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Abstract

In this paper we consider a semimartingale model for the evolution of the price of a financial asset,
driven by a Brownian motion (plus drift) and possibly infinite activity jumps. Given discrete observations,
the Threshold estimator is able to separate the integrated variance IV from the sum of the squared jumps.
This has importance in measuring and forecasting the asset risks. In this paper we provide the exact speed
of convergence of ˆI V h , a result which was known in the literature only in the case of jumps with finite
variation. This has practical relevance since many models used have jumps of infinite variation (see e.g.
Carr et al. (2002) [4]).
c⃝ 2010 Elsevier B.V. All rights reserved.
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1. Definitions and notation

We consider a semimartingale (X t )t∈[0,T ], defined on a (filtered) probability space
(Ω , (Ft )t∈[0,T ], F , P) with paths in D([0, T ], R), the space of càdlàg functions, driven by a
(standard) Brownian motion W and a pure jump Lévy process L:

X t = x0 +

∫ t

0
asds +

∫ t

0
σsdWs + L t , t ∈]0, T ], (1)

where a, σ are any adapted càdlàg processes such that (1) admits a unique strong solution X
on [0, T ] which is adapted and càdlàg [7]. L has Lévy measure ν and may be decomposed as

∗ Tel.: +39 055 4796808; fax: +39 055 4796800.
E-mail address: cecilia.mancini@dmd.unifi.it.

0304-4149/$ - see front matter c⃝ 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2010.12.001

http://dx.doi.org/10.1016/j.spa.2010.12.001
http://www.elsevier.com/locate/spa
mailto:cecilia.mancini@dmd.unifi.it
http://dx.doi.org/10.1016/j.spa.2010.12.001


846 C. Mancini / Stochastic Processes and their Applications 121 (2011) 845–855

L t = Jt + Mt , where

Jt :=

∫ t

0

∫
|x |>1

xµ(dx ds) =

Nt−
ℓ=1

γℓ, Mt :=

∫ t

0

∫
|x |≤1

x[µ(dx ds) − ν(dx)dt]. (2)

J is a compound Poisson process representing the “large” jumps of L (and X ), i.e. with absolute
value larger than 1, µ is a Poisson random measure on [0, T ]×R with intensity measure ν(dx)dt ,
N is a Poisson process with intensity ν({x, |x | > 1}) < ∞, γℓ are IID and independent of N
and the martingale M is the compensated sum of small jumps of L . We will define as
µ(dx, dt) − ν(dx)dt =: µ̃(dx, dt) the compensated Poisson random measure associated with
µ. We allow for infinite activity (IA) jumps, where small jumps of L occur infinitely often,
i.e. ν(R) = ∞. This work contributes to the existing literature [5,8] precisely in the case where
the jumps have also infinite variation.

The Blumenthal–Getoor (BG) index of L , defined as

α := inf

δ ≥ 0,

∫
|x |≤1

|x |
δν(dx) < +∞


≤ 2,

measures the degree of activity of the small jumps.
We will work under the following assumption, which allows us to control the behavior of the

small jumps (like in Lemma 2 in [2]).

Assumption A1. L is symmetric α-stable.
A1 means that (see [6]) ν has a density of the form A

|x |1+α , for some constants A ∈ R, α ∈]0, 2[.
α is the BG index of L . Note that L has finite variation (fV) if and only if α ∈]0, 1[.

Remark 1.1. A1 implies that∫
|x |≤c

√
rh

xkν(dx) ∼ r
k−α

2
h , k = 2, 3, 4∫

2
√

rh<|x |≤1
xν(dx) ∼

[
c + cr

1−α
2

h

]
I{α≠1} + c

[
ln

1
2
√

rh

]
I{α=1}∫

2
√

rh<|x |≤1
ν(dx) ∼ r−α/2

h ,

where c indicates a generic constant and f (h) ∼ g(h) means that both f (h) = O(g(h)) and
g(h) = O( f (h)) as h → 0.

