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Abstract

We investigate the large deviation behaviour of a point process sequence based on a stationary symmetric
α-stable (0 < α < 2) discrete-parameter random field using the framework of Hult and Samorodnitsky
(2010). Depending on the ergodic theoretic and group theoretic structures of the underlying nonsingular
group action, we observe different large deviation behaviours of this point process sequence. We use our
results to study the large deviations of various functionals (e.g., partial sum, maxima, etc.) of stationary
symmetric stable fields.
c⃝ 2015 Elsevier B.V. All rights reserved.

MSC: primary 60F10; 60G55; 60G52; secondary 60G60; 60G70; 37A40

Keywords: Large deviations; Point processes; Stable processes; Random fields; Extreme value theory; Nonsingular group
actions

1. Introduction

In this paper, we investigate the large deviation behaviours of point processes and partial
sums of stationary symmetric α-stable (SαS) random fields with α ∈ (0, 2). A random field
X := {X t }t∈Zd is called a stationary symmetric α-stable discrete-parameter random field if for
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all k ≥ 1, for all s, t1, t2, . . . , tk ∈ Zd , and for all c1, c2, . . . , ck ∈ R,
k

i=1 ci X ti +s follows an
SαS distribution that does not depend on s. See, for example, [38] for detailed descriptions on
SαS distributions and processes.

The study of rare events and large deviations for heavy-tailed distributions and processes has
been of considerable importance starting from the classical works of Heyde [11–13], Nagaev
[23,24], Nagaev [25]; see also the technical report of Cline and Hsing [5]. Some of the more
recent works in this area include Mikosch and Samorodnitsky [22], Rachev and Samorodnit-
sky [26], Hult et al. [16], Denisov et al. [10], Hult and Samorodnitsky [17], etc. When studying
the probability of rare events, it is usually important not only to determine the size and the fre-
quency of clusters of extreme values but also to capture the intricate structure of the clusters. For
this reason, Hult and Samorodnitsky [17] developed a theory to study large deviation behaviours
at the level of point processes to get a better grasp on how rare events occur. Their work relies
on convergence of measures that was introduced in [15]. See also the recent works of Das et al.
[7,21], which extended this convergence to more general situations.

Inspired by the works of Davis and Resnick [9] and Davis and Hsing [8], Resnick and
Samorodnitsky [29] studied the asymptotic behaviour of a point process sequence induced by a
stationary symmetric stable process. This work was extended to stable random fields by Roy [33].
In the present work, we take a marked and slightly stronger version of the point process sequence
considered in [33]. More precisely, we keep track of the random field when the index parameter
lies in a neighbourhood and use the framework introduced by Hult and Samorodnitsky [17] to
investigate the corresponding large deviation behaviour. The advantage of this setup is that we
get to know the order in which large values arrive. This is important, for example, in the study of
ruin probabilities and long strange segments; see [16,17]. In our case, we observe that the point
process large deviation principle depends on the ergodic theoretic and group theoretic properties
of the underlying nonsingular Zd -action through the works of Rosiński [30,31] and Roy and
Samorodnitsky [35]. Just as in [36,37] (see also [34]), we notice a phase transition that can be
regarded as a passage from shorter to longer memory.

The paper is organized as follows. In Section 2, we present background on ergodic theory
of nonsingular group actions and integral representations of SαS random fields, and describe a
special type of convergence of measures. The large deviation behaviours of the associated point
processes are considered separately for stationary SαS random fields generated by dissipative
group actions (reflecting shorter memory) in Section 3, and generated by conservative group
actions (reflecting longer memory) in Section 4. Finally, in Section 5, we obtain the large
deviation principle for the partial sum sequence of a stationary SαS random field using a
continuous mapping theorem.

We introduce some notations that we are going to use throughout this paper. For two sequences
of real numbers {an}n∈N and {bn}n∈N the notation an ∼ bn means an/bn → 1 as n → ∞. For
u, v ∈ Zd , u = (u1, u2, . . . , ud) ≤ v = (v1, v2, . . . , vd) means ui ≤ vi for all i = 1, 2, . . . , d;
[u, v] is the set {t ∈ Zd

: u ≤ t ≤ v}; ∥u∥∞ := max1≤i≤d |ui | and 0d = (0, 0, . . . , 0),
1d = (1, 1, . . . , 1) are elements of Zd . For x ∈ R, we define x+

:= max(x, 0) and x−
:=

max(−x, 0). Weak convergence is denoted by ⇒. For some standard Borel space (S,S) with σ -
finite measure µ we define the space Lα(S, µ) := { f : S → R measurable : ∥ f ∥α < ∞} with
∥ f ∥α :=


S | f (s)|α µ(ds)

1/α . For two random variables Y , Z (not necessarily defined on the

same probability space), we write Y
d
= Z if Y and Z are identically distributed. For two random

fields {Yt }t∈Zd and {Z t }t∈Zd , the notation Yt
d
= Z t , t ∈ Zd means that they have same finite-

dimensional distributions.
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2. Preliminaries

In this section, we present the mathematical background on (a) nonsingular group actions,
(b) stationary symmetric α-stable random fields and (c) Hult–Lindskog–Samorodnitsky (HLS)
convergence. The connection between the first two topics will be clear in this section and the
third one will be useful in the entire paper.

2.1. Nonsingular group actions

Suppose (G,+) is a countable Abelian group with identity element e and (S,S, µ) is a σ -
finite standard Borel space. A collection {φt }t∈G of measurable maps of S into itself is called a
nonsingular G-action if φe is the identity map on S, φt1+t2 = φt1 ◦ φt2 for all t1, t2 ∈ G and
each µ ◦ φ−1

t is an equivalent measure of µ; see [1,19,42]. Nonsingular actions are also known
as quasi-invariant actions in the literature (see [40]). A collection of measurable ±1-valued
maps {ct }t∈G defined on S is called a (measurable) cocycle for {φt }t∈G if for all t1, t2 ∈ G,
ct1+t2(s) = ct2(s)ct1


φt2(s)


for all s ∈ S.

A measurable set W ⊆ S is called a wandering set for the nonsingular G-action {φt }t∈G if
{φt (W ) : t ∈ G} is a pairwise disjoint collection. The set S can be decomposed into two disjoint
and invariant parts as follows: S = C ∪ D where D =


t∈G φt (W ∗) for some wandering set

W ∗
⊆ S, and C has no wandering subset of positive µ-measure; see [1,19]. This decomposition

is called the Hopf decomposition, and the sets C and D are called conservative and dissipative
parts (of {φt }t∈G), respectively. The action is called conservative if S = C and dissipative if
S = D.

2.2. Stationary symmetric stable random fields

Every stationary SαS random field X admits an integral representation of the form

X t
d
=


S

ct (s)


dµ ◦ φt

dµ
(s)

1/α

f ◦ φt (s)M(ds), t ∈ Zd , (2.1)

where M is an SαS random measure on some standard Borel space (S,S) with σ -finite control
measure µ, f ∈ Lα(S, µ), {φt }t∈Zd is a nonsingular Zd -action on (S,S, µ), and {ct }t∈Zd is a
measurable cocycle for {φt }; see [30,31]. We say that a stationary SαS random field {X t }t∈Zd

is generated by a nonsingular Zd -action {φt } on (S,S, µ) if it has an integral representation of
the form (2.1) satisfying the full support condition


t∈Zd support( f ◦ φt ) = S, which can be

assumed without loss of generality.
The Hopf decomposition of {φt }t∈Zd induces the following unique (in law) decomposition of

the random field X,

X t
d
=


C

ft (s)M(ds)+


D

ft (s)M(ds) =: X C
t + X D

t , t ∈ Zd ,

into a sum of two independent random fields XC and XD generated by a conservative and a
dissipative Zd -action, respectively; see [30,31,35]. This decomposition reduces the study of
stationary SαS random fields to that of the ones generated by conservative and dissipative actions
and relates to long range dependence for such fields.

Long range dependence (also known as long memory) refers to strong dependence between
observations X t far separated in t . Most of the classical definitions of long range dependence
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appearing in the literature are based on the second order properties (e.g.—correlation, variance of
partial sums, etc.) of stochastic processes. In the context of stable random fields, however, these
definitions become meaningless because variance and covariance do not exist. It was argued by
Samorodnitsky [36] (see also [35]) that stationary SαS random fields generated by conservative
actions have longer memory than those generated by dissipative actions and therefore, the
following dichotomy can be observed:

n−d/α max
∥t∥∞≤n

|X t | ⇒


cXξα if X is generated by a dissipative action,
0 if X is generated by a conservative action

as n → ∞. Here ξα is a standard Frechét type extreme value random variable with distribution
function

P(ξα ≤ x) = e−x−α

, x > 0, (2.2)

and cX is a positive constant depending on the random field X. In the present work, we observe a
similar phase transition in the large deviation principles of the point processes, partial sums, order
statistics, etc. as we pass from dissipative to conservative Zd -actions in the integral representation
(2.1).

