (s) > 0 and sup
s∈Eloc

⏐⏐αi j (s)
⏐⏐ < ∞. 11

Proof. The claim is proven by induction on i . Clearly, for i = 1 we have c11 ≡ 1 ≡ α11. Now 12

assume the claim is true for all functions c(n)
jl , α

(n)
jl with l ≤ j ≤ i − 1. Especially, this implies 13

that for all j < i and for n large enough we have infs∈Eloc c(n)
j j (s) > 0 and hence 14

c(n)
i j (s) =

1

c(n)
j j (s)

⎛⎝ρ
(n)
i j (s) −

∑
l< j

c(n)
il (s)c(n)

jl (s)

⎞⎠ . 15

By iterative reasoning from j = 1 to j = i − 1 we see that this term converges uniformly 16

in s ∈ Eloc to some function ci j (defined via a similar recursion scheme) due to the induction 17

hypothesis and Lemma 3.9. The same is then true for 18

c(n)
i i (s) =

⎛⎝1 −

∑
j<i

(
c(n)

i j (s)
)2

⎞⎠1/2

. 19

Next we have to show that the limit satisfies infs∈Eloc ci i (s) > 0. First, note that by the induction 20

hypothesis for large enough n, c(n)
j j (s) > 0 for all j < i and hence by Eq. (A.2), 21

Z (n),i (s) −

∑
j<i

c(n)
i j (s) W (n), j (s) = Z (n),i (s) −

∑
j<i

c(n)
i j (s)

∑
l≤ j

α
(n)
jl (s) Z (n),l(s) 22

= Z (n),i (s) −

∑
l<i

Z (n),l(s)
∑

l≤ j<i

c(n)
i j (s) α

(n)
jl (s) . 23

We set for all l < i , 24

β
(n)
l (s) :=

{
−1

σ
(n)
l (s)

∑
l≤ j<i c(n)

i j (s)α(n)
jl (s) : if σ

(n)
l (s) > 0

0 : else
25

as well as 26

β
(n)
i (s) :=

{ 1
σ

(n)
i (s)

: if σ
(n)
i (s) > 0

0 : else.
27
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By the induction hypothesis, Lemmas 3.6 and 3.8 we know that for every j ≤ i there exists a1

bounded function β j : E → R such that2

sup
s∈Eloc

⏐⏐⏐β (n)
j (s) − β j (s)

⏐⏐⏐ → 0. (23)3

But for n large enough we have by definition for all s ∈ Eloc,4

c(n)
i i (s)W (n),i (s)5

= Z (n),i (s) −

∑
j<i

c(n)
i j (s) W (n), j (s)6

= ∆v(n)

⟨
X (n)

1 (s)
⌊·/∆x (n)

⌋∑
j=0

1
I (n)

(
X (n)

2 (s)
) (x (n)

j

)
,
∑
l≤i

β
(n)
l (s) fl

⟩
− ∆t (n)

∑
l≤i

β
(n)
l (s) µ

(n)
l (s)7

and then also8

∆t (n)
(

c(n)
i i (s)

)2
= E

(
c(n)

i i (s)W (n),i (s)
)2

9

= ∆t (n)
∫

∞

0
g(n)(s; y)

[∑
l≤i

β
(n)
l (s)F (n)

l (y)

]2

dy −

[
∆t (n)

∑
l≤i

β
(n)
l (s)µ(n)

l (s)

]2

.10

Clearly, (23) implies that supn∈N sups∈Eloc

⏐⏐⏐β (n)
l (s)

⏐⏐⏐ =: C < ∞ for all l ≤ i . Hence, the last term11

on the right hand side in the above equation converges to zero uniformly in s ∈ Eloc using that12

supn∈N sups∈Eloc

⏐⏐⏐µ(n)
l (s)

⏐⏐⏐ < ∞ for all l ≤ i by Lemma 3.7. Moreover,13

sup
s∈Eloc

⏐⏐⏐⏐⏐⏐
∫

∞

0

(
g(n)(s; y) − g(s; y)

) [∑
l≤i

β
(n)
l (s)F (n)

l (y)

]2

dy

⏐⏐⏐⏐⏐⏐14

≤ C2i2
· sup

s∈Eloc

∫
∞

0

⏐⏐g(n)(s; y) − g(s; y)
⏐⏐ dy → 015

and by dominated convergence we deduce that, uniformly in s ∈ Eloc,16 ∫
∞

0
g(s; y)

[∑
l≤i

β
(n)
l (s)F (n)

l (y)

]2

dy →

∫
∞

0
g(s; y)

[∑
l≤i

βl(s)Fl(y)

]2

dy.17

Therefore,18

ci i (s) =

∫
∞

0
g(s; y)

[∑
l≤i

βl(s)Fl(y)

]2

dy. (24)19

Now suppose that infs∈Eloc ci i (s) = 0. Since g(·; y) is bounded away from zero for all y ∈ R+ by20

Assumption 3.3(i), we deduce from (24) that there must exist an Eloc-valued sequence (sn) such21

that22 ∑
l≤i

βl(sn)Fl(y) → 0 for almost all y ∈ R+.23
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Since sups∈Eloc
|βl(s)| < ∞ for all l ≤ i , this implies that there exists some vector b ∈ Ri such 1

that 2∑
l≤i

bl Fl(y) = 0 for almost all y ∈ R+ 3

and thus also 4

H (y) :=

∑
l≤i

bl fl(y) = 0 for almost all y ∈ R+. 5

However, 6

0 = ∥H∥
2
L2 =

∑
l≤i

b2
l 7

implies that bl = 0 for all l ≤ i and hence we must have βl(sn) → 0 for all l ≤ i . But for l = i 8

this gives a contradiction, since 9

sup
s∈Eloc

(σi (s))2
= sup

s∈Eloc

∫
∞

0
g(s; y) [Fi (y)]2 dy ≤ M2 < ∞. 10

Hence, σi is bounded and thus βi is bounded away from 0. This proves that infs∈Eloc ci i (s) > 0. 11

Now the convergence of the α
(n)
i j , j ≤ i, to some αi j satisfying sups∈Eloc

⏐⏐αi j (s)
⏐⏐ < ∞ follows 12

from the definition of the α
(n)
i j by backwards iteration from j = i to j = 1. □ 13

The following remark is key for our subsequent analysis. 14

Remark 3.13. If Assumptions 2.3, 3.1, 3.3(i) and 3.4(i) are satisfied, then there exists according 15

to Lemmata 3.6, 3.8, and 3.12 for every m ∈ N a constant qm < ∞ and an nm ∈ N such that for 16

all n ≥ nm and j ≤ i ≤ m, 17

sup
s∈Eloc

⏐⏐⏐α(n)
i j (s)

⏐⏐⏐
σ

(n)
j (s)

< qm . 18

Let us snow turn to the convergence of the volatility operator. Similarly, to the functions d (n)
i j 19

we set for all i, j ∈ N and s ∈ Eloc, 20

di j (s) :=

{
σi (s)ci j (s) : j ≤ i
0 : j > i.

21

Lemma 3.14. Given Assumptions 2.3, 3.1, 3.3(i) and 3.4(i) we have for all m ∈ N, 22

sup
s∈Eloc

∑
i∈Im

∑
j≤i

(
d (n)

i j (s) − di j (s)
)2

→ 0. 23

Proof. Fix m ∈ N and let ε > 0. According to Lemma 3.5 we can a finite subset J ⊂ Im such 24

that for all n ∈ N and y ∈ R+, 25∑
i∈Im\J

(
F (n)

i (y)
)2

≤
ε

8M2 . 26
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Hence for any n ∈ N and s ∈ Eloc,1 ∑
i∈Im\J

(
σ

(n)
i (s)

)2∑
j≤i

(
c(n)

i j (s) − ci j (s)
)2

2

≤ 2
∑

i∈Im\J

(
σ

(n)
i (s)

)2∑
j≤i

[(
c(n)

i j (s)
)2

+
(
ci j (s)

)2
]

3

= 4
∑

i∈Im\J

(
σ

(n)
i (s)

)2
4

≤ 4
∑

i∈Im\J

∫
∞

0
g(n)(s; y)dx

(
F (n)

i (y)
)2

dy ≤
ε

2
.5

According to Lemma 3.12 there exists for all i, j ∈ N an ni j = ni j (ε, m) such that for any6

n ≥ ni j ,7

sup
s∈Eloc

⏐⏐⏐c(n)
i j (s) − ci j (s)

⏐⏐⏐2 <
ε

2|J |M2m
.8

Hence, for any n ≥ n0 := max{ni j : j ≤ i, i ∈ J } and s ∈ Eloc,9 ∑
i∈Im

(
σ

(n)
i (s)

)2∑
j≤i

(
c(n)

i j (s) − ci j (s)
)2

≤
ε

2
+

∑
i∈J

(
σ

(n)
i (s)

)2∑
j≤i

(
c(n)

i j (s) − ci j (s)
)2

10

<
ε

2
+

∑
i∈J

(
σ

(n)
i (s)

)2 ε

2M2m
≤ ε.11

Now the claim follows from the above and Lemma 3.8 because∑
i∈Im

∑
j≤i

(
d (n)

i j (s) − di j (s)
)2

≤ 2
∑
i∈Im

(
σ

(n)
i (s)

)2∑
j≤i

(
c(n)

i j (s) − ci j (s)
)2

+ 2
∑
i∈Im

(
σ

(n)
i (s) − σi (s)

)2
. □

3.5. Convergence of the martingale to a Gaussian random measure12

We are now going to prove the convergence of the martingale driving the SDE in (22) to a13

cylindrical Brownian motion on L2(R+). We start with the following simple lemma.14

Lemma 3.15. Let Assumptions 2.3, 3.1 and 3.10 be satisfied. Then there exists for any15

ϕ ∈ L2(R+) and ε > 0 an m0 ∈ N such that for all m2 ≥ m1 ≥ m0, n ∈ N, and t ∈ [0, T ],16

E

⎛⎝⌊t/∆t (n)
⌋∑

k=1

m2∑
i=m1+1

δW (n),i
k ⟨ϕ, fi ⟩

⎞⎠2

< ε.17

Proof. We choose18

m0 := inf

{
m ∈ N :

∞∑
i=m+1

⟨ϕ, fi ⟩
2 <

ε

T

}
.19
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Then due to Corollary 3.11 we have for all n ∈ N and t ∈ [0, T ],

E

⎛⎝⌊t/∆t (n)
⌋∑

k=1

m2∑
i=m1+1

δW (n),i
k ⟨ϕ, fi ⟩

⎞⎠2

=

⌊t/∆t (n)
⌋∑

k=1

m2∑
i=m1+1

∆t (n)
⟨ϕ, fi ⟩

2

≤ T
m2∑

i=m1+1

⟨ϕ, fi ⟩
2 < ε. □

The preceding lemma allows us to define for each n ∈ N a so called L2(R+)#-semimartingale 1

(for the definition see [19]): for any t ∈ [0, T ] and ϕ ∈ L2(R+) we set 2

W (n)(ϕ, t) :=

⌊t/∆t (n)
⌋∑

k=1

∑
i

δW (n),i
k ⟨ϕ, fi ⟩ , (25) 3

where the above series is defined as the L2
(
P(n)

)
-limit. 4

Theorem 3.16. Suppose that Assumptions 2.3, 3.1, 3.3(i), 3.4(i) and 3.10 are satisfied. Let l ∈ N 5

and take any ϕ1, . . . , ϕl ∈ L2(R+). Then as n → ∞, 6(
W (n)(ϕ1, ·), . . . , W (n)(ϕl , ·)

