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Abstract

In statistical physics, subdiffusion processes are characterized by certain power-law deviations from
the classical Brownian linear time dependence of the mean square displacement. For the mathematical
description of subdiffusion, one uses fractional Fokker–Planck equations. In this paper we construct a
stochastic process, whose probability density function is the solution of the fractional Fokker–Planck
equation with time-dependent drift. We propose a strongly and uniformly convergent approximation
scheme which allows us to approximate solutions of the fractional Fokker–Planck equation using Monte
Carlo methods. The obtained results for moments of stochastic integrals driven by the inverse α-stable
subordinator play a crucial role in the proofs, but may be also of independent interest.
c© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past decades, starting with the pioneering papers of Montroll and his collaborators,
see [21], the physical community has shown a growing interest in modelling anomalous diffu-
sion processes. The term anomalous diffusion refers to a broad family of processes described by
certain deviations from the classical Brownian linear time dependence of the centered second
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moment. The distinct subclass of anomalous diffusion processes forms subdiffusion processes.
They are characterized through the power-law form of the variance Var[X (t)] ∼ ctα as t →∞
with 0 < α < 1. The last formula compared with the expression for the second moment of
standard Brownian motion explains why subdiffusion is also termed as slow diffusion. The em-
pirically confirmed list of systems displaying a subdiffusive regime is very extensive. It encom-
passes, among others, charge carrier transport in amorphous semiconductors, nuclear magnetic
resonance, diffusion in percolative and porous systems, transport on fractal geometries and dy-
namics of a bead in a polymeric network, as well as protein conformational dynamics; see [19]
and references therein. Therefore, it is of great interest to develop new mathematical tools and
methods, which can be used to investigate the properties of subdiffusive systems.

The usual mathematical description of subdiffusion is in terms the fractional Fokker–Planck
equation [18,19]:

∂w(x, t)

∂t
= 0 D1−α

t

[
K
∂2

∂x2

]
w(x, t) (1)

with the initial condition w(x, 0) = δ(x). The operator

0 D1−α
t f (t) =

1
0(α)

d
dt

∫ t

0
(t − s)α−1 f (s)ds,

0 < α < 1, f ∈ C1([0,∞)), is the fractional derivative of the Riemann–Liouville type [23].
Here, 0(·) is the Gamma function. The constant K denotes the anomalous diffusion coefficient.
In Eq. (1), w(x, t) denotes the probability density function (PDF) of a stochastic process
{Z(t)}t≥0. Properties of {Z(t)} will be discussed in some detail in the next section. Note that
for α → 1, Eq. (1) becomes the ordinary Fokker–Planck equation and its solution is the PDF
of the Brownian Motion. It is easy to verify, [19], that E[Z(t)] = 0 and E[Z2(t)] = 2K

0(α+1) t
α ,

which confirms that the fractional Fokker–Planck equation (1) can be used to model subdiffusion.
To get some more insight into the structure of (1) let us discuss briefly its derivation. Consider

the following continuous-time random walk (CTRW)

W (t) =
Nt∑

i=1

Ri .

Here, the counting process is given by Nt = max{n ∈ N :
∑n

i=1 Ti ≤ t} with the sequence
{Ti }
∞

i=1 of nonnegative i.i.d. random variables representing the waiting times between successive
jumps of a particle. It is assumed here that the waiting times Ti belong to the domain of attraction
of a completely asymmetric stable distribution, P(Ti > t) ∼ ct−α as t → ∞. The sequence
{Ri }

∞

i=1 of symmetric i.i.d. random variables with finite second moment represents the jumps of
a particle. The sequence {Ri } is assumed to be independent of {Ti }. Then, the scaled process
s−α/2W (st) converges weakly as s →∞ to the process Z(t), whose PDF is the solution of the
fractional Fokker–Planck equation (1), [7,14,15,22]. The subdiffusive behaviour of the process
{Z(t)} is the consequence of the heavy-tailed distributions of each Ti in the underlying CTRW
scenario. After every jump, the particle gets immobilized and has to wait a relatively long time
for the next move. The heavy-tailed waiting times Ti slow down the diffusion and determine the
appearance of the fractional derivative 0 D1−α

t in (1). The typical trajectory of the subdiffusive
process is presented in Fig. 1.

