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Abstract

A Markov process on a local field which can be projected to a Markov process on a smaller local field
is regarded as a lift of the one on the smaller field. The first part of this article is concerned with a Markov
process on a local field which is obtained as the one projected from a larger field by means of the algebraic
trace. Since the explicit expression of the transition probability plays important roles in a study of Markov
processes on local fields, the second part is devoted to finding an explicit expression for the Markov process.
c⃝ 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Various aspects of stochastic processes with rotationally invariant probability laws on non-
Archimedean metric spaces were found. Some of them are not always similar to ones on the
Euclidean space. In fact, the infinitesimal generators associated with stochastic processes in a
typical class are written as Vladimirov operators and can be given as derivatives with order
higher than 2 on the field Qp of p-adic numbers. In [8], Kochubei found solutions of parabolic
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partial differential equations on Qp where the infinitesimal generator of a stochastic process was
involved.

Stochastic processes on finite extension of Qp have been addressed by focusing mainly on
rotationally invariant probability laws. For instance, based on the method initiated by Albeverio
and Karwowski, a family of additive processes on local fields was introduced by Yasuda in [10].
On the other hand, Haran showed some results related to operators by focusing on important
function spaces in [3,4].

A probabilistic counterpart of Sobolev spaces was introduced by Fukushima and the author
in [2], and it has been investigated by many researchers. The first author proposed some
function spaces over local fields including Dirichlet spaces and showed potential theoretic
coverage of the fields including non-linear capacity. The study relied on the explicit description
of rotationally invariant transition probabilities found by Yasuda in [10]. In [5], after some
preliminary observations on non-linear capacities on finite extensions over Qp, Yasuda and the
author found some properties of non-linear capacities on an infinite extension over Qp introduced
in [9,11]. Yasuda pointed out some difference in two particular infinite extensions of Qp and some
facts on non-trivial probability measures with no rotational invariance in [11].

As for probability laws with no rotational invariance on a local field, Karwowski and Mendes
constructed a family of Markov processes on Qp by introducing spatially inhomogeneous factors
given as a function on Qp in [7]. On finite extensions of Qp, Zhao and the first author made
an attempt to construct Markov processes with spatial inhomogeneity based on an explicit
expression of a counterpart of a Poisson process on the state space in [6].

Accordingly, one natural question raised here could be whether any rotationally non-invariant
Markov process {X (t)} can be found on a finite extension K2 of Qp whose natural projection
{T (X (t))} to another extension K1 contained in K2 is again a Markov process, where the
projection T is given by 1

[K2:K1]
TrK2/K1(x).

In this article, we will give a construction of a Markov process {X (t)} on a finite extension
K2 of K1 which admits a Markov process {T (X (t))} on K1. Then, the Markov process {X (t)}
will be considered as a lift of {T (X (t))}. In deriving an explicit description of the transition
probability of {X (t)}, we will see that the existing methods as in [1,7] are not directly applicable.
For the construction of a Markov process {X (t)}, we will obtain an explicit description of the
transition probability of the Markov process, by applying a modified method.

2. Kolmogorov’s equations

For two finite separable extensions K1 and K2 of Qp satisfying K1 ⊂ K2, we see that the
p-adic valuation on Qp is extended to the norm on K2 which coincides with the original valuation
for any element in Qp in what follows. We denote the norm of x ∈ K2 by ‖x‖. The maximal ideal
Pi = {x ∈ Ki | ‖x‖ < 1} of the ring Ri = {x ∈ Ki | ‖x‖ ≤ 1} has an element πi with maximal
norm and with the property πi Ri = Pi for i = 1, 2.

