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Abstract 

Answering a question raised in Andjel and Vares (1992), we prove the ergodicity of the 
infinite-dimensional renewal process whose coordinates are indexed by Z a and whose failure 
rate at any given site is the average of the ages of its neighbors plus a positive constant c, for any 
d > 1, c > 0. The main point is to prove the convergence of zero boundary Gibbs measures as 
the volume tends to Z a. This also yields uniqueness of Gibbs measures. 

Kevwords. Multi-dimensional renewal process; Ergodicity; Attractiveness; Absence of phase 
transition 

1. Introduction 

In this article we study the higher-dimensional version of the renewal process 

introduced by Spitzer (1986) and studied by Andjel and Vares (1992) in the 

one-dimensional  case. This is a Markovian  evolution taking place on some suitable 

subset X of Y = [RU, where q(x) has the interpretation as the age of some renewing 

object sitting at site x. The renewal rate at site x is 

1 

Y:ly-xl= l 

where c > 0. 

When d = 1, Andjel and Vares (1992) provided a suitable X so that a Markov  

process (rh) could be constructed, satisfying the above description, for each % s X. 

They also show that when c > 0 this process is ergodic. Their proof  strongly relies on 

the one-dimensional  character and a natural question is: what  happens when d >_ 2? 
Do we have ergodicity for every c > 0, or does there exist some critical c? Here we 

prove ergodicity for any c > 0, in any dimension d. Similarly to Andjel and Vares 

(1992), we make strong use of attractiveness properties, which reduce the problem to 

a question of convergence of zero boundary  Gibbs measures on [R~+ as A T 7/a. Making  
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use of special properties of our Gibbs measures we can prove such convergence in 
a very simple way. Again, due to attractiveness properties this in fact implies unique- 
ness of Gibbs measure for the given interaction. 

The restriction to a suitable subset X of Y comes in naturally if one wishes to define 

the infinite volume dynamics as the limit, for n ~ + oo, of those on RA+ " (zero 

boundary) where A, = {x: Ix] < n} and Ixl = Zf= l lXi[ for any x = (xl . . . . .  xa) e Z a. As 
seen in Andjel and Vares (1992) one cannot hope this limit to exist if all configurations 
r/e Yare allowed. The set X here obtained for any dimension d is more restrictive than 

the corresponding one in Andjel and Vares (1992) for d = 1, as seen in Proposition 6.1. 
Nevertheless, the investigation of ergodicity can be done in a more general way, 

avoiding this restriction, since the above mentioned finite volume dynamics on the 
whole Y are clearly seen to converge along the two subsequences A. for n even, and for 

n odd (Section 3). In Theorem 4.4 we prove our main result: if c > 0 these two infinite 

volume semigroups (which are always ordered) are both ergodic with the same 
invariant measure p, which is the limit as n--,  + oc of the finite volume Gibbs 
measures #A, on NA,+, whose density with respect to Lebesgue measure is 

h.(q) = ~ .  exp - c ~ q(x) - ~ q(x)q(y) . (1.2) 
xeA. Ix - y] = 1 

x, yeA. 

In Section 5 we prove the uniqueness of Gibbs measure on Y with the same prescrip- 

tions of p, which follows from the results in Section 4. 

2. Finite volume dynamics 

I f A  is a finite volume in Za (to fix ideas A = Afff{i :  Ii[ ~ n}) the construction of 

Section 2.1 of Andjel and Vares (1992) yields a Markov process on YA = I~ % with 

transition probabilities PA(t, q,'), and which corresponds to the formal generator LA 
acting on C~(XA) as 

Lmf(q) = ~ {¢?,f(q) + ¢p~(q)(f(q~) - - f (q) )} ,  
i~A 

where 

rli(j)= { qo(j ) if j # i, ~? 
if j = i, ~if(q) = ~ f(q),  

and 

(2.1) 

1 
= ~ q( j  ) (2.2) 

(Pi(q) C -]- ~ l j _ i l=  l 

jEA 

(i.e. zero boundary on AC). 
For the construction of infinite volume dynamics we want to take limits of PA (t, q, ') 

as A T Y  a in a suitable way. For this, it may be convenient to think of each PA(t,q, ") as 
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a probability measure on Y = R~+ d, letting it concentrate on {¢ eX :  ¢(x) = 0 Yx ¢ At. 
We also need to fix some notations. 