Many physical transport problems take place under the influence of an external force field.
To model subdiffusion in the presence of an external force F(x) ∈ C1([0,∞)) one uses the
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Fig. 1. Sample realizations of the process {Yδ(t)} in the case of a constant force F ≡ 1 and α = 0.9. The flat periods of
the process are typical for subdiffusion and represent the heavy-tailed rests of the particle.

following version of the fractional Fokker–Planck equation [19]

∂w(x, t)

∂t
= 0 D1−α

t

[
−
∂

∂x
F(x)+ K

∂2

∂x2

]
w(x, t), (2)

w(x, 0) = δ(x), which is a generalization of (1). Note that for α → 1 we recover the standard
Fokker–Planck equation corresponding to the diffusion process with drift F(x). For the case of
time-dependent force F(t) ∈ C([0,∞)), the recently derived version of the fractional Fokker–
Planck equation [25] has the form

∂w(x, t)

∂t
=

[
−F(t)

∂

∂x
+

1
2
∂2

∂x2

]
0 D1−α

t w(x, t), (3)

w(x, 0) = δ(x). As compared to (2) the fractional operator in the last equation does not act on
F(t) and, therefore, it does not modify the time-dependent force.

Eqs. (2) and (3) are fundamental for statistical physicists in the modelling of subdiffusion. In
the next section we discuss the question of stochastic representation of these equations, namely,
how to define a stochastic process whose PDF is the solution of (2) or (3). The answer is known
only for the case of Eq. (2); see [13]. In this paper we construct a stochastic process, whose PDF
is the solution of the fractional Fokker–Planck equation (3). Our verification method is based on
the analysis of the moments of the introduced process. However, the obtained results for moments
of stochastic integrals driven by the inverse subordinator may be also of independent interest.

It should be noted that the physically correct extension of Eqs. (2) and (3) to the case of
a space–time-dependent force F(x, t) is still not known. One can obviously plug an arbitrary
force in one of the above equations, however, it is not clear if such new mathematical object
corresponds to any physical process. The detailed discussion of this problem can be found
in [5,27]. Nevertheless, there is a considerable progress in generalizing fractional Fokker–Planck
equations to some physically accepted models. Recently, the fractional Black–Scholes formula
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for subdiffusive geometric Brownian motion was derived in [11]. The case of space-and-time
fractional Fokker–Planck equation and its stochastic representation can be found in [12]. Some
advanced studies on fractional Feynman–Kac formula are still in progress.

Since the solution of Eq. (3) in the explicit form is not known, in the last section we make
use of the obtained stochastic representation and introduce a strongly convergent approximation
scheme. It allows us to approximate solutions of (3) using Monte Carlo techniques for arbitrary
force F(t). Finally, taking advantage of the proposed methods, we present some numerical
results.

2. Stochastic representation of subdiffusion

In this section we discuss the question of stochastic representation of the fractional Fokker–
Planck equations (2) and (3). Let us begin with recalling some basic facts concerning subor-
dinators and their inverses. A Lévy process {U (t)}t≥0 with nonnegative increments is called a
subordinator. It is a well-known fact [24] that the Laplace transform of {U (t)} has the form

E
[
e−uU (t)

]
= e−tΨ (u),

where Ψ(u) is the Lévy exponent. It can be written as

Ψ(u) = λu +
∫
∞

0
(1− e−ux )ν(dx).

Here, λ ≥ 0 is the drift and ν(dx) is the appropriate Lévy measure.
Given a subordinator {U (t)}, the first-passage time process defined as

S(t) = inf{τ > 0 : U (τ ) > t}

is called the inverse subordinator. The inverse subordinators have found applications in many
areas of probability theory. Their relations to local times of Markov processes are discussed
in [1]. Some recent results on the connection between inverse subordinators and renewal
processes can be found in [2,26,10]. Applications to finance and physics are presented in [28,17],
respectively.

It turns out that in the context of modelling of subdiffusion, the inverse α-stable subordinator
{Sα(t)}t≥0, 0 < α < 1, is of special importance. It is defined as

Sα(t) = inf{τ > 0 : Uα(τ ) > t}, (4)

where {Uα(τ )}τ≥0 is the α-stable subordinator [24] with Laplace transform E
[
e−uUα(τ )

]
=

e−τuα , 0 < α < 1. Since {Uα(τ )} is a pure-jump process with cadlag trajectories, the sample
paths of {Sα(t)} are continuous and singular with respect to the Lebesgue measure. Additionally,
every jump of {Uα(τ )} corresponds to the flat period of its inverse. Notably, these heavy-tailed
flat periods of {Sα(t)} are characteristic for the subdiffusive dynamics, as they represent long
waiting times in which the particle is immobilized.

