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Abstract

A large deviation principle is established for the Poisson—Dirichlet distribution when the mutation rate
0 converges to zero. The rate function is identified explicitly, and takes on finite values only on states that
have finite number of alleles. This result is then applied to the study of the asymptotic behavior of the
homozygosity, and the Poisson—Dirichlet distribution with selection. The latter shows that several alleles
can coexist when selection intensity goes to infinity in a particular way as 6 approaches zero.
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1. Introduction

For 6 > 0, let V1(0) > V»>(0) > - - - be the points of a nonhomogeneous Poisson process with
mean measure density

v e . v > 0.
Set
o0
Vo) =) Vi),
i=1

and

(1.1)

Vi@) V(0
P(9)=(P1(9),P2<9),...)=< 10) V2(0) )

V©) ve)
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Then P(9) and V (6) are independent, and V (0) is a Gamma (0, 1)-distributed random variable.
The law of P(0) is called the Poisson—Dirichlet distribution with parameter 6, and is denoted by
PD(0). Clearly P D(#) is a probability on the space

o0
V=ip=npy..)ipizp>--20Y p=1l¢,

equipped with the subspace topology of [0, 1]°°. Let

o0
V=ip=npn..)ipi=zpp=-20) p <1

be the closure of V in [0, 1]°°, equipped with the corresponding subspace topology. Then P D(6)
can be extended naturally to V.

The labeled version of the Poisson—Dirichlet distribution, the Dirichlet process, was
introduced in [1] and is defined as the law of

o
Sow =) Pu(0)S, (12)

k=1

where &, k = 1, ...1is asequence of i.i.d. random variables, independent of P(6), with a common
distribution v on [0, 1] satisfying v({x}) = O for every x in [0, 1].

The Poisson—Dirichlet distribution was introduced by Kingman [2] to describe the equilibrium
distribution of gene frequencies in a large neutral population at a particular locus under the
influence of mutation and genetic drift. The component Py (6) represents the proportion of the
kth most frequent allele.

A different way of describing P D(0) is through the size-biased permutation (P1(0), P,(O), ...)
of P(#), given by

P{P1(0) = P;(®)[PO)} = Pi(B), i>1,
j( )XB

- Z Pk(9)

P{Py1(0) = P;(O)|P1(8), ..., Py(0); P(O)} =

where B = {P;(0) # Py (0),1 <k <n}and x B is the corresponding indicator function. Clearly
P D(0) is the law of the descending order statistics of (f’] ), f’z ), ...).

Let Uy, k=1,2,..., be asequence of independent, identically distributed random variables
with common distribution Beta(1, 0) and set

Xi1=U, X,=01-U)---A-Up_1)U,, n=2. (1.3)

It is well known (cf. [3]) that the size-biased permutation (P1(0), P(0), ...) has the same
law as (X1, X3, ...). The representation (1.3) is called the GEM representation named after
R.C. Griffiths, S. Engen and J.W. McCloskey for their contributions to the development of the
structure. The P D(0) also appears as the unique reversible measure (cf. [4]) of the infinitely-
many-neutral-alleles diffusion process with state space V and generator

Z pl( ij —

1]1



2084 S. Feng / Stochastic Processes and their Applications 119 (2009) 2082-2094

defined on an appropriate domain. The word neutral refers to no selective advantages among the
alleles.

The infinitely-many-neutral-alleles diffusion process can be derived as the limit in distribution
of a sequence of the Wright—Fisher diffusions in population genetics as the population size goes
to infinity. If u is the individual mutation rate and N, is the effective population size, then the
parameter 6 = 4N, u will be the scaled population mutation rate.

In this paper we will focus on the asymptotic behavior of P D(6) when 6 converges to zero. In
terms of the diffusion models, this limit can be realized in two different ways: either the drift term
or the scaled mutation rate goes to zero or the diffusion term goes to infinity. The latter corre-
sponds to the extreme scenario when the population is overwhelmed by the force of genetic drift.

When 6 is large, the proportions of different alleles under P D(6) are evenly spread and
approach zero. By direct calculation, limy_.o X; = 1. Since X; < P1(0) < 1, it follows that
P D(0) concentrates around the point (1, 0, ...) when 6 is small. There are extensive studies of
the asymptotic behavior of P D(8) when 6 goes to infinity [5—10]. Since the proportions of alleles
are evenly spread and uniformly small, it is thus natural to see Gaussian structures [7,10] for large
6. For small mutation rates, the study is very limited. The author is aware of only results in [11]
for Dirichlet process, and in [12,13] for the infinitely-many-neutral-alleles diffusion model.

