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Abstract

Continuous Time Random Walk (CTRW) is a model where particle’s jumps in space are coupled with
waiting times before each jump. A Continuous Time Random Walk Limit (CTRWL) is obtained by a limit
procedure on a CTRW and can be used to model anomalous diffusion. The distribution p (dx, t) of a
CTRWL X t satisfies a Fractional Fokker–Planck Equation (FFPE). Since CTRWLs are usually not Marko-
vian, their one dimensional FFPE is not enough to completely determine them. In this paper we find the
FFPEs of the distribution of X t at multiple times, i.e. the distribution of the random vector


X t1 , . . . , X tn


for t1 < · · · < tn for a large class of CTRWLs. This allows us to define CTRWLs by their finite dimensional
FFPEs.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Continuous Time Random Walk (CTRW) models the movement of a particle in space, where
the k’th jump Jk of the particle in space succeeds the k’th waiting time Wk . We let Nt = sup{k :

Tk ≤ t} where Tk =
k

i=1 Wi , if T1 > t then we set Nt to be 0. Nt is just the number of jumps
of the particle up to time t . Then

X ′
t =

Nt
k=1

Jk,
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is the CTRW associated with the time–space jumps {(Jk,Wk)}k∈N. Let us now assume that {Jk}

and {Wk} are independent i.i.d. sequences of random variables. In order to model the long time
behaviour of the CTRW we write


J c

k ,W c
k


k∈N for c > 0. Here the purpose of c is to facilitate

the convergence of the trajectories of


J c
k ,W c

k


k∈N weakly on a proper space. More precisely,

we let D

[0,∞),R2


be the space of cádlág functions f : [0,∞) → R2 equipped with the

Skorokhod J1 topology. We assume that


Sc

u, T c
u


=

⌊cu⌋
k=1


J c

k ,W c
k


⇒ (Au, Du) c → ∞,

where ⇒ denotes weak convergence of measures with respect to the J1 topology. We further
assume that the processes At and Dt are independent Lévy processes and that Dt is a strictly
increasing subordinator. Denote by X c

t the CTRW associated with


J c
k ,W c

k


k∈N. We then have

([15, Theorem 3.6] and [14, Lemma 2.4.5])

X c
t ⇒ X t = AEt c → ∞, (1.1)

where Et = inf{s : Ds > t} is the inverse of Dt and ⇒ means weak convergence on
D ([0,∞),R) equipped with the J1 topology. It is well known that X t is usually not Markovian,
a fact that makes the task of finding basic properties of X t nontrivial. One such task is finding the
finite dimensional distributions (FDDs) of the process X t , i.e. P


X t1 ∈ dx1, . . . , X tn ∈ dxn


. In

the physics literature, there is much emphasis put on the FDDs and correlation functions of the
Continuous Time Random Walk Limit (CTRWL). Correlation functions are a vital experimen-
tal tool for distinguishing CTRWL from other fractional diffusion (such as fractional Brownian
motion) [2]. In [11], Meerschaert and Straka used a semi-Markov approach to find the FDDs for
a large class of CTRWL. It turns out that the discrete regeneration times of X c

t converge to a set
of points where X t is renewed. Once we know the next time of regeneration of X t , we no longer
need older observations in order to determine the future behaviour of X t . More mathematically,
denote by Rt = DEt −t the time left before regeneration of X t then (X t , Rt ) is a Markov process.
One can then use the transition probabilities of (X t , Rt ) along with the Chapman–Kolmogorov
Equations in order to find P


X t1 ∈ dx1, . . . , X tn ∈ dxn


for t1 < · · · < tn and n ∈ N. This

method was used in [6] in order to find the FDD of the aged process X t0
t = X t − X t0 . It is well

known [9, Section 4.5] that the one dimensional distribution p (dx, t) = P (X t ∈ dx) satisfies a
Fractional Fokker–Planck Equation (FFPE). Once again, as X t is non Markovian the FFPE satis-
fied by p (dx, t) is not enough to fully describe X t (as it does when X t is Markovian). Hence, a
dual problem to finding the FDDs is that of finding the finite dimensional FFPEs of the FDDs of
X t . In this paper we obtain the finite dimensional FFPEs for a large class of CTRWL. We use the
expression of the FDDs found in [11] along with Fourier–Laplace transform to find the FFPEs
of these FDD. This is done first by investigating the multivariable Fourier–Laplace transform
on relevant distributions on certain subsets of Rn

+, developing multivariable space–time pseudo-
differential operators (PDOs) and applying these results to the expression found in [11]. Results
on the finite dimensional FFPEs of CTRWL exist in the literature [3,4,7], however, the meth-
ods used there are somewhat limited (cf. Remark 4). For example, these methods can only be
used to find the FFPEs of the distribution h (dx1, . . . , dxn; t1, . . . , tn) of the inverse of a subor-
dinator on x1 < x2 < · · · < xn , whereas the distribution’s support is x1 ≤ x2 ≤ · · · ≤ xn .
Moreover, these methods are ill-suited for coupled CTRWs. Our results generalize prior re-
sults to find the FFPE of the inverse subordinator on x1 ≤ x2 ≤ · · · ≤ xn as well as for the
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coupled case. We also provide results on PDOs that appear naturally in the finite dimensional
FFPEs.

In Section 2 we present relevant mathematical background for this paper and prepare the way
for our main result. It is divided into 4 subsections; Section 2.1 introduces the notation to be
used throughout the paper, Section 2.2 presents the Caputo and Riemann–Liouville fractional
derivatives, Section 2.3 establishes results regarding PDOs on certain multivariable functions
which facilitate the proof of Theorem 1 and Section 2.4 presents briefly the work in [11] upon
which we establish our results.

Section 3 presents our main results; Theorem 1 gives the finite dimensional FFPEs of Et , The-
orem 2 states the finite dimensional FFPEs of the process X t = AEt where the outer process At
and the subordinator Dt are independent. Finally, Theorem 3 gives the finite dimensional FFPEs
of the coupled case. Section 4 compares our results with the well known finite dimensional case.

In Section 5 we show that if ξ (−k, s) is the symbol of a PDO on a suitable Banach space then
ξ

−
n

i=1 ki ,
n

i=1 si


is also a symbol of a PDO on another Banach space. This complements
the results in Section 3.

For the reader’s convenience, we list here the abbreviations that appear in this paper:

• CTRW—Continuous Time Random Walk.
• CTRWL—Continuous Time Random Walk Limit.
• FFPE—Fractional Fokker–Planck Equation.
• FDD—finite dimensional distribution.
• PDO—pseudo-differential operators.
• LT—Laplace Transform.
• FT—Fourier Transform.
• FLT—Fourier–Laplace Transform.
• LLT—Laplace–Laplace Transform.
• RL—Riemann–Liouville.