2.3. The Hult–Lindskog–Samorodnitsky convergence

Fix a nonnegative integer q. Let Mq be the space of all Radon measures on

Eq
:= [−1, 1]

d
×

[−∞,∞]

[−q1d ,q1d ]
\ {0}

[−q1d ,q1d ]


equipped with the vague topology. The rationale behind using this space is as follows: the
first component of Eq (i.e., [−1, 1]

d ) will be used to keep track of the index parameter t and
the second component will record the scaled values of the random field in a d-dimensional
neighbourhood around t of radius q. We take {0}

[−q1d ,q1d ] out of [−∞,∞]
[−q1d ,q1d ] and obtain

a locally compact, complete and separable metric space Eq . Therefore, C+

K (E
q), the space of

all non-negative real-valued continuous functions defined on Eq with compact support, admits a
countable dense subset consisting only of Lipschitz functions; see [18,27].

Using the above mentioned countable dense subset, Mq can be identified with a closed
subspace of [0,∞)∞ in parallel to Hult and Samorodnitsky [17, p. 36]. In particular, it tran-
spires that Mq is also a complete and separable metric space under the vague metric (see
[27, Proposition 3.17]). Let M0(Mq) denote the space of all Borel measures ρ on Mq satis-
fying ρ(Mq

\ B(Ø, ε)) < ∞ for all ε > 0 (here B(Ø, ε) is the open ball of radius ε around the
null measure Ø in the vague metric). Define the Hult–Lindskog–Samorodnitsky (HLS) conver-
gence ρn → ρ in M0(Mq) by ρn( f ) → ρ( f ) for all f ∈ Cb,0(Mq), the space of all bounded
continuous functions on Mq that vanish in a neighbourhood of Ø; see Theorem 2.1 in [15] and
Theorem 2.1 in [21]. This set up is the same as in [17] except that the space Mq includes all
Radon measures in Eq , not just the Radon point measures.

Observe that the space Mq
p of Radon point measures on Eq is a closed subset of Mq (see

[27, Proposition 3.14]) and hence a complete and separable metric space under the vague metric
(see [27, Proposition 3.17]). The space M0(M

q
p) (and the HLS convergence therein) can be

defined in the exact same fashion; see [17, pp. 36]. In fact, M0(M
q
p) can be viewed as a subset of

M0(Mq) using the following natural identification: ρ ∈ M0(M
q
p) needs to be identified with its

extension to Mq that puts zero measure on Mq
\ Mq

p.
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For all g1, g2 ∈ C+

K (E
q) and for all ϵ1, ϵ2 > 0, define a function Fg1,g2,ϵ1,ϵ2 : Mq

→ [0,∞)

by

Fg1,g2,ϵ1,ϵ2(ξ) :=


1 − e−(ξ(g1)−ϵ1)+

 
1 − e−(ξ(g2)−ϵ2)+


, ξ ∈ Mq . (2.3)

Define, for any ρ ∈ M0(Mq), for all g1, g2 ∈ C+

K (E
q) and for all ϵ1, ϵ2 > 0,

ρ(Fg1,g2,ϵ1,ϵ2) :=


Mq

Fg1,g2,ϵ1,ϵ2(ξ)dρ(ξ).

Following verbatim the arguments in the appendix of Hult and Samorodnitsky [17] (more
specifically, Theorem A.2), the following result can be established.

Proposition 2.1. Let ρ, ρ1, ρ2, . . . be in M0(Mq) and

ρn(Fg1,g2,ϵ1,ϵ2) → ρ(Fg1,g2,ϵ1,ϵ2) as n → ∞

for all Lipschitz g1, g2 ∈ C+

K (E
q) and for all ϵ1, ϵ2 > 0. Then the HLS convergence ρn → ρ

holds in M0(Mq).

Note that the space Mq is not locally compact. Therefore, the use of vague convergence based
on its compactification may lead to various undesirable situations. Keeping this in mind, we stick
to HLS convergence, which completely circumvents this obstacle.

3. The dissipative case

Suppose X := {X t }t∈Zd is a stationary SαS random field generated by a dissipative group
action. In this case, it has been established by Rosiński [30,31] and Roy and Samorodnitsky [35]
that X is a stationary mixed moving average random field (in the sense of Surgailis et al. [39]).
This means that X has the integral representation

X t
d
=


W×Zd

f (v, u − t)M(dv, du), t ∈ Zd , (3.1)

where f ∈ Lα(W × Zd , ν ⊗ ζ ), ν is a σ -finite measure on a standard Borel space (W,W), ζ is
the counting measure on Zd , and M is a SαS random measure on W × Zd with control measure
ν ⊗ ζ (cf. [38]).

Suppose να is the symmetric measure on [−∞,∞] \ {0} given by

να (x,∞] = να [−∞,−x) = x−α, x > 0. (3.2)

Let
∞

i=1

δ( ji ,vi ,ui ) ∼ PRM(να ⊗ ν ⊗ ζ ) (3.3)

be a Poisson random measure on ([−∞,∞] \ {0}) × W × Zd with mean measure να ⊗

ν ⊗ ζ . Then from (3.1), it follows that X has the following series representation: X t
d
=

Cα1/α∞

i=1 ji f (vi , ui − t), t ∈ Zd , where Cα is the stable tail constant given by

Cα =


∞

0
x−α sin x dx

−1

=


1 − α

Γ (2 − α) cos(πα/2)
, if α ≠ 1,

2
π
, if α = 1.

(3.4)
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For simplicity of notations, we shall drop the factor Cα1/α and redefine X t as

X t :=

∞
i=1

ji f (vi , ui − t), t ∈ Zd . (3.5)

Mimicking the arguments given in [29], it was established in Theorem 3.1 of [33] that the
weak convergence

∥t∥∞≤n

δ(2n)−d/αX t
⇒

∞
i=1


u∈Zd

δ ji f (vi ,u) as n → ∞

holds on the space of Radon point measures on [−∞,∞]\{0} equipped with the vague topology.
Clearly the above limit is a cluster Poisson process.

For each q ∈ N0, define a random vector fieldXq
t := {X t−w}∥w∥∞≤q . (3.6)

We take a sequence γn satisfying nd/α/γn → 0 so that for all q ≥ 0,

N q
n :=


∥t∥∞≤n

δ
(n−1t, γ−1

n Xq
t )

(3.7)

converges almost surely to Ø, the null measure in the space Mq defined in Section 2.3. We define
a map ψ : ([−∞,∞] \ {0})× W × Zd

→ [−∞,∞]
[−q1d ,q1d ] by

ψ(x, v, u) = {x f (v, u − w)}∥w∥∞≤q (3.8)

in order to state the following result, which is an extension of Theorem 4.1 in [17] to mixed
moving average stable random fields. In particular, it describes the large deviation behaviour of
point processes induced by such fields.

Theorem 3.1. Let {X t }t∈Zd be the stationary symmetric α-stable mixed moving average random
field defined by (3.5) and N q

n be as in (3.7) with

nd/α/γn → 0 as n → ∞. (3.9)

Then for all q ≥ 0, the HLS convergence

mq
n(·) :=

γ αn

nd P(N q
n ∈ ·) → mq

∗(·) as n → ∞, (3.10)

holds in the space M0(M
q
p), where mq

∗ is a measure on Mq
p defined by

mq
∗(·) := (Leb|[−1,1]d ⊗ να ⊗ ν)


(t, x, v) ∈ [−1, 1]

d
× ([−∞,∞] \ {0})× W :

u∈Zd

δ(t, ψ(x,v,u)) ∈ ·


and satisfying mq

∗(M
q
p \ B(Ø, ε)) < ∞ for all ε > 0.

The proof of the above result is given in the next section. The following result is a direct
consequence of Theorem 3.1. The analogous statements were established for linear time series
(d = 1) with nonnegative random coefficients in [17] (see Corollaries 5.1 and 5.2 therein) but
are unknown in the random field case.
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Corollary 3.2. Let X i :(2n+1)d be the i th order statistic of {X t }∥t∥∞≤n in descending order, i.e.,
X1:(2n+1)d ≥ X2:(2n+1)d ≥ · · · ≥ X(2n+1)d : (2n+1)d . Moreover, for all v ∈ W , let f +

i (v) be the i th
order statistic of the sequence { f +(v, u)}u∈Zd in descending order and f −

i (v) be the i th order
statistic of the sequence { f −(v, u)}u∈Zd in descending order. Then for y1, . . . , ym > 0,

lim
n→∞

γ αn

nd P(X1:(2n+1)d > γn y1, X2:(2n+1)d > γn y2, . . . , Xm:(2n+1)d > γn ym)

= 2d


W


min

i=1,...,m
( f +

i (v)y
−1
i )α + min

i=1,...,m
( f −

i (v)y
−1
i )α


ν(dv).