(a) When A = A, = {i: lil < n} we shall write P.(t, q, .)instead of P4,(t, q, "), and Y. for y~. 
(b) If /7~YA (or Y) and t_>0 we let K , = { ~ e Y A  (or Y): ~__<q} where ¢ < q  iff 

~(x) < q(x) for all x cA (or 7/a), and let q + t be the configuration in YA (or Y) 
defined by (r/+ t)(x) = rl(x) + t for all x ~ A (or 7/a). 

(c) As in Andjel and Vares (1992) we shall make strong use of an "attractiveness" 
property of our dynamics. For this, recall the partial ordering -< on Y (or Y~): we 
will say that q <  ¢ iff q(x) < ~(x) for all x even and r/(x) > ~(x) for all x odd, where 

x = (xi . . . . .  Xa) ~ga is said to be even or odd according to ~ =  l lx~l being even or 
odd. We also use -< to denote the corresponding partial order on the set of 
probability measures on Y, (or Y): 

t,-<p'iffffd <_ffdp' 
for any bounded continuous function f :  YA (or Y) -~ E which is nondecreasing 
with respect to ~ .  As it is well known this is equivalent to the existence of 
a measure fi on YA x Y3 (or Y x Y) with first and second marginals p and p' 
respectively and concentrated on {(q, ~/'): q ~ q' }. (See Kamae et al. (1977).) 

(d) If Z is a metric space B(Z)  denotes its Borel a-field. 

The attractiveness property of PA, which was proven in Andjel and Vares (1992) 
may be summarized in the following lemma. 

Lemma 2.1 (Andjel and Vares, 1992). Let q,~ E YA with q-< ~. Then for  any t > 0 we 

have PA(t, q , ' ) <  PA (t, ~, "). l f  f is bounded, continuous and increasing for < ,  then so is 

P A t , ' , f ) .  Moreover, for  each t,q PA( t , q ,K ,+ , )=  1. 

Lemma 2.2 (Andjel and Vares 1992). L e t f b e  bounded, continuous and nondecreasin9 

with respect to ~,. Assume f to depend only on the coordinates in Ak, and that 

2n - 1 >_ k, 2m >_ k. Then, for any 11 we have 

P2.-  l(t, q, f )  < Pzm(t, q, f ) ;  (2.3a) 

P2, l ( t , q , f )  <_ P z , + t ( t , q , f ) ;  (2.3b) 

P2m(t, q, f )  > P2,, + 2( t,/I, f ) .  (2.3c) 

Finally, we also recall from Andjel and Vares (1992) the ergodic behavior of finite 
volume dynamics, when c > 0. 

Theorem 2.3 (Andjel and Vares, 1992). Let c > 0 and n ~ t~. Then 

(a) There exist constants a,, b, ~(0, ~ )  depending only on n and c so that for all t >_ 0: 

sup II P . ( t ,v / , ' ) -  P,(t,~,')ll -< a.e -'b", 
n, ,~ Yn 

where ]].]j denotes the total variation norm. 
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(b) Let Fl, be the unique probability on Y,, which is absolutely continuous with respect to 
Lebesgue measure and whose density hn(q) is given by 

h.(~) = ~ exp - c ~ q(i) - ~ ~(i)~(j)  (2.3) 
l e A n  i, j E A  

l i -  J l -  1 

with Z ,  a normalizing constant. Then I~, is the unique mvariant measure Jbr P,, i.e. 

fP , ( t ,  q, ")/~,(dr/) = #,(-), > ¥t  O. 