2. Mathematical background

2.1. Notations

A well known method of solving partial differential equations of distributions p(dx1, . . . ,

dxn; t1, . . . , tn) on Rn is taking the Fourier Transform (FT) of the distribution with respect to the
spatial variables and then the Laplace Transform (LT) with respect to the time variables. This
is referred to as the Fourier–Laplace Transform (FLT) of p (dx1, . . . , dxn; t1, . . . , tn). More
generally, for m, n ∈ N let f (dx1, . . . , dxm; t1, . . . , tn) be a finite measure on Rm for every
t = (t1, . . . , tn) s.t. 0 < t1 ≤ · · · ≤ tn and assume that


x∈A f (dx1, . . . , dxm; t1, . . . , tn) is

measurable as a function of t for every measurable A ⊂ Rm . We denote the FT of f by

f (k1, . . . , km; t1, . . . , tn) =


x1∈R

· · ·


xm∈R

e
−i

m
j=1

k j x j

f (dx1, . . . , dxm; t1, . . . , tn) .

When f has density f (x1, . . . , xm; t1, . . . , tn) we denote the LT of f by

f̂ (x1, . . . , xm; s1, . . . , sn)

=


∞

t1=0
· · ·


∞

tn=0
e
−

n
j=1

s j t j

f (x1, . . . , xm; t1, . . . , tn) dt1 · · · dtn .
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The FLT of f is

f̄ (k1, . . . , km; s1, . . . , sn) =


∞

t1=0
· · ·


∞

tn=0


x1∈R

· · ·


xn∈R

e
−i

m
j=1

k j x j −
n

j=1
s j t j

× f (dx1, . . . , dxm; t1, . . . , tn) dt1 · · · dtn .

We also denote by f̃ the FT of f with respect to some of its spatial variables, therefore,f (dx1, k2; t1, t2) is the FT of f w.r.t. x2. Similarly, f̂ (dx1, dx2; s1, t2) is the LT of f w.r.t. t1
and f̄ (k1, dx2; s1, t2) is the FLT of f w.r.t. x1 and t1. When using the hat symbol is cumbersome
we also use f̂ = L ( f ). We occasionally use bold font to represent the vector x = (x1, . . . , xn)

where the size of the vector is clear.

2.2. Caputo and Riemann–Liouville fractional derivatives

The Riemann–Liouville (RL) fractional derivative of index 0 < α < 1 is given by

Dα
t f (t) =

∂

∂t

1
Γ (1 − α)

 t

0
(t − r)−α f (r) dr, (2.1)

for a suitable function f defined on R+. When the variable with respect to which we take the
derivative is obvious we drop the subscript and just write Dα f (t). It can be verified that the LT
of (2.1) is

Dα f (s) = sα f (s) .
Hence, the RL derivative is a PDO of symbol sα . Caputo’s derivative is obtained by moving the
derivative in (2.1) under the integral to obtain

Dαt f (t) =
1

Γ (1 − α)

 t

0
(t − r)−α

∂

∂r
f (r) dr. (2.2)

The LT of (2.2) isDα f (s) = sα f (s)− sα−1 f

0+

.

We denote the classic derivative by ∂
∂t = D1, and note that D1

= D1 iff f

0+


= 0. For
simplicity we drop the superscript and write ∂

∂t = D (or ∂
∂t = D when that is the case).

2.3. Pseudo-differential operators of multivariable functions

Here we investigate the PDOs acting on measures f (dx1, . . . , dxn) on Rn
+ with support in

An
= {x : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn} with LT f̂ . Let k = (k1, . . . , kl) be a strictly increasing

l-tuple where 1 ≤ ki ≤ n for 1 ≤ i ≤ l ≤ n and s.t. k1 = 1. We shall sometimes abuse
notation and write i ∈ k where we mean that i = k j for some 1 ≤ j ≤ l. We also write kc

for the increasing vector s.t. i ∈ kc iff 2 ≤ i ≤ n and i ∉ k. If x is a vector of length n we
write xk for the vector of length l whose i’th element is xki . Let An

k be the set of all x ∈ An s.t.
xi−1 < xi iff i ∈ k and where x0 = 0. For example, for n = 3 A3

(1,2) = {x : 0 < x1 < x2 = x3}.
Since our interest in these distributions comes from the FDDs of the process Et , i.e.
h (dx1, . . . , dxn; t1, . . . , tn) = P


Et1 ∈ dx1, . . . , Etn ∈ dxn


we also assume in this subsection
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that f (dx1, . . . , dxn) can be written as f (dx1, . . . , dxn) = f

xk1 , . . . , xkl


δkc

1−1


dxkc

1


×

· · ·×δkc
n−l−1


dxkc

n−l


dxk1 · · · dxkl where f


xk1 , . . . , xkl


is absolutely continuous (a.c.) in each

of its variables, i.e. xki → f (x1, . . . , xn) is a.c. with respect to Lebesgue measure on R for each
1 ≤ i ≤ l. We occasionally refer to such f as a.c., not to be confused with the concept of a.c.
measure on Rn . We abbreviate by writing

fk (dx) = f (xk) δkc−1 (dxkc ) dxk, (2.3)

so that k points out the indices for which f has absolutely continuous density. For example,
f(1,2,4) (dx1, dx2, dx3, dx4) can be written as f (x1, x2, x4) δx2 (dx3) dx1dx2dx4. To motivate
this assumption cf. (3.1) and note that by (2.8) h (dx1, . . . , dxn; t1, . . . , tn) is of the form f (xk)

on An
k. The set An

k is a manifold of dimension l, and represents the event where the process Et

has been stuck at the point xi since the time ti−1 to ti for i ∉ k. For example, A4
(1,3) represents

the event


Et1 = x1 ∈ (0,∞) , Et2 = x1, Et3 = x3 ∈ (x1,∞) , Et4 = x3

, and it helps to think

of k as the indices of mobilized points of the particle. Let us define a derivative operator on fk
distributions. We define the derivative operator to be

Dx fk (dx) =

l
i=1

∂

∂xki

f (xk) δkc−1 (dxkc ) dxk.

For example, if f(1,2) (dx) = f (x1, x2) δx2 (dx3) dx1dx2 then

Dx f(1,2) (dx) =
∂

∂x1
f(1,2) (x1, x2) δx2 (dx3) dx1dx2

+
∂

∂x2
f(1,2) (x1, x2) δx2 (dx3) dx1dx2.

Note that Dx is well defined as we assume that fk has a.c. density in xi for i ∈ k. We also assume
that limxkl →∞ e−xkl f


xk1 , . . . , xkl


= 0 where f is as in (2.3). This is not a strong assumption

as f has LT.