Since the residue field Ri/Pi is a finite extension of Fp = Z/Zp, one can choose a family

{s(i)
j }

fKi
j=1 ⊂ R so that their natural images in the residue field Ri/Pi are the bases over the finite

field Fp. In what follows, p fKi will be denoted by qKi and the extension degree of Ki over
Qp by mKi for i = 1 and 2. Then, the normalized Haar measure µ on K2 is characterized by

µ(B(x, q
ℓ/mK2
K2

)) = qℓ
K2

for any integer ℓ and x ∈ K2, where B(x, q
ℓ/mK2
K2

) stands for the ball

{x ∈ K2| ‖x − a‖ ≤ q
ℓ/mK2
K2

} in K2.
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Lemma 1. For any ball B(a, q
M/mK1
K1

) in K2, T (B(a, q
M/mK1
K1

)) is a ball in K1 whose radius is

given as q
(M+L)/mK1
K1

with some fixed non-negative integer L.

Proof. Every non-empty ball in K2 contains at least one element K1. Therefore, we may assume

that a is an element of K1. Accordingly, T (B(a, q
M/mK1
K1

)) contains B(a, q
M/mK1
K1

) ∩ K1. Since
the real valued function Φ(x) = ‖T (x − a)‖ defined on K2 is continuous, there exists a point

x0 in B(a, q
M/mK1
K1

) satisfying ‖T (x0 − a)‖ = max{‖T (x − a)‖ | x ∈ B(a, q
M/mK1
K1

)}. We can

find some non-negative integer L such that ‖T (x0 − a)‖ = q
(M+L)/mK1
K1

. On the other hand, any

element x ∈ K1 with ‖x − a‖ ≤ ‖T (x0 − a)‖ enjoys ‖
x−a

T (x0−a)
(x0 − a)‖ ≤ ‖x0 − a‖ ≤ q

M/mK1
K1

and x−a
T (x0−a)

(x0 − a) + a is mapped to x by T . As a result, it turns out that T (B(a, q
M/mK1
K1

)) is

the ball centered at a with radius q
(M+L)/mK1
K1

. �

Let us introduce a non-increasing sequence {u(k)}∞k=−∞
satisfying limk→∞ u(k) = 0

and a non-negative locally integrable function ρ defined on K2. Here and in what follows,

we will fix the radius q
M/mK1
K1

of balls in our focus and choose a family {B j }
∞

j=1 of dis-

joint balls with the radius q
M/mK1
K1

satisfying K2 = ∪ j B j . Then, we define EM+m(Bi ) =

∪
diam(T (B j )∪T (Bi ))≤q

(M+L+m)/mK1
K1

B j for each non-negative integer m. We denote the integral
EM+m (Bi )

ρ(dx) by ρM+m(Bi ) and impose the following condition on the function ρ:

∞−
k=0

(u(M + k) − u(M + k + 1))ρM+k(B f ) < ∞.

In what follows, −
∑

∞

k=m(u(M + k) − u(M + k + 1))ρM+k(B f ) will be denoted by W M,m(B f )

for each ball B f , namely, we introduce the notation

W M,m(B f ) = −

∞−
k=m

(u(M + k) − u(M + k + 1))ρM+k(B f ) (1)

for each ball B f in the family {B j }
∞

j=1.

For topological Borel set E in K2, we denote


E ρ(dx) by ρE . For any pair B f , B j of two
balls in the family {B j }

∞

j=1, we define ũ(B f , B j ) by ũ(B f , B j ) = u(M + m(B f , B j ))ρB f and
ã(B f ) by ã(B f ) =

∑
j≠ f ũ(B j , B f ). Here and in what follows, if a pair of balls B f and B j with

radius q
M/mK1
K1

satisfies diam(T (B f ) ∪ T (B j )) = q
(M+L+k)/mK1
K1

, this integer k will be denoted
by m(B j , B f ). We introduce the notation PE,F (t) = P(X (t) ∈ E |X (0) ∈ F) for topological
Borel sets E, F ⊂ K2 and start with Kolmogorov’s forward equation for a Markov process
{X (t)} on K2. Here, we note that Kolmogorov’s forward equation on the state space K2 provides
us with the one on the smaller field K1:

Proposition 1. If Kolmogorov’s forward equation

ṖB f ,Bi (t) = −ã(B f )PB f ,Bi (t) +

−
j≠ f

ũ(B f , B j )PB j ,Bi (t) (2)
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holds for a Markov process on the field K2, then

ṖEM (B f ),EM (Bi )(t)

= −

−
EM (B j (n))≠EM (B f )

u(M + m(B j (n), B f ))ρEM (B j (n)) PEM (B f ),EM (Bi )(t)

+

−
EM (B j (n))≠EM (B f )

u(M + m(B f , B j (n)))ρM (B f )PEM (B j (n)),EM (Bi )(t)

holds on K2, where {B j (n)}
∞

n=1 stands for a subfamily of balls {B j }
∞

j=1 in K2 satisfying
∪n EM (B j (n)) = K2 and EM (B j (n)) ∩ EM (B j (m)) = ∅ for any distinct positive integers n
and m.

Proof. From (2), we derive that

ṖEM (B f ),Bi (t) = −

−
ℓ∈Λ

ã(B fℓ)PB fℓ ,Bi (t) +

−
ℓ∈Λ

−
j≠ fℓ

ũ(B fℓ , B j )PB j ,Bi (t)

= −

−
ℓ∈Λ

−
j≠ fℓ

u(M + m(B j , B fℓ))ρB j PB fℓ ,Bi (t)



+

−
ℓ∈Λ

−
j≠ fℓ

u(M + m(B fℓ , B j ))ρB fℓ
PB j ,Bi (t)



= −

−
ℓ∈Λ

 −
j ∉{ fℓ|ℓ∈Λ}

u(M + m(B j , B fℓ))ρB j PB fℓ ,Bi (t)


+

−
ℓ∈Λ

 −
j ∉{ fℓ|ℓ∈Λ}

u(M + m(B fℓ , B j ))ρB fℓ
PB j ,Bi (t)

 ,

where {B fℓ}ℓ∈Λ stands for the subfamily of {Bi } satisfying T (B fℓ) = T (B f ).
Since m(B j , B fℓ) = m(B j , B f ) for any ℓ ∈ Λ, we have

ṖEM (B f ),Bi (t) = −

−
j ∉{ fℓ|ℓ∈Λ}

u(M + m(B j , B f ))ρB j PEM (B f ),Bi (t)

+

−
j ∉{ fℓ|ℓ∈Λ}

u(M + m(B f , B j ))ρM (B f )PB j ,Bi (t).

Multiplying both sides of the identity

ṖEM (B f ),Bi ′
(t) = −

−
j ∉{ fℓ|ℓ∈Λ}

u(M + m(B j , B f ))ρB j PEM (B f ),Bi ′
(t)

+

−
j ∉{ fℓ|ℓ∈Λ}

u(M + m(B f , B j ))ρM (B f )PB j ,Bi ′
(t)

by P(X (0) ∈ Bi ′) with T (Bi ′) = T (Bi ) and by taking the sum with respect to the family {Bi ′}

of balls satisfying this condition, we have

ṖEM (B f ),EM (Bi )(t) = −

−
j ∉{ fℓ|ℓ∈Λ}

u(M + m(B j , B f ))ρB j PEM (B f ),EM (Bi )(t)

+

−
j ∉{ fℓ|ℓ∈Λ}

u(M + m(B f , B j ))ρM (B f )PB j ,EM (Bi )(t).
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By taking the sum first with respect to B j mapped to an identical ball in K1 by T , secondly
choosing subsequence {B j (n)} of balls such that K1 = ∪n T (B j (n)) and T (B j (n))∩T (B j (m)) = ∅

with n ≠ m, we obtain

ṖEM (B f ),EM (Bi )(t)

= −

−
EM (B j (n))≠EM (B f )

u(M + m(B j (n), B f ))ρM (B j (n))PEM (B f ),EM (Bi )(t)