(c) Vtl ~ Y,, P,(t, tl,') ~ l~,(" ) in variational distance, as t ~ + oo. 

3. Infinite volume dynamics 

The attractiveness properties of P, were used in Andjel and Vares (1992) to bound 
the infinite dynamics P(t, rl, "), both from above and below, by finite dynamics, if q ~ X 
as defined in Andjel and Vares (1992). Nevertheless, the restriction on r/ may be 

7/a avoided. If t > 0 and r/~ ~+ ,  the probabilities PA(t,q,') are all concentrated on the 
compact set K,+, ,  so that {PA(t,q, ')}A is a tight family. Moreover, Lemma 2.2 tells us 
that i f f i s  cylinder, bounded, continuous and nondecreasing for ~ ,  then (Pz,. (t, rl, f ) )  
(Pzm+l (t, q , f )  resp.) decreases (increases resp.), for m large enough. This allows us to 
define probabilities P(t ,q , . )  and _P(t,q,.) on Y via (limits are in w*-topology) 

P(t, r/,-) = lim P2,(t, q, "), (3.1) 

_P(t,q,') = limP2,+l (t ,q, ') .  (3.2) 

(We are simply using that if M, (M,), are probability measures on ~+d and 
M,(g)  ~ M(g)  for all g bounded, continuous, cylinder and increasing for ~ ,  then 

w* M, ~ M ,  which is easily proven.) 
Moreover, if f, k, m, n are as in Lemma 2.2, then 

P2, - l ( t ,  rl, f )  <_P(t,q, f )  < P(t, rl, f )  <_ P2,,(t,q, f ) .  (3.3) 

The next step is to show that_P(t, q, ') and P(t, q, .) are Markov transition probabilit- 
ies, which would allow the construction of infinite volume dynamics. As we know 
from one-dimensional case some condition on the growth ofq(x) as Ixl  ~ ~ is needed 
to have _P(t, q, .) = P(t, q, .). (See Section 6.) For the moment we do not assume this 
and look at two possibly different processes. 

The basic property needed for construction is the following proposition. 

Proposition 3.1. The family of  probability measures {/5(t, q, .): t > O, q ~ Y}({P(t ,  q, .): 
t > 0, r/~ Y}) satisfy the following: 

(a) P ( t , q , K , + , ) =  1 =p( t , q ,K~+, ) ,  

w,* . 
(b) P(t, rl,') ~o6  , and P ( t , q , ' ) ~ o 6  ., where 6, is the Dirac measure at q, 
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(c) q ~ P(t, q, F) and t / ~  P(t ,  ~/, F) are B( Y)-measurable,.for each F e B(Y). 

(d) Furthermore, 

f /5(t,~l,d~)/5(s,~, f )  P(t + s, tl, f ) ,  

f P(t, q,d~)P(s, f )  = P(t s,q, 4, + f ) ,  

.for each f bounded continuous on Y, each t > O, s > O, and each t l ~ Y. 

(3.4) 

(3.5) 

Proof. We consider only/5(t,t/, .); _P(t,r/,.)is analogous. 

(a) Is immediate since Pz.(t, tl, K,+t) = 1 for each n. 
(b) It is enough to show that if f is bounded, cylinder, continuous and increasing for 

~ ,  then P(t, t l, f )  --*f(q) as t ~ O. Let k > 1 be such t ha t fdoes  not depend on the 

coordinates off AR, and 2n > k. We have 

P2,+ l(t,q, f )  ~ P(t,q, f )  < P2,(t,q, f )  (3.6) 

for all t > 0, all q. From the construction of P,( .)  (Proposition 2.4 of Andjel and 

Vares (1992)) both P2,+ l(t,q, f )  and P2.(t, q, f )  tend pointwise tof (q)  and so (b) 
follows from (3.6). [Notice that i f f s  Cb(Y,) the convergence of P,(t, . ,  f )  to,['(.) as 
1 --* 0 is not in general uniform in Y,,.] 