Using 1/α-self-similarity of {Uα(τ )}, we obtain P(Sα(t) ≤ τ) = P(Uα(τ ) ≥ t) = P((t/
Uα(1))α ≤ τ). Therefore, the distribution of Sα(t) is equal to the distribution of the random
variable (t/Uα(1))α . Computing the moments of the last random variable shows, [22,16], that
the Laplace transform of {Sα(t)} equals

E
[
e−uSα(t)

]
= Eα(−utα). (5)
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Here, the function Eα(z) =
∑
∞

n=0
zn

0(nα+1) is the Mittag-Leffler function, [23]. The above result
will be used later.

Coming back to the problem of stochastic representation of fractional Fokker–Planck
equations, the following result concerning Eq. (2) has been presented in [13]; see also [15,19]:

Theorem ([13]). Let {Sα(t)} be the inverse α-stable subordinator (4) and let {X (τ )}τ≥0 be the
solution of the following Itô stochastic differential equation

dX (τ ) = F(X (τ ))dτ + (2K )
1
2 dB(τ ), X (0) = 0, (6)

with drift F(x) and diffusion constant K > 0 driven by the standard Brownian motion {B(τ )}.
Assume that the processes {B(τ )} and {Sα(t)} are independent. Then, the PDF of the subordi-
nated process

Z(t) = X (Sα(t)), t ≥ 0, (7)

is the solution of the fractional Fokker–Planck equation (2).

The proof of the above theorem is based on the Laplace transform techniques. The crucial
fact in the proof is that the processes {X (τ )} and {Sα(t)} are assumed independent. Denoting by
p(x, t) the PDF of Z(t), one shows that the Laplace transform p̂(x, k) of p(x, t) satisfies

k p̂(x, k)− p(x, 0) = k1−α
[
−
∂

∂x
F(x) p̂(x, k)+ K

∂2

∂x2 p̂(x, k)

]
.

Inverting the Laplace transform one obtains

∂p(x, t)

∂t
= 0 D1−α

t

[
−
∂

∂x
F(x)+ K

∂2

∂x2

]
p(x, t).

The above theorem provides an insight into the structure of the subdiffusion process modelled
by (2). The fractional Fokker–Planck equation (2) describes the PDF of the standard diffusion
process {X (τ )} subordinated to {Sα(t)}. The heavy-tailed flat periods of {Sα(t)}, representing the
temporary immobilization of the particle, are typical for subdiffusive dynamics. (See Fig. 1 for
the typical trajectory of {X (Sα(t))}.)

The next theorem, which is the main result of this paper, solves the problem of stochastic
representation of the fractional Fokker–Planck equation (3) with time-dependent force F(t).

Theorem 1. Let {Sα(t)} be the inverse α-stable subordinator (4) and let {B(τ )} be the standard
Brownian motion. Assume that {Sα(t)} and {B(τ )} are independent. Then, the PDF of the process

Y (t) =
∫ t

0
F(u)dSα(u)+ B(Sα(t)), t ≥ 0, (8)

is the solution of the fractional Fokker–Planck equation (3) with time-dependent force F(t).

We postpone the proof of the above theorem till the end of this section. Since the process
{Sα(t)} is nondecreasing, the integral on the right side of (8) is interpreted pathwise as the
Lebesgue–Stieltjes integral. The similar stochastic integrals were obtained in [20] as limits of
certain random sequences.

The following result allows us to compare the structure of processes (7) and (8). Additionally,
it gives a physical interpretation to {Y (t)}.
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Lemma 1. Let {Uα(τ )} be the α-stable subordinator and let {Sα(t)} be its inverse. Assume that
both processes are independent of the Brownian motion {B(τ )}. Then, the process {Y (t)} defined
in (8) can be equivalently represented as

Y (t) = X̂(Sα(t)), (9)

where {X̂(τ )}τ≥0 is given by

dX̂(τ ) = F(Uα(τ ))dτ + dB(τ ), X̂(0) = 0. (10)

Proof. From (10) we get that {X̂(τ )} is given by

X̂(τ ) =
∫ τ

0
F(Uα(u))du + B(τ ).

Therefore, it is enough to verify that∫ Sα(t)

0
F(Uα(u))du =

∫ t

0
F(u)dSα(u). (11)

Fix t > 0. Assume first that F(t) = 1[t1,t2)(t) with 0 < t1 < t2 ≤ t . Then, we have∫ t

0
F(u)dSα(u) = Sα(t2)− Sα(t1).

Additionally, using the definition of {Sα(t)}, we immediately obtain that Sα(t) > τ ⇔ Uα(τ ) <
t . Therefore,∫ Sα(t)

0
F(Uα(u))du =

∫ Sα(t)

0
1[Sα(t1),Sα(t2)](u)du = Sα(t2)− Sα(t1).