)
⇒ (W (ϕ1, ·), . . . , W (ϕl , ·)) 7

in D
(
[0, T ];Rl

)
, where W is a cylindrical Brownian motion on L2(R+). Thus, in the terminology 8

of [19], W is a centred Gaussian L2(R+)#-semimartingale with covariance structure 9

E [W (ϕ1, t)W (ϕ2, s)] = (t ∧ s)⟨ϕ1, ϕ2⟩ 10

for ϕ1, ϕ2 ∈ L2(R+) and s, t ∈ [0, T ]. 11

Proof. For any ϕ ∈ L2(R+) we define the approximating sequence 12

ϕm
:=

m∑
i=1

⟨ϕ, fi ⟩ fi . 13

Take ϕ1, . . . , ϕl ∈ L2(R+) for some l ∈ N. We will show that
(
W (n)(ϕ1, ·), . . . , W (n)(ϕl , ·)

)
14

converges to a centred Gaussian process with covariance function 15

E
[
W (ϕi , t)W (ϕ j , s)

]
= (t ∧ s)⟨ϕi , ϕ j ⟩ 16

for any 1 ≤ i, j ≤ l and s, t ∈ [0, T ]. To this end, first note that for all n ∈ N and for all k ≤ Tn , 17

E
(

W (n)
(
ϕi , t (n)

k

)⏐⏐⏐F (n)
k−1

)
= lim

m→∞
E
(

W (n)
(
ϕm

i , t (n)
k

)⏐⏐⏐F (n)
k−1

)
18

= lim
m→∞

W (n)
(
ϕm

i , t (n)
k−1

)
19

= W (n)
(
ϕ, t (n)

k−1

)
. 20

Secondly, for all n ∈ N and k1, k2 ∈ {1, . . . , Tn} denoting 21

δW (n)
(
ϕi , t (n)

k

)
:= W (n)

(
ϕi , t (n)

k

)
− W (n)

(
ϕi , t (n)

k−1

)
, 22
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we have1

E
(
δW (n)

(
ϕi , t (n)

k

)
δW (n)

(
ϕ j , t (n)

k

)⏐⏐⏐F (n)
k−1

)
2

= lim
m→∞

E

⎛⎝ m∑
g,h=1

δW (n),g
k ⟨ϕi , fg⟩δW (n),h

k ⟨ϕ j , fh⟩

⏐⏐⏐⏐⏐⏐F (n)
k−1

⎞⎠3

= lim
m→∞

∆t (n)
m∑

h=1

⟨ϕi , fh⟩⟨ϕ j , fh⟩ = ∆t (n)
⟨ϕi , ϕ j ⟩4

and therefore for all 1 ≤ i, j ≤ l and t ∈ [0, T ],5

⌊t/∆t (n)
⌋∑

k=1

E
(
δW (n)

(
ϕi , t (n)

k

)
δW (n)

(
ϕ j , t (n)

k

)⏐⏐⏐F (n)
k−1

)
→ t⟨ϕi , ϕ j ⟩ a.s.6

In order to apply the functional convergence theorem for martingale difference arrays it remains7

to check that the conditional Lindeberg condition is satisfied. For ease of notation we will assume8

that l = 2 in the following, noting that the general case follows by similar arguments.9

Let us fix some ε > 0 and t ∈ [0, T ]. We want to show that for any δ > 0 there exists an10

n0 = n0(ε, δ) such that for all n ≥ n0,11

⌊t/∆t (n)
⌋∑

k=1

E

([
δW (n)

(
ϕ1, t (n)

k

)]2
1{[

δW (n)
(
ϕ1,t (n)

k

)]2
+

[
δW (n)

(
ϕ2,t (n)

k

)]2
>ε

}
⏐⏐⏐⏐⏐F (n)

k−1

)
< δ a.s.12

To this end we first apply Lemma 3.15 and choose m = m(δ) such that for all n ∈ N,13

⌊t/∆t (n)
⌋∑

k=1

E
([

δW (n)
(
ϕ1 − ϕm

1 , t (n)
k

)]2
⏐⏐⏐⏐F (n)

k−1

)
=

⌊t/∆t (n)
⌋∑

k=1

∆t (n)
∞∑

i=m+1

⟨ϕ1, fi ⟩
2 <

δ

4
.14

Hence,15

⌊t/∆t (n)
⌋∑

k=1

E

⎛⎝[δW (n)
(
ϕ1, t (n)

k

)]2
1{[

δW (n)
(
ϕ1,t

(n)
k

)]2
+

[
δW (n)

(
ϕ2,t

(n)
k

)]2
>ε

}
⏐⏐⏐⏐⏐⏐F (n)

k−1

⎞⎠16

<
δ

2
+ 2

⌊t/∆t (n)
⌋∑

k=1

E

⎛⎝[ m∑
i=1

δW (n),i
k ⟨ϕ1, fi ⟩

]2

1{[
δW (n)

(
ϕ1,t

(n)
k

)]2
+

[
δW (n)

(
ϕ2,t

(n)
k

)]2
>ε

}
⏐⏐⏐⏐⏐⏐F (n)

k−1

⎞⎠ .17

According to Remark 3.13 there exists an nm ∈ N and a constant qm < ∞ such that for all18

n ≥ nm ,19

m∑
i=1

(
δW (n),i

k

)2
20

=

m∑
i=1

⎡⎢⎣1{c(n)
i i

(
S(n)

k−1

)
>0
}
⎛⎝∑

j≤i

α
(n)
i j

(
S(n)

k−1

)
Z (n), j

k

⎞⎠2

+ 1{
c(n)

i i

(
S(n)

k−1

)
=0
}∆t (n)

(
U (n),i

k

)2

⎤⎥⎦21

≤

m∑
i=1

⎡⎣1{
c(n)

i i

(
S(n)

k−1

)
>0
}2i

∑
j≤i

(
α

(n)
i j

(
S(n)

k−1

)
Z (n), j

k

)2
+ 1{

c(n)
i i

(
S(n)

k−1

)
=0
}∆t (n)

⎤⎦22
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=

m∑
i=1

⎡⎢⎣1{c(n)
i i

(
S(n)

k−1

)
>0
}2i

∑
j≤i

⎛⎝α
(n)
i j

(
S(n)

k−1

)
σ

(n)
j

(
S(n)

k−1

)
⎞⎠2 ⟨

δv
(n)
k , f j

⟩2
+ 1{

c(n)
i i

(
S(n)

k−1

)
=0
}∆t (n)

⎤⎥⎦ 1

≤

m∑
i=1

[
2mq2

m

δv(n)
k 1[0,m]

2

L2
+ ∆t (n)

]
(16)
≤ ∆t (n) [m2q2

m2m+1 M2
+ m

]
≤ dm

n a.s. 2

with (dm
n )n∈N being a deterministic sequence satisfying dm

n → 0 as n → ∞. We choose 3

n0 = n0(δ, ε) = n0(m(δ), δ, ε) := min
{
n ∈ N : 8T ∥ϕ1∥

2
L2 dm

n

(
∥ϕ1∥

2
L2 + ∥ϕ2∥

2
L2

)
< δε

}
. 4

Then for all n ≥ nm by the Cauchy–Schwarz inequality, 5

E

⎛⎝[ m∑
i=1

δW (n),i
k ⟨ϕ1, fi ⟩

]2

1{[
δW (n)

(
ϕ1,t (n)

k

)]2
+

[
δW (n)

(
ϕ2,t (n)

k

)]2
>ε

}
⏐⏐⏐⏐⏐⏐F (n)

k−1

⎞⎠ 6

≤ ∥ϕ1∥
2
L2 · E

(
m∑

i=1

(
δW (n),i

k

)2
(
1{[

δW (n)
(
ϕ1,t (n)

k

)]2
> ε

2

} + 1{[
δW (n)

(
ϕ2,t (n)

k

)]2
> ε

2

}
)⏐⏐⏐⏐⏐F (n)

k−1

)
7

≤
2 ∥ϕ1∥

2
L2 dm

n

ε
· E
([

δW (n)
(
ϕ1, t (n)

k

)]2
+

[
δW (n)

(
ϕ2, t (n)

k

)]2
⏐⏐⏐⏐F (n)

k−1

)
8

=
2 ∥ϕ1∥

2
L2 dm

n

ε
∆t (n) (

∥ϕ1∥
2
L2 + ∥ϕ2∥

2
L2

)
<

δ∆t (n)

4T
a.s. 9

Hence, the conditional Lindeberg condition is satisfied and the functional central limit theorem 10

for martingale difference arrays (cf. Theorem 3.33 in [14]) implies that 11(
W (n)(ϕ1, ·), . . . , W (n)(ϕl , ·)

)
⇒ (W (ϕ1, ·), . . . , W (ϕl , ·)) in D([0, T ];Rl), 12

where (W (ϕ1, ·), . . . , W (ϕl , ·)) is a centred Gaussian process with covariance function 13

E
[
W (ϕi , t)W (ϕ j , s)

]
= (t ∧ s)⟨ϕi , ϕ j ⟩ 14

for any 1 ≤ i, j ≤ l and s, t ∈ [0, T ]. □ 15

Remark 3.17. The process W is not only an L2(R+)#-semimartingale in the sense of [19], but 16

can also be understood as a martingale random measure: If A := {A ⊂ B(R+) : A bounded}, 17

we can define for any A ∈ A and t ∈ [0, T ], M(A, t) := W (1A, t). Then M is indeed a Gaussian 18

martingale random measure indexed by A × [0, T ]. 19

4. The state dynamics as an infinite dimensional SDE 20

In this section we show that the dynamics of S(n) can be written as an infinite dimensional 21

SDE and prove the convergence of the integrands and integrators. Our concept of integration 22

follows [19], to which we refer for any unknown terminology used in the following. 23

For each n ∈ N we define the Eloc-valued stochastic process
(
S(n)(t)

)
t∈[0,T ] as the piecewise 24

constant interpolation of the
(

S(n)
k

)
k=0,...,Tn

, i.e. 25

S(n)(t) := S(n)
k , if t ∈

[
t (n)
k , t (n)

k+1

)
. 26

Similarly, we set 27

B(n)(t) := B(n)
k , V (n)(t, x) := V (n)

k (x), if t (n)
k ≤ t < t (n)

k+1, x ∈ R+. 28
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In view of Eqs. (11) and (22) we have that1

B(n)(t) = B(n)
0 +

⌊t/∆t (n)
⌋∑

k=1

[
p(n)

(
S(n)

k−1

)
∆t (n)

+ r (n)
(

S(n)
k−1

)
δZ (n)

k

]

V (n)(t, x) = V (n)
0 (x) +

∑
i

fi (x)
⌊t/∆t (n)

⌋∑
k=1

⎡⎣µ
(n)
i

(
S(n)

k−1

)
∆t (n)

+ σ
(n)
i

(
S(n)

k−1

)∑
j≤i

c(n)
i j

(
S(n)

k−1

)
δW (n), j

k

⎤⎦ .