In particular, for all a > 0 and n ≥ 1, if we define τ a
n := inf{∥t∥∞ : X t > aγn}, then

lim
n→∞

γ αn

nd P(τ a
n ≤ λn) = (2λ)da−α


W
( sup
u∈Zd

f +(v, u))α + ( sup
u∈Zd

f −(v, u))αν(dv).

Proof. Following the proof of Corollary 5.1 in [17], we can show that the set

B(y1, y2, . . . , ym) :=

m
i=1


ξ ∈ M0

p : ξ([−1, 1]
d

× (yi ,∞)) ≥ i


is bounded away from the null measure and its boundary is an m0
∗-null set. Therefore by applying

Theorem 3.1 with q = 0 and Portmanteau-Theorem (Theorem 2.4 in [15]), we obtain

lim
n→∞

γ αn

nd P(X1:(2n+1)d > γn y1, X2:(2n+1)d > γn y2, . . . , Xm:(2n+1)d > γn ym)

= lim
n→∞

m0
n(B(y1, . . . , ym)) = m0

∗(B(y1, . . . , ym)),

which can be shown to be equal to the first limit above by an easy calculation.
The second statement follows trivially from the first one using the observation that

γ αn

nd P(τ a
n ≤ λn) =

γ αn

nd P


sup

t∈[−⌊nλ⌋1d ,⌊nλ⌋1d ]

X t > aγn


for all n ≥ 1 and a > 0. �

3.1. Proof of Theorem 3.1

We shall first discuss a brief sketch of the proof of Theorem 3.1. Fix Lipschitz functions
g1, g2 ∈ C+

K (E
q) and two positive real numbers ϵ1, ϵ2. By Theorem A.2 of Hult and

Samorodnitsky [17], in order to prove (3.10), it is enough to show that mq
∗ ∈ M0(M

q
p) and

lim
n→∞

mq
n(Fg1,g2,ϵ1,ϵ2) = mq

∗(Fg1,g2,ϵ1,ϵ2) (3.11)

with Fg1,g2,ϵ1,ϵ2 as in (2.3). Following the heuristics in [29], one expects that under the
normalization γ−1

n , all the Poisson points in (3.5) except perhaps one will be killed and therefore
the large deviation behaviour of N q

n should be the same as that of

N q
n :=

∞
i=1


∥t∥∞≤n

δ
(n−1t, γ−1

n ψ( ji ,vi ,ui −t)).
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Keeping this in mind, we define

mq
n(·) :=

γ αn

nd P(N q
n ∈ ·) (3.12)

and hope to establish

lim
n→∞

mq
n(Fg1,g2,ϵ1,ϵ2) = mq

∗(Fg1,g2,ϵ1,ϵ2) (3.13)

as the first step of proving (3.11).
For p = 1, 2 and for all i ∈ N, let

Z p,i :=


∥t∥∞≤n

gp(n
−1t, γ−1

n ψ( ji , vi , ui − t)), (3.14)

where ψ is as in (3.8). For all q ≥ 0 and n ≥ 1, define

mq
n(Fg1,g2,ϵ1,ϵ2) :=

γ αn

nd E
 ∞

i=1


1 − e−(Z1,i −ϵ1)+


1 − e−(Z2,i −ϵ1)+


. (3.15)

In order to establish (3.13), we shall first show that the quantities mq
n(Fg1,g2,ϵ1,ϵ2) andmq

n(Fg1,g2,ϵ1,ϵ2) are asymptotically equal, and then prove

lim
n→∞

mq
n(Fg1,g2,ϵ1,ϵ2) = mq

∗(Fg1,g2,ϵ1,ϵ2).

The execution and justification of these steps are detailed below with the help of a series
of lemmas. Among these, Lemma 3.4 is the key step that makes our proof amenable to the
techniques used in [29]. The rest of the lemmas can be established by closely following the proof
of Theorem 3.1 in the aforementioned paper and improving it whenever necessary. Most of these
improvements are nontrivial albeit somewhat expected.

The first step in establishing the HLS convergence (3.10) is to check that the limit measure
mq

∗ is indeed an element M0(M
q
p).

Lemma 3.3. For all q ≥ 0, mq
∗ ∈ M0(M

q
p).

Proof. The statement mq
∗ ∈ M0(M

q
p) means that mq

∗ is a Borel measure on Mq
p with

mq
∗(M

q
p\B(Ø, ϵ)) < ∞ for any ϵ > 0. To prove this, we first claim that for almost all

(t, x, v) ∈ [−1, 1]
d

× ([−∞,∞] \ {0})× W ,
u∈Zd

δ(t, ψ(x,v,u)) ∈ Mq
p, (3.16)

concluding mq
∗ is a Borel measure on Mq

p. To this end, setting

Aη := [−∞,∞]
[−q1d ,q1d ]

\ (−η, η)[−q1d ,q1d ] (3.17)

for all η > 0, and ∥ f ∥α :=


W


u∈Zd | f (v, u)|αν(dv)

1/α , we get
[−1,1]d


|x |>0


W


u∈Zd

δ(t, ψ(x,v,u))


[−1, 1]

d
× Aη


ν(dv)να(dx)dt

≤ 2d+1η−α(2q + 1)d ∥ f ∥
α
α < ∞. (3.18)
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Applying the method used to establish that the limit measure in Theorem 3.1 of Resnick and
Samorodnitsky [29, (p.196)] is Radon, (3.16) follows from (3.18).

Because of the estimates used in the proof of Theorem A.2 in [17], to obtain
mq

∗(M
q
p\B(Ø, ϵ)) < ∞ for all ϵ > 0, it is enough to show that mq

∗(Fg1,g2,ϵ1,ϵ2) < ∞ for all
g1, g2 ∈ C+

K (E
q) and for all ϵ1, ϵ2 > 0. Using (3.16) and a change of measure, we get

mq
∗(Fg1,g2,ϵ1,ϵ2) =


[−1,1]d


|x |>0


W


1 − e

−(


u∈Zd
g1(t,ψ(x,v,u))−ϵ1)+



×


1 − e

−(


u∈Zd
g2(t,ψ(x,v,u))−ϵ2)+


ν(dv)να(dx)dt.

Let C be an upper bound for |g1| and |g2|, and η > 0 be such that g1(t, y) = g2(t, y) = 0
for all y ∈ (−η, η)[−q1d ,q1d ]. Then (3.18) and the inequality 1 − e−(x−ϵ)+ ≤ x (for x ≥ 0 and
ϵ > 0) yield that mq

∗(Fg1,g2,ϵ1,ϵ2) can be bounded by 2d+1Cη−α(2q + 1)d∥ f ∥
α
α . This shows

mq
∗(M

q
p\B(Ø, ϵ)) < ∞. �

To proceed with the proof of Theorem 3.1 by using the ideas mentioned above, we need the
following most crucial lemma.

Lemma 3.4. Let mq
n(Fg1,g2,ϵ1,ϵ2) and mq

n(Fg1,g2,ϵ1,ϵ2) be as in (3.12) and (3.15), respectively.
Then for all q ≥ 0,

lim
n→∞

|mq
n(Fg1,g2,ϵ1,ϵ2)− mq

n(Fg1,g2,ϵ1,ϵ2)| = 0.

Proof. Let C, η > 0 be as above and Aη be defined by (3.17). For n ≥ 1, let Bn be the event that
for at most one i ,


∥t∥∞≤n δγ−1

n ψ( ji ,vi ,ui −t)(Aη) ≥ 1, where ψ is as in (3.8). We claim that

γ αn

nd P(Bc
n) → 0 (3.19)

as n → ∞. To prove this claim, observe that on Bc
n , there exist more than one i such that

| ji | ≥ ηγn/| f (vi , ui − t − w)| for some (t, w) ∈ [−n1d , n1d ] × [−q1d , q1d ] and therefore
because of (3.3), the sequence in (3.19) can be bounded by

γ αn

nd P
 ∞

i=1

δ( ji ,vi ,ui )(Ln) ≥ 2


≤
γ αn

nd


E
 ∞

i=1

δ( ji ,vi ,ui )(Ln)
2

= O


nd/γ αn


,

where Ln :=


(x, v, u) : |x | ≥ ηγn


∥t∥∞≤n


∥w∥∞≤q | f (v, u − t − w)|α

−
1
α


.