The intervals [t1, t2) generate the Borel σ -field B([0, t]); therefore (11) holds for every F of the
form F(t) = 1A(t), A ∈ B([0, t]). Since F is assumed continuous (thus measurable), it can
be approximated by the step functions. Thus, using the standard arguments, we get (11) for any
continuous F . �

Comparing the structures of (7) and (9), we see that the main difference between these
processes lies in the underlying stochastic differential equations (6) and (10). The crucial factor is
the process {Uα(τ )}, which turns up in (10). Its appearance fulfills the physical requirement that
the time-dependent force F should vary in the real time t . Indeed, the process {Uα(τ )} reverses
the time and cancels the effect of the subordinator {Sα(t)} on the force F . Therefore, {Sα(t)}
subordinates the process {X̂(τ )} without subordinating the time-dependent force. Moreover, the
processes {X̂(τ )} and {Sα(t)} are evidently dependent. Thus, one cannot repeat the methods used
in the proof of the theorem for the case of space-dependent drift F(x).

Since the inverse subordinator {Sα(t)} is non-Markovian (it is a local time of some Markov
process, thus it has memory [1]), so is the process {Y (t)}. The fractional Fokker–Planck equation
describes only the evolution in time of one-dimensional distributions; thus it is an incomplete
mathematical description of the non-Markovian process. The stochastic representation obtained
in Theorem 1 overcomes this problem by giving the complete mathematical picture of
subdiffusion.



3244 M. Magdziarz / Stochastic Processes and their Applications 119 (2009) 3238–3252

The fractional Fokker–Planck equation (3) and its solution w(x, t) were constructed in [25]
as a limit distribution in certain CTRW scheme. Its derivation was based on generalized master
equation with two balance conditions: the probability conservation in a given state and under
transition between different states. The considered physical system was assumed to be infinite
and spatially homogeneous. In [25], authors showed that the moments

mn(t) =
∫
∞

−∞

xnw(x, t)dx

of the distribution w(x, t) satisfy the following recursive relation

mn(t) = n
∫ t

0
F(t1) 0 D1−α

t1 mn−1(t1)dt1 +
n(n − 1)

2

∫ t

0
0 D1−α

t1 mn−2(t1)dt1 (12)

with m0(t) = 1 and m−1(t) = 0. Recall that the operator 0 D1−α
t is the fractional Riemann–

Liouville derivative. In order to verify the stochastic representation of the fractional Fokker–
Planck equation (3), one cannot use the Laplace transform technique employed in the proof of
Theorem in [13]. The main obstacle is the fact that the force in (3) is time-dependent. Therefore,
no useful expression for the Laplace transform of Eq. (3) can be obtained. Thus, it is necessary
to find a different way to prove Theorem 1. It turns out that the recursive formula (12) plays a
crucial role in the proof. The next lemma allows us to calculate moments of stochastic integrals
driven by the inverse α-stable subordinator.

Lemma 2. Let {Sα(t)} be the inverse α-stable subordinator (4) and let {B(τ )} be the standard
Brownian motion. Assume that {Sα(t)} and {B(τ )} are independent. Denote the moments

an(t) = E[(B(Sα(t)))
n
],

bn(t) = E

[(∫ t

0
F(t1)dSα(t1)

)n]
,

ck,n(t) = E

[
(B(Sα(t)))

k
(∫ t

0
F(t1)dSα(t1)

)n]
,

with k, n ∈ N, F ∈ C([0,∞)). Then, the following relations are satisfied by an(t), bn(t) and
ck,n(t):

(i) If n = 2m, m ∈ N, then

an(t) =
n(n − 1)

2

∫ t

0
0 D1−α

t1 an−2(t1)dt1,

if n = 2m − 1, m ∈ N, then an(t) = 0.
(ii) For every n ∈ N

bn(t) = n
∫ t

0
F(t1) 0 D1−α

t1 bn−1(t1)dt1. (13)

(iii) If k = 2m, m ∈ N, then

ck,n(t) = n
∫ t

0
F(t1) 0 D1−α

t1 ck,n−1(t1)dt1 +
k(k − 1)

2

∫ t

0
0 D1−α

t1 ck−2,n(t1)dt1, (14)

if k = 2m − 1, m ∈ N, then ck,n(t) = 0.
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Proof. (i) From (5) we immediately obtain that

E[Sn
α(t)] =

tnαn!