The case of & = 1 is special. It appears as an asymptotic distribution in random number
theory [14]. It is also a critical value in the boundary behavior of the infinitely-many-neutral-
alleles model. By using techniques from the theory of Dirichlet forms, it was shown in [15] that
for the infinitely-many-neutral-alleles model, with probability one, there will exist times at which
the sample path will hit the boundary of a finite-dimensional sub-simplex of V or, equivalently,
the single point (1, 0, ...) iff 6 is less than one. The intuition here is that it is possible to have
finite number of alleles in the population if mutation rate is small.

But in equilibrium, with P D(6) probability one, the number of alleles is always infinity as
long as 6 is strictly positive. In other words, the critical value of 6 between finite number of alleles
and infinite number of alleles is zero for P D (). In physical terms this sudden change from one
to infinity can be viewed as a phase transition. The objective of this paper is to investigate the
microscopic structures during this phase transition. The limiting procedure involved will be 6
going to zero. The tools we use are from the theory of large deviations. Our result will reveal a
transition structure that can be viewed as a “ladder of energy”.

The paper is organized as follows. In Section 2, we establish the large deviation principle for
P D(0) when 6 goes to zero on space V. The rate function is identified explicitly. Since the rate
function takes the value of infinity outside V, the large deviation principle also holds in V. When
a sample of size r is selected from a population with distribution P D(6), the probability that
all samples are of the same type is called the population homozygosity of order r. In Section 3,
the large deviation result is used to study the asymptotic behavior of the homozygosity and the
impact of selection. It will be shown that, in contrast to the neutral case, the population under
overdominant selection can preserve more than one alleles when 6 goes to zero and the selection
intensity goes to infinity in a particular way.

2. Large deviations

In this section, we establish the large deviation principle for P D(8) when 6 goes to zero.
The result will be obtained through a series of lemmas and the main techniques in the proof are
exponential approximation and the contraction principle [16].

Let U = U(0) be a Beta(l, ) random variable, E = [0, 1], and A(8) = (— log(@))_l.
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Lemma 2.1. The family of laws of U (0) satisfies a large deviation principle on E as 0 goes to
zero with speed A(0) and rate function

0, p=1

I(p) = {1, else. 2.1

Proof. For any a < b in E, let I denote one of the intervals (a, b), [a, b), (a, b], and [a, b]. It
follows from direct calculation that for b < 1
log(1 —¢%)

lim A(0) log P{U € T} = — lim —2—-_ ) _ _,
Jim (@) log PUU e 1} = — lim = " 6)

&

where ¢ = l_a. If b = 1, then limy_oAr(0)log P{U € I} = 0. These, combined with
compactness

QO —

fE , implies the result.  [J

Lemma 2.2. For (X1, X2, ...) defined in (1.3) and any n > 1, the family of laws of P ,(0) =
max{X1i, ..., X,} satisfies a large deviation principle on E as 6 goes to zero with speed A(0)
and rate function

0, p=1
L,(p) k ! ! k=1,2 1 2.2)
= 3 S PR 3 =1l,4 ..., - .
ntp PEls "
n, else
Proof. Noting that P; , () is a continuous function of (Uy, ..., Uy), it follows from Lemma 2.1,

the independence, and the contraction principle that the family of the laws of P ,(0) satisfies a
large deviation principle on E with speed A(0) and rate function

n
I’(p):inf{ZI(ui):u,- ceE,1<i<n;

i=1
max{uy, (1 —upug, ..., 1 —uy) -1 —up—up}=pyg .

For p = 1, one has I'(1) = 0 by choosing u; = 1 fori = 1,...,n.If pisin[1/2, 1), then
at least one of the u; is not one. By choosing u; = p,u; = 1,i = 2,...,n, it follows that
I'(p) = 1for pin[1/2,1).