Lemma 1. Let fk be such that l = n. Then the LT of Dx f (x) is

Dx fk (s) =


n

i=1

si

 fk (s1, . . . , sn)− lim
x1→0+

f̂k (x1, s2, . . . , sn) . (2.4)

Proof. In the following, we use ǎi to indicate that ai is absent from where it normally should be.
Since here fk (dx) = f (x) dx, for 1 ≤ i ≤ n we have

∞

x1=0


∞

x2=0
· · ·


∞

xn=0
e−⟨s,x⟩

∂ f (x)
∂xi

dx

=


∞

x1=0
· · ·

ˇ


∞

xi =0
· · ·


∞

xn=0
e−s1x1···− ˇsi xi ···−sn xn

×


∞

xi =0
e−si xi

∂ f (x)
∂xi

dxi


dx1 · · · ˇdxi · · · dxn

=


∞

x1=0
· · ·

ˇ


∞

xi =0
· · ·


∞

xn=0
e−s1x1···− ˇsi xi ···−sn xn


e−si xi f (x)

(x1,...,xi−1,xi+1,xi+1,...,xn)
(x1,...,xi−1,xi−1,xi+1,...,xn)
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+ si


∞

xi =0
e−si xi f (x) dxi


dx1 · · · ˇdxi · · · dxn

=


∞

x1=0
· · ·

ˇ


∞

xi =0
· · ·


∞

xn=0
e−s1x1···− ˇsi xi ···−sn xn

×

e−si xi+1 f

x1 . . . , xi−1, xi+1
i’th coordinate

, xi+1 . . . , xn



−e−si xi−1 f

x1 . . . , xi−1, xi−1
i’th coordinate

, xi+1 . . . , xn


+ si


∞

xi =0
e−si xi f (x1, x2, . . . , xn) dxi


× dx1 · · · ˇdxi · · · dxn

=


∞

xi+1=0
e−(si +si+1)xi+1 f̂

s1 . . . , si−1, xi+1
i’th coordinate

, xi+1, si+2 . . . , sn

 dxi+1

−


∞

xi−1=0
e−(si +si−1)xi−1 f̂

s1 . . . , xi−1, xi−1
i’th coordinate

, si+1, si+2 . . . , sn

 dxi−1

+ si f̂ (s1, s2, . . . , sn) . (2.5)

Note that since limxn→∞ e−xn f (x1, . . . , xn) = 0, summing over the variable i the first two terms
in the last equality in (2.5) cancel out for every i ≠ 1. For i = 1 only the second term in the
brackets cancels out and the result follows. �

Lemma 2. The LT of Dx fk (dx) is

Dx fk (s) =


n

i=1

si

 fk (s)− lim
x1→0+

f̂k (x1, s2, . . . , sn) .

Proof. Taking the LT of fk (dx1, . . . , dxn) first w.r.t. the indices that are not in k we see that

Dx fk (xk, skc ) =


Rn−l

+

e
−


i∈kc
si xi

Dx fk (dx) , (2.6)

and can be written as

Dx fk (xk, skc ) = Dx f (xk) e
−

l−1
i=1


ki+1−1
j=ki +1

s j


xki −

n
j=kl +1

s j xkl
,
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where f is an a.c. function. It follows that

Dx fk (s) =


Rl

+

e
−

i∈k

si xi Dx fk (xk, skc ) dxk

=


Rl

+

e
−

i∈k

si xi
Dx f (xk) e

−

l−1
i=1


ki+1−1
j=ki +1

s j


xki −

n
j=kl +1

s j xkl
dxk

=


Rl

+

e
−

l−1
i=1


ki+1−1

j=ki

s j


xki −

n
j=kl

s j xkl
Dx f (xk) dxk.

By Lemma 1 for n = l we see that

Dx fk (s) =


n

i=1

si


Rl

+

e
−

l−1
i=1


ki+1−1

j=ki

s j


xki −

n
j=kl

s j xkl
f (xk) dxk

− lim
x1→0+


Rl−1

+

e
−

l−1
i=2


ki+1−1

j=ki

s j


xki −

n
j=kl

s j xkl
f (xk) dxk′

where k′ is just the vector of length l − 1 s.t. k′

i = ki+1 for 1 ≤ i ≤ l − 1. Since

fk (s) =


Rn

+

e
−

n
i=1

si xi
f (xk) δkc−1 (dxkc ) dxk

=


Rl

+

e
−

l−1
i=1


ki+1−1

j=ki

si


xki −

n
j=kl +1

s j xkl
f (xk) dxk,

the result follows. �

If f (x) is a differentiable function then Dx is just the directional derivative along the vector
v = (1, . . . , 1) of size n. Let Ψx be a PDO on R with symbol ψ(k). Then ψ(

n
i=1 ki ) is a

symbol of the PDO Ψx to be defined later and where we use bold x subscript to emphasize the
fact that Ψx is defined on functions on Rn . One can think of Ψx as the directional version of Ψx
with directional vector v = (1, . . . , 1), this will be defined rigorously in Section 5.

Define the RL fractional derivative of index 0 < α < 1 of f (x) to be

Dα
x f (x) =


n

i=1

∂

∂xi

 x1

0
f (x1 − r, x2 − r, . . . , xn − r)

r−α

Γ (1 − α)
dr. (2.7)

Once again, Eq. (2.7) can be thought of as a fractional directional derivative.
As opposed to the one dimensional case where under certain conditions the derivative w.r.t.

the time variable is defined on a function p (x; t), in the finite dimensional case one cannot avoid
the fact that p (dx; t) is fk (dx) valued on An

k. In order to describe the dynamics of p (dx; t) on
An

k one should extend this notion to the functions fk (t), where we now use the letter t in order
to emphasize the context of this operator. Since on An

k the dynamics on tkc are degenerate it is
reasonable to apply Dαx on tk. More precisely, if fk (dt) = f (tk) δtk−1 (dtkc ) dtk (here f (tk)
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need not be a.c.) then we define

Dα
t fk (dt) := Dt

 x1

0
f

xk1 − r, . . . , xkl − r

 r−α

Γ (1 − α)
drδtk−1 (dtkc )


.

The analogue of Lemma 2 is the following.

Lemma 3. The LT of Dα
t fk (dt) is

n
i=1 sn

α fk (s).

Proof. As before, we start with fk (dt) where l = n so that fk (dt) = f (t). A simple
computation shows that

L

 t1

0
f (t1 − r, t2 − r, . . . , tn − r)

r−α

Γ (1 − α)
dr


(s) =


n

i=1

si

α−1

f̂ (s1, . . . , sn) .

Next, note that

L

 t1

0
f (t1 − r, t2 − r, . . . , tn − r)

r−α

Γ (1 − α)
dr


(t1, s2, . . . , sn)

=

 t1

r=0
e
−


n

i=2
si


r f (t1 − r, s2, . . . , sn)

r−α

Γ (1 − α)
dr

so that limt1→0+ L
 t1

0 f (t1 − r, t2 − r, . . . , tn − r) r−α

Γ (1−α)
dr

(t1, s2, . . . , sn) = 0. It follows

by Lemma 1 that

Dα
t fk (dt) =


n

i=1

sn

α f (s1, . . . , sn) .

The case where l < n is similar to Lemma 2. �

Remark 1. There is nothing exceptional about the operator Dα
t , in fact it is better to think

of it as an archetype of PDOs corresponding to Laplace symbols of Lévy measures on R+.
Indeed, if φ (s) =


R+


e−sy

− 1


K2 (y) dy, then φ (s) is the symbol of the PDO Φt ( f ) (t) =
∞

0 ( f (t − y)− f (t)) K2 (y) dy. A simple calculation then shows that φ
n

i=1 si


is the
symbol of Φt ( f ) (t) =


∞

0 ( f (t1 − y, . . . , tn − y)− f (t)) K2 (y) dy. The extension to the
functions fk is obtained along similar lines to Lemma 3.