0(nα + 1)
.

Since {B(τ )} is 1/2-self-similar, conditioning on Sα(t), we obtain

an(t) = E[Sn/2
α (t)]E[Bn(1)].

Thus, for n = 2m − 1 we have an(t) = 0. For n = 2m the above expression yields

an(t) = E[Sm
α (t)]E[B

2m(1)] =
tmαm!

0(mα + 1)
1 · 3 · . . . · (2m − 1).

Now, taking advantage of the last formula and the fact that 0 D1−α
t tµ = 0(1+µ)

0(α+µ)
tα+µ−1, µ ≥ 0,

we get the desired result.
(ii) By the change of variable formula (or by the Itô’s lemma for semimartingales), we get(∫ t

0
F(t1)dSα(t1)

)n

= n
∫ t

0

(∫ t1

0
F(t2)dSα(t2)

)n−1

F(t1)dSα(t1).

Thus, after n iterations(∫ t

0
F(t1)dSα(t1)

)n

= n!
∫ t

0

∫ t1

0
. . .

∫ tn−1

0
F(t1) . . . F(tn)dSα(tn) . . . dSα(t1). (15)

Now, introduce the random measure on [0,∞) by Π ((s, t]) = Sα(t)− Sα(s), where t > s ≥ 0.
Let {C(t)}t≥0 be the Cox process directed by Π , i.e., conditionally on Π = λ, {C(t)} is equal in
distribution to the inhomogeneous Poisson process with intensity λ. Note, [8], that {C(t)} is the
renewal process with the renewal function

u(t) = E[C(t)] = E[Sα(t)] =
tα

0(α + 1)
.

For the renewal process {C(t)} we have (see [3] page 73)

E[dC(t1) . . . dC(tn)] =
n∏

i=1

u′(ti − ti+1)dti ,

where t1 > t2 > · · · > tn > tn+1 = 0. Since the factorial moments of the Cox process {C(t)}
are equal to the ordinary moments of its directing measure Π , see [3] page 170, we obtain

E[dSα(t1) . . . dSα(tn)] =
n∏

i=1

u′(ti − ti+1)dti .

The above result in combination with (15) yields

bn(t) = E

[(∫ t

0
F(t1)dSα(t1)

)n]
=

n!αn

0n(α + 1)

∫ t

0

∫ t1

0
. . .

∫ tn−1

0

n∏
i=1

F(ti )(ti − ti+1)
α−1dtn . . . dt1
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with tn+1 = 0. Consequently,

bn(t) =
nα

0(α + 1)

∫ t

0
F(t1)

∫ t1

0
(t1 − t2)

α−1 d
dt2

bn−1(t2)dt2dt1

=
n

0(α + 1)

∫ t

0
F(t1)

d
dt1

∫ t1

0
(t1 − t2)

α d
dt2

bn−1(t2)dt2dt1

= n
∫ t

0
F(t1) 0 D1−α

t1 bn−1(t1)dt1,

which ends the proof of part (ii).

(iii) Conditioning on Ft = σ(Sα(τ ) : τ ≤ t), we get

ck,n(t) = E[Bk(1)]E
[

Sk/2
α (t)

(∫ t

0
F(t1)dSα(t1)

)n]
.

Thus, for k = 2m − 1, m ∈ N, we have ck,n(t) = 0. For k = 2m the above expression yields

ck,n(t) = pk E

[
Sk/2
α (t)

(∫ t

0
F(t1)dSα(t1)

)n]
with pk = E[Bk(1)] = 1 · 3 · . . . · (k − 1). By integration by parts, we obtain

Sk/2
α (t)

(∫ t

0
F(t1)dSα(t1)

)n

= n
∫ t

0

(∫ t1

0
F(t2)dSα(t2)

)n−1

F(t1)S
k/2
α (t1)dSα(t1)

+ k/2
∫ t

0

(∫ t1

0
F(t2)dSα(t2)

)n

Sk/2−1
α (t1)dSα(t1).