Notation. We denote by I V =
 T

0 σ 2
u du the integrated variance of X and write

X0t =

∫ t

0
asds +

∫ t

0
σsdWs, X1t = X0t + Jt .

For a semimartingale Z we denote its increments by 1i Z = Z ti − Z ti−1 and its (eventual) jump

at time t by 1Z t = Z t − Z t−. f (ω, h)
P
∼ g(ω, h) means that f (ω, h) = OP (g(ω, h)) and

g(ω, h) = OP ( f (ω, h)) as h → 0.

We observe X t on a time grid ti = ih, for a given resolution h = T/n, i = 1, . . . , n. Since
X is a semimartingale, the realized variance RVh =

∑n
i=1(1i X)2 converges in probability
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(see e.g. [13], Theorem 22, p. 266) to

[X ]T :=

∫ T

0
σ 2

t dt +

∫ T

0

∫
R−{0}

x2µ(dx, ds).

The Threshold estimator [10] of I V is based on the idea of summing only some of the squared
increments of X , those whose absolute value is smaller than some threshold rh :

ˆI V h :=

n−
i=1

(1i X)2 I{(1i X)2≤rh}. (3)

The term
 T

0


R−{0}

x2µ(dx, ds) due to jumps is asymptotically eliminated as h → 0 by an
appropriate choice of rh , which is possible in the light of the following consequence of the Paul
Lévy law for the modulus of continuity of the Brownian motion paths [14, p. 10]:

P

 lim
h→0

sup
i∈{1..n}

|1i W |
2h ln 1

h

≤ 1

 = 1.

It is shown in [10, Corollary 2 and Theorem 4] that, in the framework described and in particular
under A1, if rh is a deterministic function of h such that

lim
h→0

rh = 0 and lim
h→0

h ln h

rh
= 0 (4)

then ˆI V h
P
→ I V, as h → 0.

Note that the functions rh = chβ satisfy condition (4) for any β ∈]0, 1[ and any constant
c.

Assessment of the speed of convergence of ˆI V h is important from a practical point of view
because in finite samples, i.e. for fixed finite n, a theoretically faster estimator, at least in
principle, is expected to be closer to the true I V . This is the case for instance for the Threshold
estimator versus the bipower variation of [3] (see a finite sample performance comparison
in [10]). As the risk induced by W is modulated by the σ amplitude, a better estimate of ˆI V
gives more precise information on the risks assumed when buying asset X .

In particular, efficient estimators are in general desirable. In [5,8] it has been shown that ˆI V h
is efficient when the jumps have fV, provided rh = chβ with β sufficiently close to 1, the speed
of ˆI V h − I V being

√
2h I Q, where I Q :=

 T
0 σ 4

s ds is the integrated quarticity of X . [8] proves
it when σ and L are Ito semimartingales and L has constant jump index α, while [5] proves it for
any càdlàg σ and α-stable L . However in [5] it is also shown that when J has infinite variation
(iV) then ˆI V h is not efficient, the efficiency rate still being

√
h [1]. In [8] it is shown that for

rh = chβ , c ∈ R, β ∈]0, 1[, then for any δ > α the speed of ˆI V h − I V is higher than r1−δ/2
h ,

while in [5] it is shown that it is lower than
√

h. It is just by virtue of the different speeds under
fV jumps or iV jumps that it was possible in [5] to construct the two tests for α < 1 versus α ≥ 1
and for σ ≡ 0 versus σ ≢ 0. Note that under A1 we have


|x |≤1 |x |

αν(dx) = +∞.

In this paper we show that ˆI V h − I V has speed equal to r1−α/2
h . The result is stated and

proved in Section 2, which also illustrates some consequences and some issues in considering a
bivariate framework, and concludes the paper.
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2. Speed of convergence of ˆI V h

Theorem 2.1. Take rh = chβ , β ∈]0, 1[, c ∈ R. Under A1, as h → 0,

ˆI V h − I V
P
∼

√
h Zh + r1−α/2

h , (5)

where Zh
st
→ N , and N denotes a standard normal random variable.