(c) Is immediate from typical measure theoretic argument. 
(d) It is enough to consider (3.4) wi th fbounded ,  continuous, cylinder and increasing 

for ~ (usual monotone class argument). Let k be such t h a t f d o e s  not depend on 

the coordinates off A2k. We have if 2n > 2k 

b 

/5(t + s, tl, f )  <_ P2,(t + S, tl, J) = P2,(t, tl, d~)P2,(s,~, f )  

<_ JP2,(t,q,d~)P2k(S, ~,f). (3.7) 

Moreover, since ~ ~ P2k(S,~,f) is bounded and continuous in Azk, from the 
definition of/5 we have that the last expression on the r.h.s, of (3.7) tends to 

f P(t,q,d~,)Pzk(S,~,f) as n ~ ~. 

Thus we get 

/5(t + s,q,f)  < f P(t,q, dOPzk(s,~, f )  

for all such f and k. Letting k ~ ~ we get by Dominated Convergence Theorem 

P(t + s,q,f) <_ f ¢, f ) .  
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On the other side i f f  and k are as above 

fP(t,7,d~)P(s,~,f)< fP(t,7,d~)P2~(s,~,f) 
<_ 7, d~)P2k(S, 3, f )  = P2k(t + S, 7, f )  

which tends to P(t + s, 7 , f )  as k -+ ~ proving (3.4) for such f and so (d). [] 

From Proposition 3.1 we immediately have the following theorem. 

Theorem 3.2. There exists a Markov process on Y whose transition probabilities are 

,6(t, 7, ") (resp. _P(t, 7, '))- 

Proof. Analogous to Theorem 2.9 of Andjel and Vares (I 992). If 7 ~ Y, since P(t, 7, ") is 
tight, a classical result of Kolmogorov (Ethier and Kurtz (1986) p. 157) tells us that 
there exists a probability measure P,  on (ytO. % B( ytO, o~)) so that 

P.(q(t~) e F~, 1 < i <  m) 

= . . .  t - - t , , _ , , 7 . _ , , a T , ) .  
dr 1 . I F .  

B 

For P,  the proof is exactly the same. [] 

4. Ergodicity of /~  and _P. 

Let us extend p, to Y by letting it concentrate on {7 ~ Y: 7(x) = 0, Yx ~ A,}. 
Let us consider again the finite volume dynamics PA(t, 7,') of Section 2. Since 

q~i(7) >- c for all i cA, all 7 c YA, it is easily seen that if PA(t, 7,') corresponds to the 
process of independent renewals with rate c, then 

PA(t, 7,)  _< PAt, 7,-) 

in the usual stochastiC, ordering for probability measures in YA (i.e. for 7 < ~ if 
7(x) --< ~(x), Vx). F r o m  this, Theorem 2.3 and the ergodicity of Pz, (which has as 
unique invariant measure the product of exponentials with rate c denoted by vc, it 
follows that all {p.}, are dominated in the usual stochastic order by vc. This 
immediately implies that the family {/~,}, > 1 is tight on Y. On the other side, Lemma 
2.2 implies that i f f  is cylinder, bounded, continuous and nondecreasing for < ,  then 
pz, ( f )  decreases and p2.+ 1 ( f )  increases, for n large enough. It then follows that 

/~ = lim ~u2., (4.1) 
n ~ o o  

p = lira P2. + 1 (4.2) 
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exist and are probabil i t ies on Y. Their  basic propert ies  are summar ized  in the next 

lemma. 

Notat ion.  If x ~ 7/a we let Zx be the shift defined by z~q(y) = q(x + y) for all q e Y. If 
/~ is a measure  on Y we let z_~It(A) = It(z~A). Also rxg(q) = g(r~q). 