Iterating the change of variable formula, we have

n
∫ t

0

(∫ t1

0
F(t2)dSα(t2)

)n−1

F(t1)S
k/2
α (t1)dSα(t1)

= n!
∫ t

0

∫ t1

0
. . .

∫ tn−1

0

n∏
i=1

F(ti )S
k/2
α (t1)dSα(tn) . . . dSα(t1);

similarly

k/2
∫ t

0

(∫ t1

0
F(t2)dSα(t2)

)n

Sk/2−1
α (t1)dSα(t1)

= n!k/2
∫ t

0

∫ t1

0
. . .

∫ tn

0

n+1∏
i=2

F(ti )S
k/2−1
α (t1)dSα(tn+1) . . . dSα(t1).

Moreover, for every q ∈ N, we have

Sq
α(t1) = q!

∫ t1

0
. . .

∫ tq

0
dSα(tq+1) . . . dSα(t2).
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Thus, repeating the reasoning from the proof of part (ii) of the lemma, we obtain

ck,n(t) =
nα

0(α + 1)

∫ t

0
F(t1)

∫ t1

0
(t1 − t2)

α−1 d
dt2

ck,n−1(t2)dt2dt1

+
k(k − 1)α
20(α + 1)

∫ t

0

∫ t1

0
(t1 − t2)

α−1 d
dt2

ck−2,n(t2)dt2dt1

= n
∫ t

0
F(t1) 0 D1−α

t1 ck,n−1(t1)dt1 +
k(k − 1)

2

∫ t

0
0 D1−α

t1 ck−2,n(t1)dt1,

which yields (14) and ends the proof of the lemma. �

Note that for F ≡ 1, relation (14) follows immediately from (13) by conditioning. We finish
the section with the proof of Theorem 1.

Proof of Theorem 1. Recall the definition (8) of the process {Y (t)}. We start with calculating
the moments of {Y (t)}. Put

rn(t) = E[Y n(t)] = E

[(∫ t

0
F(u)dSα(u)+ B(Sα(t))

)n]
,

n ∈ N. We will show that the moments rn can be calculated from the recursive formula

rn(t) = n
∫ t

0
F(t1) 0 D1−α

t1 rn−1(t1)dt1 +
n(n − 1)

2

∫ t

0
0 D1−α

t1 rn−2(t1)dt1 (16)

by formally putting r0(t) = 1 and r−1(t) = 0. Using Newton’s binomial expansion, we get that
equality (16) is equivalent to

n∑
k=0

(n

k

)
ck,n−k(t) = n

n−1∑
k=0

(
n − 1

k

)∫ t

0
F(t1) 0 D1−α

t1 ck,n−k−1(t1)dt1

+
n(n − 1)

2

n−2∑
k=0

(
n − 2

k

)∫ t

0
0 D1−α

t1 ck,n−k−2(t1)dt1, (17)

where

cp,q(t) = E

[
(B(Sα(t)))

p
(∫ t

0
F(t1)dSα(t1)

)q]
,

p, q ∈ N. From (14) we get that for k ≥ 2(n

k

)
ck,n−k(t) = n

(
n − 1

k

)∫ t

0
F(t1) 0 D1−α

t1 ck,n−k−1(t1)dt1

+
n(n − 1)

2

(
n − 2
k − 2

)∫ t

0
0 D1−α

t1 ck−2,n−k(t1)dt1.

Therefore, by Lemma 2, we get that (17) and equivalently (16) hold.
Comparing expressions (12) and (16), we see that moments mn(t) and rn(t) coincide.

Therefore, to prove that the PDF of Y (t) is equal to the solution w(x, t) of the fractional Fokker–
Planck equation (3), it is enough to show that the characteristic function of Y (t) is holomorphic
in a neighborhood of zero. In such case the moments determine uniquely the distribution. Fix
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t0 > 0. We have

r2n(t0) = E[Y 2n(t0)] ≤ 4n E

[(∫ t0

0
F(u)dSα(u)

)2n
]
+ 4n E

[
B2n(Sα(t0))

]
≤ 4n M2n E[S2n

α (t0)] + 4n E
[
Sn
α(t0)

]
E[B2n(1)]

= 4n M2n t2αn
0 (2n)!

0(2nα + 1)
+ 4n tαn

0 (2n)!