Remark. The first term in the right hand side of (5) is due to the presence of a Brownian
component within X , while the last term is led by the sum of the jumps of X smaller in absolute
value than

√
rh .

Proof of the Theorem. Since X = X1 + M , we use the decomposition

ˆI V h − I V =

n−
i=1

(1i X)2 I{(1i X)2≤rh} − I V

=


n−

i=1

(1i X1)
2 I{(1i X1)

2≤4rh} − I V



+

n−
i=1

(1i X1)
2I{(1i X)2≤rh} − I{(1i X1)

2≤4rh}


+ 2

n−
i=1

1i X11i M I{(1i X)2≤rh} +

n−
i=1

(1i M)2 I{(1i X)2≤rh} :=

4−
j=1

I j (h). (6)

Inspection of the proof of Theorem 2 in [10] shows that I1(h)/
√

h converges stably in law to
a mixed normal random variable, implying stable convergence of I1(h)/

√
2h I Q to a standard

Gaussian r.v.
We now show that I2(h) = oP (

√
h) + oP (r1−α/2

h ). In [5] (Proof of Theorem 2.5) it is shown
that I2(h)/

√
h has the same limit in probability as

n∑
i=1

 ti
ti−1

σudWu

2
I{(1i X)2>rh ,(1i X1)

2≤4rh}

√
h

.

Note that this last term equals

1
√

h

n−
i=1

∫ ti

ti−1

σudWu

2

I{(1i X)2>rh} −
1

√
h

n−
i=1

∫ ti

ti−1

σudWu

2

I{(1i X)2>rh ,(1i X1)
2>4rh}.

However the last term is negligible since if (1i X1)
2 > 4rh then (by (18) in [5]: for any fixed

c > 0 a.s. for sufficiently small h we have supi=1..n |1i X0| < c
√

rh) 1i N ≠ 0 and thus, by
assuming wlog σ bounded on Ω × [0, T ] (through localization, similarly to in [8], Lemma 4.6)
and because W and N are independent [7], we have

1
√

h
E


n−

i=1

∫ ti

ti−1

σudWu

2

I{(1i X)2>rh ,(1i X1)
2>4rh}



≤
1

√
h

E


NT−
i=1

∫ ti

ti−1

σudWu

2


≤ cE[NT ]
√

h → 0,
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as h → 0. So now we deal with
∑n

i=1

 ti
ti−1

σudWu
2 I{(1i X)2>rh}. If |1i J + 1i M | + |1i X0| >

|1i X | >
√

rh then |1i J + 1i M | >
√

rh − |1i X0| and, using (7) in [5] and the boundedness of
σ , then for sufficiently small h,

√
rh − |1i X0| > c

√
rh, c a constant less than 1, and then either

1i J ≠ 0 or 1i M > c
√

rh/2. However∑
i

 ti
ti−1

σudWu

2
I{|1i J |≠0}

r1−α/2
h

≤ c
NT h ln 1

h

r1−α/2
h

→ 0,

and, by (20) in [5] and because σ is bounded and W and M are independent, we have

E

[∑
i

 ti
ti−1

σudWu

2
I{|1i M |>c

√
rh/2}

]
r1−α/2

h

≤ h

∑
i

P{|1i M | > c
√

rh/2}

r1−α/2
h

∼
h1−αβ/2

r1−α/2
h

→ 0.

Then our result on I2(h) behavior is reached.

In [5] (Proof of Theorem 2.5) it is shown that I3(h)/
√

h
P
→ 0.

We now show that I4(h) has the same asymptotic behavior as r1−α/2
h . Fix any q > 1 and define

Ñs =

−
u≤s

I
{|1Xu |>

√
rh
q }

,

ξni :=

∫ ti

ti−1

∫
|x |≤

√
rh
q

xµ̃(dx, dt) − h
∫

√
rh
q <|x |≤1

xν(dx)

2

.