2.4. The semi-Markov approach

Since the process X t = AEt is not Markovian, knowing its one dimensional distribution
in not enough to construct its FDDs. To circumvent this problem Meerschaert and Straka [11]
constructed the Markov process (X t , Rt ), where Rt = DEt − t is the time left before the next
regeneration of the process X t . Let Qt


x ′, r ′

; dx, dr


be the transition probability of the process
(X t , Rt ) and 0 < t1 < t2 < · · · < tn for some n ∈ N. Then

P

X t1 ∈ dx1, X t2 ∈ dx2, . . . , X tn ∈ dxn


=


∞

r1=0


∞

r2=0
· · ·


∞

rn=0
Qt1 (0, 0; dx1, dr1)

× Qt2−t1 (x1, r1; dx2, dr2) · · · × Qtn−tn−1 (xn−1, rn−1; dxn, drn)
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= Qt1 (0, 0; dx1, dr1) ◦ Qt2−t1 (x1, r1; dx2, dr2)

× · · · Qtn−tn−1 (xn−1, rn−1; dxn, drn) ◦ . (2.8)

Here, Qt

x ′, r ′

; dx, dr

◦ f (x, r) =


∞

r=0 f (x, r) Qt

x ′, r ′

; dx, dr


and Qt

x ′, r ′

; dx, dr

◦ =

∞

r=0 Qt

x ′, r ′

; dx, dr

. In [11], the expression for Qt is given for a large class of jump

diffusions. Here, however, unless stated otherwise we consider processes of the form X t = AEt ,
where At is a Lévy process and Et is the inverse of a strictly increasing subordinator Dt that is
independent of At . That is,

Et = inf {s > 0 : Ds > t} .

More precisely, the characteristic function of At and the Laplace transform of Dt are given
respectively by

E


eik At


= exp


t


ibk −

1
2

ak2
+


R


eiky

− 1 − iky1{|y|<1}


K1 (dy)


(2.9)

E


e−s Dt


= exp


t


R+


e−sy

− 1


K2 (dy)


.

Here, a ≥ 0, b ∈ R. K1 is a Lévy measure while K2 is a Lévy measure whose support is [0,∞)

and satisfies

(y ∧ 1) K2 (dy) < ∞, K2 ({0}) = 0 and


K2 (dy) = ∞. By (2.9) it can be easily

verified that the infinitesimal generator A of the process (At , Dt ) is

A ( f ) (x, t) = b
∂

∂x
f (x, t)+

a

2
∂2

∂x2 f (x, t)

+


R2


f (x + y, t + w)− f (x, t)− y

∂ f (x, t)

∂x
1{|(y,w)|<1}


K (dy, dw) , (2.10)

where K is again a Lévy measure. In [11], the case where the coefficients b and a as well as the
measure K may be dependent on (x, t) is considered. However, when they do not (this is referred
to as the homogeneous case), the transition probability Qt is given by [11, Equation. 4.4]

Qt

x ′, r ′

; dx, dr


= 1{0<t<r ′}δ0

dx − x ′


δr ′−t (dr)+ 1{0≤r ′≤t}Qt−r ′


x ′, 0; dx, dr


Qt

x ′, 0; dx, dr


=


y∈R


w∈[0,t]

U x ′

(dy, dw) K (dx − y, dr + t − w) , (2.11)

where U x ′

(dy, dw) is the occupation measure of (At , Dt ), i.e.
f (y, w)U x ′

(dy, dw) = E


∞

0
f


Au + x ′, Du


du


.

When the processes At and Dt are independent, it can be easily verified that

U x ′

(dy, dw) =


∞

0
z

dy − x ′, u


g (dw, u) du, (2.12)

where z (dx, t) = P (At ∈ dx) and g (dx, t) = P (Dt ∈ dx). Moreover, in the case of indepen-
dence it was shown that [5, Corollary 2.3]

K (dy, dw) = K1 (dy) δ0 (dw)+ δ0 (dy) K2 (dw) .
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Hence, Eqs. (2.11) translate into

Qt

x ′, r ′

; dx, dr


= 1{0<t<r ′}δ0

dx − x ′


δr ′−t (dr)

+ 1{0≤r ′≤t}


y∈R


w∈[0,t−r ′]


∞

0
z

dy − x ′, u


g (dw, u) du


×

δ0

dr + t − r ′

− w


K1 (dx − y)+ δ0 (dx − y) K2

dr + t − r ′

− w

. (2.13)

However, since


K2 (dy) = ∞, we see [13, Theorem. 27.4] that g (dw, t) has no atoms.
Therefore, (2.13) reduces to

Qt

x ′, r ′

; dx, dr


= 1{0≤t<r ′}δ0

dx − x ′


δr ′−t (dr)

+ 1{0≤r ′≤t}


w∈[0,t−r ′]


∞

0
z

dx − x ′, u


g (dw, u) du


× K2


dr + t − r ′

− w

. (2.14)

3. Fokker–Planck equations

Throughout this section, we let At be a Lévy process such that E

eik At


= etψ(k), its

probability density is given by z (dx, t) = P (At ∈ dx). Et is the inverse of a subordinator
Dt such that E


e−s Dt


= etφ(s), its probability density is h (dx, t) = P (Et ∈ dx). We denote

by Ψ and Φ the pseudo-differential operators of the symbols ψ (−k) and −φ (s) respectively.
We also denote the transition probability function of the Markov process (X t , Rt ) by Qt and
that of (Et , Rt ) by Ht . Next note that the occupation measure of (t, Et ) is just U x ′

(dx, dw) =

g

dw, x − x ′


dx (cf. [11, Eq. 5.1]), and similarly to (2.14) we have

Ht

x ′, r ′

; dx, dr


= 1{0≤t<r ′}δ0

dx − x ′


δr ′−t (dr)

+ 1{0≤r ′≤t}


w∈[0,t−r ′]

g

dw, x − x ′


dx × K2


dr + t − r ′

− w

.

(3.1)

The next theorem finds the FFPE of the FDD of Et .

Theorem 1. Let h (dx1, . . . , dxn; t1, . . . , tn) be the FDD of Et where t1 < t2 < · · · < tn , i.e.

h (dx1, . . . , dxn; t1, . . . , tn) = P

Et1 ∈ dx1, . . . , Etn ∈ dxn


.