It is easy to check that with Z1,i and Z2,i as in (3.14),

mq
n(Fg1,g2,ϵ1,ϵ2) =

γ αn

nd E


1 − e
−(

∞
i=1

Z1,i −ϵ1)+
1 − e

−(
∞

i=1
Z2,i −ϵ2)+

.
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Note that on the event Bn , the quantities


1 − e−(


∞

i=1 Z1,i −ϵ1)+


1 − e−(


∞

i=1 Z2,i −ϵ2)+


and

∞

i=1


1 − e−(Z1,i −ϵ1)+


1 − e−(Z2,i −ϵ1)+


are equal. Therefore it transpires that

|mq
n(Fg1,g2,ϵ1,ϵ2)− mq

n(Fg1,g2,ϵ1,ϵ2)|

≤
γ αn

nd P(Bc
n)+

γ αn

nd E

1Bc

n

∞
i=1


1 − e−(Z1,i −ϵ1)+


1 − e−(Z2,i −ϵ2)+



≤
γ αn

nd P(Bc
n)+

γ αn

nd P(Bc
n)
γ αn

nd E
 ∞

i=1


1 − e−(Z1,i −ϵ1)+

2
,

which, combined with (3.19), yields Lemma 3.4 provided we show that

γ αn

nd E
 ∞

i=1


1 − e−(Z1,i −ϵ1)+

2
= O(1). (3.20)

To this end, note that applying (3.3), Lemma 9.5IV in [6], and the inequality 1 − e−x
≤ x for

x ≥ 0, we obtain

E
 ∞

i=1


1 − e−(Z1,i −ϵ1)+

2

=


|x |>0


W


u∈Zd


1 − e

−(


∥t∥∞≤n
g1(n−1t,γ−1

n ψ(x,v,u−t))−ϵ1)+
2

ν(dv)να(dx)

+


|x |>0


W


u∈Zd


1 − e

−(


∥t∥∞≤n
g1(n−1t,γ−1

n ψ(x,v,u−t))−ϵ1)+

ν(dv)να(dx)

2

≤


|x |>0


W


u∈Zd


∥t∥∞≤n

g1

n−1t, γ−1

n ψ(x, v, u − t)

ν(dv)να(dx)

+


|x |>0


W


u∈Zd


∥t∥∞≤n

g1

n−1t, γ−1

n ψ(x, v, u − t)

ν(dv)να(dx)

2

,

from which (3.20) follows because by similar calculations as in (3.18), the first term of above is
bounded by 2C(ηγn)

−α(2q +1)d∥ f ∥
α
α(2n +1)d for all n ≥ 1 and q ≥ 0 and for the second term

we additionally use (3.9). This finishes the proof of this lemma. �

We shall now establish (3.13). In light of Lemma 3.4, it is enough to prove the next lemma.

Lemma 3.5. For all q ≥ 0,

lim
n→∞

mq
n(Fg1,g2,ϵ1,ϵ2) = mq

∗(Fg1,g2,ϵ1,ϵ2). (3.21)

Proof. This can be achieved in a fashion similar to the proof of Theorem 3.1 in [29], namely,
by first proving a version of (3.21) for f supported on W × [−T 1d , T 1d ] for some T ≥ 1, and
then using a converging together argument with the help of the inequalities used in the proof of
Lemma 3.6. �

Therefore in order to complete the proof of Theorem 3.1, it remains to establish the following
lemma.
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Lemma 3.6. For all q ≥ 0,

lim
n→∞

mq
n(Fg1,g2,ϵ1,ϵ2)− mq

n(Fg1,g2,ϵ1,ϵ2)
 = 0.

Proof. Because of the inequalities |x1x2 − y1 y2| ≤ |x1 − y1|+|x2 − y2| for x1, x2, y1, y2 ∈ [0, 1]

and |e−(z1−ϵ1)+−e−(z2−ϵ2)+ | ≤ |z1−z2| for z1, z2 ∈ [0,∞) and ϵ1, ϵ2 ∈ (0,∞), the convergence
in Lemma 3.6 will be established provided we show that for all Lipschitz g ∈ C+

K (E
q),

γ αn

nd E
N q

n (g)− N q
n (g)

 → 0 (3.22)

as n → ∞. We shall establish (3.22) by closely following the proof of (3.14) in [29] and
modifying their estimates as needed. We sketch the main steps below.

Assume that |g| ≤ C and g(t, y) = 0 for all y ∈ (−η, η)[−q1d ,q1d ]. For each n ≥ 1 and
for each θ > 0, let A(θ, n) denote the event that for all ∥t∥∞ ≤ n and for all ∥w∥∞ ≤ q ,

∞

i=1 δ| ji f (vi ,ui −t−w)|

[γnθ,∞]


≤ 1. Then similarly as in [29, p.201] it follows that for all

θ > 0,

γ αn P


A(θ, n)c


→ 0 as n → ∞. (3.23)

Defining Yt to be the summand of largest modulus in X t =


∞

i=1 ji f (vi , ui − t) for all t ∈ Zd ,
and adapting the method of Resnick and Samorodnitsky [29, p. 201] to our situation, we can find
T ∈ N such that for all θ < η/2,

D(θ, n) :=

 
∥w∥∞≤q


∥t∥∞≤n

γ−1
n X t−w − γ−1

n Yt−w

 > θ


∩ A (θ/T, n)

satisfies

lim
n→∞

γ αn P

D(θ, n)


= 0. (3.24)

Define, for each q ≥ 0, a random vector field {Y q
t }t∈Zd in R[−q1d ,q1d ] by replacing {X t }t∈Zd

by {Yt }t∈Zd in (3.6). For any θ < η/2, the sequence in (3.22) is bounded by

γ αn

nd


∥t∥∞≤n

E
g(n−1t, γ−1

n
Xq

t )− g(n−1t, γ−1
n
Y q

t )
1D(θ,n)

+
γ αn

nd


∥t∥∞≤n

E
g(n−1t, γ−1

n
Xq

t )− g(n−1t, γ−1
n
Y q

t )
1A(θ/M,n)\D(θ,n)

+
γ αn

nd E
N q

n (g)
1A(θ/M,n)c +

γ αn

nd E
N q

n (g)
1A(θ/M,n)c

=
γ αn

nd


∥t∥∞≤n

E
g(n−1t, γ−1

n
Xq

t )− g(n−1t, γ−1
n
Y q

t )
1A(θ/M,n)\D(θ,n)

+
γ αn

nd E
N q

n (g)
1A(θ/M,n)c + o(1).

In the last step, we used the asymptotic results (3.23) and (3.24), and the fact that g is bounded.
Following Resnick and Samorodnitsky [29, p. 202], the first term above can be bounded

by 2Lg(η/2)−α(2q + 1)d∥ f ∥
α
α


2n+1

n

d
θ (here Lg denotes the Lipschitz constant of g) and
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repeating the method used in the proof of Lemma 3.4, the second term can be shown to be o(1).
Since θ ∈ (0, η/2) is arbitrary, (3.22) follows. �

4. The conservative case

Suppose now that X is a stationary SαS random field generated by a conservative Zd -action.
Unlike the mixed moving average representation in the dissipative case, no nice representation
is available in general. However, if we view the underlying action as a group of invertible
nonsingular transformations on (S,S, µ) (see [35,33]), then under certain conditions, X can
be thought of as a lower dimensional mixed moving average field. This will enable us to analyze
the large deviation issues of point processes induced by such fields.

Let A := {φt : t ∈ Zd
} be the subgroup of the group of invertible nonsingular transformations

on (S,S, µ) and Φ : Zd
→ A be a group homomorphism defined by Φ(t) = φt for all t ∈ Zd

with kernel K := Ker(Φ) = {t ∈ Zd
: φt = 1S}. Here 1S is the identity map on S. By the

first isomorphism theorem of groups (see, for example, [20]) we have A ≃ Zd/K . Therefore,
the structure theorem for finitely generated abelian groups (see Theorem 8.5 in Chapter I of
Lang [20]) yields A = F ⊕ N , where F is a free abelian group and N is a finite group. Assume
rank(F) = p ≥ 1 and |N | = l. Since F is free, there exists an injective group homomorphism
Ψ : F → Zd such that Φ ◦ Ψ is the identity map on F .

Clearly, F := Ψ(F) is a free subgroup of Zd of rank p ≤ d. It follows easily that the sum
F + K is direct and Zd/(F + K ) ≃ N . Let x1 + (F + K ), x2 + (F + K ), . . . , xl + (F + K )
be all the cosets of F + K in Zd . It has been observed in [35] that H :=

l
k=1(xk + F) forms a

countable Abelian group (isomorphic to Zd/K ) under addition ⊕ modulo K [for all s1, s2 ∈ H ,
s1 ⊕ s2 is defined as the unique s ∈ H such that (s1 + s2)− s ∈ K ] and it admits a map N : H →

{0, 1, . . .} defined by N (s) := min{∥s + v∥∞ : v ∈ K } satisfying symmetry [for all s ∈ H ,
N (s−1) = N (s), where s−1 is the inverse of s in (H,⊕)] and triangle inequality [for all
s1, s2 ∈ H , N (s1⊕s2) ≤ N (s1)+N (s2)]. Note that every t ∈ Zd can be decomposed uniquely as
t = tH + tK , where tH ∈ H and tK ∈ K . Therefore, we can define a projection map π : Zd

→ H
as π(t) = tH for all s ∈ Zd .