For each m > 2, we have

max{uy, (1 —upuz, ..., 1 —up)--- (1 —upy)}
=max{uy, (1 —uy) maxfus, ..., (1 —up)--- (1 —upy)}}. 2.3)
Noting that
1

max{ui, 1 —ui} > 5 M€ E,

it follows from (2.3) and induction that

max{ui, (1 —upur, ..., (1 —uy)--- (1 —uy)} > , ueEi=1,...,m.(24)

m+1
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Thus, for2 <k <n—1,and p in [ﬁ, %), in order for the equality

max{ui, (1 —wupuz, ..., —wup) - (1 —up—1uy} = p
to hold, it is necessary that uy, uy, ..., uy are all less than one. In other words, I’(p) > k. Since
the function max{uy, (1 —up)uz, ..., (1 —uy)--- (1 —ug)}is a surjection from E* into [m, 1],
thereexistsu; < 1,...,u;r < 1 such that

max{uy, (1 —upuz,....,(1—up)--- (1 —u)} =p
By choosing u; = 1 for j =k + 1, ..., n, it follows that I'(p) = k.
Finally for p in [0, rll), in order for
maxf{uy, (I —upuz, ..., (L —wup) - (I —wup—us} = p
to have solutions, each u; has to be less than one and, thus, I'(p) = n. Therefore, I'(p) = I,,(p)
forall pin E. O

Lemma 2.3. The laws of P1(0) under P D(0) satisfy a large deviation principle on E as 6 goes
to zero with speed A(0) and rate function

7 p_l
Si(p) = 1k, k=1,2,... 2.5
1(p) [k+1 k) (2.5)
00, =0.

Proof. First note that P;(6) has the same distribution as 131 () = max{X; : i > 1}. For any
8 > 0, it follows from direct calculation that for any n > 1

P{P1(6) — P14(0) > 8} < P{(1 = Uy)---(1 —Uy,) > 8}
! (v5a)
1+6)/)°

lim sup A(6) log P{P;(6) — Py ,(6) > 8} < —n. (2.6)
6—0

IA

which implies that

Hence {P; ,(6) : 6 > 0} are exponentially good approximations of {f’l (6) : 6 > 0}. By direct
calculation, for every closed subset F of E

1nf S1(g) = lim sup 1nf I, (q).

n—oo

Th1s, combined with Theorem 4.2.16 in [16] and the fact~ that S;(p) is a good rate function,
implies that a large deviation principle holds for the laws of P; with speed A(6) and rate function

supliminf inf 7,(q),
§>0 >0 |g—p|<d

which is clearly equal to S;(p). O

For any m > 1, let

m
m = (p1,...,pm):0§pmSmfpthkEl}, 2.7)

and set O, ¢ to be the law of (P1(0), ..., P, (6)) under P D(0) on space V,,.
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For any § > 0, and any (p1, ..., pm) € Vp, let
GUpty--spm)i8) =1{(q1,---.qm) € Vi i g — pkl <8,k =1,...,m},
F((p1,---,pm)i ) ={(q1,---.qm) € Vim t lgk — pxl <8,k =1,...,m}.

Lemma 2.4. For fixed m > 2, the family {Q,.0 : 0 > O} satisfies a large deviation principle on
the space Vy, as 6 goes to zero with speed A(0) and rate function

Oa (p17p27~”7pm)=(170"'70)
[

1-1, 2<i<m Y pi=1,p >0
k=1

Sm(plv--'vpm) = m (28)
m+ §; p+A1 , Zpk<l,pm>0
1=> pi k=1
i=1
00, else.

Proof. Let m > 2 be fixed, and g? denotes the density function of P;(6). Then for any p € (0, 1)

0 - (p/(1=p))Al p
S (pp(l—p) 0 =0 /0 &0 (0)dx. 29)

The joint density function g,% of (P1(0), ..., Py(0))is given by (cf. [17])

mel 60-2
" 1= X px
k=1 Pm

0 0
8m(Pls---s Pm) = g ,
" " P1: " Pm—1 ! m=1
1— 2 pk
k=1
for
m
(Pls-esPm) €V = {(pl,...,pm) EVmiO0<pu<--<pi<LY p<lg,
k=1
and is zero otherwise. Thus for any fixed (p1, ..., pm) € V,, we have
m 6—1
m _ m
, 0 (1 z Pk) (puf1=3 pOAT
&n(P1svvs Pm) = f k=l g1 (u)du. (2.10)
Pl Pm 0
The key step in the proof is to show that for every (p1, ..., pn) In V,

slij}) 1ié1Li(I)lf)»(9) log Qo (F((p1, ..., Pm); 8))
= alin%) limsup A(6) log Q6 (G((p1, - - -+ Pm); 8))
- 0

0—
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For any (p1, ..., pm) in V,, satisfying Z?"zl pi > 0, define
r=r(pt,...,pm)=max{i : 1 <i <m, p; > 0}.
We divide the proof into several disjoint cases.
Casel:r =1,ie., (p1,..., pm) = (1,...,0).
For any § > O,

F((l»’0)a8)C{(QI’an)EVmMI_”fS},

and one can choose §’ < § such that

(g1, ..., qm) € Vi i lg1 — 1| <8} C G((,...,0);8).
These combined with Lemma 2.3 implies (2.11) in this case.