Then

Φth (dx; t) = −Dxh (dx; t) . (3.2)

Proof. Let us take LT with respect to the spatial variables and with respect to the time
variables, this will be abbreviated by LLT. Before taking the LLT of h (dx; t) we note that since
Ht

x ′, r ′

; dx, dr


is translation invariant with respect to the spatial variable we have

h (dx; t) = Ht1 (0, 0; dx1, dr1) ◦ Ht2−t1 (0, r1; dx2 − x1, dr2)

· · · Htn−tn−1 (0, rn−1; dxn − xn−1, drn) ◦ . (3.3)

Taking the LLT of (3.3), by the change of variables x ′

i = xi − xi−1 for i ≥ 2 we see that (to avoid
confusion we now use λ instead of k)
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h (λ1, . . . λn; s1, . . . , sn) =


∞

t1=0


∞

x1=0
e
−


n

i=1
si


t1−


n

i=1
λi


x1

Ht1 (0, 0; dx1, dr1) ◦ dt1

H n
i=2

si


0, r1;

n
i=2

λi , dr2


× ◦ · · · Hsn+sn−1 (0, rn−2; λn + λn−1, drn−1) ◦ Hsn (0, rn−1; λn, drn) ◦ . (3.4)

Now, let us look at


∞

t1=0


∞

x1=0
e
−


n

i=1
si


t1−


n

i=1
λi


x1

Ht1 (0, 0; dx1, dr1) dt1

=


∞

t1=0


∞

x1=0
e
−


n

i=1
si


t1−


n

i=1
λi


x1

w∈[0,t1]

g (w, x1) dx1

× K2 (dr1 + t1 − w) dw

=


∞

x1=0
e
−


n

i=1
λi


x1

w∈[0,∞]

g (w, x1) dx1

×


∞

t1=w
e
−


n

i=1
si


t1

K2 (dr1 + t1 − w) dw

=


∞

x1=0
e
−


n

i=1
λi


x1

w∈[0,∞]

g (w, x1) dx1e
−


n

i=1
si


w

dw

×


∞

t1=0
e
−


n

i=1
si


t1

K2 (dr1 + t1)

=
1

n
i=1

λi − φ


n

i=1
si

  ∞

t1=0
e
−


n

i=1
si


t1

K2 (dr1 + t1) . (3.5)

Next note that,

lim
x1→0+

h (x1, λ2, . . . λn; s1, . . . , sn)

= lim
x1→0+

∞
t1=0

e
−


n

i=1
si


t1−


n

i=2
λi


x1


w∈[0,t1]

g (dw, x1)×

∞
r1=0

K2 (dr1 + t1 − w)

× H n
i=2

si


0, r1;

n
i=2

λi , dr2


× ◦ · · · Hsn+sn−1 (0, rn−2; λn + λn−1, drn−1) ◦ Hsn (0, rn−1; λn, drn) ◦ .
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=

∞
t1=0

e
−


n

i=1
si


t1

∞
r1=0

K2 (dr1 + t1)

× H n
i=2

si


0, r1;

n
i=2

λi , dr2


· · · Hsn+sn−1 (0, rn−2; λn + λn−1, drn−1)

× ◦Hsn (0, rn−1; λn, drn) ◦ . (3.6)

Indeed, by the continuity of the measure K2 and [13, Lemma 27.1] follows the continuity of the
following function

w →


∞

r1=0
K2 (dr1 + t1 − w)× H n

i=2
si


0, r1;

n
i=2

λi , dr2


◦ · · · Hsn (0, rn−1; λn, drn) ◦,

since g (dw, x1) dx1 converges weakly to δ0 (dw) as x1 → 0+ (3.6) follows. Finally, plugging
(3.5) in (3.4), using (3.6) and rearranging terms we arrive at

− φ


n

i=1

si

h (λ1, . . . λn; s1, . . . , sn) = −


n

i=1

λi

h (λ1, . . . λn; s1, . . . , sn)

+h 0+, λ2, . . . λn; s1, . . . , sn

. (3.7)

Taking the inverse LLT of (3.7) and using Lemmas 2 and 3 we obtain (3.2). �

Theorem 1 paves the way for the finite dimensional FFPEs of the process X t . We denote the
FDD of At by z (dx1, . . . , dxn; t1, . . . , tn) = P


At1 ∈ dx1, . . . , Atn ∈ dxn


.

Theorem 2. Let p (dx1, . . . , dxn; t1, . . . , tn) = P

X t1 ∈ dx1, . . . , X tn ∈ dxn


where t1 < t2 <

· · · < tn . Then

Φt p (dx1, . . . , dxn; t1, . . . , tn) = Ψx p (dx1, . . . , dxn; t1, . . . , tn)

+


∞

u2=0


∞

u3=u2

· · ·


∞

un=un−1
δ0 (dx1) z (dx2, . . . , dxn; u2, . . . , un)

× h

0+, du2, . . . , dun; t1, . . . , tn


(3.8)

Proof. By the independence of At and Dt

p (dx1, . . . , dxn; t1, . . . , tn)

=


∞

u1=0


∞

u2=u1

· · ·


∞

un=un−1

z (dx1, . . . , dxn; u1, . . . , un) h (du1, . . . , dun; t1, . . . , tn)

=


∞

u1=0
· · ·


∞

un=un−1

z (dx1, u1) z (dx2 − x1, dx3 − x1, . . . , dxn

− x1; u2 − u1, u3 − u1, . . . , un − u1)

× Ht1 (0, 0; du1, dr1) ◦ Ht2−t1 (0, r1; du2 − u1, dr2)

× ◦ · · · Htn−tn−1 (0, rn−1; dun − un−1, drn) ◦ . (3.9)
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Taking the FLT of p (dx1, . . . , dxn; t1, . . . , tn) and using the change of variables u′

i = ui − u1
for 2 ≤ i ≤ n we obtain

p (k1, . . . , kn; s1, . . . , sn)

=


∞

u1=0


∞

t1=0


x1∈R

e
−


n

i=1
si


t1−


i

n
i=1

ki


x1

z (dx1, u1) Ht1 (0, 0; du1, dr1) ◦ dt1

×


∞

u2=0
· · ·


∞

un=un−1

z (k2, . . . , kn; u2, . . . , un) Ĥ n
i=2

si
(0, r1; du2, dr2) ◦ · · ·

× Ĥsn (0, rn−1; dun − un−1, drn) ◦ (3.10)

Let us look at
∞

u1=0


∞

t1=0


x1∈R

e
−


n

i=1
si


t1−


i

n
i=1

ki


x1

z (dx1, u1) Ht1 (0, 0; du1, dr1) dt1

=


∞

u1=0


∞

t1=0


x1∈R

e
−


n

i=1
si


t1−


i

n
i=1

ki


x1

z (dx1, u1)

×


w∈[0,t1]

g (w, u1) du1 K2 (dr1 + t1 − w) dt1

=


∞

u1=0


∞

w=0


x1∈R

e
−i


n

i=1
ki


x1−


n

i=1
si


w

z (dx1, u1) g (w, u1) du1

×


∞

t1=0
e
−


n

i=1
si


t1

K2 (dr1 + t1) dt1

=


∞

u1=0


∞

w=0


x1∈R

e
u1


ψ


−

n
i=1

ki


+φ


s

n
i=1

si


du1

×


∞

t1=0
e
−


n

i=1
si


t1

K2 (dr1 + t1) dt1 (3.11)

=
1

−ψ


−

n
i=1

ki


− φ


n

i=1
si

  ∞

t1=0
e
−


n

i=1
si


t1

K2 (dr1 + t1) dt1. (3.12)

Plugging (3.12) in (3.10) and using (3.6) we have

p (k1, . . . , kn; s1, . . . , sn) =
1

−ψ


−

n
i=1

ki


− φ


n

i=1
si


×


∞

u2=0
· · ·


∞

un=un−1

z (k2, . . . , kn; u2, . . . , un) ĥ

×

0+, du2, . . . , dun; s1, . . . , sn


.