Define, for all n ≥ 1, Hn = {s ∈ H : N (s) ≤ n}. It is easy to see that Hn’s are finite subsets
increasing to H and

|Hn| ∼ cn p as n → ∞, (4.1)

for some c > 0; see (5.19) in [35]. If {φt }t∈F is a dissipative group action then {φs}s∈H defined
by φs = φs is a dissipative H -action; see, once again, Roy and Samorodnitsky [35, p. 228].
Because of Remark 4.3 in [33] (an extremely useful observation of Jan Rosiński), without loss
of generality, all the known examples of stationary SαS random fields can be assumed to satisfy

cv ≡ 1 for all v ∈ K , (4.2)

which would immediately yield that {cs}s∈H is an H -cocycle for {φs}s∈H . Hence the subfield
{Xs}s∈H is H -stationary and is generated by the dissipative action {φs}s∈H . This implies, in
particular, that there is a standard Borel space (W,W) with a σ -finite measure ν on it such that

Xs
d
=


W×H

h(v, u ⊕ s)M ′(dv, du), s ∈ H, (4.3)

for some h ∈ Lα(W × H, ν ⊗ ζH ), where ζH is the counting measure on H , and M ′ is a
SαS random measure on W × H with control measure ν ⊗ ζH (see, for example, Remark 2.4.2
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in [32]). Let

∞
i=1

δ( ji ,vi ,ui ) ∼ PRM(να ⊗ ν ⊗ ζH )

be a Poisson random measure on ([−∞,∞]\ {0})× W × H , where να(·) is the measure defined
by (3.2). The following series representation holds in parallel to (3.5) after dropping a factor of
C1/α
α (Cα is as in (3.4)):

Xs =

∞
i=1

ji h(vi , ui ⊕ s), s ∈ H.

Note that rank(K ) = d − p; see the proof of Proposition 3.1 in [4]. Assume p < d. Let U be a
d × p matrix whose columns form a basis of F and V be a d × (d − p) matrix whose columns
form a basis of K . Let

∆ := {y ∈ Rp
: there exists λ ∈ Rd−p such that ∥U y + Vλ∥∞ ≤ 1},

which is a compact and convex set; see Lemma 5.1 in [33]. For all y ∈ ∆, define Q y := {λ ∈

Rd−p
: ∥U y +Vλ∥∞ ≤ 1} and let V(y) be the q-dimensional volume of Q y . Lemma 5.1 in [33]

says that V : ∆ → [0,∞) is a continuous map.
We also define a map ψH : ([−∞,∞] \ {0})× W × H → [−∞,∞]

[−q1d ,q1d ] by

ψH (x, v, u) = {xh(v, u ⊖ π(w))}∥w∥∞≤q ,

where π is the projection on H as above and u ⊖ s := u ⊕ s−1 with s−1 being the inverse of s in
(H,⊕).

The rank p can be regarded as the effective dimension of the random field and it gives more
precise information on the rate of growth of the partial maxima than the actual dimension d.
More precisely, according to Theorem 5.4 in [35],

n−p/α max
∥t∥∞≤n

|X t | ⇒


c′

Xξα if {φt }t∈F is a dissipative action,
0 if {φt }t∈F is a conservative action,

where c′

X is a positive constant depending on X and ξα is as in (2.2).
However, even when {φt }t∈F is dissipative and (4.2) holds, the point process sequence
∥t∥∞≤n δn−p/αX t

does not remain tight due to clustering of points owing to the longer memory
of the field. It so happens that the cluster sizes are of order nd−p and therefore the scaled point
process n p−d 

∥t∥∞≤n δn−p/αX t
converges weakly to a random measure on [−∞,∞] \ {0}; see

Theorem 4.1 in [33]. To be precise

n p−d


∥t∥∞≤n

δ(l Leb(∆)n p)−1/αX t
⇒


u∈H

∞
i=1

V(ξi )δ ji h(vi ,u) as n → ∞,

where


∞

i=1 δ(ξi , ji ,vi ) ∼ PRM(Leb|∆ ⊗ να ⊗ ν). Therefore, we take a sequence γn such that
n p/α/γn → 0 as n → ∞ so that for all q ≥ 0 and Xq

t as defined in (3.6),

Λq
n := n p−d


∥t∥∞≤n

δ
(n−1t,γ−1

n Xq
t )

(4.4)

converges almost surely to Ø. With the notations introduced above, we have the following result.
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Theorem 4.1. Let {X t }t∈Zd be a stationary symmetric α-stable random field generated by a
conservative action {φt }t∈Zd and Λq

n be as in (4.4) with

n p/α/γn → 0 as n → ∞. (4.5)

Assume 1 ≤ p < d, {φt }t∈F is dissipative and (4.2) holds. Then for all q ≥ 0, the HLS
convergence

κ
q
n (·) :=

γ αn

n p P(Λq
n ∈ ·) → κ

q
∗ (·) as n → ∞ (4.6)

holds in the space M0(Mq), where κq
∗ is a measure on Mq defined by

κ
q
∗ (·) := l (Leb|∆ ⊗ να ⊗ ν)


(y, x, v) ∈ ∆ × ([−∞,∞] \ {0})× W :

Q y


u∈H

δ(U y+Vλ,ψH (x,v,u)) dλ ∈ ·


and satisfying κq

∗ (Mq
\ B(Ø, ε)) < ∞ for all ε > 0.

Proof. Since this proof is similar to the proof of Theorem 3.1 with ingredients from Roy [33],
we shall only sketch the main steps. For example, it can be verified that κq

∗ ∈ M0(Mq) using the
same approach used in the proof of Lemma 3.3.

As before, fix Lipschitz functions g1, g2 ∈ C+

K (E
q) and ϵ1, ϵ2 > 0. For all s ∈ Zd and

n ≥ 1, define Cs,n := [−n1d , n1d ] ∩ (s + K ). With the help of this notation, Λq
n can be

rewritten as Λq
n := n p−d 

s∈Hn


t∈Cs,n

δ
(n−1t, γ−1

n Xq
s )
. Using the heuristics given before the

proof of Theorem 3.1, one can guess that the large deviation of Λq
n would be same as that of

Λq
n := n p−d

∞
i=1


s∈Hn


t∈Cs,n

δ
(n−1t,γ−1

n ψH ( ji ,vi ,ui ⊕s)).

Keeping this in mind, we define

κq
n :=

γ αn

n p P(Λq
n ∈ ·) ∈ M0(Mq)

and follow the proof of Lemma 3.6 to establish that

lim
n→∞

κq
n (Fg1,g2,ϵ1,ϵ2)−κq

n (Fg1,g2,ϵ1,ϵ2)
 = 0, (4.7)

where Fg1,g2,ϵ1,ϵ2 is as in (2.3).
Moreover, we define for all q ≥ 0,

κq
n (Fg1,g2,ϵ1,ϵ2) :=

γ αn

n p E


∞

i=1


1 − e

−(n p−d 
s∈Hn


t∈Cs,n

g1(n−1t, γ−1
n ψH ( ji ,vi ,ui ⊕s))−ϵ1)+

×


1 − e

−(n p−d 
s∈Hn


t∈Cs,n

g2(n−1t, γ−1
n ψH ( ji ,vi ,ui ⊕s))−ϵ2)+

.