(26)2

In terms of the processes Z (n) and W (n) introduced in (10) and (25), respectively, we can3

define a sequence of L2(R+)#-semimartingales Y (n) by putting, for any n ∈ N, t ∈ [0, T ], and4

ϕ ∈ L2(R+),5

Y (n)(ϕ, t) :=

(
Z (n)

k , W (n)(ϕ, t), t (n)
k

)
, if t ∈

[
t (n)
k , t (n)

k+1

)
.6

The stochastic integral with respect to Y (n) is introduced in Appendix B. If we define, for any7

n ∈ N, the coefficient functions G(n)
: Eloc → Êloc (see Appendix B for the definition of the8

space Êloc) via9

G(n)
:=
(
G(n),1, 0, G(n),3, 0, G(n),5, G(n),6)

10

with

G(n),1(s) := r (n) (s) , G(n),5(s; x, y) :=

∑
i

∑
j≤i

d (n)
i j (s) fi (x) f j (y),

G(n),3(s) := p(n) (s) , G(n),6(s; x) :=

∑
i

µ
(n)
i (s) fi (x) = µ(n) (s; x) ,

then the general integration theory guarantees that the integral11 ∫ t

0
G(n) (S(n)(u−)

)
dY (n)(u), t ∈ [0, T ],12

is well-defined as an Eloc-valued stochastic process, and (26) yields the following representation13

of the state process:14

S(n)(t) = S(n)
0 +

∫ t

0
G(n) (S(n)(u−)

)
dY (n)(u), t ∈ [0, T ]. (27)15

In the next subsection we are going to prove the convergence of the integrators and integrands.16

4.1. Convergence of the integrator and integrand17

The following theorem shows that the sequence Y (n) converges to the L2(R+)#-semimartingale18

Y (ϕ, t) := (Z (t), W (ϕ, t), t) , ϕ ∈ L2(R+), t ∈ [0, T ], (28)19

where W is a cylindrical Brownian motion on L2(R+), and Z is an independent standard20

Brownian motion.21
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Theorem 4.1. Let Assumptions 2.1, 2.3, 3.1, 3.3(i), 3.4(i) and 3.10 be satisfied. Then, for every 1

k ∈ N and ϕ1, . . . , ϕk ∈ L2(R+), 2(
Y (n)(ϕ1, ·), . . . , Y (n)(ϕk, ·)

)
⇒ (Y (ϕ1, ·), . . . , Y (ϕk, ·)) 3

in D
(
[0, T ];R3k

)
, where Y is defined in (28). 4

Proof. The joint convergence follows directly from Theorems 2.5 and 3.16 because the processes 5

Z (n), n ∈ N, and W (n)(ϕ, ·), n ∈ N, are C-tight for any ϕ ∈ L2(R). However, to derive the 6

joint finite dimensional distributions (and especially to check the independence of the resulting 7

cylindrical and standard Brownian motion), we have to show two more things: first, we will prove 8

that for all t ∈ [0, T ] and ϕ ∈ L2(R+), 9

⌊t/∆t (n)
⌋∑

k=1

E
(
δW (n)

(
ϕ, t (n)

k

)
δZ (n)

k

⏐⏐⏐F (n)
k−1

)
→ 0 a.s. 10

and second, we will show that for all ε > 0, t ∈ [0, T ], and ϕ ∈ L2(R+),

⌊t/∆t (n)
⌋∑

k=1

E

(([
δW (n)

(
ϕ, t (n)

k

)]2
+

[
δZ (n)

k

]2
)
1{[

δW (n)
(
ϕ,t (n)

k

)]2
+

[
δZ (n)

k

]2
>ε

}
⏐⏐⏐⏐⏐F (n)

k−1

)
→ 0 a.s.

To this end, observe that for any n, i ∈ N and k ≤ Tn , 11

E
(⟨

δv
(n)
k , fi

⟩
δZ (n)

k

⏐⏐⏐F (n)
k−1

)
= −

(
∆t (n))2

µ
(n)
i

(
S(n)

k−1

)
p(n)

(
S(n)

k−1

)
. 12

Let δ > 0. We choose m = m(δ) such that for all n ∈ N and t ∈ [0, T ], 13

⌊t/∆t (n)
⌋∑

k=1

⏐⏐⏐⏐⏐E
(

∞∑
i=m+1

⟨ϕ, fi ⟩δW (n),i
k δZ (n)

k

⏐⏐⏐⏐⏐F (n)
k−1

)⏐⏐⏐⏐⏐ 14

≤

⌊t/∆t (n)
⌋∑

k=1

⎛⎝E
[(

δZ (n)
k

)2
⏐⏐⏐⏐F (n)

k−1

]
E

⎡⎣( ∞∑
i=m+1

⟨ϕ, fi ⟩δW (n),i
k

)2
⏐⏐⏐⏐⏐⏐F (n)

k−1

⎤⎦⎞⎠1/2

15

≤

⌊t/∆t (n)
⌋∑

k=1

∆t (n)

(
∞∑

i=m+1

⟨ϕ, fi ⟩
2

)1/2

<
δ

2
a.s. 16

Moreover for large enough n and all k ≤ Tn , 17

E

[
m∑

i=1

⟨ϕ, fi ⟩δW (n),i
k δZ (n)

k

⏐⏐⏐⏐⏐F (n)
k−1

]
18

=

m∑
i=1

E

⎡⎣ ⟨ϕ, fi ⟩
∑
j≤i

α
(n)
i j

(
S(n)

k−1

)
σ

(n)
j

(
S(n)

k−1

) ⟨δv(n)
k , f j

⟩
δZ (n)

k

⏐⏐⏐⏐⏐⏐F (n)
k−1

⎤⎦ 19

= −
(
∆t (n))2

p(n)
(

S(n)
k−1

) m∑
i=1

⟨ϕ, fi ⟩
∑
j≤i

α
(n)
i j

(
S(n)

k−1

)
σ

(n)
j

(
S(n)

k−1

)µ
(n)
j

(
S(n)

k−1

)
. 20
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According to Lemma 3.7 and Remark 3.13 there exist an n0 = n0(m) and a constant Cm < ∞1

such that for all n ≥ n0,2

sup
s∈Eloc

⏐⏐⏐⏐⏐⏐
m∑

i=1

⟨ϕ, fi ⟩
∑
j≤i

µ
(n)
j (s)

α
(n)
i j (s)

σ
(n)
j (s)

⏐⏐⏐⏐⏐⏐ ≤ Cm

m∑
i=1

|⟨ϕ, fi ⟩| ≤ mCm ∥ϕ∥L2 < ∞.3

Hence for all n ≥ n0,4

⌊t/∆t (n)
⌋∑

k=1

⏐⏐⏐⏐⏐E
(

m∑
i=1

⟨ϕ, fi ⟩δW (n),i
k Z (n)

k

⏐⏐⏐⏐⏐F (n)
k−1

)⏐⏐⏐⏐⏐ ≤

⌊t/∆t (n)
⌋∑

k=1

(
∆t (n))2

⏐⏐⏐p(n)
(

S(n)
k−1

)⏐⏐⏐mCm ∥ϕ∥L25

(13)
≤ T∆x (n)mCm ∥ϕ∥L2 <

δ

2
a.s.6

This proves that for any δ > 0 there exists n0 = n0(δ) such that for all n ≥ n0,7 ⏐⏐⏐⏐⏐⏐
⌊t/∆t (n)

⌋∑
k=1

E
(
δW (n)

(
ϕ, t (n)

k

)
δZ (n)

k

⏐⏐⏐F (n)
k−1

)⏐⏐⏐⏐⏐⏐ < δ a.s.8

Next, using the estimate in Eq. (14) we have almost surely9

⌊t/∆t (n)
⌋∑

k=1

E

([
δZ (n)

k

]2
1{[

δW (n)
(
ϕ,t (n)

k

)]2
+

[
δZ (n)

k

]2
>ε

}
⏐⏐⏐⏐⏐F (n)

k−1

)
10

≤ cn

⌊t/∆t (n)
⌋∑

k=1

P
([

δW (n)
(
ϕ, t (n)

k

)]2
>

ε

2

⏐⏐⏐⏐F (n)
k−1

)
+ P

([
δZ (n)

k

]2
>

ε

2

⏐⏐⏐⏐F (n)
k−1

)
11

≤
2cn

ε

⌊t/∆t (n)
⌋∑

k=1

E
([

δW (n)
(
ϕ, t (n)

k

)]2
+

[
δZ (n)

k

]2
⏐⏐⏐⏐F (n)

k−1

)
12

≤
2cn

ε

⌊t/∆t (n)
⌋∑

k=1

∆t (n) (
∥ϕ∥

2
L2 + 1

)
→ 0.13

Furthermore,14

E

([
δW (n)

(
ϕ, t (n)

k

)]2
1{[

δW (n)
(
ϕ,t (n)

k

)]2
+

[
δZ (n)

k

]2
>ε

}
⏐⏐⏐⏐⏐F (n)

k−1

)
15

≤ 2 · E

⎛⎝[ ∞∑
i=m+1

δW (n),i
k ⟨ϕ, fi ⟩

]2

16

+

[
m∑

i=1

δW (n),i
k ⟨ϕ, fi ⟩

]2

1{[
δW (n)

(
ϕ,t (n)

k

)]2
+

[
δZ (n)

k

]2
>ε

}
⏐⏐⏐⏐⏐⏐F (n)

k−1

⎞⎠17

≤ 2∆t (n)
∞∑

i=m+1

⟨ϕ, fi ⟩
2
+ 2 ∥ϕ∥

2
L2 E

⎛⎝[ m∑
i=1

δW (n),i
k

]2

1{[
δW (n)

(
ϕ,t (n)

k

)]2
+

[
δZ (n)

k

]2
>ε

}
⏐⏐⏐⏐⏐⏐F (n)

k−1

⎞⎠18
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and by a similar reasoning as above 1

E

⎛⎝[ m∑
i=1

δW (n),i
k

]2

1{[
δW (n)

(
ϕ,t (n)

k

)]2
+

[
δZ (n)

k

]2
>ε

}
⏐⏐⏐⏐⏐⏐F (n)

k−1

⎞⎠ ≤
2dm

n

ε
∆t (n) (

∥ϕ∥
2
L2 + 1

)
. 2

Now for any δ > 0 we choose m = m(δ) and n0 = n0(m, δ, ε) = n0(δ, ε) such that for all 3

n ≥ n0, 4

∞∑
i=m+1

⟨ϕ, fi ⟩
2 <

δ

4T
and

2dm
n

ε
∥ϕ∥

2
L2

(
∥ϕ∥

2
L2 + 1

)
<

δ

4T
5

and therefore 6

⌊t/∆t (n)
⌋∑

k=1

E

([
δW (n)

(
ϕ, t (n)

k

)]2
1{[

δW (n)
(
ϕ,t (n)

k

)]2
+

[
δZ (n)

k

]2
>ε

}
⏐⏐⏐⏐⏐F (n)

k−1

)
< δ a.s. □ 7

Let us now turn to the integrands. The results of Section 3 suggest that the coefficient functions 8

G(n) converge in a local sense to 9

G =
(
G1, 0, G3, 0, G5, G6)

: Eloc → Êloc 10

with

G1(s) := r (s) , G5(s; x, y) :=

∑
i

∑
j≤i

di j (s) fi (x) f j (y),

G3(s) := p (s) , G6(s; x) :=

∑
i

µi (s) fi (x) = µ (s; x) .