We can write

I4(h) =

n−
i=1

(1i M)2 I{(1i X)2≤rh}

=

n−
i=1

(1i M)2


I
{1i Ñ=0}

− I
{1i Ñ=0,(1i X)2>rh}

+ I
{1i Ñ≥1,(1i X)2≤rh}


.

On {1i Ñ = 0} the squared increment (1i M)2 equals ξni , so we can write the rhs term above as−
i

ξni −

−
i

ξni I
{1i Ñ≥1}

−

−
i

ξni I
{1i Ñ=0,(1i X)2>rh}

+

−
i

(1i M)2 I
{1i Ñ≥1,(1i X)2≤rh}

.
=

4−
k=1

I4,k(h).

We are now going to show that

I4,1(h) =

−
i

ξni

is the leading term of I4(h) and that it has the same asymptotic behavior as

nE[ξn1] ∼ r1−α/2
h .

In fact Theorem 2.4 in [5] states the following CLT:∑
i

ξni − nE[ξn1]

√
n Var[ξn1]

d
→ N .
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Since nE[ξn1] ∼ r1−α/2
h +h


1−r

1−α
2

h

2 I{α≠1}+h ln2 1
√

rh
I{α=1} ∼ r1−α/2

h → 0, and
√

nV ar [ξn1]

∼ r1−α/4
h → 0 we reach that I4,1(h) =

∑
i ξni tends to zero in probability at speed r1−α/2

h .

We now show that I4,2(h) = −
∑

i ξni I
{1i Ñ≥1}

is negligible wrt r1−α/2
h . In fact, by the inde-

pendence of ξni on {1i Ñ ≥ 1} =

µ

{|x | >

√
rh/q}×]ti−1, ti ]


≥ 1


, we have

E

[∑
i

ξni I
{1i Ñ≥1}

]
r1−α/2

h

≤
nE[|ξni |]P{1i Ñ ≥ 1}

r1−α/2
h

≤ c
nθ


E[ξ2

ni ]

r1−α/2
h

∼

nθ


hr2−α/2

h

r1−α/2
h

= (hr−α/2
h )1/2

→ 0,

where θ = h1−αβ/2
= hr−α/2

h .

Now we prove that also I4,3(h) = −
∑

i ξni I
{1i Ñ=0,(1i X)2>rh}

is negligible wrt r1−α/2
h .

First we take η > 0: γ
.
= 1/q + η < 1. Now on {1i Ñ = 0, (1i X)2 > rh} we neces-

sarily have that |1i M | >
√

rh/q , because otherwise, for sufficiently small h we would have
|1i X0 + 1i M | < η

√
rh +

√
rh/q =

√
rhγ and

|1i J | = |1i X − 1i M − 1i X0| ≥ |1i X | − |1i M + 1i X0| >
√

rh(1 − γ ) > 0,

implying that |1i J | ≥ 1, which is impossible since J only moves by jumps bigger than 1,
while 1i Ñ = 0 indicates that no jumps bigger than

√
rh/q < 1 happened. Second, note that

on the set where X has no jumps bigger than
√

rh/q , the same is true for M and for L , and
P{1i Ñ = 0, (1i X)2 > rh} ≤ P{1i Ñ = 0, |1i M | >

√
rh/q} = P{Ñh = 0, |Mh | >

√
rh/q},

by the Lévy property of M , and this equals P{Ñh = 0, |L ′

h | >
√

rh/q}, where L ′ is the L pro-
cess deprived of its jumps bigger in absolute value than

√
rh/q. In fact M0 = L ′

0 = 0 and M, L ′

have same compensation and differ only by jumps, but on the given set they made no jumps
bigger than

√
rh/q , so they made the same jumps and Mh = L ′

h . Moreover the last probability is
dominated by P{|L ′

h | >
√

rh/q} ∼ θ4/3, by [2], the end of the proof of Lemma 2 (with β there
in place of α here, δ/2 there in place of