Assuming that g1(t, y) = g2(t, y) = 0 for all y ∈ (−η, η)[−q1d ,q1d ], and using (4.1) and an
argument parallel to the one used in establishing (3.19), it follows that

γ αn

n p P


for more than one i,

s∈Hn

δ
γ−1

n ψH ( ji ,vi ,ui ⊕s)(Aη) ≥ 1


→ 0,
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from which we can establish a version of Lemma 3.4 in this set up and conclude

lim
n→∞

|κq
n (Fg1,g2,ϵ1,ϵ2)−κq

n (Fg1,g2,ϵ1,ϵ2)| = 0. (4.8)

In light of Proposition 2.1, (4.7), and (4.8), it is enough to prove that for all q ≥ 0,

lim
n→∞

κq
n (Fg1,g2,ϵ1,ϵ2) = κ

q
∗ (Fg1,g2,ϵ1,ϵ2). (4.9)

We shall start with the special case when h is supported on W × HT for some T ≥ 1. For such a
function h, we have

κq
n (Fg1,g2,ϵ1,ϵ2) =

1
n p


|x |>0


W


u∈Hn+T +q


1 − e

−(n p−d 
s∈Hn


t∈Cs,n

g1(n−1t, ψH (x,v,s⊖u))−ϵ1)+

×


1 − e

−(n p−d 
s∈Hn


t∈Cs,n

g2(n−1t, ψH (x,v,s⊖u))−ϵ2)+
ν(dv)να(dx),

from which, applying Lemma 5.1 in [33], (4.1) and the fact that g1 and g2 are Lipschitz, it follows
that

κq
n (Fg1,g2,ϵ1,ϵ2) =

1
n p


|x |>0


W


u∈Hn+T +q


1 − e

−(n p−d 
z∈Bu,n


t∈Cu,n

g1(n−1t, ψH (x,v,z))−ϵ1)+

×


1 − e

−(n p−d 
z∈Bu,n


t∈Cu,n

g2(n−1t, ψH (x,v,z))−ϵ2)+
ν(dv)να(dx)+ o(1),

where Bu,n := {z ∈ HT +q : z ⊕ u ∈ Hn}. The above equality and an argument similar to the one
used in establishing (5.17) of Roy [33] yield

lim
n→∞

κq
n (Fg1,g2,ϵ1,ϵ2) = l


|x |>0


W


∆


1 − e

−(


Qy


z∈HT +q

g1(U y+Vλ,ψH (x,v,z))dλ−ϵ1)+
×


1 − e

−(


Qy


z∈HT +q

g2(U y+Vλ,ψH (x,v,z))dλ−ϵ2)+
dy ν(dv) να(dx).

This establishes (4.9) for h with support W×HT for some T ≥ 1. The proof of (4.9) in the general
case follows easily from the above by using a standard converging together technique (see the
proofs of (5.21) and (5.22) in [33]) based on the inequalities used to establish Lemma 3.6. This
completes the proof of Theorem 4.1. �

Remark 4.2. It is possible to interpret Theorem 3.1 as a special case of Theorem 4.1 by setting
p = d, l = 1, ∆ = [−1, 1]

d , H = Zd , U = Id (the identity matrix of order d), V = 0 along
with the convention that R0

= {0} so that Q y = {0} for all y ∈ [−1, 1]
d and λ is interpreted as

the counting measure on {0} (think of it as the zero-dimensional Lebesgue measure). However,
since the above proof does not honour these conventions, a separate proof had to be given for
Theorem 3.1. Same remark applies to the two parts of Theorem 5.1.

Example 4.3. In order to understand Theorem 3.1 and its notations, let us consider Example 6.1
in [33] and apply Theorem 4.1 to it. This means d = 2, S = R, µ is the Lebesgue measure
and {φ(t1,t2)} is a measure preserving conservative Z2-action on R defined by φ(t1,t2)(x) =

x + t1 − t2. Take any f ∈ Lα(R, µ) and define a stationary SαS random field {X(t1,t2)} as
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X(t1,t2)
d
=


R f

φ(t1,t2)(x)


M(dx), t1, t2 ∈ Z, where M is an SαS random measure on R with

control measure µ. This representation of {X(t1,t2)} is of the form (2.1) with c(t1,t2) ≡ 1.
As computed in [33], in this case, K = {(t1, t2) ∈ Z2

: t1 = t2}, p = d − p = l = 1,
H = F = {(u1, 0) : u1 ∈ Z}, and U = (1, 0)T , V = (1, 1)T so that ∆ = [−2, 2] and for all
y ∈ [−2, 2],

Q y =


[−(1 + y), 1], y ∈ [−2, 0) ,
[−1, 1 − y], y ∈ [0, 2].

There is a standard Borel space (W,W) with a σ -finite measure ν on it such that (4.3) holds
for some h ∈ Lα(W × H, ν ⊗ ζH ), where ζH is the counting measure on H , and M ′ is a SαS
random measure on W × H with control measure ν⊗ζH . Note that for u, s ∈ H with u = (u1, 0)
and s = (s1, 0), u ⊕ s = (u1 + s1, 0), and π(w1, w2) = (w1 −w2, 0). Therefore, in this example,
ψH (x, v, (u1, 0)) = {xh(v, (u1 − w1 + w2, 0))}−q≤w1,w2≤q .

It was shown in [33] that n−1
|t1|, |t2|≤n δ(4n)−1/αX(t1,t2)

converges weakly to a random
element in the space of all Radon measures on [−∞,∞] \ {0}. We take a sequence γn satisfying
n1/α/γn → 0 and apply Theorem 4.1 to conclude that the following HLS convergence holds in
M0(Mq):

γ αn

n
P(Λq

n ∈ ·) → µ|[−2,2] ⊗ να ⊗ ν

(y, x, v) ∈ [−2, 2] × ([−∞,∞] \ {0})× W :

Q y


u1∈Z

δ((y+λ,λ), ψH (x,v,(u1,0))) dλ ∈ ·


,

where Λq
n = n−1

|t1|, |t2|≤n δ


n−1(t1,t2), γ
−1
n {X(t1−w1,t2−w2)}−q≤w1,w2≤q

.

The following corollary is a direct consequence of Theorem 4.1. Its proof is very similar to
that of Corollary 3.2 and hence is skipped.

Corollary 4.4. Let y > 0. Then as n → ∞,

γ αn

n p P


max
∥t∥∞≤n

X t > γn y


→ lLeb(∆)y−α


W
(sup
u∈H

h+(v, u))α + (sup
u∈H

h−(v, u))αν(dv).

In particular, with τ a
n as defined in Corollary 3.2,

lim
n→∞

γ αn

n p P(τ a
n ≤ λn) = λpa−αlLeb(∆)


W
(sup
u∈H

h+(v, u))α + (sup
u∈H

h−(v, u))αν(dv).

5. Large deviation of the partial sum

In this section, we use our point process large deviation results to investigate the classical
large deviation behaviour for the partial sum sequence of stationary symmetric stable random
fields. As before, we consider two cases depending on whether the underlying group action is
dissipative or conservative. To fix the notations, let {X t }t∈Zd be a stationary symmetric α-stable
random field as before and define the partial sum sequence

Sn =


∥t∥∞≤n

X t , n ∈ N. (5.1)

Using continuous mapping arguments from the results of Theorem 3.1 and Theorem 4.1,
respectively in [33], one can establish the following weak convergence results. If {X t }t∈Zd is
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generated by a dissipative action as in Theorem 3.1 having representation (3.5) with kernel
function f ∈ Lα(W × Zd , ν ⊗ ζ ) satisfying

W


u∈Zd

| f (v, u)|

α
ν(dv) < ∞, (5.2)

then n−d/αSn ⇒ C f Zα , where Zα ∼ SαS(1) and

Cα
f := 2d


W


u∈Zd

f (v, u)

+α
+


u∈Zd

f (v, u)

−α
ν(dv). (5.3)

On the other hand, if {X t }t∈Zd is generated by a conservative action as in Theorem 4.1 with
h ∈ Lα(W × H, ν ⊗ ζH ) satisfying

W


u∈H

|h(v, u)|

α
ν(dv) < ∞, (5.4)

then n p−d−p/αSn ⇒ Cl,V,h Zα , where

Cα
l,V,h := l


∆
(V(y))α dy


×


W


u∈H

h(v, u)

+α

+


u∈H

h(v, u)

−α
ν(dv). (5.5)

We do not present the proofs of the above statements because they will also follow from our
large deviation results; see Theorem 5.1 and Remark 5.2. Note that the normalization for weak
convergence of partial maxima and partial sum sequences are the same in the dissipative case but
not in the conservative case. This is because the longer memory results in huge clusters and this
causes the partial sum to grow faster than the maxima.

The following theorem deals with the classical large deviation issue of the partial sum
sequence Sn under the assumptions of Theorems 3.1 and 4.1, respectively. In the context of
stationary SαS random fields, it is a novel result that can even handle very strong dependence
(i.e., the conservative case). The convergence used here is as in [15] with the space S = R and the
deleted point s0 = 0, i.e. S0 = R\{0}. This results in the space M0(R) of all Borel measures on
R\{0} that are finite outside any neighbourhood of 0. The convergence in M0(R) implies vague
convergence in R\{0}; see Lemma 2.1. in [21].

Theorem 5.1. Let {X t }t∈Zd be a stationary symmetric α-stable random field and Sn be the
partial sum sequence as defined in (5.1). Then the following large deviation results hold.