Casell: r =m, ) ;. pr <l
Choose § > 0 so that

m

1= pi
. i=1
8 < min 3 pp,

By (2.10), we have that for any (q1, ..., gm) in F((p1, ..., pm), 8) NV,

m UL o1 pm~+38
" (1= > (pe+8) —— Al

k=1 /‘likg](pkﬁ) g?(u)du,
(P1—5)"'(Pm—5) 0

which, combined with Lemma 2.3, implies

8 (q, .. qm) <

lim lim sup A(6) log Q.o {F((p1, .-, pm); 8)}
=0 90

5
< —m + lim limsup A(6) log P | P1(6) < ’Z:”Jr Al
o0 1= Y (o +9)
k=1
<—|m+ S p:z Al ,
1=> pi
i=1

where the right continuity of S;(-) is used in the last inequality.
On the other hand, let

~ m § .
GUpr--ospm) O = [ i+ 5. pi+8) 05,

i=1

(2.12)

(2.13)

which is clearly a subset of G((py, ..., pm),8). Using (2.10) again it follows that for any

@1y qm) in GU(P1, -, Pm),8)

k=1
(p1+8) - (pm +9)

gi(‘hanw‘]m) > o™

m 01
<1 - Xt 5/2)> f<<pm+6/2>/(1i<pk+a/2>>m
k=1
0

g% (u)du,
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which, combined with Lemma 2.3, implies

1igl>i(r)lfk(9) log Qm,e{G((p1, ..., pm); &)}

v

lim inf 3.(6) log OmolGU(p1, .-\ Pm); 8))

8/2
s mos | P2
1= > (pi+3/2)
i=1
It follows, by letting § go to zero, that
liminfliminf A(0) log Q1 0{G((p1, .-+ Pm); 8)} = —Su(P1, -, Pm)- (2.14)
§—0 6—00

Caselll: 2<r<m—1,%;_,pi<lorp =0.
This case follows from estimate (2.13) and the fact that S (0) = —oo.

CaseIVir=m,) ;_, pr =1
Noting that for any § > 0

F((p1,-- s Pm)i O NV Cl@q1s - vsqm) €V i lgi —pil <6,i=1,...,m—1}.
By applying Case Il to (P (9), ..., P,—1(0)) at the point (p1, ..., pm—1), We get

§—0 g0
=—(m-—1). (2.15)
On the other hand, one can choose § > 0 small so that TS th;’, ” > 1 for any (g1, ..., qm) in
=14
G((p1s -+ Pm); O NV,
Set

G=1{(q1,-qm) € Vo 1 pi <qi < pi +8/(m—1),
i=1,....m—1,pn—06 <qm < pm}-
glearly G is a subset of G((p1,..., pm); 8). It follows from (2.10) that for any (g1, ..., gm)

in G,
m 6—1
g1 [9 (1 -y q,»> }
=1
@, qm) = l

T (p1+8/m = 1) (pm—1 +8/(m — D)pm

Form > 2, let

Ay = {(ql,-..,qml) EVu_1:pi <qi <pi+8/(m—1),
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m—1
pmA<1__Z qi) m -1
= / dgi - -dgm—1 / =l 0 (1 - Zcﬁ) dgm
Am p i=1

o —8

m—1 o
:f <1+5—Pm—2%> dqi -+ -dgm-1,
Am i=1

which converges to a strictly positive number depending only on § and (py, ...
to zero. Hence

lim liminf (9) log Q.6 {G((p1. - ... pm): 8)}
§—0 6—0
> lim lim inf A(6) log Omo{G} = —(m — 1).