Rearranging and taking the inverse FLT we arrive at (3.8). �
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Working along similar lines to the proof of Theorem 1 one can also obtain the finite dimensional
FFPEs of the process X t = AEt where Et is the inverse of a strictly increasing subordinator Dt
and (At , Dt ) is a Lévy process, i.e. the processes At and Dt are not necessarily independent.
More precisely, suppose E


eik At −s Dt


= etξ(k,s) and that ξ (k, s) = ibk −

1
2 ak2

+


R

eiky−sw

− 1 − iky1{|(y,w)|<1}


K (dy, dw) and that Ξ is the operator whose symbol is −ξ (−k, s).

Theorem 3. Let (At , Dt ) be a Lévy process s.t. E

eik At −s Dt


= etξ(k,s). Let Et be the inverse

of the strictly increasing subordinator Dt and let p (dx1, . . . , dxn; t1, . . . , tn) = P

X t1 ∈

dx1, . . . , X tn ∈ dxn

. Then

Ξx,t p (dx1, . . . , dxn; t1, . . . , tn) =


∞

r1=0
K (dx1, dr1 + t1)

× Qt2−t1 (x1, r1; dx2, dr2) ◦ · · · Qtn−tn−1 (xn−1, rn−1; dxn, drn) ◦ . (3.13)

Proof. Using (2.11) we see that Qt is again translation invariant with respect to the spatial
variable. Note that here

U x ′

(dy, dw) =


∞

0
v

dy − x ′, dw; u


du,

where v (dy, dw; u) = P (Au ∈ dy, Du ∈ dw). Using the same ideas as in the proof of Theo-
rem 1 we obtain

p (k1, . . . , kn; s1, . . . , sn) =


∞

t1=0


x1∈R

e
−


n

i=1
si


t1−


n

i=1
ki


x1


∞

u=0
v (dy, dw; u) du

×


∞

r1=0


y∈R

 t1

w=0
K (dx1 − y, dr1 + t1 − w)

× Q n
i=2

si


0, dr1;

n
i=2

ki , dr2


◦ · · · Qsn (0, rn−1; kn, drn) ◦

=


y∈R


∞

w=0
e
−


n

i=1
si


w−i


n

i=1
ki


y  ∞

u=0
v (dy, dw; u) du

×


∞

r1=0


∞

t1=0


x1∈R

e
−


n

i=1
si


t1−


n

i=1
ki


x1

× K (dx1, dr1 + t1) Q n
i=2

si


0, dr1;

n
i=2

ki , dr2


◦ · · ·

× Qsn (0, rn−1; kn, drn) ◦

=
1

−ξ


−

n
i=1

ki ,
n

i=1
si

  ∞

r1=0


∞

t1=0


x1∈R

e
−


n

i=1
si


t1−


n

i=1
ki


x1

K (dx1, dr1 + t1)

× Q n
i=2

si


0, dr1;

n
i=2

ki , dr2


◦ · · · Qsn (0, rn−1; kn, drn) ◦ . (3.14)

Rearrange and invert to obtain (3.13). �
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Remark 2. When the CTRW is coupled, a distinction between the limit of the CTRW X ′
t =Nt

k=1 Jk and the Overshoot CTRW X ′′
t =

Nt +1
k=1 Jk is needed. Indeed, in the case where the

outer process At and the subordinator Dt are dependent it has been proven in [15] that the limits
of the CTRW and the Overshoot CTRW are A(Et )− and AEt respectively.

Remark 3. As was mentioned above, it is usually impossible to define CTRWL by their one-
dimensional FFPE. However, since Eqs. (3.13) and (3.14) are equivalent and cádlág processes
are characterized (up to their law) by their FDDs, we see that one can define the process AEt by
specifying all its n dimensional FFPE.

Our next result gives a meaning to the measure


∞

r1=0 K (dx1, dr1 + t1) in the context of
CTRWL.

Proposition 1. Let At and Dt as in Theorem 3. Then

∂

∂u
P (X t ∈ dx, Et ≤ u)

w
→ K (dx, (t,∞)) u → 0. (3.15)

Proof. Let A′
t = (At , t) and note that A′

Et
= (X t , Et ). Using [11, Equation 4.4] (which is

Eq. (2.11) for outer process in Rd ) for every x1 ∈ R we have

P (X t ∈ (−∞, x1], Et ≤ q) =


y1∈R


y2∈R

 t

w=0


∞

u=0


∞

r=0
v′ (dy1, dy2, dw; u)

× duK ′ ((−∞, x1 − y1], dx2 − y2, r + t − w) . (3.16)

It is not hard to see that here

v′ (dy1, dy2, dw; u) = v (dy1, dw; u) δu (dy2) (3.17)
K ′ (dx1, dx2, dw) = K (dx1, dw) δ0 (dx2) .

Plugging (3.17) in (3.16) we have
y1∈R


y2∈R

 t

w=0


∞

u=0
v (dy1, dw; u) δu (dy2) duK

× ((−∞, x1 − y1], [t − w,∞)) δ0 (dx2 − y2)

=


y1∈R

 t

w=0


∞

u=0
v (dy1, dw; u) duK ((−∞, x1 − y1], [t − w,∞)) δu (dx2) . (3.18)

Integrating w.r.t. x2 on [0, q] for some q > 0 we have

P (X t ∈ (−∞, x1], Et ≤ q)

=


y1∈R

 t

w=0


∞

u=0
v (dy1, dw; u) duK ((−∞, x1 − y1], [t − w,∞)) 1{u≤q}

=


y1∈R

 t

w=0

 q

u=0
v (dy1, dw; u) duK ((−∞, x1 − y1], [t − w,∞)) . (3.19)

Taking derivative w.r.t. q we have

∂

∂q
P (X t ∈ (−∞, x1], Et ≤ q)

=


y1∈R

 t

w=0
v (dy1, dw; q) duK ((−∞, x1 − y1], [t − w,∞)) .
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The measure K (dx1, dw) is continuous because K (R, dw) = K2 (dw) is continuous. Letting
q → 0 we see that v (dy1, dw; q)

w
→ δ(0,0) (dy1, dw) and hence ∂

∂q P (X t ∈ (−∞, x1], Et ≤ q)
→ K ((−∞, x1], [t,∞)) as q → 0 which is equivalent to (3.15). �

Proposition 1 sheds light on the “remainder” term that appears in Theorems 2 and 3. It appears
that using a so-called multidimensional RL PDO in the finite dimensional FFPE one is left with
a term that accounts for the portion of particles that have not been mobilized since t = 0. More
philosophically, if we think of the value of Et as the number of mobilizations of the process by
time t , then ∂

∂u P (Et ≤ u) is the ratio between the portion of particles 1m that experienced
between u and u + 1u mobilizations up to time t . Evaluating ∂

∂u P (Et ≤ u) at u = 0 is
then the ratio between the portion of particles 1m that experienced an infinitesimal number
of mobilizations 1u by time t and 1u. If ∂

∂u P (Et ≤ u) |u=0 is big then the diffusion becomes
very dynamic at time t as many particles get loose and “take part” in the diffusion. Considering
now ∂

∂u P (X t ∈ dx, Et ≤ u) |u=0 we see that since X t is the limit of the Overshooting CTRW,
where a jump precedes a waiting time the position of the particle that has been “stuck” until
time t depends on that first jump in space. In that context it is worthwhile to compare this to
[8, Equation 4.2], the dynamics of the coupled CTRWL where the jump in space succeeds that
in time. The “remainder” term therefore accounts for the Finite dimensional dynamics that only
“kick in” at time t .