In order to formulate the convergence result we define for every m ∈ N the projections of G5

and G6 on [0, m] as

G5,m(s; x, y) :=

∑
i∈Im

∑
j≤i

di j (s) fi (x) f j (y),

G6,m(s; x) :=

∑
i∈Im

µi (s) fi (x) = µ (s; x) ,

and set 11

Gm(s) :=
(
G1(s), 0, G3(s), 0, G5,m(s), G6,m(s)

)
, s ∈ Eloc. 12

Moreover, for all m ∈ N we define the space 13

Em :=
{
s =

(
b, v1[0,m]

)
: (b, v) ∈ Eloc

}
⊂ Eloc. 14

Next, we approximate G(n) by functions G(n)
m : Em → Ê, m ∈ N, given by 15

G(n)
m :=

(
G(n),1

m , 0, G(n),3
m , 0, G(n),5

m , G(n),6
m

)
, 16

where for all s ∈ Em ⊂ Eloc and sm := (s ∧ m, v),

G(n),1
m (s) := p(n) (sm) , G(n),5

m (s; x, y) :=

∑
i∈Im

∑
j≤i

d (n)
i j (s) fi (x) f j (y),

G(n),3
m (s) := r (n) (sm) , G(n),6

m (s; x, y) :=

∑
i∈Im

µ
(n)
i (s) fi (x).
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Analogously, we define for each m ∈ N a function Gm : Em → Ê via a similar modification1

of G, i.e. we have2

Gm(s) := Gm (sm) , s ∈ Em .3

We note that for s = (b, v) ∈ Em with b ≤ m, Gm(s) = Gm(s), due to Assumptions 2.6(ii),4

3.3(ii) and 3.4(ii).5

Theorem 4.2. Let Assumptions 2.3, 2.6, 3.1, 3.3 and 3.4 hold. Then for any m ∈ N,6

sup
s∈Em

G(n)
m (s) − Gm(s)


Ê → 0.7

Proof. By Assumption 2.6, Lemmas 3.7 and 3.14 we have for all s = (b, v) ∈ Em ,G(n)
m (s) − Gm(s)


Ê =

⏐⏐r (n) (sm) − r (sm)
⏐⏐+ ⏐⏐p(n) (sm) − p (sm)

⏐⏐
+

⎛⎝∑
i∈Im

(
µ

(n)
i (s) − µi (s)

)2

⎞⎠1/2

+

⎛⎝∑
i∈Im

∑
j≤i

(
d (n)

i j (s) − di j (s)
)2

⎞⎠1/2

. □

4.2. Compactness of the integrands8

In this section it is shown that for each m ∈ N the G(n)
m , n ∈ N, satisfy a uniform compactness9

condition from which we shall later deduce relative compactness of the price-volume process and10

hence the existence of accumulation points.11

Theorem 4.3. Given Assumptions 2.3, 3.1 and 3.4(i), there exists for every m ∈ N a compact12

set Km ⊂ Ê such that for all n ∈ N and s ∈ Em ,13

G(n)
m (s) ∈ Km .14

Since G(n),1
m and G(n),3

m are uniformly bounded by Assumption 2.6(i), we only have to15

care about the last two components of G(n)
m . Thus, Theorem 4.3 will directly follow from16

Lemmata 4.4 and 4.5.17

Lemma 4.4. Let Assumptions 2.3 and 3.1 be satisfied. Then for each m ∈ N the set18

K 5
m :=

{
G(n),5

m (s) : s ∈ Em, n ∈ N
}

⊂ L2 (R2
+

)
19

t is relatively compact.20

Proof. First note that for all s, s̃ ∈ Em we have21 G(n),5
m (s) − G(n),5

m (̃s)
2

L2
(
R2

+

)
=

∑
i∈Im

∑
j≤i

(
d (n)

i j (s) − d (n)
i j (̃s)

)2
.22

Now consider a sequence
(

G(nk ),5
m (sk)

)
k∈N

⊂ K 5
m and set ak := 2−k, k ∈ N. W.l.o.g. we may23

assume that sk ∈ Em for all k ∈ N. As in the proof of Lemma 3.14 one can show that there exists24
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a finite index set J ⊂ Im such that for all n ∈ N and s ∈ Eloc, 1∑
i∈Im\J

(
σ

(n)
i (s)

)2
<

a1

8
. 2

For any (i, j) ∈ N2,
(

d (nk )
i j (sk)

)
k∈N

is a real-valued sequence, bounded by M . Since J is a finite 3

set, there exists a subsequence (kq ) ⊂ N and a q0 = q0(a1) ∈ N such that for each pair (i, j) with 4

i ∈ J and j ≤ i , 5(
d

(nkq )
i j

(
skq

)
− d

(nkq′
)

i j

(
skq′

))2

≤
a1

|J |(|J | + 1)
for all q, q ′

≥ q0. 6

Hence, for all q, q ′
≥ q0 we have

∑
i∈Im

∑
j≤i

(
d

(nkq )
i j

(
skq

)
− d

(nkq′
)

i j

(
skq′

))2

≤
a1

2
+ 2

∑
i∈Im0 \J

∑
j≤i

{(
d

(nkq )
i j

(
skq

))2
+

(
d

(nkq′
)

i j

(
skq′

))2
}

=
a1

2
+ 2

∑
i∈Im\J

{(
σ

(nkq )
i

(
skq

))2
+

(
σ

(nkq′
)

i

(
skq′

))2
}

< a1.

Next, we consider the sequence
(

G
(nkq ),5
m (skq )

)
q∈N

⊂ K 5
m and construct in a similar way as 7

above – with a1 being replaced by a2 – a further subsequence. This will be done iteratively 8

for all ak, k ∈ N. Finally, we choose the diagonal sequence of all these subsequences, which 9

will be a Cauchy sequence and hence convergent in L2(R2
+

). This shows that K 5
m is relatively 10

compact. □ 11

Lemma 4.5. Let Assumption 3.4(i) be satisfied. Then for each m ∈ N the set 12

K 6
m :=

{
G(n),6

m (s) : s ∈ Em, n ∈ N
}

⊂ L2(R+) 13

is relatively compact. 14

Proof. Consider some sequence
(

G(nk ),6
m (sk)

)
k∈N

⊂ K 6
m and set again ak := 2−k, k ∈ N. As in 15

the proof of Lemma 4.4 we may assume that sk ∈ Em for all k ∈ N. By Assumption 3.4(i) there 16

exists K > 0 such that for all n ∈ N and s ∈ Eloc, 17∫
∞

0

⏐⏐h(n)(s; y)
⏐⏐2 dy < K . 18

We apply Lemma 3.5 to find a finite subset J ⊂ Im such that for all n ∈ N and y ∈ R+, 19∑
i∈Im\J

(
F (n)

i (y)
)2

≤
a1

8K m
. 20
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Hence for all n ∈ N and s ∈ Eloc,1 ∑
i∈Im\J

(
µ

(n)
i (s)

)2
=

∑
i∈Im\J

(∫
∞

0
h(n)(s; y)F (n)

i (y)dy
)2

2

≤

∑
i∈Im\J

m
∫ m

0

(
h(n)(s; y)F (n)

i (y)
)2

dy3

≤
a1

8K

∫
∞

0

⏐⏐h(n)(s; y)
⏐⏐2 dy <

a1

8
.4

The rest of the proof follows as in the proof of Lemma 4.4. □5

4.3. Continuity of the integrand6

In this subsection we will prove for all m ∈ N the continuity of Gm . First note that by7

Assumption 2.6 there exists some L > 0 such that for all s = (b, v), s̃ =
(̃
b, ṽ

)
∈ Em ,8 ⏐⏐G1

m(s) − G1
m (̃s)

⏐⏐ ≤ L
(
1 + |b| + |̃b|

) (
1 + ∥v∥L2 + ∥̃v∥L2

) (⏐⏐b − b̃
⏐⏐+ ∥v − ṽ∥L2

)
.9

Hence, for any c > 0 there exists Lc < ∞ such that for all s, s̃ ∈ Em with ∥s∥E ≤ c, ∥̃s∥E ≤ c,10 ⏐⏐G1
m(s) − G1

m (̃s)
⏐⏐ ≤ Lc ∥s − s̃∥E .11

A similar result holds for G3
m . It remains to show the continuity of G5

m and G6
m .12

Lemma 4.6. Under Assumption 3.4 there exists for every m ∈ N and c > 0 a constant Lm
c such13

that for all s, s̃ ∈ Em with ∥s∥E ≤ c, ∥̃s∥E ≤ c we have14 G6
m(s) − G6

m (̃s)


L2(R+) ≤ Lm
c ∥s − s̃∥E .15

Proof. Due to Assumption 3.4 we have for all s, s̃ ∈ Em ,16 G6
m(s) − G6

m (̃s)
2

L2 =

∑
i∈Im

(µi (s) − µi (̃s))2
17

=

∑
i∈Im

(∫
∞

0
[h (s; y) − h (̃s; y)] Fi (y)dy

)2

18

≤

∑
i∈Im

m
∫ m

0
[h(s; y) − h (̃s; y)]2 (Fi (y))2 dy19

≤ m2
∫

∞

0
[h(s; y) − h (̃s; y)]2 dy20

≤ m2L2 (1 + |b| + |̃b|
)2 (1 + ∥v∥L2 + ∥̃v∥L2

)2
21

×
(⏐⏐b − b̃

⏐⏐+ ∥v − ṽ∥L2
)2

. □22

Lemma 4.7. Suppose that Assumptions 2.3, 3.1, 3.3 and 3.4 are satisfied. Then there exists for23

all c > 0 and m, i, j ∈ N with j ≤ i a constant Lm,c
i j > 0 such that for all s, s̃ ∈ Em with24

∥s∥E ≤ c, ∥̃s∥E ≤ c,25

|di j (s) − di j (̃s)| ≤ Lm,c
i j ∥s − s̃∥E .26
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Proof. Since di j = σi ci j for all j ≤ i and |σi | ≤ M, |ci j | ≤ 1, it is sufficient to show the 1

inequality for σi and ci j separately. For all i, j ∈ N and s, s̃ ∈ Em by Assumption 3.3, 2⏐⏐σi (s)σ j (s)ρi j (s) − σi (̃s)σ j (̃s)ρi j (̃s)
⏐⏐ 3

≤

∫
∞

0
|g(s; y) − g(̃s; y)||Fi (y)F j (y)|dy 4

≤ L
(
1 + |b| + |̃b|

) (
1 + ∥v∥L2 + ∥̃v∥L2

) (⏐⏐b − b̃
⏐⏐+ ∥v − ṽ∥L2

)
. 5

In the case i = j , using the fact that infs∈Eloc σi (s) > 0 by Lemma 3.6, we can thus find Lm,c
i > 0 6

for each i ∈ N such that for all s, s̃ ∈ Em with ∥s∥E ≤ c, ∥̃s∥E ≤ c, 7

|σi (s) − σi (̃s)| =

⏐⏐σ 2
i (s) − σ 2

i (̃s)
⏐⏐

σi (s) + σi (̃s)
≤ Lm,c

i ∥s − s̃∥E . 8

Using again the boundedness away from zero of σi and σ j , we may also find K m,c
i j > 0 for each 9

(i, j) such that for all s, s̃ ∈ Em with ∥s∥E ≤ c, ∥̃s∥E ≤ c, 10

|ρi j (s) − ρi j (̃s)| ≤

⏐⏐σi (s)σ j (s)ρi j (s) − σi (̃s)σ j (̃s)ρi j (̃s)
⏐⏐+ ⏐⏐σi (s)σ j (s) − σi (̃s)σ j (̃s)

⏐⏐
σi (s)σ j (s)

11

≤ K m,c
i j ∥s − s̃∥E . 12

Because of the recursive definition of the ci j , j ≤ i, as functions of the ρi j , j ≤ i, the same 13

inequality (with a different constant) follows for each ci j from the fact that all the ci j , j ≤ i, are 14

bounded by 1 and infs∈Eloc ci i (s) > 0 for all i ∈ N by Lemma 3.12. □ 15

Lemma 4.8. Let Assumptions 2.3, 3.1, 3.3 and 3.4 be satisfied. If (sn) ⊂ D (Em; [0, T ]) is a 16

sequence with supu≤t ∥sn(u) − s(u)∥E → 0 for t ∈ [0, T ], then also 17

sup
u≤t

G5
m (sn(u)) − G5

m (s(u))