CaseV:2<r<m-—1,%;_pi=1
First note that for any § > 0, F((p1, - .., pm); 6) is a subset of

{(QI,-~-an)€Vm:|CIi_pi|S‘Saizl,n-ar}-

, Pm) as 6 goes

(2.16)

On the other hand, for each § > 0 one can choose §y < § such that for any §’ < §

G((p1,-- s Pm);®) D@1y - qm) € Vs lgi — pil <8, i=1,...,r}.

Thus the result now follows from Case IV for (P;(9), ..., P.(0)).
The lemma now follows from (2.11) and the fact that V,, is compact. [

For any n > 1, set

n
L,,:i(pl,...,pn,0,0,...)eV:Zpizl :
i=l1

and

Now we are ready to state and prove the main result of this section.

Theorem 2.5. The family {P D(0) : 6 > 0} satisfies a large deviation principle
to zero with speed A(0) and rate function

0, peL
Sp)={n—-1, peLl,,pp>0n=>2
00, pPéEL.

on V as 6 goes

(2.17)

Remark. Since {S(p) < oo} is a subset of V, the large deviation principle also holds in V.

Proof. First note that the topology of the space V can be generated by the following metric

o0

d(p,q) = ZM,

k
k=1 2
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where p = (p1, p2,--.), 4 = (q1, q2, - . .). For any fixed § > 0, let B(p, §) and B(p, 8) denote
the respective open and closed balls centered at p with radius § > 0.
We start with the case that p is not in L.
Forany k > 1,8 > 0, set
Biy® =1{(q1,92,..) €V :lgi —pil <8, i=1,... .k}
Choose § > 0 so that 2€§ < &'. Then

B(p,8) C Brs(p),
and

(slim lim sup A(0) log PD(G){B(p, 8)} < limsup A(0) log PD(@){BM/(p)}

-0 90 90

< limsup A(0) log Qr 6 {F ((p1, - ..., pr), 8"}
6—0

< —inf{Sk(q1, ... qk) : (q1, ., qk) € F((P1, ..., pk),8)}. (2.18)
Letting 8’ go to zero, and then k go to infinity, we get
lim liminf A(6) log P D(6){B(p, 3)}
§—0 0—0

= lim lim sup A(9) log PD(0){B(p, §)} = —oo. (2.19)
§=0 60

Next consider the case of p belonging to L. Without loss of generality, we assume that p
belongs to L, with p, > 0.
For any § > 0, let

Gp:8)={qeV:lg—pl <8 k=1,...,n}
Fp;8)={qeV:lg—pil <8, k=1,...,n}.
Clearly, l_?(p, 8) is a subset of F(p; 2"8). Since Z?:l pi = 1, it follows that, for any § > 0,
one can find 8’ < § such that
B(p.8) > G(p: 8.
Using results on (P (0), ..., P,(0)) in Case V in the proof of Lemma 2.4, we get
lim lim inf A(6) log P D(6)(B(p, 5))
§—0 6—0

= 511m limsup A(9) log PD(0)(B(p, 8)) = —(n — 1). (2.20)

-0 90

Finally, the theorem follows from the compactness of V. [

Remarks. 1. Consider the rate function S(-) as an “energy” function, then the energy needed to
get n > 2 different alleles is n — 1. The values of S(-) form a “ladder of energy”. The energy
needed to get infinite number of alleles is infinity.

2. The effective domain of S(-), defined as {p € V : S(p) < oo}, is clearly L. This is in sharp
contrast to the result in [8] where the rate function associated with large mutation rate has an
effective domain of {p € V : Y22, pi < 1}. The two effective domains are disjoint. One is part
of the boundary of V and the other is the interior of V, and both have no intersections with the

set{peV:ip >pr--->0,>72 pi=1}
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3. Applications

In this section we will discuss two applications of Theorem 2.5. The first one is concerned
with the large deviation principle for the homozygosity.

A population of diploid individuals, where the chromosomes occur in homologous pairs,
can be divided into two groups: the homozygote and the heterozygote. The frequencies
of the homozygote and the heterozygote in the population are called the homozygosity
and heterozygosity, respectively. In a randomly mating population with allele frequencies
(p1, p2, - - .), the homozygosity is given by

o0
Hy(p1,p2,..) = ZP?
i=1

The heterozygosity is thus given by 1 — H>(p1, p2, ...) and has been used to describe levels of
variation in populations that fail to satisfy the random mating assumption. More information on
the homozygosity and the heterozygosity can be found in [18,19].