4. Examples

Theorem 1 as well as Theorems 2 and 3 should be compared with their one-dimensional
counterparts to gain a better understanding of the dynamics of the processes whose distributions
govern the FFPE. We start with a specific case of the one dimensional analogue of Theorem 1.

Example 1. Let Dt be a standard stable subordinator of index 0 < α < 1, i.e. E

e−s Dt


=

et(−sα). Its inverse Et has a distribution h (x, t) which satisfies [10, Equation 5.5]

Dα
t h (x, t) = −Dx h (x, t) ,

on x, t > 0. Since here φ (s) = −sα , we see that Φt = Dα
t .

Next we look at the one dimensional analogue of Theorem 2.

Example 2. Again we let Dt be a standard stable subordinator of index 0 < α < 1, and
At be a Lévy process s.t. E


eik At


= etψ(k). Then the distribution p (dx, t) of AEt satisfies

[10, Equation 5.6]

Dα
t p (dx, t) = Ψx p (dx, t)+

t−α

Γ (1 − α)
δ0 (dx) . (4.1)

To see why (3.8) can be thought of as a generalization of (4.1) note that h

0+, t


=

t−α
Γ (1−α)

[10, Equation 4.3] and rewrite (4.1) as

Dα
t p (x, t) = Ψx p (x, t)+ δ0 (dx) h


0+, t


.

Our last example concerns the one dimensional analogue of Theorem 3.
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Example 3. Let (At , Dt ) be a Lévy process as in Theorem 3. Then its one dimensional distribu-
tion p (dx, t) satisfies

Ξx,t p (dx, t) =


∞

r=0
K (dx, dr + t) . (4.2)

This was shown in [8, Theorem 4.1].

Remark 4. In [3, Equation 5.9], using different methods, Baule and Friedrich essentially
obtained Eq. (3.2) for the case where Dt is a standard stable subordinator on x1 < x2 < · · · < xn .
In [4, Equation 14] Baule and Friedrich used the results in [3] to obtain Eq. (3.8) (uncoupled case)
for the two dimensional case where Dt is a standard stable subordinator. The methods used in [3]
can be used to find the finite dimensional FFPEs of the inverse of any subordinator [7], however,
cannot be used to find the equations on x1 ≤ x2 ≤ · · · ≤ xn . Moreover, these methods are ill-
suited for the coupled case. To see this, we outline the proof in [3] for the two dimensional case.
Since Et is the inverse of the subordinator Dt we see that

P

Et1 ≤ x1, Et2 ≤ xn


= P


Dx1 ≥ t1, Dx2 ≥ t2


x1 ≤ x2. (4.3)

Taking the LT of both sides of the equation w.r.t. t1 and t2 and derivatives w.r.t. x1 and x2 we see
that on x1 < x2

h (dx1, dx2; s1, s2) =
sα2

(s1 + s2)

α
− sα2


s1s2

e−x1(s1+s2)
α
−(x2−x1)sα1 , (4.4)

and it follows that

Dα
t h (dx1, dx2; t1, t2) = −Dxh (dx1, dx2; t1, t2) . (4.5)

However, since P

Dx1 ≥ t1, Dx2 ≥ t2


is not differentiable on x1 = x2 we cannot obtain

Eq. (4.5) on x1 = x2 through Eq. (4.3). In [4], the authors used the independence of the
outer process At and the inverse subordinator Et to obtain the two dimensional FFPE of AEt

through integration by parts, hence, this method cannot be used for the coupled CTRWL. The
Markov embedding of CTRWL enables us to find the dynamics of the inverse subordinator on
x1 ≤ x2 ≤ · · · ≤ xn and the coupled and uncoupled CTRWL.

5. Directional pseudo-differential operators

In this section we wish to give a meaning to the PDO Ψx, Φt and Ξx,t discussed earlier. We
shall see that they are directional versions of their one-dimensional counterparts Ψx , Φt and Ξx,t .
We shall focus on Ξx,t as it is a generalization of Ψx, Φt. To illustrate the kind of results we are
looking for, let us look at the next simple example. Assume we have the following equation in R2

∂

∂x1
+

∂

∂x2


f (x1, x2) = h (x1, x2) . (5.1)

By using the change of variables (x1, x2)
T

= T

x ′

1, x ′

2

T where T =


1 0
1 1


we can rewrite

Eq. (5.1) as

∂

∂x ′

1
f


T x′


= h


T x′

.
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If we think of the change of variables T as an operator on functions, i.e. T f := f (T x) we see
that 

∂

∂x1
+

∂

∂x2


= T −1 ∂

∂x ′

1
T .

Since the operator Dx is the classic one-dimensional derivative under the change of variables
T we say that it is a directional version of the classic derivative. We wish to show a similar
result, i.e. that if ξ (−k, s) is a Lévy symbol, and therefore a symbol of a one-dimensional
PDO Ξx,t , then ξ


−
n

i=1 ki ,
n

i=1 si


is the symbol of a PDO Ξx,t that is a directional version
of Ξx,t .

In [1], the authors showed that if ξ (k, s) is a Lévy symbol then it is the symbol of a PDO on
a Banach space. More precisely, let X = L1

ω (R × R+) be the space of measurable functions s.t.
∥ f ∥ω =


R


R+
| f (x, t)| e−ωt dtdx < ∞ where ω > 0 is fixed. With this norm, the space X

is a Banach space and the FLT is defined for each f ∈ X for k ∈ R, s ∈ (ω,∞). Let ξ (k, s)
be a Lévy symbol, then it was shown that ξ (−k, s) is the symbol of the generator L of a Feller
semigroup on X . Moreover, the domain of L is given by

D (L) =


f ∈ X : ξ (−k, s) f (k, s) = h (k, s) , ∃h ∈ X

.

Let L1
ω (Rn

× Rn) denote the space of measurable functions that are defined on Rn
× Rn

and 
Rn


Rn

| f (x, t)| e−⟨ω,t⟩dxdt < ∞,

for some ω ∈ Rn
+. Let An ⊂ L1

ω (Rn
× Rn) be the set of functions that vanish outside Rn

× An

where An
= {t : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn < ∞}. Note that An is itself a Banach space and that

the FLT of f ∈ An is defined for k ∈ Rn , s ∈ Ân
:= {s : ωi < si }. Let T be the element of GLn

(n × n invertible matrices) s.t. its first column is (1, 1, . . . , 1)T and its i’th column ci ( j) is δi ( j)
(1 if i = j and zero otherwise) for 1 < i ≤ n. Note that det (T ) = 1 so that T is a bijection
from the set Bn

= {(x1, x2, . . . , xn) : x1 ≥ 0, 0 ≤ x2 ≤ x3 ≤ · · · ≤ xn} onto An . We introduce
the change of variables T x′