+

−
EM (B j (n))≠EM (B f )

u(M + m(B f , B j (n)))ρM (B f )PEM (B j (n)),EM (Bi )(t). �

In the choice of {B j (n)}, we may assume that k ≤ ℓ implies dist(T (B f ), T (B j (k))) ≤

dist(T (B f ), T (B j (ℓ))). As for this reordered family of balls, we obtain the following lemma:

Lemma 2. For any ball B f , there exists an increasing sequence {nm} of positive integers such
that EM (B f ) = EM (B j (n0)) and EM+m+1(B f ) \ EM+m(B f ) = ∪

nm+1
k=nm+1 EM+m(B j (k)) are

satisfied for each non-negative integer m, where M stands for the integer satisfying diam(B f )

= q
M/mK1
K1

.

Proof. We note that the family {T (B j )} of balls satisfying diam(T (B j ) ∪ T (Bi )) ≤

q
(M+L+m+1)/mK1
K1

consists of finitely many elements for any Bi . Therefore, we can divide
the family of balls into finitely many subfamilies so that any pair T (B j ) and T (B j ′) of

balls in the same subfamily enjoys diam(T (B j ) ∪ T (B j ′)) ≤ q
(M+L+m)/mK1
K1

. Therefore, we
can take a subfamily {B j (k)}

∞

k=1 of balls {B j }
∞

j=1 satisfying EM+m+1(B f ) \ EM+m(B f ) =

∪
nm+1
k=nm+1 EM+m(B j (k)) for any non-negative integer m. �

Since we have started with Kolmogorov’s forward equation which is similar to the one in [7], we
can define PK2(t) = limm→∞ PEM+m (Bi ),Bi (t) independently of Bi and employ the conventional
notation ρ−1

K2
= 0 when ρK2 = ∞.

Proposition 2. (i) If EM (Bi ) ⊂ EM+m(B f ) i.e. m ≥ m(Bi , B f ), then

PEM+m (B f ),EM (Bi )(t) = ρM+m(B f )


ρ−1

K2
PK2(t)

+

∞−
k=0


1

ρM+m+k(B f )
−

1
ρM+m+k+1(B f )


et W M,m+k+1(B f )


,

with W M,m(B f ) defined by (1).
(ii) If EM (Bi ) ⊄ EM+m(B f ) i.e. m < m(Bi , B f ), then

PEM+m (B f ),EM (Bi )(t) = ρM+m(B f )


ρ−1

K2
PK2(t)

+

∞−
k=0


1

ρM+m+k(B f )
−

1
ρM+m+k+1(B f )


et W M,m+k+1(Bi )

−
1

ρM+m(B j ,B f )(Bi )
et W M,m(B j ,B f )(Bi )


.



H. Kaneko, Y. Tsuzuki / Stochastic Processes and their Applications 121 (2011) 394–405 399

Proof. The right-hand side of the equality

ṖEM (B f ),Bi (t) = −

−
j ∉{ fℓ|ℓ∈Λ}

u(M + m(B j , B f ))ρB j PEM (B f ),Bi (t)

+

−
j ∉{ fℓ|ℓ∈Λ}

u(M + m(B f , B j ))ρM (B f )PB j ,Bi (t)

given in the proof of Proposition 1 admits the following expressions after taking the sum of the
terms associated with balls in {B j | m(B j , B f ) = k} for each positive integer k:

−

∞−
k=1

u(M + k)PEM (B f ),Bi (t)(ρM+k(B f ) − ρM+k−1(B f ))

+

∞−
k=1

u(M + k)ρM (B f )(PEM+k (B f ),Bi (t) − PEM+k−1(B f ),Bi (t))

= −PEM (B f ),Bi (t)
∞−

k=1

u(M + k)(ρM+k(B f ) − ρM+k−1(B f ))

+ ρM (B f )

∞−
k=1

u(M + k)(PEM+k (B f ),Bi (t) − PEM+k−1(B f ),Bi (t))

= −PEM (B f ),Bi (t)
∞−

k=1

(u(M + k) − u(M + k + 1))ρM+k(B f )

+ PEM (B f ),Bi (t)u(M + 1)ρM (B f )

+ ρM (B f )

∞−
k=1

(u(M + k) − u(M + k + 1))PEM+k (B f ),Bi (t)

− ρM (B f )u(M + 1)PEM (B f ),Bi (t)

= − PEM (B f ),Bi (t)
∞−

k=1

(u(M + k) − u(M + k + 1))ρM+k(B f )

+ ρM (B f )

∞−
k=1

(u(M + k) − u(M + k + 1))PEM+k (B f ),Bi (t).