For r > 2, select a random sample of size r from a population whose allelic types have
distribution P D (). The probability that all samples are of the same type is given by

H,(P1(6),..)=)_ P (0). 3.1)
i=1

For r = 2, this is the homozygosity. Following [7], we call H,(-) the rth order population
homozygosity. It is clear that H,(P;(0), ...) converges to one as 6 approaches zero. Our next
theorem describes the large deviations of H,(6) from one.

Theorem 3.1. For any integer r > 2, the family of laws of H,.(P1(0),...) satisfies a large
deviation principle on E as 0 goes to zero with speed M(0) and rate function

0, p=1
1 1
J(p)z n—l, J2S! F,m ,I’l=2,... (32)
00, p=0.

Thus in terms of large deviations, H.(P1(0), ...) behaves the same as Pqu 0).

Proof. For any integer » > 1, H,(p) is clearly continuous on V. By Theorem 2.5 and the
contraction principle, the family of the laws of H, (P1(6), .. .) satisfies a large deviation principle
with speed A(6) and rate function

inf{S(q) : q € V, H,(q) = p} =inf{S(q) : q € L, H.(q) = p}.

For p = 1, it follows by choosing q = (1,0, ...) that inf{S(q) : q € V, H,(q) = p} = 0. For
p = 0, there does not exist q in L such that H.(q) = p. Hence inf{S(q) : q € L, H.(q) = p} =
0.

For any n > 2, the minimum of >}, q; over Ly is n~ =1 which is achieved when all qis
are equal. Hence for

peln™ D (-1,
we have

inf{S@:qeV, H(q)=pl=n—1=J(p). O
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For any «(f) > O and any nonzero constant s, the Poisson—Dirichlet distribution with
selection considered here is a probability measure on V given by

Po9),sH,,0(dp) = ( f eS"(@)Hr@PD(e)(dq)) '@ H®) pp(6)(dp),
Vv

where a(0) is the selection intensity. The case of r = 2 corresponds to Theorem 4.4 in [20] with
the fitness function

o(i, j) = sa(8)dij,

and s > 0(< 0) corresponds to underdominant (overdominant) selection. The case of r > 2 can
be rightfully viewed as a mathematical generalization.
In our second application, Theorem 2.5 is used to derive the large deviation principle for

Py(6),5H,.6(dp).

Theorem 3.2. The family {Py) sH,,0 : 6 > 0} satisfies a large deviation principle on Vas6
goes to zero with speed )(0) and rate function

S(p), glin%a(e)x(e) =0
S) +se(l = Hyp).  lim a(@)2(0) = ¢ > 0.5 > 0

S'(p) = 33
®) S(p)+|s|cH(p)—mf{L+ 1:n21}, ©.3)

lim ()L (0) =c > 0,5 < 0.
6—0

Proof. By putting ¢ and s together, we can assume, without loss of generality, that ¢ = 1.
Theorem 2.5 combined with Varadhan’s lemma and the Laplace method implies that the family
{Puo),sH,.0 : 0 > 0} satisfies a large deviation principle on V with speed A(f) and rate function

sup{s H,(q) — S(q) : q € V} — (s H,(p) — S(p)).
The theorem then follows from the fact that

s, s>0

sup{s H,(q) — S(q) : q € V} = _inf{ Is| Cent n>1} ..o O
n’

Remarks. 1. The selection has an impact on the rate function only when the selection intensity
a(#) is proportional to A(6) L.

2. The neutral case corresponds to s = 0. Assume that «(f) = ()»(9))’1. Then for s > 0
the homozygote has selective advantage, and the small mutation rate limit is (1,0, ...). The
energy S’(p) needed for a large deviation from (1, 0, ...) is larger than the neutral energy S(p).
For s < 0, the heterozygote has selection advantage. Since S’(-) may reach zero at a point that is
different from (1, O, .. .), several alleles can coexist in the population when the selection intensity
goes to infinity and 6 ap?roaches Zero.

3.Letr =2, A kXD 'k > 1. Then for =2 < s < 0, (1,0, ...) is the unique zero point
of §'(-); for —2A441 < s < —2\, the unique zero point of S'(-) is (ﬁ, el ﬁ, 0,...); for
s = —2Ag, S'(+) has two zero points (%, e, %, 0,...) and (kl?, e, k]?, 0,...). It is worth

noting that {Aj : k > 1} are the death rates of Kingman’s coalescent.
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