= x and T t′ = t and see that for f ∈ An
Rn


Rn

+

| f (x, t)| e−⟨ω,t⟩dxdt =


Rn


Rn

+

 f


T x′,T t′
 e−⟨ω,T t′⟩det (T )2dx′dt′

=


Rn


Rn

+

 f


T x′,T t′
 e−⟨T ∗ω,t′⟩dx′dt′, (5.2)

where T ∗ is the adjoint of T . Note that T ∗ is the matrix whose first row is (1, 1, . . . , 1) and its
i’th row ri ( j) is δi ( j) for 1 < i ≤ n. Let Bn ⊂ L1

T ∗ω
(Rn

× Rn) be the subspace of functions
that vanish outside Rn

× Bn and note that it is a Banach space w.r.t. the norm ∥ f ∥T ∗ω and that
its FLT is defined for


k′

; s′


∈ Rn
× B̂n where B̂n

:= T ∗ Ân . We can now define the operator
T : An → Bn by (T f )


x′, t′


= f


T x′, T t′


. Note that by (5.2) T is an isometric isomorphism

from An to Bn and that if f g ∈ An then T ( f g) = T ( f ) T (g) ∈ Bn . We abuse notation and
define the operator Ξx ′,t ′ : Bn

→ Bn by f

x′

; t′


→ Ξx ′,t ′ f

·, x ′

2, . . . , x ′
n; ·, t ′2, . . . , t ′n


. Finally,

we define the operator Ξx,t : An
→ An by Ξx,t = T −1Ξx ′,t ′ T .
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Proposition 2. Let ξ (−k, s) be a Lévy symbol of the one dimensional PDO Ξx ′,t ′ , then Ξx,t is a
PDO with symbol ξ


−
n

i=1 ki ,
n

i=1 si


and its domain is

D

Ξx,t


=


f ∈ An : ξ


−

n
i=1

ki ,

n
i=1

si


f (k, s) = h (k, s) , ∃h ∈ An


. (5.3)

Proof. By (5.2) and Fubini’s Theorem we have
R


R+

T f

x ′

1, x ′

2, . . . , x ′
n; t ′1, t ′2 . . . , t ′n

 e−⟨T ∗ω,(t ′1,t
′

2,...,t
′
n)⟩dx ′

1dt ′1 < ∞, (5.4)

and we see that T f

·, x ′

2, . . . , x ′
n; ·, t ′2, . . . , t ′n


∈ L1n

i=1 ωi
(R × R) for almost every


x ′

2, . . . ,

x ′
n; t ′2, . . . , t ′n


∈ Rn−1

×Rn−1. On the other hand, introducing k = (T ∗)−1 k′ and s = (T ∗)−1 s′

on

k′

; s′


∈ Rn
× B̂n and f ∈ An we have,

f


T ∗
−1 k′,


T ∗
−1 s′


=


Rn


Rn

+

e
−i

(T ∗)

−1k′,x

−


(T ∗)

−1s′,t


f (x, t) dxdt

=


Rn


Rn

+

e−i

k′,


T −1x−s′,T −1t f (x, t) dxdt

=


Rn


Rn

+

e−i⟨k′,x′⟩−⟨s′,t′⟩ f


T x′, T t′


det (T −1)2dx′dt′

=


Rn


Rn

+

e−i⟨k′,x′⟩−⟨s′,t′⟩T f

x′, t′


dx′dt′.

It follows that for f ∈ An on Rn
× B̂n we have

T ∗
−1 f = T f .

To summarize, we have shown that the following diagram is commutative.

An
T

66

F LT

��

Bn

T −1
vv

F LT

��
An

(T ∗)
−1

66

I F LT

XX

Bn

T ∗

vv

I F LT

XX

Here An and Bn denote the image of An and Bn respectively under the FLT map and IFLT is the
inverse FLT. Note that An is defined on Rn

× Ân while Bn is defined on Rn
× B̂n . Next, we note

that the domain of Ξx ′,t ′ on Bn is

D

Ξx ′,t ′


=


f : ξ

−k′

1, s′

1


f

k′, s′


= h


k′, s′


, ∃h ∈ Bn


. (5.5)

Indeed, if f ∈ Bn satisfies ξ

−k′

1, s′

1


f

k′, s′


= h


k′, s′


for some h ∈ Bn then by (5.4)

and the results in [1] we see that f ∈ D

Ξx ′,t ′


. Next we show that Ξx,t is a PDO with symbol
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ξ

−
n

i=1 ki ,
n

i=1 si

. Suppose f ∈ D


Ξx,t


, then

Ξx ′,t ′ T f

x′, t′


= T h


x′, t′


, (5.6)

for some h ∈ An . Applying FLT on both sides we obtain

ξ

−k′

1, s′

1

 
T ∗
−1 f


k′, s′


=


T ∗
−1 h


k′, s′


, (5.7)

multiplying both sides by T ∗ we have

ξ


−

n
i=1

ki ,

n
i=1

si


T ∗


T ∗
−1 f (k, s)


= h (k, s) . (5.8)

This can be seen to be true since T ∗ ( f g) = T ∗ ( f ) T ∗ (g) while recalling the presentation of
T ∗ as a matrix. Hence, Ξx,t is a PDO with symbol ξ


−
n

i=1 ki ,
n

i=1 si

. It is left to show that

the domain of Ξx,t is as in (5.3). Since T is a bijection it is clear that T D

Ξx,t


= D


Ξx ′,t ′


and

the claim can be seen to be true through Eq. (5.5). �

In order to give a meaning to Eqs. (3.8) and (3.13) through Proposition 2 we define the function

f (x; t) =


Rn

g (x − y) p (dy; t) ,

where g is a smooth function with compact support in Rn and p (dx; t) is a parameterized
distribution as in Section 2.1. It follows that f (x; t) is smooth in Rn for every t ∈ Rn

+. Multiply
both sides of Eq. (3.14) by g (k) and use the convolution–multiplication property of the FT to
obtain

Ξx,t f (x; t) =


Rn

g (x − y) p0 (dy; t) ,

where

p0 (dx; t) =


∞

r1=0
K (dx1, dr1 + t1)

× Qt2−t1 (x1, r1; dx2, dr2) ◦ · · · Qtn−tn−1 (xn−1, rn−1; dxn, drn) ◦ .

This interpretation of (3.8) and (3.13) is in the spirit of that in [12, Chapter 4] and was used in
[6, p. 15].

6. Conclusions

In this paper we find the FFPEs of the FDDs of the process AEt where (At , Dt ) is a Lévy
process, Dt is a strictly increasing subordinator with no drift and Et is the inverse of Dt . The
general form of these FFPEs (Eq. (3.13)) is a PDO in time and space variables applied to the
distribution of the process on one side of the equation while on the other we have a term that
accounts for the portion of particles that yet to be mobilized. Moreover, considering the difference
between the RL derivative and that of Caputo’s in the one dimensional case, and compared to the
finite dimensional one, it seems that the RL derivative is more suitable in the context of CTRWL
(similar conclusions were obtained in [4] where a generalized Caputo derivative was suggested).
We also showed that the PDOs which appear in Theorem 3 are indeed bona fide PDO and in fact
a directional version of their one dimensional counterparts.
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