The right-hand side can be written with W M,1(B f ) as in (1),

W M,1(B f )PEM (B f ),Bi (t) + ρM (B f )

∞−
k=1

(u(M + k) − u(M + k + 1))PEM+k (B f ),Bi (t).

By combining this with EM+1(B f ) = EM (B j (n0)) ∪ EM (B j (n0+1)) ∪ · · · ∪ EM (B j (n1))

obtained by Lemma 2, we see that

ṖEM+1(B f ),Bi (t) =

n1−
ℓ=n0

ṖEM (B j (ℓ)),Bi (t)

=

n1−
ℓ=n0


W M,1(B j (ℓ))PEM (B j (ℓ)),Bi (t) + ρM (B j (ℓ))

×

∞−
k=1

(u(M + k) − u(M + k + 1))PEM+k (B j (ℓ)),Bi (t)


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= −

n1−
ℓ=n0

∞−
k=1

{(u(M + k) − u(M + k + 1))ρM+k(B j (ℓ))PEM (B j (ℓ)),Bi (t)}

+

n1−
ℓ=n0

∞−
k=1

{(u(M + k) − u(M + k + 1))PEM+k (B j (ℓ)),Bi (t)ρM (B j (ℓ))}.

Since EM+k(B j (ℓ)) = EM+k(B f ) for any k ≥ 1, the right-hand side is equal to

−

∞−
k=1

{(u(M + k) − u(M + k + 1))ρM+k(B f )PEM+1(B f ),Bi (t)}

+

∞−
k=1

{(u(M + k) − u(M + k + 1))PEM+k (B f ),Bi (t)ρM+1(B f )}

= −

∞−
k=2

{(u(M + k) − u(M + k + 1))ρM+k(B f )PEM+1(B f ),Bi (t)}

+

∞−
k=2

{(u(M + k) − u(M + k + 1))PEM+k (B f ),Bi (t)ρM+1(B f )}

= W M,2(B f )PEM+1(B f ),Bi (t)

+ ρM+1(B f )

∞−
k=2

(u(M + k) − u(M + k + 1))PEM +k(B f ),Bi (t).

By iterating this procedure, we have

ṖEM+m (B f ),Bi (t) = W M,m+1(B f )PEM+m (B f ),Bi (t) + ρM+m(B f )

×

∞−
k=m+1

(u(M + k) − u(M + k + 1))PEM+k (B f ),Bi (t).

Since the initial condition is given as PBi ,Bi (0) = 1, we can derive from these identities that

PEM+m (B f ),Bi (t) = PEM+m (B f ),Bi (0)et W M,m+1(B f ),

in case ρM+m(B f ) = 0. If ρM+m(B f ) ≠ 0, then we can derive from

ṖEM+ℓ(B f ),Bi (t) = W M,ℓ+1(B f )PEM+ℓ(B f ),Bi (t) + ρM+ℓ(B f )

×

∞−
k=ℓ+1

(u(M + k) − u(M + k + 1))PEM+k (B f ),Bi (t), (ℓ = m, m + 1, . . .)

that

ρM+m+1(B f )

ρM+m(B f )
ṖEM+m (B f ),Bi (t) − ṖEM+m+1(B f ),Bi (t)

=
ρM+m+1(B f )

ρM+m(B f )
W M,m+1(B f )PEM+m (B f ),Bi (t) − W M,m+2(B f )PEM+m+1(B f ),Bi (t)

+ ρM+m+1(B f )(u(M + m + 1) − u(M + m + 2))PEM+m+1(B f ),Bi (t).
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This shows that
ρM+m+1(B f )

ρM+m(B f )
ṖEM+m (B f ),Bi (t) − ṖEM+m+1(B f ),Bi (t)

= W M,m+1(B f )


ρM+m+1(B f )

ρM+m(B f )
PEM+m (B f ),Bi (t) − PEM+m+1(B f ),Bi (t)


.