0(nα + 1)2n ,

where M = sup0≤s≤t0 |F(s)|. Consequently, the series
∑
∞

n=1 r2n(t0)zn/(2n)! is convergent
for |z| < min{(4M2t2α

0 )−1
; (4tα0 )

−1
}. Therefore, the moments determine the distribution (see

Chapter VII, Section 3 of [4]), and the PDF of Y (t0) is equal to the solution w(x, t0) of the
fractional Fokker–Planck equation (3). �

3. Approximation scheme

In this section we introduce a strongly and uniformly convergent approximation scheme of
the obtained stochastic representation process (8). Since the solution of Eq. (3) in the explicit
and numerically treatable form is not known, the proposed scheme allows us to approximate
solutions of (3) using Monte Carlo methods for arbitrary force F(t).

In what follows, we make an additional weak assumption that the force F is of bounded
variation on every interval of the form [0, t], t > 0. Then, the function

VF (t) = sup
P

n∑
i=1

|F(ti )− F(ti−1)|,

where the supremum is taken over all the partitions of the interval [0, t], is called the total
variation of F .

Recall the definition (4) of the inverse α-stable subordinator. Let us introduce the following
straightforward approximation {Sα,δ(t)}t≥0 of the process {Sα(t)}:

Sα,δ(t) = (min{n ∈ N : Uα(δn) > t} − 1) δ, (18)

where δ > 0 is the step length. The ‘−1’ term in the above expression comes from the fact that
we want the process {Sα,δ(t)} to start at the origin. Consequently, the proposed approximation of
the stochastic representation process {Y (t)} defined in (8) has the form

Yδ(t) =
∫ t

0
F(u)dSα,δ(u)+ B(Sα,δ(t)), t ≥ 0. (19)

We say, [9], that an approximation Yδ converges strongly to Y at time T > 0 if

lim
δ↘0

E [|Y (T )− Yδ(T )|] = 0.

Additionally, we say that an approximation Yδ converges strongly with order γ > 0 to Y at time
T > 0 if there exists a positive constant C , which does not depend on δ, such that

E [|Y (T )− Yδ(T )|] ≤ Cδγ .

The next theorem shows the uniform convergence and verifies the order of convergence of the
approximation (19).
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Theorem 2. Let {Sα,δ(t)} and {Yδ(t)} be the introduced approximations of the processes {Sα(t)}
and {Y (t)}, respectively. Then, for every T > 0, the following conditions are satisfied

(i)

sup
0≤s≤T

|Sα(s)− Sα,δ(s)| ≤ δ a.s.

(ii) Let 0 < q < 1/2. Then, for appropriately small δ > 0

sup
0≤s≤T

|Y (s)− Yδ(s)| ≤ Cδ + δq a.s.,

where C = sup0≤s≤T |F(s)| + 2VF (T )− F(T )+ F(0).
(iii)

E [|Y (T )− Yδ(T )|] ≤ C1δ + C2δ
1/2,

where C1 = |F(T )| + 2VF (T )− F(T )+ F(0) and C2 = E[|B(1)|].

Consequently, the approximation {Yδ(t)} is strongly convergent with order γ = 1/2.

Proof. (i) We have

Sα,δ(t) = (min{n ∈ N : Uα(δn) > t} − 1) δ

≤ inf{τ > 0 : Uα(δτ ) > t}δ

= inf{τ > 0 : Uα(τ ) > t} = Sα(t).

On the other hand

Sα,δ(t) = (min{n ∈ N : Uα(δn) > t} − 1) δ

≥ (inf{τ > 0 : Uα(δτ ) > t} − 1)δ

= Sα(t)− δ.

Thus, we get

Sα(t)− δ ≤ Sα,δ(t) ≤ Sα(t),

which ends the proof of part (i).
(ii) We have

sup
0≤s≤T

|Y (s)− Yδ(s)| ≤ sup
0≤s≤T

|B(Sα,δ(s))− B(Sα(s))|

+ sup
0≤s≤T

∣∣∣∣∫ s

0
F(u)dSα,δ(u)−

∫ s

0
F(u)dSα(u)

∣∣∣∣ . (20)

To estimate the first term in the above formula, we use the fact that the paths of B(t) are a.s.
Hölder continuous on compacts. Namely, for every 0 < q < 1/2 there exist c > 0 such that

|B(u)− B(v)| ≤ c|u − v|q

with u, v ≤ L . If we further assume that |u − v| ≤ δ for appropriately small δ, then the constant
can be chosen as c = 1. Thus, using (i), for small δ we get

sup
0≤s≤T

|B(Sα,δ(s))− B(Sα(s))| ≤ sup
0≤s≤T

|Sα,δ(s)− Sα(s)|
q
≤ δq .
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For the second term in (20), applying integration by parts, we obtain∣∣∣∣∫ s