L2(R2
+

) → 0. 18

Proof. Fix ε > 0 and let (sn) ⊂ D (Em; [0, T ]) be any sequence satisfying supu≤t ∥sn(u) − 19

s(u)∥E → 0. Then there exists c > 0 such that ∥s(u)∥E ≤ c and ∥sn(u)∥E ≤ c for all n ∈ N and 20

u ∈ [0, t]. Similarly to the proof of Lemma 3.14 we can find a finite index set J ⊂ Im such that 21

for all s̃ ∈ Eloc, 22∑
i∈Im\J

σ 2
i (̃s) <

ε

8
. 23

Moreover, by Lemma 4.7 we can find an n0 = n0(ε, c) such that for all n ≥ n0 and u ≤ t , 24(
di j (sn(u)) − di j (s(u))

)2
≤

ε

|J |(|J | + 1)
∀ i ∈ J, j ≤ i. 25

Thus for all n ≥ n0, 26

sup
u≤t

G3
m(sn(u)) − G3

m(s(u))
2

L2
(
R2

+

)
= sup

u≤t

∑
i∈Im

∑
j≤i

(
di j (sn(u)) − di j (s(u))

)2
27

≤
ε

2
+ 2 sup

u≤t

∑
i∈Im\J

∑
j≤i

{(
di j (sn(u))

)2
+
(
di j (s(u))

)2
}

28

=
ε

2
+ 2 sup

u≤t

∑
i∈Im\J

{
(σi (sn(u)))2

+ (σi (s(u)))2} < ε. □ 29
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The preceding results immediately yield the following theorem.1

Theorem 4.9. Let Assumptions 2.3, 2.6, 3.1, 3.3 and 3.4 be satisfied. If (sn) ⊂ D (Em; [0, T ])2

is a sequence such that supu≤t ∥sn(u) − s(u)∥E → 0 for t ∈ [0, T ], then also3

sup
u≤t

∥Gm (sn(u)) − Gm (s(u))∥Ê → 0 ∀ m ∈ N.4

5. Convergence of the stochastic integrals5

Before stating our main result, we need one more assumption on the convergence of the initial6

values.7

Assumption 5.1. There exists S0 = (B0, V0) ∈ Eloc such that for all m ∈ N,8 ⏐⏐⏐B(n)
0 − B0

⏐⏐⏐+ (V (n)
0 − V0

)
1[0,m]


L2

→ 0.9

For all n, m ∈ N we set10

S(n),m
0 :=

(
B(n)

0 , V (n)
0 1[0,m]

)
, Sm

0 :=
(
B0, V01[0,m]

)
11

and denote by S̃(n),m the solution of12

S̃(n),m(t) = S(n),m
0 +

∫ t

0
G(n)

m

(
S̃(n),m(u−)

)
dY (n)(u), t ∈ [0, T ].13

Furthermore, we define for all m, n ∈ N the stopping time14

τ (n)
m := inf

{
t ≥ 0 : B(n)(t) ≥ m

}
∧ T15

and the process16

S(n),m(t) :=
(
B(n) (t ∧ τ (n)

m

)
, V (n) (t ∧ τ (n)

m

)
1[0,m]

)
, t ∈ [0, T ].17

Note that, due to Assumptions 2.6(ii), 3.3(ii) and 3.4(ii) for all n, m ∈ N the process S̃(n),m equals18

S(n),m on
[
0, τ (n)

m

]
and19

τ (n)
m = inf

{
t ≥ 0 : B̃(n),m(t) ≥ m

}
∧ T a.s.20

Definition 5.2. We say that S is a (global) solution of the infinite dimensional SDE21

S(t) = S0 +

∫ t

0
G(S(u))dY (u), t ∈ [0, T ], (29)22

if there exists a filtration (Ft ) to which S = (B, V ) and Y are adapted and for all m ∈ N,23 (
B(t), V (t)1[0,m]

)
= Sm

0 +

∫ t

0
Gm(S(u))dY (u), t ∈ [0, T ].24

We say that (S, τ, m) is a local solution of (29) if there exists a filtration (Ft ) to which S = (B, V )25

and Y are adapted, τ is an (Ft )-stopping time, and S = (B, V ) satisfies the SDE26 (
B(t ∧ τ ), V (t ∧ τ )1[0,m]

)
= Sm

0 +

∫ t∧τ

0
Gm(S(u))dY (u), t ∈ [0, T ].27
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5.1. Local relative compactness of the state process 1

Our main result states that the sequence of LOB models is relatively compact after localization 2

and that any accumulation point is the solution to a certain infinite dimensional SDE driven by a 3

pair consisting of a Brownian motion and a cylindrical Brownian motion. 4

Theorem 5.3. Under Assumptions 2.1, 2.3, 2.6, 3.1, 3.3, 3.4, 3.10 and 5.1 the sequence 5(
S(n),m

)
n∈N is relatively compact for all m ∈ N and any limit point Sm

= (Bm, V m) gives a 6

local solution (Sm, τm, m) of (29), i.e. for (t, x) ∈ [0, T ] × [0, m], 7

Bm(t ∧ τm) = Bm
0 +

∫ t∧τm

0
p
(
Sm(u)

)
du +

∫ t∧τm

0
r
(
Sm(u)

)
d Z (u),

V m(t ∧ τm, x) = V m
0 (x) +

∫ t∧τm

0
µ
(
Sm(u); x

)
du

+

∑
i∈Im

fi (x)
∑
j≤i

∫ t∧τm

0
di j
(
Sm(u)

)
dW j (u),

(30) 8

where W j , j ∈ N, and Z are independent Brownian motions and τm := inf{t ≥ 0 : Bm(t) ≥ 9

m} ∧ T . 10

For the proof we will apply Theorem 7.6 of [19] and also partially follow the idea of the proof 11

of Theorem 5.4 in [18]. However, note that there is a crucial difference between our Theorem 5.3 12

and Theorem 5.4 in [18]: while in [18] a local convergence result is derived by stopping the 13

process appropriately and thereby localizing it in time, we do not only localize in time, but in 14

fact have to localize in space as well. 15

Proof. Let us fix m ∈ N. First, we will show that the sequence
(

S(n),m
0 , S̃(n),m, Y (n)

)
n∈N

is 16

relatively compact. To do this we will apply Theorem 7.6 in [19]. Let us verify the conditions of 17

Theorem 7.6 in [19]: Theorems 4.1 and B.1 show that
(
Y (n)

)
n∈N is uniformly tight and converges 18

weakly to Y in terms of finite dimensional distributions. Moreover, by Assumption 5.1 there 19

exists Sm
0 ∈ Em such that S(n),m

0 → Sm
0 . Hence,

(
S(n),m

0 , Y (n)
)

⇒ (Sm
0 , Y ). Theorems 4.2 and 20

4.9 imply that G(n)
m , n ∈ N, and Gm satisfy Condition C.2 of [19]. Moreover, the compactness 21

condition follows from Theorem 4.3 and we clearly have supn sups∈Em

G(n)
m (s)


Ê < ∞, due 22

to Assumption 2.6(i), Lemmas 3.7 and 3.8. Hence, the requirements of Theorem 7.6 in [19] are 23

satisfied and we may conclude that the sequence
(

S(n),m
0 , S̃(n),m, Y (n)

)
n∈N

is relatively compact. 24

Next note that τ (n)
m is a measurable function of S̃(n),m for all n ∈ N, say τ (n)

m = hm
(
S̃(n),m

)
. 25

We denote by Dhm the set of discontinuities of hm . Then Eq. (9) of Assumption 2.1 ensures 26

that P(Sm
∈ Dhm ) = 0 for any limit point Sm of S̃(n),m and we may conclude by the continuous 27

mapping theorem that the sequence
(

S(n),m
0 , S̃(n),m

(
· ∧ τ (n)

m

)
, τ (n)

m , Y (n)
)

n∈N
is also relatively 28

compact. Let
(

Sm
0 , Ŝm, τ 0

m, Y
)

denote a weak limit point of that sequence. Then Condition C.2 29

together with Theorem 5.5 in [19] yields that along a subsequence, 30

S(n),m
0 +

∫
·

0
G(n)

m

(
S̃(n),m (u ∧ τ (n)

m

))
dY (n)(u) ⇒ Sm

0 +

∫
·

0
Gm

(
Ŝm(u)

)
dY (u). 31
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Furthermore, as remarked earlier S̃(n),m and S(n),m agree on
[
0, τ (n)

m

]
. Thus, by definition1

S(n),m (t) = S̃(n),m (t ∧ τ (n)
m

)
= S(n),m

0 +

∫ t∧τ
(n)
m

0
G(n)

m

(
S̃(n),m (u)

)
dY (n)(u), t ∈ [0, T ].2

Since τ̂m := hm

(
Ŝm
)

≤ τ 0
m a.s. and since Gm

(
Ŝm(u)

)
= Gm

(
Ŝm(u)

)
for u ≤ τ̂m , we conclude3

that
(
S(n),m

)
n∈N is relatively compact and that any limit point Ŝm of

(
S(n),m

)
n∈N gives a local4

solution of (29). □5

5.2. Local weak convergence6

So far we have shown that the sequence of our LOB model dynamics is relatively compact in7

a localized sense and that any accumulation point solves a certain infinite dimensional SDE. If8

the limiting SDE admits a unique strong solution, then the LOB dynamics converges to a unique9

limit as shown by the following theorem.10

Theorem 5.4. Suppose that all the assumptions of Theorem 5.3 are satisfied and that for all
m ∈ N there exists a unique strong solution Ŝm

= (B̂m, V̂ m) of

Ŝm(t) = Sm
0 +

∫ t∧τm,m

0
Gm

(
Ŝm(u)

)
dY (u), t ∈ [0, T ],

τm,l := inf{t ≥ 0 : B̂m(t) ≥ l} ∧ T .