√
rh/q here, Y there in place of L here, Y ′′ there in place

of L ′ here1). We then reach that P{1i Ñ = 0, (1i X)2 > rh} ≤ cθ4/3, and thus

E[|I4,3(h)|]

r1−α/2
h

≤

E

[∑
i

|ξni |I{1i Ñ=0,(1i X)2>rh}

]
r1−α/2

h

≤

∑
i


E[ξ2

ni ]


P{1i Ñ = 0, (1i X)2 > rh}

r1−α/2
h

≤ c
n


hr2−α/2
h θ2/3

r1−α/2
h

→ 0.

1 Within the last part of the proof of Lemma 2 in [2] we noticed a minor misprint which, however, is corrected by
simply replacing D′

= {|Y ′
| > δ/2} with D̃′

= {|Y ′′
| > δ/2}, and does not substantially affect the statement in the

Lemma.
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Finally we show that I4,4 =
∑

i (1i M)2 I
{1i Ñ≥1,(1i X)2≤rh}

is also negligible wrt r1−α/2
h . In

fact we use the decomposition∑
i

(1i M)2 I
{1i Ñ≥1,(1i X)2≤rh }

r1−α/2
h

=
1

r1−α/2
h

−
i

(1i M)2

×


I
{1i Ñ=1,|1X s̄ |≤1,(1i X)2≤rh }

+ I
{1i Ñ=1,|1X s̄ |>1,(1i X)2≤rh }

+ I
{1i Ñ≥2,(1i X)2≤rh }


, (7)

where s̄ is the time instant of the unique jump of X bigger than
√

rh/q within ]ti−1, ti ] when
1i Ñ = 1.

Let us deal with the first term above. As, for small h,
√

rh/q < 1, on {1i Ñ = 1, |1X s̄ | ≤ 1}

within ]ti−1, ti ] we only have jumps less than 1, so 1i J = 0. Fix now any p > 0. If also
(1i X)2

≤ rh then for sufficiently small h we have supi |1i X0| < p
√

rh and
√

rh ≥ |1i X | =

|1i X0 +1i M | > |1i M | − |1i X0|, so |1i M | <
√

rh + |1i X0| ≤
√

rh(1 + p) uniformly in i =

1..n. Thus {1i Ñ = 1, |1X s̄ | ≤ 1, |1i X | ≤
√

rh} ⊂ {1i Ñ = 1, |1X s̄ | ≤ 1, |1i M | ≤
√

rh(1 +

p)}, and the probability of this last set equals P{Ñh = 1, |1Ms̄ | ≤ 1, |Mh | ≤
√

rh(1 + p)} by
the Lévy property of M , and in turn this equals P{Ñh = 1, |1L s̄ | ≤ 1, |Lh | ≤

√
rh(1 + p)},

since M0 = L0 = 0 and M, L have same compensation and differ only by jumps, but on the
given set they made only jumps smaller than 1 and so they made the same jumps. Moreover the
last probability is dominated by

P{Ñh = 1, |Lh | ≤
√

rh(1 + p), |1L s̄ | >
√

rh(1 + p)}

+ P{Ñh = 1, |Lh | ≤
√

rh(1 + p), |1L s̄ | ≤
√

rh(1 + p)}

≤ P{Ñ ′

h = 1, |Lh | ≤
√

rh(1 + p)} + P{Ñ ′′

h = 1}, (8)

where Ñ ′

h
.
=
∑

u≤h I{|1Lu |>
√

rh(1+p)}, and Ñ ′′

h
.
=
∑

u≤h I{|1Lu |∈]
√

rh/q,
√

rh(1+p)]}. The first term
of (8), by Lemma 2 in [2], is O(θ4/3). As for the second one we have

P{Ñ ′′

h = 1} = 2h
∫ √

rh(1+p)

√
rh/q

1ν(dx) =
2A

α
θ [qα

− (1 + p)−α
],

and so

1

r1−α/2
h

E

−
i

(1i M)2 I
{1i Ñ=1,|1X s̄ |≤1,(1i X)2≤rh}



≤
rh(1 + p)2

r1−α/2
h


n P


Ñ ′

h = 1, |Lh | ≤
√

rh(1 + p)} + n P{Ñ ′′

h = 1


≤ rα/2
h


ncθ4/3

+ nθ
2A

α
[qα

− (1 + p)−α
]


= o(1) +

2A

α
[qα

− (1 + p)−α
].

