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Abstract

This paper considers the martingale problem for a class of weakly coupled Lévy type operators. It is
shown that under some mild conditions, the martingale problem is well-posed and uniquely determines a
strong Markov process (X,Λ). The process (X,Λ), called a regime-switching jump diffusion with Lévy
type jumps, is further shown to possess Feller and strong Feller properties under non-Lipschitz conditions
via the coupling method.
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1. Introduction

This paper deals with the martingale problem for a weakly coupled Lévy type operator A
defined as follows. Let d and n0 be two positive integers and set S := {1, 2, . . . , n0}. For all
“nice” functions f : Rd

× S → R, we define

A f (x, k) := Lk f (x, k) + Q(x) f (x, k). (1.1)
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Here, for each k ∈ S, Lk is a Lévy type operator defined as follows:

Lk f (x, k) :=
1
2

tr
(
a(x, k)∇2 f (x, k)

)
+ ⟨b(x, k),∇ f (x, k)⟩

+

∫
Rd

0

(
f (x + u, k) − f (x, k) − ⟨∇ f (x, k), u⟩1B(0,ε0)(u)

)
ν(x, k, du),

(1.2)

where for each (x, k) ∈ Rd
× S, a(x, k) =

(
ai j (x, k)

)
∈ Rd×d is symmetric and nonnegative

definite, b(x, k) =
(
bi (x, k)

)
∈ Rd , and ν(x, k, ·) is a Lévy kernel such that for each (x, k),

ν(x, k, ·) is a nonnegative σ -finite measure on Rd
0 satisfying∫

Rd
0

|u|
21B(0,ε0)(u)ν(x, k, du) < ∞ and ν(x, k,Rd

\B(0, ε0)) < ∞, (1.3)

where ε0 > 0 (one can usually take ε0 = 1). Here and hereafter, ∇ f (·, k) and ∇
2 f (·, k) denote

respectively the gradient and Hessian matrix of f (·, k), ⟨·, ·⟩ denotes the inner product in Rd ,
Rd

0 := Rd
\{0}, and B(0, r ) := {x ∈ Rd

: |x | < r} for r > 0. In (1.1) and throughout the paper,
the switching operator Q(x) is defined as follows:

Q(x) f (x, k) :=

∑
l∈S

qkl(x)
(

f (x, l) − f (x, k)
)
, (1.4)

where Q(x) =
(
qkl(x)

)
is an n0 × n0 matrix-valued measurable function on Rd such that for all

x ∈ Rd we have qkl(x) ≥ 0 for k ̸= l, and for each k ∈ S,
∑

l∈Sqkl(x) = 0.
In this paper, we consider the martingale problem for the weakly coupled Lévy type operator

A defined in (1.1) on Ω := D([0,∞),Rd
× S), the space of right continuous functions on

[0,∞) into Rd
×S having left limits endowed with the Skorohod topology. Let Ft be the σ -field

generated by the cylindrical sets on D([0,∞),Rd
× S) up to time t and set F =

⋁
∞

t=0Ft . Next,
let C∞

c (Rd
× S) denote the family of functions defined on Rd

× S such that f (·, k) ∈ C∞
c (Rd )

with k ∈ S, where C∞
c (Rd ) denotes the family of functions defined on Rd which are infinitely

differentiable and have compact supports.

Definition 1.1. For a given (x, k) ∈ Rd
× S, we say a probability measure P(x,k) on

D([0,∞),Rd
× S) is a solution to the martingale problem for the operator A starting from

(x, k), if P(x,k)((X (0),Λ(0)) = (x, k)) = 1 and for each function f ∈ C∞
c (Rd

× S),

M ( f )
t := f (X (t),Λ(t)) − f (X (0),Λ(0)) −

∫ t

0
A f (X (s),Λ(s))ds (1.5)

is an {Ft }-martingale with respect to P(x,k), where (X,Λ) is the coordinate process defined by
(X (t, ω),Λ(t, ω)) = ω(t) ∈ Rd

× S for all t ≥ 0 and ω ∈ Ω .
Sometimes, we say that the probability measure P(x,k) is a martingale solution for the operator

A starting from (x, k). We often call the coordinate process (X,Λ) the regime-switching jump
diffusion with Lévy type jumps.