(31)

Then there exists a unique global solution S = (B, V ) of (29) and for all m ∈ N,11

S(n),m
⇒ Sm in D ([0, T ]; E) ,12

where Sm(t) :=
(
B (t ∧ τm) , V (t ∧ τm)1[0,m]

)
, t ∈ [0, T ], and τm := inf {t ≥ 0 : B(t) ≥ m}13

∧ T .14

Proof. Strong uniqueness implies together with Assumptions 2.6, 3.3 and 3.4 that for all15

m, k ∈ N, Ŝm equals
(

B̂m+k, V̂ m+k1[0,m]

)
almost surely on the interval

[
0, τm,m ∧ τm+k,m

]
. Thus16

for all m, k ∈ N, τm,m = τm+k,m and hence τm,m ≤ τm+k,m+k a.s. Setting τ 0
0 := 0 we define17

B(t) :=

∞∑
m=1

1[τm−1,m−1,τm,m)(t)B̂m(t), t ∈ [0, T ],18

and for all m ∈ N and x ∈ [m − 1, m),19

V (t, x) := 1[0,τm,m)(t)V̂ m(t, x) +

∞∑
k=1

1[τm+k−1,m+k−1,τm+k,m+k)(t)V̂ m+k(t, x), t ∈ [0, T ].20

Let τm := inf{t ≥ 0 : B(t) ≥ m} and τ∞ := lim τm . Then by the linear growth condition of21

Assumption 2.6(i) we have for all m ∈ N and t ∈ [0, T ],22

E [B (t ∧ τm)]2
≤ 4

[
B2

0 + E
(∫ t

0
|p (S(u ∧ τm))| du

)2

+ E
(∫ t

0
r (S(u ∧ τm)) d Zu

)2
]

23

≤ 4
[

B2
0 + T

∫ t

0
E |p (S(u ∧ τm))|2 du +

∫ t

0
E |r (S(u ∧ τm))|2 du

]
24

≤ 4B2
0 + 2(4T + 1)K 2

∫ t

0

(
1 + E [B (u ∧ τm)]2) du,25
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which implies by Gronwall’s inequality that 1

E [B (T ∧ τ∞)]2
≤ lim inf

m
E [B (T ∧ τm)]2 < ∞. 2

Therefore τ∞ = T a.s. and, since Gm (S(u)) = Gm (S(u)) on {u ≤ τm} for all m ∈ N, 3

S := (B, V ) defines a global solution of (29), which must be unique as well. Now the weak 4

convergence result follows from Theorem 5.3. □ 5

5.2.1. Uniqueness 6

We are now going to analyse two classes of models which fit in the framework developed 7

so far and which satisfy the assumptions of Theorem 5.4, i.e. they converge – in a local sense 8

– in the scaling limit to the unique solution of the infinite dimensional SDE (29). For this it is 9

sufficient to establish the local Lipschitz continuity of the coefficient function Gm on Em for all 10

m ∈ N, so that (31) will have a unique solution for all m ∈ N. Note that G1
m, G3

m , and G6
m are 11

locally Lipschitz continuous and uniformly bounded on Em by Assumption 2.6 and Lemmata 12

4.6 and 3.7. Hence, it remains to establish the local Lipschitz continuity of G5
m . 13

Lemma 5.5. Suppose in addition to the assumptions of Theorem 5.3 that g(s; y) is independent 14

of the state of the book for all y ∈ R+. Then each Gm is locally Lipschitz continuous and the 15

conditions of Theorem 5.4 are satisfied. 16

Proof. Since in this case G5
m does not depend on s, G5

m is trivially Lipschitz continuous and 17

uniformly bounded on E∗
m . Therefore there exists a unique strong solution of 18

S̃m(t) = Sm
0 +

∫ t

0
Gm

(
S̃m(u)

)
dY (u), t ∈ [0, T ], (32) 19

by Corollary 7.8 in [19]. Hence, there exists a unique strong solution of (31) as well. □ 20

The next lemma allows the volatility of the cumulated volume process to be state dependent. 21

However, we require the dynamics of the system to only depend on current volumes through 22

some approximation of the cumulated volume function. 23

For all l0, m ∈ N we define the index sets Im(l0) := {i ∈ Im : l(i) < l0} and I(l0) := 24

{i ∈ N : l(i) < l0}. 25

Assumption 5.6. There is l0 ∈ N such that for all pairs s = (b, v), s̃ = (̃b, ṽ) ∈ Eloc satisfying 26

b = b̃ and ⟨v, fi ⟩ = ⟨̃v, fi ⟩ ∀ i ∈ I(l0), we have the equalities p(n)(s) = p(n) (̃s), q (n)(s) = 27

q (n) (̃s), h(n)(s; y) = h(n) (̃s; y), g(n)(s; y) = g(n) (̃s; y) for all n ∈ N, y ∈ R+. 28

Lemma 5.7. Let the assumptions of Theorem 5.3 and Assumption 5.6 be satisfied. Then there 29

exists a unique strong solution of (31) for each m ∈ N. 30

Proof. Fix m ∈ N. We first show that there exists a unique strong solution to (32). Note that p 31

and r are Lipschitz continuous on Em by Assumption 2.6 and it follows from Lemmata 4.6 and 32

4.7 that di j and µi are also locally Lipschitz continuous on Em . Moreover, each µi resp. di j 33

is uniformly bounded and p and r satisfy a linear growth condition by Assumption 2.6(i). 34

Therefore, the finite dimensional SDE 35

B
m

(t) = B0 +

∫ t

0
p
(

S
m

(u)
)

du +

∫ t

0
r
(

S
m

(u)
)

d Zu, 36
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V
m
i (t) = ⟨V m

0 , fi ⟩ +

∫ t

0
µi

(
S

m
(u)
)

du +

∑
j≤i

∫ t

0
di j

(
S

m
(u)
)

dW j
u , i ∈ Im(l0),1

with V
m

:=

∑
i∈Im (l0)

V
m
i fi and S

m
=

(
B

m
, V

m
)

2

has a unique strong solution S
m

. Given this solution let us define3

V m(t) := V m
0 +

∑
i∈Im

fi

∫ t

0
µi

(
S

m
(u)
)

du+

∑
i∈Im

fi

∑
j≤i

∫ t

0
di j

(
S

m
(u)
)

dW j
u , t ∈ [0, T ].4

Clearly,
(

B
m
, V m

)
is a solution of (32) due to Assumption 5.6 and by construction it must5

be unique. It follows that Sm
:=

(
B

m
(· ∧ τm), V m(· ∧ τm)

)
is the unique strong solution6

of (31). □7

Remark 5.8. It is not clear to us how to establish the (strong or weak) uniqueness of a8

solution to the general infinite dimensional SDE of Theorem 5.3 apart from the two cases9

considered in this section. Indeed, even though the Cholesky factorization in finite dimensions10

is a Lipschitz continuous operation, it is known that the Lipschitz constant grows dramatically11

when the dimension is increased. This makes the search for conditions on g and h that yield12

strong uniqueness very difficult. Of course, one could alternatively look for weak uniqueness13

of a solution to the infinite dimensional SDE by considering the associated martingale problem.14

However, to the best of our knowledge also in this case the problem is still unsolved and requires15

further research.16

5.2.2. Examples17

We close this section with two examples where uniqueness of solutions to the limiting SDE18

can indeed be established.19

Example 5.9. Let α, δ, K , η, q > 0 and suppose that there exist c1, c2 ∈ (0, ∞) such that for20

all n ∈ N and s = (b, v) ∈ Eloc with 0 ≤ b ≤ c1 and
v1[0,c1]


∞

< c2, the functions p(n) and21

r (n) are given by22

p(n)(s) =
b
20

∫ b

(b−q)+
(αy − v(y)) dy + η23 (

r (n)(s)
)2

= ∆x (n)η + δ2b2.24

This specifies uniquely the conditional distribution of the process B(n) (as long as S(n) does not25

exit the c1-c2-interval defined above). We have chosen r (n) and p(n) such that the volatility as well26

as the absolute value of the drift of the price process are increasing in the price itself. Moreover,27

high volumes at the top of the book (compared to some reference level specified by α) lead to a28

negative drift for the price process, while low volumes at the top of the book lead to a positive29

drift. In the scaling limit the price follows the volume-dependent, “generalized Black–Scholes”30

dynamics31

d B(t) =

(
B(t)
20

∫ B(t)

(B(t)−q)+
(αy − V (t, y))dy + η

)
dt + δB(t)d Z (t).32
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Order placements/cancellations outside the spread are assumed to be of size ±100, i.e. P
(
ω

(n)
k = 1

±100
)

= 1 for all n ∈ N, k ≤ Tn . Furthermore, we suppose that there exist two functions 2

f (n)
± : Eloc × R+ → R+ for every n ∈ N such that for all B ∈ B(R+) and k = 1, . . . , Tn , 3

P
(
φ

(n)
k = C, ω

(n)
k = ±1, π

(n)
k ∈ B

⏐⏐⏐F (n)
k−1

)
=

∫
B

f (n)
±

(
S(n)

k−1; y
)

dy a.s. 4

Let ξ : R → R+ be continuously differentiable with bounded derivative and suppose that ξ 5

has compact support in R−. Let D > 0 and suppose that the f (n)
± are for all y ∈ R+ and 6

s = (b, v) ∈ Eloc with 0 ≤ b ≤ c1 and
v1[0,c1]


∞

< c2 given by 7

f (n)
+ (s; y) =

(
1 − ∆p(n) (r (n)(s)

)2
) exp(−y/10)

10
(
2 + ∆v(n)

)
×

(
1 −

∆v(n)

10

⟨
v(· + b)1[−b,0], ξ

⟩
+

∆v(n)

10(1 + |y − b|)

)
,

f (n)
− (s; y) =

(
1 − ∆p(n) (r (n)(s)

)2
) exp(−y/10)

10
(
2 + ∆v(n)

)
×

(
1 +

∆v(n)

10

⟨
v(· + b)1[−b,0], ξ

⟩
+

∆v(n)
|y − b|

10(1 + |y − b|)

)
.

This means that the location at which order placements and cancellations take place is 8

exponentially distributed. Order cancellations are more likely to happen further away from the 9

current best bid price or if cumulated volumes are quite high. On the other hand, order placements 10

occur more frequently in the proximity of the current best bid price or if cumulated volumes are 11

low. The above specification of f (n) yields for s as above 12

g(s; y) = 5 exp
(
−

y
10

)
13

and 14

h(s; y) =
1
2

exp
(
−

y
10

)(
−2

⟨
v(· + b)1[−b,0], ξ

⟩
+

1 − |y − b|

1 + |y − b|

)
. 15

Therefore, the covariance structure does not depend on s, which implies that di j (s) = di j (̃s) for 16

all s, s̃ as above and i, j ∈ N. However, note that h and hence also µ depend on s. Moreover, 17

one can check that for n large enough all assumptions of Theorem 5.3 are satisfied. Hence, 18

Theorem 5.4 and Lemma 5.7 imply that the limiting SDE has a unique solution in this case and 19

that S(n) converges weakly to this solution in a localized sense (see Fig. 1). 20

While the above example shows that even with constant G5 we can already model many 21

interesting dependencies, one disadvantage is that the conditional distribution of the location 22

variables π
(n)
k , n ∈ N, k ≤ Tn, of order placements resp. cancellations cannot be taken to 23

be relative to the current best bid price, which would be reasonable from a microeconomic 24

point of view. Another disadvantage is that for constant G5 the L2(R+)-valued process V is 25

not necessarily positive respectively increasing in x ∈ R+. Therefore, it is more reasonable to 26

think of log volumes instead of real volumes. 27

The next example allows to model the location of order placements being distributed relative 28

to the current best bid price. 29
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Fig. 1. Realization of the process S = (B, V ) for T = 1, δ = 0.3, q = 0.1, α = 2, η = 10−10, ξ (x) =

10(x + 1)2x2 exp(10x) and initial values B0 = 5, V0(x) = x1[0,10](x).