So we obtained that for any q > 1, p > 0, for sufficiently small h,

1

r1−α/2
h

E

−
i

(1i M)2 I
{1i Ñ=1,|1X s̄ |≤1,(1i X)2≤rh}


≤

2A

α
[qα

− (1 + p)−α
].

Letting q → 1 and p → 0 we find that

lim
h→0

1

r1−α/2
h

E

−
i

(1i M)2 I
{1i Ñ=1,|1X s̄ |≤1,(1i X)2≤rh}


= 0.
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Let us now deal with the second term within (7). If 1i Ñ = 1 and |1X s̄ | > 1 then 1i J ≠ 0.
If also |1i X | ≤

√
rh then for sufficiently small h we have |1i M | >

√
rh uniformly on i . In fact

|1i J +1i M |−|1i X0| < |1i X | ≤
√

rh , so |1i J +1i M | < |1i X0|+
√

rh , which, for any posi-
tive p, for sufficiently small h, is dominated by

√
rh(1+ p). Moreover, since |1X s̄ | = |1i J | > 1

and within ]ti−1, ti ] exactly one jump of J occurred, |1i J | − |1i M | < |1i J + 1i M | ≤
√

rh(1 + p) implies |1i M | > |1i J | −
√

rh(1 + p) > 1 −
√

rh(1 + p) >
√

rh , for sufficiently
small h, uniformly on i . As a consequence

P


1

r1−α/2
h

−
i

(1i M)2 I
{1i Ñ=1,|1X s̄ |>1,(1i X)2≤rh}

≠ 0


≤ n P(1i N ≠ 0, |1i M | >

√
rh) → 0

by Lemma 6.1 (ii) in [5].
Finally, we consider the last term in (7). On |1i X | ≤

√
rh either we have 1i J = 0, and

consequently |1i M | ≤
√

rh(1 + p), or we have 1i J ≠ 0, and then as before |1i M | >
√

rh , as
for sufficiently small h in ]ti−1, ti ] at most one jump of J occurs. Therefore

1

r1−α/2
h

−
i

(1i M)2 I
{1i Ñ≥2,(1i X)2≤rh }

=

−
i

(1i M)2

r1−α/2
h


I
{1i Ñ≥2,(1i X)2≤rh ,1i J=0,|1i M |≤(1+p)

√
rh }

+ I
{1i Ñ≥2,(1i X)2≤rh ,1i J ≠0,|1i M |>

√
rh }


.

The expectation of the first term is dominated by rh(1+p)2

r1−α/2
h

nθ2
→ 0, with P{1i Ñ ≥ 2} ≤ cθ2,

while the probability that the second term differs from zero is dominated by n P{1i N ≠

0, |1i M | >
√

rh} which tends to zero similarly to before.

Therefore, I4
P
∼ r1−α/2

h is proved.
We can summarize as follows:

ˆI V h − I V
P
∼

√
h Zh + oP (

√
h) + r1−α/2

h + oP (r1−α/2
h ),

where the first term in the right hand side comes from I1 and is due to the presence of a Brownian
component within X , while the third term is determined by I4, which is led by nE[ξn1], where
in turn the main term is the sum of the jumps of X smaller in absolute value than

√
rh , and our

theorem is proved. �

Corollary 2.2. Under A1 we have

if σ ≡ 0 then ˆI V h − I V
P
∼ r1−α/2

h

if σ ≢ 0 and α < 1, β >
1

2 − α
then

ˆI V h − I V
√

2h I Q
st
→ N

if σ ≢ 0 and α < 1, β ≤
1

2 − α
then ˆI V h − I V

P
∼ r1−α/2

h

if σ ≢ 0 and α ≥ 1 then ˆI V h − I V
P
∼ r1−α/2

h .