Since the seminal work of Stroock and Varadhan [29,30] on martingale problems for second
order diffusion operators, the notion of martingale problems have been extensively studied
for various processes in the literature. For example, Komatsu [12] and Stroock [28] prove
that the martingale problem for a Lévy type operator is well-posed; Bass [1] investigates
the martingale problem for pure jump Markov processes; Dawson and Zheng [6] and Feng
and Zheng [7] consider the martingale problem for a class of nonlinear master equations for
chemical reaction models; Xi [34] and Zheng and Zheng [42] discuss the martingale problem
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for Q-processes; Zambotti [41] provides an analytic approach for existence and uniqueness
for martingale problems in infinite dimensions; Kurtz [13] presents martingale problems for
conditional distributions of Markov processes; Mikulevicius and Rozovskii [18] study martingale
problems for stochastic partial differential equations; Perkins [19] investigates the martingale
problem for interactive measure-valued branching diffusions; Hoh [9] investigates the martingale
problems for pseudo-differential operators; and Bass and Tang [2] are devoted to the martingale
problem for stable-like processes.

This paper is motivated by Stroock [28] and considers weakly coupled Lévy type operator
A defined in (1.1). Roughly speaking, in addition to the diffusion term, the drift term, and the
jump term spelled out in (1.2) for each k ∈ S, A also contains a component Q(x) defined in
(1.4), which provides the switching mechanism for the operators Lk, k ∈ S. In other words, the
operators Lk, k ∈ S are coupled through the operator Q(x) of (1.4). Therefore it is convenient
to call the operator A of (1.1) a weakly coupled Lévy type operator and the coordinate process
(X,Λ) a regime-switching Lévy type process. Here we remark that Q(x) = (qkl(x)) depends on
x . When the Lévy kernel ν(x, k, dz) is independent of (x, k), then A reduces to the infinitesimal
generator of a regime-switching jump diffusion process as those considered in [36,38,43].
Thanks to their ability in incorporating both structural changes and jumps of various sizes,
regime-switching (jump) diffusion processes have attracted many interests lately. See, for
example, [5,16,24,25,33,35–40,43] and references therein for investigations of such processes
and their applications in areas such as inventory control, ecosystem modeling, manufacturing
and production planning, financial engineering, and risk theory.

However, we notice that in these papers, the jump mechanism is usually assumed to be a
finite or a Lévy measure ν(dz). The study of regime-switching jump diffusions with Lévy type
jumps is relatively scarce, which is precisely the focus of this paper. In addition, in leu of the
stochastic differential equation approach in the aforementioned papers, this paper begins with
the martingale problem for the weakly coupled Lévy type operator A of (1.1). We prove that
under very mild conditions, the martingale problem for the operator A is well-posed. That is,
we show that for any (x, k) ∈ Rd

× S, there is exactly one martingale solution for the operator
A starting from (x, k). This is achieved in two steps. In the first step, we assume that Q of
(1.4) takes a special form (Q̂ in (2.1)); consequently A of (1.1) reduces to Â of (2.5). For such a
special operator Â, under Assumption 1.2, we manipulate the Stroock–Varadhan piecing together
method (refer to §6.1 of [31]) to construct a martingale solution for the operator Â with an
arbitrary initial condition (x, k) ∈ Rd

× S and further show that this solution is weakly unique
in Theorem 2.2. The second step deals with the general case when Q(x) of (1.4) is x-dependent.
For such a case, we utilize the likely ratio martingale M defined in (3.1) to establish the desired
existence and uniqueness result in Theorem 3.6. One of the key steps in this approach is to
show that the switching times and the jump times are mutually disjoint with probability one; see
Proposition 3.5 for details. Such a strategy of using the likelihood ratio martingale was used in
the recent paper Xi [36], where the jump component is driven by a finite measure. In this paper,
we develop this approach to handle the general weakly coupled Lévy type operator A.

Having established that the martingale problem for A is well posed, we then have determined
a strong Markov process (X,Λ) with state space Rd

× S. The second part of this paper proves
that such a process possesses the Feller and strong Feller properties. Here the main tool is the
coupling method. For the introduction to coupling method and its applications in various areas of
probability and stochastic analysis, we refer to Chen [3], Hairer et al. [8], Lindvall [14], Lindvall
and Rogers [15], Priola and Wang [21], Wang [32] and the references therein. In this paper, we
first use the coupling method to show that for each k ∈ S, the process X̃ (k) corresponding to the
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Lévy type operator Lk of (1.2) is Feller under Assumption 4.1, in which the coefficients, and in
particular, the Lévy type kernel of the operator Lk , are non-Lipschitz in the x variable. In order
to establish the Feller property for the process (X,Λ), we kill the Lévy type process X̃ (k) at rate
−qkk to obtain the process X (k); see (4.5) for details. A mild condition on the functions qkl(x)
(Assumption 4.2) then helps us to derive the Feller property for the killed Lévy type process X (k)

in Lemma 4.7. Finally we use a series representation for the resolvent Gα of the process (X,Λ)
and a result in [17] to establish the Feller property for the process (X,Λ); this is spelled out in
Theorem 4.4.