If ρM+m(B f ) ≠ 0 and EM+m(B f ) ⊃ EM (Bi ) i.e. m ≥ m(Bi , B f ), this identity implies

ρM+m+1(Bi )

ρM+m(Bi )
PEM+m (B f ),Bi (t) − PEM+m+1(B f ),Bi (t) =


ρM+m+1(Bi )

ρM+m(Bi )
− 1


et W M,m+1(B f )

and so

PEM+m (B f ),Bi (t) −
ρM+m(Bi )

ρM+m+1(Bi )
PEM+m+1(B f ),Bi (t)

= ρM+m(Bi )


1

ρM+m(Bi )
−

1
ρM+m+1(Bi )


et W M,m+1(B f ).

By replacing m with m + 1, we see that

PEM+m+1(B f ),Bi (t) −
ρM+m+1(Bi )

ρM+m+2(Bi )
PEM+m+2(B f ),Bi (t)

= ρM+m+1(Bi )


1

ρM+m+1(Bi )
−

1
ρM+m+2(Bi )


et W M,m+2(Bi ).

By combining these two identities, we get

PEM+m (B f ),Bi (t) −
ρM+m(Bi )

ρM+m+2(Bi )
PEM+m+2(B f ),Bi (t)

= ρM+m(Bi )

1−
k=0


1

ρM+m+k(Bi )
−

1
ρM+m+k+1(Bi )


et W M,m+k+1(Bi ).

Taking a similar control over m and by combining the identities obtained by the procedures, we
have

PEM+m (B f ),Bi (t) −
ρM+m(Bi )

ρM+m+m′(Bi )
PEM+m+m′ (B f ),Bi (t)

= ρM+m(Bi )

m′
−1−

k=0


1

ρM+m+k(Bi )
−

1
ρM∗m+k+1(Bi )


et W M,m+k+1(Bi ).

By passing to the limit as m → ∞, we have

PEM+m (B f ),Bi (t)

= ρM+m(Bi )


ρ−1

K2
PK2(t) +

∞−
k=0


1

ρM+m+k(Bi )
−

1
ρM+m+k+1(Bi )


et W M,m+k+1(Bi )


.

Since m = m(B f , BI ) − 1 implies EM+m(B f ) ⊅ EM (Bi ), in this case, the following identity is
valid:

ρM+m+1(B f )

ρM+m(B f )
ṖEM+m (B f ),Bi (t) − ṖEM+m+1(B f ),Bi (t)

= W M,m+1(B f )


ρM+m+1(B f )

ρM+m(B f )
PEM+m (B f ),Bi (t) − PEM+m+1(B f ),Bi (t)


.
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Because ρM+m(B f ) = ρM+m(Bi ), W M,m(B f ) = W M,m(Bi ) and PEM+m (B f ),Bi (t) =

PEM+m (Bi ),Bi (t) for any m ≥ m(B f , Bi ), we see that

ρM+m+1(Bi )

ρM+m(B f )
ṖEM+m (B f ),Bi (t) − ṖEM+m+1(Bi ),Bi (t)

= W M,m+1(Bi )


ρM+m+1(Bi )

ρM+m(B f )
PEM+m (B f ),Bi (t) − PEM+m+1(Bi ),Bi (t)


.