(9)

Proof. If σ ≢ 0, note that as h → 0
√

h

r1−α/2
h

= h
1
2 −β(1−

α
2 )

→

0 if α ≥ 1

+∞ if α < 1 and β >
1

2 − α
∈

]
1
2
, 1
[
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since the h exponent above is positive if and only if β < 1
2−α

, which is always the case when

α ≥ 1, since 1
2−α

∈]1, ∞[, while the exponent is negative when α < 1 and β is close to 1, since
1

2−α
∈]1/2, 1[. Therefore if α ≥ 1 we have

√
h Zh + oP (

√
h) = oP (r1−α/2

h ) and

ˆI V h − I V
P
∼ r1−α/2

h .

If α < 1 and β is close to 1 (β > 1
2−α

) then r1−α/2
h + oP (r1−α/2

h ) = oP (
√

h) and

ˆI V h − I V
P
∼

√
h Zh .

If α < 1 and β ≤
1

2−α
then

√
h = O(r1−α/2

h ) and

ˆI V h − I V
P
∼ r1−α/2

h .

We now consider the case of σ ≡ 0. Recall decomposition (6). We have I V ≡ 0 and that
I1(h) = Op(h). In fact

I1(h) =

−
i

(1i X1)
2 I{(1i X1)

2≤4rh} (10)

and, assuming wlog that a is bounded on Ω × [0, T ], we have that for sufficiently small h, for
all i = 1..n, I{(1i X1)

2≤4rh} = I{1i N=0}, since if |1i J | − |
 ti

ti−1
audu| < |

 ti
ti−1

audu + 1i J | =

|1i X1| ≤ 2
√

rh then |1i J | ≤ 2
√

rh + |
 ti

ti−1
audu| = OP (

√
rh) → 0 and then, for sufficiently

small h, 1i J = 0. If otherwise |1i J | + |
 ti

ti−1
audu| ≥ |

 ti
ti−1

audu + 1i J | = |1i X1| > 2
√

rh

then |1i J | > 2
√

rh − |
 ti

ti−1
audu| > 0 and 1i J ≠ 0. Therefore (10) equals

−
i

(1i X1)
2 I{1i N=0} =

−
i

∫ ti

ti−1

audu

2

(1 − I{1i N≠0}) = OP (h).

Now we show that I2(h) = oP (h). In fact, like for I2 in the proof of Theorem 2.5 in [5] on
{(1i X1)

2 > 4rh, (1i X)2
≤ rh} we have 1i N ≠ 0 and |1i M | >

√
rh , so

P


1
h

n−
i=1

(1i X1)
2 I{(1i X)2≤rh ,(1i X1)

2>4rh} ≠ 0


≤ n P{1i N ≠ 0, |1i M | >

√
rh} → 0.

Moreover on {(1i X)2 > rh, (1i X1)
2

≤ 4rh} we have 1i N = 0, so 1i X =
 ti

ti−1
audu +

1i M , 1i X1 =
 ti

ti−1
audu and |

 ti
ti−1

audu| + |1i M | > |1i X | >
√

rh implying that, for suffi-
ciently small h, |1i M | > c

√
rh . Therefore

1
h

n−
i=1

(1i X1)
2 I{(1i X)2>rh ,(1i X1)

2≤4rh} ≤

∑
i

(
 ti

ti−1
audu)2 I{|1i M |>c

√
rh}

h
= OP (θ) →P 0.

We then have I4(h)
P
∼ r1−α/2

h , as in the proof of the previous theorem, as a fortiori, for suffi-
ciently small h, supi=1..n |1X0| = supi=1..n |

 ti
ti−1

asds| <
√

rh .