Example 5.10. For given s = (b, v) ∈ Eloc we set1

vl0 (y) :=

∑
i∈I(l0)

⟨v, fi ⟩ fi (y), y ∈ R+.2

Note that vl0 is the projection of v on the subspace spanned by { fi : i ∈ I(l0)}, which consists of3

all step functions on the grid k2−l0 , k ∈ N. Hence, vl0 has the alternative representation4

vl0 (y) =

∑
k∈N0

ak1[k2−l0 ,(k+1)2−l0 )(y) with ak := 2−l0

∫ (k+1)2−l0

k2−l0
v(x)dx .5

Therefore,
{
vl0 (y) : y ≤ 2−l0⌊b2l0⌋

}
only depends on {v(y) : y ≤ b} for any s = (b, v) ∈ Eloc.6

Similarly to Example 5.9 we specify the price dynamics as follows : let α, K , η, c1, c2 > 0,7

q ≥ 2−l0 and suppose that for all n ∈ N and s = (b, v) ∈ Eloc with 0 ≤ b ≤ c1 and8 vl01[0,c1]


∞
< c2,9

p(n)(s) =
b
10

∫ ⌊
b2l0

⌋
2−l0

(b−q)+

(
αy − vl0 (y)

)
dy + η10 (

r (n)(s)
)2

= ∆x (n)η + δ2b2.11

As in Example 5.9 we suppose that there exists a function f (n) for every n ∈ N such that for all12

A ∈ B([−M, M]), B ∈ B(R+), and k = 1, . . . , Tn ,13

P
(
φ

(n)
k = C, ω

(n)
k ∈ A, π

(n)
k ∈ B

⏐⏐⏐F (n)
k−1

)
=

∫
B

∫
A

f (n)
(

S(n)
k−1; x, y

)
dxdy a.s.14

For s = (b, v) ∈ Eloc with 0 ≤ b ≤ c1 and
vl01[0,c1]


∞

< c2 let15

f (n)(s; x, y) := Cn(s) f (n),1(v; x) exp
(

−
1
2

(y − b)2
)

,16
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Fig. 2. Realization of the process S = (B, V ) for T = 1, δ = 0.3, q = 0.1, α = 2, M = 10, η = 10−10,
ξ (x) = 6(x + 1)2x2 exp(6x) and initial values B0 = 5, V0(x) = x1[0,10](x).

where Cn(s) is chosen such that
∫

∞

0

∫ M
−M f (n)(s; x, y)dxdy = 1 − ∆p(n)

(
r (n)(s)

)2. It can be 1

shown that as n → ∞, Cn(s) converges to 1/Φ(b). The function f (n),1 specifies the conditional 2

distribution of the order size and is given by 3

f (n),1(v; x) :=
1 − an(v)

M
1[0,M](x) +

an(v)
M

1[−M,0](x) 4

with 5

an(v) :=
1
2

− ∆v(n)
⟨
vl0

(
· + ⌊b2l0⌋2−l0

)
1[

−⌊b2l0 ⌋2−l0 ,0
], ξ

⟩
, 6

for some function ξ with compact support in R−. In this case 7

g(s; y) =
M2

3Φ(b)
exp

(
−

1
2

(y − b)2
)

8

as well as 9

h(s; y) =
M

Φ(b)
exp

(
−

1
2

(y − b)2
) ⟨

vl0

(
· + ⌊b2l0⌋2−l0

)
1[−⌊b2l0 ⌋2−l0 ,0], ξ

⟩
10

both depend on s. Hence, also the di j , i, j ∈ N, will vary with s. Still, it can be easily checked 11

that all assumptions of Lemma 5.7 and Theorem 5.4 are satisfied. 12

In Fig. 2 we plot a realization of the process S = (B, V ) for certain parameter values. Since the 13

volatility function g depends on b in this example, the volumes turn out to be much more volatile 14

near the best bid price than deeper in the book, which is very reasonable from an empirical point 15

of view. 16

5.3. From microscopic to macroscopic order book models 17

In this paper we start from a microscopic description of the limit order book dynamics and 18

derive its high frequency limit when the number of orders goes to infinity, while each individual 19

one is of negligible size. The resulting diffusion approximation can then be seen as a macroscopic 20

description of the limit order book dynamics when viewed at intermediate time intervals (e.g. a
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few seconds for MSFT, cf. Section 1.2). In the literature macroscopic limit order book models1

have been suggested and analysed e.g. in [17,23]. In [23] the author suggests to model the volume2

density function of the bid side of the limit order book7 as the solution to the following SPDE3

with α, ρ ∈ R and a regular scaling function σ : R+ → R, driven by space–time white noise:4

∂v

∂t
(t, x) = α

∂2v

∂x2 (t, x) + σ (x − P(t))
∂2W
∂x∂t

, x < P(t),

v(t, x) = 0, x ≥ P(t),
(33)5

with moving boundary p (called mid-price) satisfying6

ρ P ′(t) = −
∂v

∂x
(t, P(t)−).7

This model was generalized in several aspects in [17], replacing the white noise process by a8

more general stochastic noise process and allowing for a larger class of integrands. In [23] the9

dynamics of v as in (33) are motivated as follows: the drift term stems from the assumption that10

”limit orders are placed, cancelled, and executed in a manner where jitters tend to be rapidly11

smoothed out”, thereby not having a first order, but a second order impact on the evolution of12

volumes. The stochastic integral is supposed to model the randomness of the limit order flow,13

whose intensity varies across different price levels and tends to vanish at price levels far below14

the mid price. Finally, the mid price changes relative to the “strength” of the limit orders placed15

around it. Let us suppose that α = 0, i.e. there are no jitters. In this case, if we are now looking16

at the integrated bid volume V , then17

V (t, x) :=

∫ x

0
v(t, y)dy = V0(x) +

∫ t

0

∫ x

0
σ (y − P(u))W (dy, du), x < P(t). (34)18

In §1 of [21] it is shown that a cylindrical Brownian motion W̃ on L2(R) can be constructed from19

space–time white noise as follows: for any k ∈ L2 one sets20

W̃t (k) :=

∫ t

0

∫
R

k(x)W (dx, du).21

Using the representation W̃t =
∑

i fi W̃ i
t with independent Brownian motions (W̃ i )i∈N, we see22

that the stochastic integral is of the form23 ∫ t

0

∫ x

0
σ (y − P(u))W (du, dy) =

∑
i

fi (x)
∫ t

0

∫
R

Fi (y)σ (y − P(u))W (dy, du)24

=

∑
i

fi (x)
∑

j

∫ t

0
⟨σ (· − P(u))Fi , f j ⟩dW̃ j

u .25

Replacing the bid price B by the mid price P in the state process S = (P, V ) and defining for
any s = (p, v) ∈ Eloc and x ∈ R the function g(s; x) := σ 2(x − p), we see that for all i1, i2 ∈ N.[

⟨V, fi1⟩, ⟨V, fi2⟩
]

t =

∫ t

0

∑
j

⟨σ (· − P(u))Fi1 , f j ⟩⟨σ (· − P(u))Fi2 , f j ⟩du

=

∫ t

0

∫
R

g(S(u); y)Fi1 (y)Fi2 (y)dydu.

7 In [23] the author studies the one-sided stochastic Stefan problem as given above and then extends it to propose a
model for the two-sided limit order book.
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This shows that the stochastic integral in (34) coincides with the stochastic integral term 1

in Eq. (30) of Theorem 5.3 for this particular choice of g.8 Hence, one can conclude that in 2

this paper we have provided a justification for the white noise term appearing in the macroscopic 3

limit order book dynamics (33). 4

Appendix A. Orthogonal decomposition of sequences of random variables 5

6In this appendix we derive an orthogonal decomposition result for sequences of random
variables. Specifically, on a probability space (Ω ,F ,P) we consider a sequence of normalized
random variables Z i and denote by ρi j the correlation between the variables Z i and Z j (i, j ∈

N, j ≤ i). In terms of these quantities we define an array of real numbers ci j , j ≤ i, as well as
a sequence of random variables W i , i ∈ N, via the following algorithm:

Put c11 := 1 and W 1
:= Z1.

For i = 2, 3, 4, · · · :

For j = 1, 2, . . . , i − 1 :

If c j j = 0,

then ci j := 0.

Else

ci j :=
1

c j j

⎛⎝ρi j −

∑
l< j

cilc jl

⎞⎠ .

Next j .

ci i :=

⎛⎝1 −

∑
j<i

(
ci j
)2

⎞⎠1/2

W i
:=

{
1

ci i

(
Z i

−
∑

j<i ci j W j
)

: ci i 0

U i
: ci i = 0.

Next i.

Lemma A.1. For all n, i ∈ N, j ≤ i , the following holds:

1. E
(
Z i W j)

= ci j , 2.
∑
j<i

c2
i j ≤ 1, 3. E

(
W i W j)

= δi j ,

4. Z i
=

∑
j≤i

ci j W j .

Proof. We proceed by induction over i . For i = 1 we have c11 ≡ 1 and W 1
= Z1, which trivially 7

gives 1–4. 8

Now assume that 1–4 are true up to index i − 1; in particular c j j and W j are well defined for 9

j < i . We first show 1 for indices i and j < i . This will be done by induction over j . For j = 1, 10

we have by definition 11

E
(
Z i W 1)

= E
(
Z i Z1)

= ρi1 = ci1. 12

8 We note that the assumption on σ made in [23] does not align with our Assumption 3.3(i), which is made for
technical convenience only to avoid further localization arguments.



SPA: 3427

Please cite this article as: U. Horst and D. Kreher, A diffusion approximation for limit order book models, Stochastic Processes and their Applications
(2018), https://doi.org/10.1016/j.spa.2018.11.023.

44 U. Horst and D. Kreher / Stochastic Processes and their Applications xxx (xxxx) xxxx

Now consider an arbitrary j < i and suppose that the claim is true up to j − 1. If c j j = 0, then1

E
(
Z i W j)

= E
(
Z iU j)

= 0 = ci j .2

If c j j > 0, then by definition and the induction hypothesis3

E
(
Z i W j)

=
1

c j j
E

⎛⎝Z i

⎛⎝Z j
−

∑
l≤ j−1

c jl W l

⎞⎠⎞⎠ =
1

c j j

⎛⎝ρi j −

∑
l≤ j−1

cilc jl

⎞⎠ = ci j .4

This implies that5

0 ≤ E

⎛⎝Z i
−

∑
j<i

ci j W j

⎞⎠2

=

⎛⎝1 − 2
∑
j<i

c2
i j

⎞⎠+ E

⎛⎝∑
j<i

ci j W j

⎞⎠2

= 1 −

∑
j<i

c2
i j ,6

where the last equality follows from part 3 of the induction hypothesis. This proves 2. Moreover,7

E
(
Z i W i

)
= ci j for j = i follows now in the same way as above for j < i . This completes the8

proof of 1.9

Next we show 3. If ci i = 0, the claim is trivial because U i is independent of everything else.10

If ci i > 0, then for all j < i by definition and the induction hypothesis,11

E
(
W i W j)

=
1

ci i
E

((
Z i

−

∑
l<i

cil W l

)
W j

)
=

1
ci i

[
E
(
Z i W j)

− ci j
] 1

= 012

as well as13

E
(
W i)2

=
1

c2
i i

· E

⎛⎝Z i
−

∑
j<i

ci j W j

⎞⎠2

=
1

c2
i i

⎛⎝1 −

∑
j<i

c2
i j

⎞⎠ = 1.14

Thus, 3 is proven. It remains to show 4. If ci i ̸= 0, 4. is trivial. Hence, suppose that ci i = 0.15

Then,16

E

⎛⎝Z i
−

∑
j<i

ci j W i

⎞⎠2

=

⎛⎝1 −

∑
j<i

c2
i j

⎞⎠ = c2
i i = 0,17

which shows that 4. is also true in this case. □18

Next we define for all i ∈ N, j ≤ i numbers αi j iteratively as follows:

For i = 1, 2, 3, 4, · · · :

αi i :=

{
1

ci i
: ci i > 0

1 : ci i = 0.

For j = i − 1, i − 2, . . . , 1 :

If c j j = 0,

then αi j := 0.

Else

αi j := −
1

c j j

⎛⎝∑
j<l≤i

αilcl j

⎞⎠ . (A.1)
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Next j .

Next i.