Lemma 4.1. The following properties hold: 

(a) ~ < l i ,  
(b) ( f  x is even then I~ = r~l~, ft = Zxfi, 

(c) l f  x is odd then IZ = Zxf~, ~ = Zx1~, 

(d) The conditional distribution of  q(x) given ~ ,  the ty-field generated by coordinates 

q(z), z # x, under each of  the measures fi or I~ is exponential with rate 

1 
c+ 5 E ,(Y). 

y z I Y - x l  = 1 

Proof.  (a) It follows at once from (2.3a) and Theorem 2.3(c). 
(d) It is a simple consequence of (4.1), (4.2) and Theorem 2.3(b). Indeed from simple 

integrat ion it follows from Eq. (2.3) that  the law of q(x) given (q(z), z 4: x, z E A,) under  
/~, is the above exponential  distribution. Since this depends only on q(z), [z - x[ = 1, 

letting n ~ ~ (4.1) and (4.2) yield (d). 

(b) It is an immedia te  consequence of (c). 

(c) It is enough to prove that  Zeft = # where j = 1 . . . . .  d and el . . . . .  ed are the 
canonical  unit vectors in 7/n. For  simplicity take j = 1. 

Fix a bounded,  continuous,  cylinder function f which is increasing for -<, with 

suppor t  in Ak. Take  n even so that  n - 1 2 k. F r o m  the attractiveness propert ies  of 
Section 2 we have 

t~2.+,(g)'< l ~ , ( g ) <  /~2._,(g), (4.3) 

where zl,, = {x:Ix - eal <- m} and g is bounded,  continuous,  increasing for -<, with 

suppor t  i n /1 ,_  1. But z e l f i s  decreasing for -<, so 

I tA._,( f )  = 1~2._,(ze,f) <-- HA.(Ze,f) < P&+~(Ze,f) = I tm. . , ( f ) ,  (4.4) 

letting n ~ + oc in (4.4) we get ~e,~ = /~. A similar a rgument  yields Ze,O = ~. [] 

Proposition 4.2. fi =/~.  

Proof.  We first show that  fi(q(0)) =/t(q(0)) .  If x ET/d, let ~ x  be as in L e m m a  4.1(d) 
O~x = a(q(y):  y :/: x) _~ ~¢(Y). Then by L e m m a  4.1(d) we have 

fi(q(O)rl(el) ) = fi(q(O)ft(q(el)lo~e~)) = ~ (0) c + ~ ~ ~/(x) 
I x - e l l  = 1 

(4.5) 
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and also 

~(~(O)~(e~)) =/7(~(el)li(q(O)lo~0)) =/7 ~(e~) c + ~'r  

(4.6) 

I 
_~(q(0)) = ~(A) = ~ ~(A) =/7(q(O)). 

/( 1 )) 
= _/J(q(2el) c + 2d ~ q(Y) ' 

ly-ell:l  

where we have used L e m m a  4.1 (c) in the last equali ty in (4.6). Tha t  is, setting 

1 
A(q) = 2d ~" q(Y)' 

ly-elp = 1 

we have proven that  

( ~ ( 0 )  ~ :  (~(2e l )~  . 
/7 \ ~+--J / -~ \ c + A / 

Letting Yi = el + e~ and a(yi) = e~ - ei, i = 1,2 . . . . .  d, proceeding as in (4.5) and (4.6) 
we have 

(,(,,)): 
/7 \ c ~ A J  0 \ c + A J i = 1 . . . . .  d. (4.7) 

Adding up we get 

/7 = _~ . ( 4 . 8 )  

Let now/7  be a measure  on Y × Y such that: 

(i) /7(B× Y) = /~ (B) , /7 (Y×  B) =/7(B),  for all B eB(Y) ;  

(ii) /7{(q, rl')lq~q' } = 1. (This exists because / ~ / 7 . )  Since q--*A(q)/(c + A(q))is 
increasing for ~ we have 

{ A(q) < A(q') } =1 
/7 (q'q') c + A ( q ) - c  + A(q') 

which together  with (4.8) implies 

{ A(q) A(q') } = 1  ' 
fi (q'q') c + A ( q ) - c  + A(q') 

and so 

/7{(. ,q ') l  A(q) = A(q')} -- 1. 