0
F(u)dSα,δ(u)−

∫ s

0
F(u)dSα(u)

∣∣∣∣ ≤ |F(s)||Sα,δ(s)− Sα(s)|

+

∣∣∣∣∫ s

0
Sα,δ(u)dF(u)−

∫ s

0
Sα(u)F(u)

∣∣∣∣ .
Since F is of bounded variation, it can be written as a difference of two increasing functions
F = VF − D, where VF is the total variation of F and D = VF − F . Thus, we have∣∣∣∣∫ s

0
F(u)dSα,δ(u)−

∫ s

0
F(u)dSα(u)

∣∣∣∣ ≤ |F(s)|δ
+

∫ s

0
|Sα,δ(u)− Sα(u)|dVF (u)+

∫ s

0
|Sα,δ(u)− Sα(u)|dD(u)

≤ |F(s)|δ + VF (s)δ + (VF (s)− F(s)+ F(0))δ.

Consequently,

sup
0≤s≤T

∣∣∣∣∫ s

0
F(u)dSα,δ(u)−

∫ s

0
F(u)dSα(u)

∣∣∣∣
≤

(
sup

0≤s≤T
|F(s)| + 2VF (T )− F(T )+ F(0)

)
δ,

which ends part (ii).
(iii) We have

E [|Y (T )− Yδ(T )|] ≤ E[|B(Sα,δ(T ))− B(Sα(T ))|]

+ E

[∣∣∣∣∫ T

0
F(u)dSα,δ(u)−

∫ T

0
F(u)dSα(u)

∣∣∣∣] .
For the first term on the right side of the above inequality, taking advantage of (i), we get

E[|B(Sα,δ(T ))− B(Sα(T ))|] ≤ E[|Sα,δ(T )− Sα(T )|
1/2
]E[|B(1)|] ≤ δ1/2 E[|B(1)|].

For the second term, from the proof of (ii) we have

E

[∣∣∣∣∫ T

0
F(u)dSα,δ(u)−

∫ T

0
F(u)dSα(u)

∣∣∣∣]
≤ (|F(T )| + 2VF (T )− F(T )+ F(0))δ,

and the proof of part (iii) is completed. �

We end the section with some remarks concerning the numerical simulation of the approxi-
mations {Sα,δ(t)} and {Yδ(t)}. To evaluate the first process, one only needs to generate the values
Uα(δn), n = 1, 2, . . . . This can be done by the following method of summing up the increments
of the subordinator {Uα(τ )} (see [6]):

Uα(0) = 0,

Uα(δn) = Uα(δ(n − 1))+ δ1/αξn,
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Fig. 2. The approximated solutions w(x, t) of the fractional Fokker–Planck equation (3) with F(t) = sin t and α = 0.8,
obtained by the Monte Carlo method. The solutions were estimated from the sample of 104 simulated trajectories of the
process {Yδ(t)}.

where ξn , n ∈ N, are the i.i.d. totally skewed positive α-stable random variables. The procedure
of generating realizations of ξn is the following, [6]:

ξn =
sin(α(V + c1))

(cos(V ))1/α

(cos(V − α(V + c1))

W

)(1−α)/α
,

where c1 = π/2, the random variable V is uniformly distributed on (−π/2, π/2) and W has
exponential distribution with mean one.

As for the process {Yδ(t)}, since {Sα,δ(t)} is a scaled renewal process, the integral in (19) can
be written as∫ t

0
F(u)dSα,δ(u) = δ

N∑
n=1

F(Uα(δn)).

Here, N is an integer number such that Uα(δN ) < t ≤ Uα(δ(N + 1)). Since the last sum can
easily be calculated numerically, the above formula tells us how to evaluate the approximation
{Yδ(t)}. Note that the numerical method of simulating the trajectories of Brownian motion {B(τ )}
is well-known [9].

In Fig. 1 we present typical trajectories of the process {Yδ(t)} for the case of a constant force
F ≡ 1. Fig. 2 shows the approximated solutions of the fractional Fokker–Planck equation (3)
with F(t) = sin t , obtained by the Monte Carlo method. The solutions were estimated from the
sample of 104 simulated trajectories of the process {Yδ(t)}with the help of the Rozenblatt–Parzen
kernel estimator [6].
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