Note that
(
αi j
)

i∈N, j≤i can be regarded as the “inverse” of
(
ci j
)

i∈N, j≤i in the following sense: 1

for fixed i, j ∈ N with j ≤ i one has 2∑
j≤l≤i

αilcl j
(A.1)
= 1{c j j =0}

∑
j≤l≤i

αilcl j + 1{
c(n)

j j >0
}δi j = 1{ci i >0}δi j , 3

where the last equality follows from the fact that cl j = 0 for all l > j if c j j = 0. Hence, if 4

ci i > 0, then 5∑
j≤i

αi j Z j
=

∑
j≤i

αi j

∑
l≤ j

c jl W l
=

∑
l≤i

W l
∑

l≤ j≤i

αi j c jl = W i . (A.2) 6

Appendix B. Integration with respect to Y (n) and Y 7

8In this appendix we introduce the stochastic integrals with respect to Y (n) and Y . The concept 9

of integration follows [19]. We recall the definition of the random variables δW (n),i
k in (21) and 10

put (i ∈ N, t ∈ [0, T ]), 11

W (n),i (t) := W (n)( fi , t) =

⌊t/∆t (n)
⌋∑

k=1

δW (n),i
k and W i

:= W ( fi , ·) 12

where W is a cylindrical Brownian motion. Thus, the random variables the W i , i ∈ N, 13

are independent Brownian motions and each Y (n)
=

(
Y (n)

t

)
t∈[0,T ]

is adapted to the filtration 14(
F̂ (n)

t

)
t∈[0,T ]

defined via 15

F̂ (n)
t := F (n)

k , t (n)
k ≤ t < t (n)

k+1. 16

As integrands for Y (n) we consider càdlàg,
(
F̂ (n)

t

)
t∈[0,T ]

-adapted processes which take their 17

values in the space 18

Ê := R × L2(R+;R) × R × L2(R+;R) × L2 (R2
+
;R
)
× L2 (R+;R) , 19

endowed with the norm

∥(a1, a2, a3, a4, a5, a6)∥Ê

:= |a1| + ∥a2∥L2(R+) + |a3| + ∥a4∥L2(R+) + ∥a5∥L2
(
R2

+

) + ∥a6∥L2(R+) .

We define S (n)
Ê

as the set of processes a(n)
: Ω × [0, T ] × R × R → Ê that are of the form 20

a(n)(t; x, y) :=

⎛⎝a1,(n)(t),
∑

j

a2,(n)
j (t) f j (y), a3,(n)(t),

∑
i

a4,(n)
i (t) fi (x),

∑
i j

a5,(n)
i j (t) fi (x) f j (y),

∑
i

a6,(n)
i (t) fi (x)

⎞⎠ (B.3) 21

for càdlàg and
(
F̂ (n)

t

)
-adapted processes a1,(n), a2,(n)

j , a3,(n), a4,(n)
i , a5,(n)

i j , a6,(n)
i , i, j ∈ N, of 22

which all but finitely many are zero. For a(n)
∈ S (n)

Ê
with the representation as above, the integral 23
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with respect to Y (n) is defined as1 ∫ t

0
a(n)(u−)dY (n)(u) :=⎛⎝∫ t

0
a1,(n)(u−)d Z (n)(u) +

∑
j

∫ t

0
a2,(n)

j (u−)dW (n), j (u) +

⌊t/∆t (n)
⌋∑

k=1

a3,(n)
(

t (n)
k −

)
∆t (n),

∑
i

fi

∫ t

0
a4,(n)

i (u−)d Z (n)(u) +

∑
i j

fi

∫ t

0
a5,(n)

i j (u−)dW (n), j (u)

+

∑
i

fi

⌊t/∆t (n)
⌋∑

k=1

a6,(n)
i

(
t (n)
k −

)
∆t (n)

⎞⎠ .

2

Theorem B.1. Suppose that Assumptions 2.1, 2.3, 3.1, 3.3(i), 3.4(i) and 3.10 hold. Then the3

sequence Y (n) is uniformly tight, i.e.4

Ht :=

⋃
n

{∫ t

0
a(n)(u−)dY (n)(u)


E

: a(n)
∈ S (n)

Ê
, sup

u≤t

a(n)(u)


Ê ≤ 1 a.s.
}

5

is stochastically bounded for all t ∈ [0, T ].6

Proof. It is sufficient to show that for any t ∈ [0, T ] there exists a constant C(t) such that for all7

n ∈ N and a(n)
∈ S (n)

Ê
with supu≤t

a(n)(u)


Ê ≤ 1,8

E
∫ t

0
a(n)(u−)dY (n)(u)


E

≤ C(t).9

Let a(n)
∈ S (n)

Ê
satisfy supu≤t

a(n)(u)


Ê ≤ 1. Thus for all u ≤ t ,

max

⎧⎨⎩⏐⏐a1,(n)(u)
⏐⏐ ,∑

j

(
a2,(n)

j (u)
)2

,
⏐⏐a3,(n)(u)

⏐⏐ ,∑
i

(
a4,(n)

i (u)
)2

,

∑
i j

(
a5,(n)

i j (u)
)2

,
∑

i

(
a6,(n)

i (u)
)2

⎫⎬⎭ ≤ 1 a.s.

This implies that10

E

⏐⏐⏐⏐⏐⏐
⌊t/∆t (n)

⌋∑
k=1

a3,(n)
(

t (n)
k −

)
∆t (n)

⏐⏐⏐⏐⏐⏐ ≤ ∆t (n)
⌊t/∆t (n)

⌋∑
k=1

E
⏐⏐⏐a3,(n)

(
t (n)
k −

)⏐⏐⏐ ≤ t11

and, since only finitely many of the a6,(n)
i are assumed to be unequal zero,

E


∑

i

fi

⌊t/∆t (n)
⌋∑

k=1

a6,(n)
i

(
t (n)
k −

)
∆t (n)


L2

≤

⌊t/∆t (n)
⌋∑

k=1

∆t (n)E

(∑
i

(
a6,(n)

i

(
t (n)
k −

))2
)1/2

≤ t.
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For the other four terms recall that a(n) is
(
F̂ (n)

t

)
-adapted. Thus a(n)

(
t (n)
k −

)
∈ F (n)

k−1 for 1

k = 1, . . . , Tn . So, 2

E
(∫ t

0
a1,(n)(s−)d Z (n)(s)

)2

= E

⎛⎝⌊t/∆t (n)
⌋∑

k=1

a1,(n)
(

t (n)
k −

)
δZ (n)

k

⎞⎠2

3

≤ ∆t (n)
⌊t/∆t (n)

⌋∑
k=1

E
(

a1,(n)
(

t (n)
k −

))2
≤ t 4

and, since only finitely many of the a4,(n)
i j are assumed to be unequal zero, 5

E

∑
i

fi

∫ t

0
a4,(n)

i (s−)d Z (n)(s)


2

L2

=

∑
i

E

⎛⎝⌊t/∆t (n)
⌋∑

k=1

a4,(n)
i

(
t (n)
k −

)
δZ (n)

k

⎞⎠2

6

≤ ∆t (n)
⌊t/∆t (n)

⌋∑
k=1

∑
i

E
(

a4,(n)
i

(
t (n)
k −

))2
≤ t. 7

Similarly, since only finitely many of the a2,(n)
j and a5,(n)

i j are assumed to be unequal zero, 8

E

⏐⏐⏐⏐⏐⏐
∑

j

∫ t

0
a2,(n)

j (u−)dW (n), j (u)

⏐⏐⏐⏐⏐⏐ ≤

⌊t/∆t (n)
⌋∑

k=1

E

⏐⏐⏐⏐⏐⏐
∑

j

a2,(n)
j

(
t (n)
k −

)
δW (n), j

k

⏐⏐⏐⏐⏐⏐ 9

≤

⌊t/∆t (n)
⌋∑

k=1

⎛⎜⎝E

⎡⎣∑
j

a2,(n)
j

(
t (n)
k −

)
δW (n), j

k

⎤⎦2
⎞⎟⎠

1/2

10

≤

⌊t/∆t (n)
⌋∑

k=1

∆t (n)E
∑

j

(
a2,(n)

j

(
t (n)
k −

))2
≤ t 11

and 12

E


∑

i j

fi

∫ t

0
a5,(n)

i j (u−)dW (n), j (u)


2

L2

=

∑
i

E

⎛⎝∑
j

∫ t

0
a5,(n)

i j (u−)dW (n), j (u)

⎞⎠2

13

=

∑
i

⌊t/∆t (n)
⌋∑

k=1

E

⎛⎝∑
j

a5,(n)
i j

(
t (n)
k −

)
δW (n), j

k

⎞⎠2

14

=

∑
i j

∆t (n)
⌊t/∆t (n)

⌋∑
k=1

E
(

a5,(n)
i j

(
t (n)
k −

))2
≤ t. □ 15

The preceding theorem implies that Y (n)
=

(
Y (n)

t

)
t∈[0,T ]

is a standard (E, Ê)-semimartingale 16

in the sense of [19]. Therefore, the definition of the stochastic integral
∫

a(n)
− dY (n) extends to all 17

càdlàg, adapted, uniformly bounded, Ê-valued processes a(n), where the resulting infinite sums 18

can be shown to exist as limits in probability. 19
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Similarly, if (Ft )t∈[0,T ] is any filtration to which Y = (Yt )t∈[0,T ] is adapted, we will denote by1

SÊ the set of Ê-valued processes a of the form (B.3), for which all a1, a2
j , a3, a4

i , a5
i j , a6

i , i, j ∈2

N, are càdlàg, (Ft )-adapted processes, of which all but finitely many are zero. The integral of3

a ∈ SÊ with respect to Y is then defined by,4 ∫ t

0
a(u−)dY (u) :=

⎛⎝∫ t

0
a1(u−)d Z (u) +

∑
j

∫ t

0
a2(u−)dW j (u) +

∫ t

0
a3(u)du,5

∑
i

∫ t

0
a4

i (u−)d Z (u) +

∑
i j

fi

∫ t

0
a3

i j (u−)dW j (u)6

+

∑
i

fi

∫ t

0
a6

i (u)du

⎞⎠ .7

Analogously as above, one can show that Y is also an (E, Ê)-semimartingale and thus we8

can again extend the definition of the integral
∫

a−dY to all càdlàg, (Ft )-adapted Êloc-valued9

processes a.10

In view of (26) we only need to consider integrands of the form (B.3), for which a2,(n)
j ≡ 011

and a4,(n)
i ≡ 0 for all i, j ∈ N. Moreover, we will further extend the definition of the integral12 ∫

a(n)(u−)dY (n)(u) allowing as integrands all càdlàg, adapted processes a(n) which take their13

values in the set14

Êloc := R × {0} × R × {0} × L2
loc,diag(R2

+
;R) × L2

loc(R+;R),15

where16

L2
loc,diag(R+;R) :=

⎧⎨⎩h(x, y) =

∑
i

∑
j≤i

hi j fi (x) f j (y)

⏐⏐⏐⏐⏐⏐
∑
i∈Im

∑
j≤i

h2
i j < ∞ ∀ m ∈ N

⎫⎬⎭ .17

The definition of the integral will be extended as follows: for any a(n)
∈ Êloc, the process18 ∫ t

0
a(n)(u−)dY (n)(u), t ∈ [0, T ],19

is defined as the unique càdlàg Eloc-valued process X = (X1, X2) (up to indistinguishability)20

such that for all m ∈ N and rational t ∈ [0, T ],21 (
X1

t ,1[0,m] X2
t

)
=

∫ t

0
a(n),m(u−)dY (n)(u), (B.4)22

where the Ê-valued processes a(n),m, m ∈ N, are defined as the projections of a(n) on the
subspace { fi : i ∈ Im} with Im defined in (17):

a(n),m(t; x, y)

:=

⎛⎝a1,(n)(t), 0, a3,(n)(t), 0,
∑
i∈Im

∑
j≤i

a5,(n)
i j (t) fi (x) f j (y),

∑
i∈Im

a6,(n)
i (t) fi (x)

⎞⎠ .
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