F r o m  L e m m a  4.1(b) we then have 
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Using again Lemma 4.1(b) and (c) it then follows that p(r/(x))= ~(q(x)) for all 
x • 7/a. From (i) and (ii) above we get/~ =/~. 

Notation. p = /~  =/~. 

Lemma 4.3. p is invariant for f i( t ,q, ' )  as well as for_P(t,q,.), i.e. 
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for all such n. But ~t2.--*/~ and / ~ 2 . + ~  so that  we have ( remember  

P(t ,  q, .) < P(t, ~t, ")) 

l im_P( t ,q , f )  = / a ( f )  = lim P ( t , q , f ) ,  

for all such f, proving the theorem. [] 

5. Uniqueness of the Gibbs measure 

Propos i t ion  4.2 in fact implies the uniqueness of the Gibbs  measure  on Y with the 
same prescriptions as/~. In fact if A. is as before and we take on A, the Gibbs  measure  

/~.(" I#) with arbi t rary  boundary  condit ion #i i E OA. i.e. its Radon  N i k o d y m  derivative 
w.r.t. Lebesgue measure  is 

/ ) 
1 ( t 1 1 

hA"(q]O) = Zn exp -- c j~A. ~" qj 2d ]i_j]2= 1 ?]iqj -- ~ i~A.Z ?]iqj 
i,j~An j~gAn 

k li Jl = 1 

with Z .  a p roper  normaliz ing constant  and ~?A. = {x CA.: 3y c A .  with Ix - y] = 1}, 

it is easily seen that  for f bounded,  continuous,  increasing for -<, and cylinder with 
suppor t  in A._ 1, we have 

/ ~ . - l ( f )  </~.(flq) -< kt.(f) 

/ t . ( f )  _</~.(f16) -</~.- 1 ( f )  

for n even, 

for n odd. 
(5.1) 

Indeed (6.1) is an easy consequence of Lemmas  2.1, 2.2 and Theorem 2.3, since one 

can see that /a ,(-10) is the invariant  measure  of the process with proper ly  modified 

bounda ry  conditions, and the compar i son  between these and zero bounda ry  process 
- w *  follows the same lines as L e m m a  2.2. Tak ing  limits in (5.1) it follows that/~,(-It /)  ~/~. 

6. Infinite volume dynamics for "good" configurations 

As observed in Andjel and Vares (1992), and easily noticed, there is no reason to 

have P( t ,q , . )  =_P(t ,q , . )  for a general r/. In fact, if q(x) grows very fast as Ixl grows, 
then it makes  a lot of difference to look at P 2 , ( t , q , F )  or P2,+ l ( t , q ,F) ,  where F is 
a fixed cylinder set, no mat te r  how large is n. Since we are considering c > 0, we have 
seen that  as t ~ ~ this difference relaxes, and both tend to/~. Moreover ,  if we recall 
L e m m a  4.3, as well as the fact that_P(t, ~/, . ) <  P( t ,q , - )  we immediately  conclude that  

~ { ~ : _ e ( t , ~ , . )  = P ( t , ~ , . ) }  = 1. 

Nevertheless it is convenient  to present a concrete example  of a set X _ Y, with 
p ( X ) =  1 and such that  if q ~ X  then w * - l i m . ~ + ~ P , ( t , q , . )  exists, i.e. _P(t,q, ') 
= P( t ,q , . ) ,  for all t > 0. This is the content  of  the next proposi t ion.  
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Proposition 6.1. Let 

X = {q E Y: 3A > O, 3c~ < 1 so that q(i) <_ Alil~for all i ~7/~/{0}}. 