(a) If {X t }t∈Zd is generated by a dissipative group action as in Theorem 3.1 having
representation (3.5) with kernel function f ∈ Lα(W × Zd , ν ⊗ ζ ) satisfying (5.2) and {γn}

satisfying (3.9), then

γ αn

nd P(γ−1
n Sn ∈ ·) → Cα

f να(·) as n → ∞ in M0(R),

where C f is as in (5.3) and να is as in (3.2).
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(b) If {X t }t∈Zd is generated by a conservative action as in Theorem 4.1 with h ∈ Lα(W × H, ν⊗

ζH ) satisfying (5.4) and {γn} satisfying (4.5), then

µn(·) :=
γ αn

n p P(n p−dγ−1
n Sn ∈ ·) → µ(·) as n → ∞ in M0(R),

where µ(·) = Cα
l,V,hνα(·) with Cl,V,h as in (5.5) and να as in (3.2).

The proof of this theorem is presented in the next subsection. For the point process large
deviation result, we gave the detailed proof of the dissipative case and sketched the proof in
the conservative case. In this case, we shall present the detailed proof of this theorem when the
underlying action is conservative. The other case will follow similarly.

Remark 5.2. (a) Let {X t }t∈Zd be an SαS process. Then Sn defined by (5.1) is an SαS random

variable as well. We denote its scaling parameter by σn . This means Sn
d
= σn Zα with

Zα ∼ SαS(1). If {γn}, {cn} are sequences of positive constants satisfying nκ/γn → 0 for
some κ > 0, then the following equivalences hold for C > 0:

(i) γn
nκcn

σn → C as n → ∞.

(ii) γ αn
nακ P(c−1

n Sn ∈ ·) → Cανα(·) as n → ∞ in M0(R).
(iii) γn

nκcn
Sn ⇒ C Zα as n → ∞.

Consequently, the large deviation behaviours in Theorem 5.1 imply the weak convergence
results presented in the beginning of this section, and vice versa.

(b) If α ∈ (0, 1] and f ∈ Lα(W × Z, ν ⊗ ζ ) then assumption (5.2) is satisfied. However,
for α ∈ (1, 2) this is unfortunately not necessarily the case. To see this, let {X t }t∈Z be a
moving average process of the form X t =

t
j=−∞

βt− j Z j , t ∈ Z, where (Z j ) j∈Z is an
i.i.d. sequence following an SαS(1) distribution with α > 1 and β j = j−γ , j ∈ N, for some
α−1 < γ < 1. Clearly, (5.2) is not satisfied since


∞

j=0 |β j | = ∞. Theorem 1 in [3] says that

n−1/α−1+γ Sn ⇒ C Zα as n → ∞ for some C > 0. Hence, σn ∼ Cn1/α+1−γ . A conclusion
of the equivalences in (a) is that for any sequence {γn} with n1/α+(1−γ )/γn → 0 as n → ∞,

γ αn

n1+(1−γ )α
P(γ−1

n Sn ∈ ·) → Cανα(·) as n → ∞ in M0(R). (5.6)

We see that the scaling in the large deviation behaviour in Theorem 5.1(a) under assumption
(5.2) differs from the scaling in (5.6). Further examples for moving average processes with

∞

j=0 |β j | = ∞ whose scaling σn satisfies n−1/ασn → ∞ can be found in [2,3,14,41].

5.1. Proof of Theorem 5.1

As discussed earlier, we will prove this theorem only for the conservative case (b). The
dissipative case (a) can be dealt with in a similar fashion.

We shall first prove Theorem 5.1(b) for h supported on W × HT for some T ≥ 1, and then use
a converging together argument. To this end, for all T ∈ N, set hT = h1W×HT and define X (T )t ,
µn,T , µT and Cl,V,hT by replacing h by hT in the definition of X t , µn , µ and Cl,V,h , respectively.

Lemma 5.3. Let S(T )n =


∥t∥∞≤n X (T )t , n ∈ N. Then

µ(T )n (·) :=
γ αn

n p P(n p−dγ−1
n S(T )n ∈ ·) → µ(T )(·) as n → ∞ in M0(R).
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Proof. Since the proof is very similarly to the proof of Theorem 6.1 in [17] we will give only a
short sketch. The idea is that for any 0 < ϵ < 1, Sn is divided into three parts

S(T )n =


∥t∥∞≤n

X (T )t


1

{|X (T )t |≤ϵ}
+ 1

{ϵ<|X (T )t |≤ϵ−1}
+ 1

{|X (T )t |>ϵ−1}


=: S(1)n + S(2)n + S(3)n .

In the following we investigate the second term. Define gϵ : [−1, 1]
d
×[−∞,∞]\{0} → R with

gϵ(t, x) = x1{ϵ<|x |≤ϵ−1}. Since

κ0
∗,T (ξ ∈ M0

: ξ([−1, 1]
d

× {|x | = ϵ or ϵ−1
}) > 0)

≤ lLeb(∆)


u∈HT

να ⊗ ν

(x, v) ∈ [−∞,∞]\{0} × W : |xh(v, u)| = ϵ or ϵ−1


= 0,

the continuous-mapping theorem (see Lemma A.2 in [17]) and Theorem 4.1 give

γ αn

n p P(n p−d S(2)n ∈ ·) =
γ αn

n p P(gϵ(Λ0
T,n) ∈ ·)

→ lLeb|∆ ⊗ να ⊗ ν


(y, x, v) ∈ ∆ × [−∞,∞]\{0} × W :

V(y)


u∈HT

xh(v, u)1{ϵ<|xh(v,u)|≤ϵ−1} ∈ ·


=: µ(T )ϵ (·)

as n → ∞ in M0(R). Moreover, for any bounded continuous map g : R → R that vanishes in a
neighbourhood of 0, say (−η, η) for some η > 0, by dominated convergence the limit

µ(T )ϵ (g) =


∆


R\{0}


W

g


V(y)


u∈HT

xh(v, u)1{ϵ<|xh(v,u)|≤ϵ−1}


ν(dv)να(dx)dy

→


∆


R\{0}


W

g


V(y)


u∈HT

xh(v, u)


ν(dv) να(dx) dy = µ(T )(g)

holds as ϵ → 0. Dominated convergence theorem can be applied in the above limit since V is
bounded (Lemma 5.1 in [33]) and we assume (5.4).

Finally, if we show that for any δ > 0

lim
ϵ↓0

lim sup
n→∞

γ αn

n p P

 
∥t∥∞≤n

X (T )t 1
{|X (T )t |≤γnϵ}

 > γnnd−pδ


= 0, (5.7)

then Lemma 5.3 will follow step by step as in the proof of Theorem 6.1 in [17] by a converging
together argument.
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To prove Eq. (5.7), note that

γ αn

n p P

 
∥t∥∞≤n

X (T )t 1
{|X (T )t |≤γnϵ}

 > γnnd−pδ



=
γ αn

n p P


s∈Hn

m(s, n)X (T )s 1
{|X (T )s |≤γnϵ}

 > γnnd−pδ


with m(s, n) := |[−n1d ,−n1d ] ∩ (s + K )| for s ∈ H . First, we would like to point out that if
N (u ⊕ s) ≤ T for some u ∈ H , then it can easily be shown that N (s)− T ≤ N (u) ≤ N (s)+ T .
Hence, we have the representation

X (T )s =


W×HN (s)+T ∩H c

N (s)−T

hT (v, u ⊕ s)M ′(dv, du).

From this we see that for s1, s2 ∈ H with N (s1) + T ≤ N (s2) − T the intersection
H c

N (s2)−T ∩ HN (s1)+T is empty so that X (T )s1 and X (T )s2 are independent.
Let s1, s2 ∈ H and u ∈ H with N (u ⊕ s1) ≤ T . Then

N (u ⊕ s2) ≥ N (s2 ⊖ s1)− N (u ⊕ s1) ≥ N (s2 ⊖ s1)− T . (5.8)

We define the positive finite constant

c := min{∥Ui + V γ ∥∞ : i ∈ Zp
\{0p}, γ ∈ Rq

},

and c∗
:= inf{z ∈ N : 1/c ≤ z} = ⌈c−1

⌉. If s1 := xk + U (c∗(2T + 1)i1 + j) ∈ H and
s2 := xk + U (c∗(2T + 1)i2 + j) ∈ H for some i1, i2, j ∈ Zp, i1 ≠ i2, then

N (s2 ⊖ s1) = min{∥s2 − s1 + v∥∞ : v ∈ K }

≥ (2T + 1)c∗ min{∥Ui + V γ ∥∞ : i ∈ Zp
\{0p}, γ ∈ Rq

}

= (2T + 1). (5.9)

A conclusion of (5.8) and (5.9) is that N (u⊕s2) ≥ T +1 and finally, X (T )s1 = X (T )xk+U (c∗(2T +1)i1+ j)

and X (T )s2 = X (T )xk+U (c∗(2T +1)i2+ j) are independent. In the following, we assume without loss of
generality that n + L is a multiple of c∗(2T + 1) where L := maxk=1,...,l ∥xk∥∞ and define
n′

:= (n + L)/(c∗(2T + 1)). This gives Hn ⊆ [−n1d , n1d ] and

Hn ⊆

l
k=1

{xk + U (c∗(2T + 1)i + j) : j ∈ [−c∗T 1p, c∗T 1p], i ∈ [−n′1p, n′1p]}.