The initial condition is given as PEM+m+1(B f ),Bi (0) = 1 and PEM+m (B f ),Bi (0) = 0. Therefore,
we can deduce from

ρM+m+1(Bi )

ρM+m(B f )
PEM+m (B f ),Bi (t) − PEM+m+1(Bi ),Bi (t) = −et W M,m+1(Bi )

and

PEM+m(B f ,Bi )(B f ),Bi (t) = ρM+m(B f ,Bi )(Bi )


ρ−1

K2
PK2(t)

+

∞−
k=0


1

ρM+m(B f ,Bi )+k(Bi )
−

1
ρM+m(B f ,Bi )+k+1(Bi )


et W M,m(B f ,Bi )+k+1(Bi )


that

PEM+m(B f ,Bi )−1(B f ),Bi (t) = ρM+m(B f ,Bi )−1(Bi )


ρ−1

K2
PK2(t)

+

∞−
k=0


1

ρM+m(B f ,Bi )+k(Bi )
−

1
ρM+m(B f ,Bi )+k+1(Bi )


et W M,m(B f ,Bi )+k+1(Bi )

−
1

ρM+m(B f ,Bi )(Bi )
et W M,m(B f ,Bi )(Bi )


.

For any non-negative integer m with m ≤ m(B f , Bi ) − 2, we see that

ρM+m+1(Bi )

ρM+m(B f )
ṖEM+m (B f ),Bi (t) − ṖEM+m+1(B f ),Bi (t)

=


ρM+m+1(Bi )

ρM+m(B f )
PEM+m (B f ),Bi (0) − PEM+m+1(B f ),Bi (0)


et W M,m+1(Bi )

and that the initial condition is given by PEM+m+1(B f ),Bi (0) = PEM+m (B f ),Bi (0) = 0.

Therefore, PEM+m (B f ),Bi (t) =
ρM+m (B f )

ρM+m+1(Bi )
PEM+m+1(B f ),Bi (t).

As a result, we obtain the following expression for the transition probability:

PEM+m (B f ),Bi (t)

= ρM+m(B f )


ρ−1

K2
PK2(t) +

∞−
k=0


1

ρM+m(B f ,Bi )+k(Bi )
−

1
ρM+m(B f ,Bi )+k+1(Bi )



× et W M,m(B f ,Bi )+k+1(Bi )
−

1
ρM+m(B f ,Bi )(Bi )

et W M,m(B f ,Bi )(Bi )


. �
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3. On transition probabilities with no rotational invariance

In this section, we will obtain the existence of a Markov process {X (t)} on K2 which is
mapped to a Markov process on K1 by T . In deriving an explicit description of the transition
probabilities of {X (t)}, we will need to add an extra procedure to the existing methods in [1,7]
as shown in the proof of the following theorem.

Theorem 1. If
∑

∞

k=0(u(M + k) − u(M + k + 1))ρM+k(Bi ) < ∞ for any i , then there exists a
Markov process {X (t)} on K2 such that {T (X (t))} is a Markov process on K1.

Proof. From Kolmogorov’s forward equation in Section 2 we get

ṖB f ,Bi (t) = −ã(B f )PB f ,Bi (t) +

−
j≠ f

ũ(B f , B j )PB j ,Bi (t),

where ũ(B f , B j ) = u(M + m(B j , B f ))ρ(B f ) and ã(B f ) =
∑

j≠ f ũ(B j , B f ). We can derive

ṖB f ,Bi (t) = −


u(M)(ρM (B f ) − ρ(B f ))

+

∞−
k=1

u(M + k)(ρM+k(B f ) − ρM+k−1(B f ))


PB f ,Bi (t)

+ ρB f


u(M)(PEM (B f ),Bi − PB f ,Bi (t))

+

∞−
k=1

u(M + k)(PEM+k (B f ),Bi (t) − PEM+k−1(B f ),Bi (t))



= −


u(M)ρM (B f ) +

∞−
k=1

u(M + k)(ρM+k(B f ) − ρM+k−1(B f ))


PB f ,Bi (t)

+ ρB f


u(M)PEM (B f ),Bi (t) +

∞−
k=1

u(M + k)(PEM+k (B f ),Bi (t)