Finally we see that I3(h) =
∑n

i=1 1i X11i M I{(1i X)2≤rh ,1i J ≠0} +
∑n

i=1 1i X11i M

I{(1i X)2≤rh ,1i J=0} = oP (r1−α/2
h ). In fact, like for I3 in the proof of Theorem 2.5 in [5], we have
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that if 1i J ≠ 0 then |1i X1| >
√

rh and if further |1i X | ≤
√

rh then |1i M | >
√

rh and then

P


1

r1−α/2
h

n−
i=1

1i X11i M I{(1i X)2≤rh ,1i J ≠0} ≠ 0


≤ n P{1i J ≠ 0, |1i M | >

√
rh} → 0.

Moreover
n−

i=1

1i X11i M I{(1i X)2≤rh ,1i J=0} =

n−
i=1

∫ ti

ti−1

audu 1i M I{(1i X)2≤rh ,1i J=0}

≤

n−
i=1

∫ ti

ti−1

audu 1i M I{(1i X)2≤rh} ≤

 n−
i=1

∫ ti

ti−1

audu

2−
i

(1i M)2 I{(1i X)2≤rh}

=

 n−
i=1

∫ ti

ti−1

audu

2
I4(h)

and

1

r1−α/2
h

 n−
i=1

∫ ti

ti−1

audu

2
I4(h) = OP


h

r1−α/2
h


→ 0.

Summarizing, when σ ≡ 0 we have

ˆI V h − I V =

4−
j=1

I j (h)
P
∼ h + oP (h) + oP (r1−α/2

h ) + r1−α/2
h ∼ r1−α/2

h

and the final behavior of the estimation error is determined by I4(h). �

Remarks. (i) When α < 1 and β > 1/(2 − α), result (9) is consistent with [5,8] where, under
some different assumptions on X in the two cases, we find that in the presence of a Brownian

part within X and for threshold exponent β sufficiently close to 1, ˆI V h − I V/
√

2h I Q
st
→ N .

(ii) Result (9) is also consistent with [5,8] when α ≥ 1 and in the presence of a Brownian

component within X . In fact in [5] we have that
ˆI V h−I V

√
h

P
→ +∞ and in [8] we have that

ˆI V h−I V

r1−s/2
h

P
→ 0, for all exponents s such that


1 ∧ |x |

sν(dx) < ∞, i.e. for all s > α.

(iii) The new features here are giving the exact speed at which the estimation error ˆI V h − I V
converges to zero when α ≥ 1, both in the presence and in the absence of a Brownian component,
and when α < 1 in the absence of it. Such a speed depends both on the jump activity index α of
X and on the threshold exponent β.

(iv) In the bivariate case things are more complicated. Given two processes such that dX (q)
t

= a(q)
t dt + σ

(q)
t dW (q)

t + dL(q)
t , q = 1, 2, for t ∈ [0, T ], where W (2)

t = ρt W
(1)
t +


1 − ρ2

t W (3)
t

with independent Brownian motions W (1) and W (3), the speed of convergence of the Threshold
estimator ˆI Ch =

∑n
j=1 1 j X (1)1{(1 j X (1))2≤r(h)}1 j X (2)1{(1 j X (2))2≤r(h)} to the integrated covari-

ance I C =
 T

0 ρtσ
(1)
t σ

(2)
t dt turns out to have some features in common with the univariate case

[11], but a complete framework has to separately account for some different cases. More pre-

cisely: in the presence of Brownian parts and α1, α2 < 1 we still have
ˆI V h−I V

√
2h I Q

st
→ N (see [12,9]).
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Otherwise the speed still depends on the jumps of both M (1) and M (2) smaller in absolute value
than the threshold, but now such a speed differs according to different relations among α1, α2, β

and to the magnitude of a further parameter γ measuring the degree of dependence among the
jumps of the two components [11].
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