We define sk,i, j := xk + U (c∗(2T + 1)i + j) for i, j ∈ Zp, k ∈ {1, . . . , l}. Then Hn ⊆ {sk,i, j :

k ∈ {1, . . . , l}, j ∈ [−c∗T 1p, c∗T 1p], i ∈ [−n′1p, n′1p]}. The independence of the sequence

(X (T )sk,i, j )i∈Zp for fixed j ∈ Zp and k ∈ {1, . . . , l}, Markov’s inequality and Karamata’s Theorem
(cf. [28, eq. (2.5) on p. 36]) result in

γ αn

n p P


s∈Hn

m(s, n)X (T )s 1
{|X (T )s |≤γnϵ}

 > γnnd−pδ



≤ const. γ αn P(|X (T )1 | > γnϵ)ϵ
2 1

n p


s∈Hn

m(s, n)2

n2(d−p)
≤ const. ϵ2−α ϵ↓0

→ 0.
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In the last inequality, we used (4.1) and Lemma 5.1 in [33], which says that m(s, n)/n(d−p) is
uniformly bounded. �

In order to complete the converging together argument and establish Theorem 5.1(b) from
Lemma 5.3, we need one more lemma.

Lemma 5.4. Sn − S(T )n ∼ SαS(σT,n) where

lim
T →∞

lim sup
n→∞

σT,n

n
p
α
+(d−p)

= 0.

Proof. By the decomposition

Sn − S(T )n =


s∈Hn

m(s, n)[Xs − X (T )s ]

=


W×Hn+T

+


W×H c

n+T


s∈Hn

m(s, n)h(v, u ⊕ s)1{N (u⊕s)>T }


M ′(dv, du),

the random variable Sn − S(T )n is SαS with scale parameter

σT,n = (σα1,T,n + σα2,T,n)
1/α, (5.10)

where

σα1,T,n =


W×Hn+T


s∈Hn

m(s, n)h(v, u ⊕ s)


α

1{N (u⊕s)>T }ζH (du)ν(dv),

σα2,T,n =


W×H c

n+T


s∈Hn

m(s, n)h(v, u ⊕ s)1{N (u⊕s)>T }


α

ζH (du)ν(dv).

In the following, we will use that there exists a constant κ0 such that m(s, n)/n(d−p)
≤ κ0 for all

s ∈ H and n ∈ N (cf. [33, Lemma 5.1]) and |Hn+T | ∼ c(n + T )p
∼ cn p (cf. (4.1)). The first

term in (5.10) has the representation

σα1,T,n

n p+α(d−p)
=

1
n p


W


u∈Hn+T


s∈Hn

m(s, n)

nd−p h(v, u ⊕ s)1{N (u⊕s)>T }


α

ν(dv)

≤ const.
|Hn+T |

n p


W


j∈H c

T

|h(v, j)|

α ν(dv)
n→∞
−→ const.


W


j∈H c

T

|h(v, j)|

α ν(dv) T →∞
−→ 0 (5.11)
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by dominated convergence and assumption (5.4). It is easy to check that, if α ≤ 1, then

σα2,T,n

n p+α(d−p)
≤

1
n p


W


u∈H c

n+T


s∈Hn

m(s, n)

n(d−p)
|h(v, u ⊕ s)|1{N (u⊕s)>T }


α

ν(dv)

≤
const.

n p


W


s∈Hn


u∈H c

n+T

|h(v, u ⊕ s)|α1{N (u⊕s)>T }ν(dv)

≤ const.


W


j∈H c

T

|h(v, j)|αν(dv)
T →∞
−→ 0,

by dominated convergence and h ∈ Lα(W × H, ν ⊗ ζH ). On the other hand, if 1 < α < 2, then

σα2,T,n

n p+α(d−p)
≤ const.


W


u∈H c

n+T


j∈H c

T

|h(v, j)|

α 1
n p

×




s∈Hn

h(v, u ⊕ s)1{N (u⊕s)>T }


j∈H c

T

|h(v, j)|


α

ν(dv)

≤ const.


W


j∈H c

T

|h(v, j)|

α

×


u∈H c

n+T


s∈Hn

|h(v, u ⊕ s)|1{N (u⊕s)>T }

n p


j∈H c
T

|h(v, j)|
ν(dv)

≤ const.


W


j∈H c

T

|h(v, j)|

α ν(dv) T →∞
→ 0,

by dominated convergence and assumption (5.4). To summarize

lim
T →∞

lim sup
n→∞

σα2,T,n

n p+α(d−p)
= 0. (5.12)

A conclusion of (5.10)–(5.12) is that limT →∞ lim supn→∞

σαT,n

n p+α(d−p) = 0. �

Now we are ready to prove Theorem 5.1(b). We have to show limn→∞ µn(g) = µ(g) for any
bounded continuous map g : R → R that vanishes in a neighbourhood of 0; see Theorem 2.1
in [15]. As noted in the appendix of Hult and Samorodnitsky [17, p.33], we can further assume
that g is a Lipschitz function. For such a function g and any δ > 0, |µ(g)−µn(g)| is bounded by

|µ(g)− µ(T )(g)| +

µ(T )(g)− E

γ αn

n p g(n p−dγ−1
n S(T )n )


+

Eγ αnn p g(n p−dγ−1
n S(T )n )−

γ αn

n p g(n p−dγ−1
n Sn)


1

{n p−dγ−1
n |Sn−S(T )n |>δ}


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+

Eγ αnn p g(n p−dγ−1
n S(T )n )−

γ αn

n p g(n p−dγ−1
n Sn)


1

{n p−dγ−1
n |Sn−S(T )n |≤δ}


=: IT,n,1 + IT,n,2 + IT,n,3 + IT,n,4.

We shall show that limT →∞ lim supn→∞ IT,n,i = 0 for i = 1, 2, 3, which combined with
limδ↓0 limT →∞ lim supn→∞ IT,n,4 = 0 will prove this theorem.

First, using dominated convergence and assumption (5.4), we obtain for any Borel B ⊆

R\{0},

µ(T )(B)
T →∞
→ µ(B). (5.13)

A consequence of Portmanteau-Theorem (Theorem 2.4 in [15]) is µ(T ) → µ as T →

∞ in M0(R), and limT →∞ lim supn→∞ IT,n,1 = 0. Moreover, Lemma 5.3 results in
limT →∞ lim supn→∞ IT,n,2 = 0.

Next, for any δ > 0, we have

IT,n,3 ≤
γ αn

n p 2∥g∥∞P(n p−dγ−1
n |Sn − S(T )n | > δ).

Obviously, a conclusion of Lemma 5.4 is that Sn − S(T )n ∼ SαS(σT,n) with γnnd−pσ−1
T,n → ∞

if n p/α/γn → 0 and hence

lim
n→∞

γ αn

n p P(n p−dγ−1
n |Sn − S(T )n | > δ) = lim

n→∞

σαT,n

n p+α(d−p)
P(|Zα| > δ) = 0,

where Zα ∼ SαS(1). Therefore, limT →∞ lim supn→∞ IT,n,3 = 0.
Let η > 0 such that g(x) = 0 for x ∈ (−η, η). Suppose that δ < η/2. If either

|g(n p−dγ−1
n Sn)| > 0 or |g(n p−dγ−1

n S(T )n )| > 0, we have n p−dγ−1
n |S(T )n | > η/2 on

{n p−dγ−1
n |Sn − S(T )n | ≤ δ}. This results in

IT,n,4 ≤ sup
|x−y|≤δ

|g(x)− g(y)|
γ αn

n p P(n p−dγ−1
n |S(T )n | > η/2).

Using Lemma 5.3, (5.13) and the fact that g is a Lipschitz function, it follows finally that
limδ↓0 limT →∞ lim supn→∞ IT,n,4 = 0. This proves Theorem 5.1(b).
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[39] D. Surgailis, J. Rosiński, V. Mandrekar, S. Cambanis, Stable mixed moving averages, Probab. Theory Related Fields

97 (1993) 543–558.
[40] V. Varadarajan, Geometry of Quantum Theory, Vol. 2, Van Nostrand Reinhold, New York, 1970.
[41] W. Whitt, Stochastic-Process Limits, Springer, New York, 2002.
[42] R. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984.
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