− PEM+k−1(B f ),Bi (t))



= −


u(M)ρM (B f ) − u(M + 1)ρM (B f )

+

∞−
k=1

(u(M + k) − u(M + k + 1))ρM+k(B f )



× PB f ,Bi (t) + ρB f


u(M)PEM (B f ),Bi (t) − u(M + 1)PEM (B f ),Bi (t)

+

∞−
k=1

(u(M + k) − u(M + k + 1))PEM+k (B f ),Bi (t)


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= −

∞−
k=0

(u(M + k) − u(M + k + 1))ρM+k(B f )PB f ,Bi (t)

+ ρB f

∞−
k=0

(u(M + k) − u(M + k + 1))PEM+k (B f ),Bi (t).

Due to a basic formula in the theory of ordinary differential equation, by recalling the
definition of W M,m(B f ) given by (1), we can explicitly find PB f ,Bi (t) satisfying

ṖB f ,Bi (t) = W M,0(B f )PB f ,Bi (t) + ρB f

∞−
k=0

(u(M + k) − u(M + k + 1))PEM+k (B f ),Bi (t)

as

PB f ,Bi (t) = e
 t

0 W M,0(B f )ds


PB f (0) + ρB f

∫ t

0
e−

 t
0 W M,0(B f )ds

×

∞−
k=0

(u(M + k) − u(M + k + 1))PEM+k (B f ),Bi (t)dt


.

Therefore, we have

PB f ,Bi (t) = et W M,0(B f )


PB f ,Bi (0) + ρB f

∫ t

0
e−t W M,0(B f )

×

∞−
k=0

(u(M + k) − u(M + k + 1))PEM+k (B f ),Bi (t)dt


.

By combining this expression with the explicit expression of PEM+k (B f ),Bi (t) in Proposition 2,
an explicit expression of transition probability of {X (t)} has been obtained. The transition
probabilities of {T (X t )} are completely ruled by Kolmogorov’s forward equation described in
Proposition 1. Accordingly, {T (X t )} is a Markov process on K1. �

4. The lift of Markov process

Definition. A Markov process {X (t)} on K2 is said to be a lift of Markov process {Y (t)} on K1,
if Px (Y (t) = T (X (t)) for all t ≥ 0) = 1 is satisfied for all x in K1.

Theorem 1 gives an explicit expression of the transition probabilities of a lift of Markov
process which is determined by Kolmogorov’s forward equation on the smaller field K1 described
in Proposition 1. Finally, we present an example of EM (B f ) which consists of infinite balls.

Example. A quadratic extension Qp(
√

ϵ) of Qp is obtained by choosing p, η or pη as ϵ when p
= 2 and −1, ±2, ±3, or ±6 as ϵ when p ≠ 2. For b =

∑
∞

j=−m(α−M+ j +β−M+ j
√

ϵ)p−M+ j
∈

Qp(
√

ϵ) with digits α−M+ j , β−M+ j = 0, 1, . . . or p −1, the minimal polynomial of the element
b over Qp is given as f (x) = (x −

∑
∞

j=−m(α−M+ j +β−M+ j
√

ϵ)p−M+ j )(x −
∑

∞

j=−m(α−M+ j −

β−M+ j
√

ϵ)p−M+ j ). Therefore, T (b) = TrQp(
√

ϵ)/Qp
(b)/2 =

∑
∞

j=−m α−M+ j p−M+ j and this

shows that EM (B f ) = ∪
∞

m=0 ∪
p−1
β−M−1=1 · · · ∪

p−1
β−M−m=1 B(

∑
∞

j=0(α−M+ j + β−M+ j
√

ϵ)p−M+ j
+∑m

j=1 β−M− j
√

ϵ p−M− j , pM ) for B f = B(b, pM ). By taking Qp as K1 and Qp(
√

ϵ) as K2, we
see an example of EM (B f ) which consists of infinitely many balls in K2.
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