Then, for each t 1 ~ X and t > 0 

_P(t, r/,-)= P(t,q, '). (6.1) 

Proof. For  each m < n and q ~ X we couple the finite-dimensional processes on A,, 

and A, in a suitable way. (It is enough to take n = m + 1, but this does not  change 

what  follows.) First, we use, as in Section 2.1 of Andjel and Vares (1992), the transit ion 
probabil i t ies P,,k, for which the renewals are eliminated if y~A,r/(i) > 2k i.e. ~o~ is 

changed to gk(~j~Atl(j))q~i in (2.1) and (2.2), where 

1 t<_k,  

gk(t)= 2 - t/k k < t < 2k, 

0 t>_2k. 

Notice that  for k >_ t + ~j~a tl(j) we have P.(t ,q , ' )  = P,,k(t, tl,'). 
F i x t / ~ X a n d k > l  and let 1 2 (qs , t / , ,  ~ )  be a process on Ym × Y, × {0, 1 }A~+ as in 

Propos i t ion  2.5 of  Andjel and Vares (1992) i.e. 

(i) t/~ has transit ion probabil i t ies P,,,k and qo ~ is t /(restr icted to A,,), 
(ii) q2 has transit ion probabil i t ies P..k and r/2 is t /(restr icted to A.), 

(iii) %(0  = 0 if i ¢ Am, %(0  = 1 if liE = m + 1. ~(i)  flips only from zero to one with rate 

1 
"7(~= , O~s(J)(tl(J) + t), Yd 

qJ 

(iv) P(tl~(i ) # q2(i),~(i) = 0) = 0 if i ~A~. 

As in Andjel and Vares (1992), for the proof  of  the proposi t ion it is enough to show 

that  if q ~ X, B is finite, and t > 0 then 

lim P(~t(i) = 1 for some i e B) = 0. (6.2) 
m ~  

Without  loss of  generali ty we consider B = {0}. 
For  each bond  • = ( i , j> with i,j e E  ~, ]i - j [  = 1, let t ( : )  be an exponential  r andom 

variable with rate (q(i) + q(j) + 2t)]2d, and take them independent.  Consider  the first 
passage percolat ion p rob lem associated to these r andom times (as defined in Smythe  
and Wie rman  (1978) or Gr immet t  (1985)). 

If q is a path,  we set 

t(q) = ~ t({) 

and 

A, = {i cAm: 3 path  q start ing at ~3A, and ending at i with t(q) < t} 
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then by (iii) we easily see that 

P(c¢,(0) = 1) < P(0 tA t ) .  

To estimate the r.h.s, of  (6.3) we say that the bond d is open 

t ( f )  < ( >)T / ( l i l  ~ ^ IJl ~ + 1), where 0 < T i s  chosen small enough so that 

P(~' is open) < p < p~ (6.4) 

for p~ the critical parameter  for Bernoulli bond  percolation on 7/d. 

If  Co is the open cluster containing the origin then it is known that EI Col' < ~ for 

all r, where by ICol we denote the cardinal of  Co (see Gr immet t  (1989)). 

Now if m is large enough and 0 < fl < 1 - ~ we have 

[0 t A t ]  c [ t  open cluster ~_ A,, of size > m~]. (6.5) 

Indeed, if there are no open clusters of size at least m a inside Am, then each path 

q connecting 0 and 0Am must  have at least [m I - a ]  closed bonds ~1 . . . . .  Etm, [q, so that 

~k = ( i k , Jk )  with ik o r j k  ~Ak,.~, (k = 1 . . . . .  [ml -P] ) .  Thus 

T [ml-/~] 1 T 1"' ~'l 1 

~. ( k m a ) ~ -  2ma= ~ > t, t (q)>_-~ k=l k=l ~ 

if m is large enough. 

Then, for m large enough 

P(0 EAt) < (2m + 1)dp(ICol > m ~) < 
(2m + 1) d 

ma r EICoI ' ,  

which tends to zero if fir > d. 

(6.3) 

(closed) if 
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