Next we use a similar approach to establish the strong Feller property for the process (X,Λ) in
Section 5. More precisely, inspired by Priola and Wang [21], we use a combination of reflection
and marching coupling for the operator Lk to establish the strong Feller property for the processes
X̃ (k) and X (k) in Proposition 5.3. Again, we allow the coefficients and the Lévy type kernel of the
operator Lk to be non-Lipschitz in the x variable in Proposition 5.3. Then, as in Section 4, the
series representation for the resolvent Gα of the process (X,Λ) and the aforementioned result
in [17] lead to the desired strong Feller property for the process (X,Λ) in Theorem 5.4.

The rest of the paper is arranged as follows. We present the necessary assumptions as well
as some preliminary results in Section 1.1. In addition, Section 1.1 presents some martingales
associated with the operator A (Theorem 1.4). These martingales are interesting in their own
rights. Moreover, they are useful in the proofs of Section 3. The well-posedness of the martingale
problem for A is divided into two parts: Section 2 treats the special case when A is given by Â
of (2.5) and Section 3 deals with the general case. Section 4 is devoted to proving the Feller
property for the process (X,Λ). Strong Feller property is established in Section 5.

To facilitate later presentations, let us introduce some notations that will be frequently used
throughout the paper. Let D([0,∞),Rd ) (resp., D([0,∞),S)) be the space of right continuous
functions on [0,∞) into Rd (resp., S) having left limits endowed with the Skorohod topology,
and let Gt (resp., Nt ) be the σ -field generated by the cylindrical sets on D([0,∞),Rd ) (resp.,
D([0,∞),S)) up to time t . Also denote G =

⋁
∞

t=0Gt and N =
⋁

∞

t=0Nt . It is easy to see that
Ft = Gt

⋁
Nt for any t ≥ 0 and that F = G

⋁
N . Let C2(Rd

× S) be the family of functions
defined on Rd

×S such that f (·, k) ∈ C2(Rd ) for each k ∈ S and let C2
b (Rd

×S) be the family of
bounded functions defined on Rd

× S such that f (·, k) ∈ C2(Rd ) with bounded first and second
order continuous partial derivatives in x for each k ∈ S. Moreover, we denote by B(S) the family
of all the measurable functions on S into R.

1.1. Assumptions and preliminaries

Similar to Definition 1.1, for a given k ∈ S, we can also define the martingale solution for the
Lévy type operator Lk of (1.2) as follows. For a given x ∈ Rd , we say a probability measure P(x)

k
on D([0,∞),Rd ) is a solution to the martingale problem for the operator Lk starting from x , if
P(x)

k (X (0) = x) = 1 and for each function f ∈ C∞
c (Rd ),

M (k)( f )
t := f (X (t)) − f (X (0)) −

∫ t

0
Lk f (X (s))ds (1.6)

is a {Gt }-martingale with respect to P(x)
k .

For the existence and uniqueness of martingale solution corresponding to the weakly coupled
Lévy type operator A defined in (1.1), we make the following assumption.
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Assumption 1.2. Suppose the following conditions hold:

(i) For each k ∈ S and x ∈ Rd , the Lévy type operator Lk defined in (1.2) has a unique
martingale solution P(x)

k starting from x ;
(ii) For each k ∈ S, the function qkk(x) ≤ 0 is bounded from below; and

(iii)

sup
(x,k)∈Rd×S

∫
Rd

0

(1 ∧ |y|
2)ν(x, k, dy) < ∞. (1.7)

Remark 1.3. The martingale problem for the operator Lk of (1.2) has been well-studied in the
literature. For example, Komatsu [12] and Stroock [28] contain explicit sufficient conditions for
the existence and uniqueness of martingale solutions for Lk .

We will prove in Section 3 that there exists a unique martingale solution for the operator
A defined in (1.1). Throughout the rest of this paper, as standing hypotheses, we assume that
Assumption 1.2 holds.

We finish the section with the following theorem, which will be needed in the proof of
Theorem 3.6, but also interesting in its own right. Let us introduce a counting measure as follows.
For t ≥ 0 and Γ ∈ B(Rd

0 ) with 0 ̸∈ Γ̄ , we let

η(t,Γ ) :=

∑
s≤t

1Γ (∆X (s)) =

∑
s≤t

1Γ (X (s) − X (s−)); (1.8)

it counts the number of jumps for the X component such that ∆X (s) ∈ Γ , 0 ≤ s ≤ t .

Theorem 1.4. Suppose P is a solution to the martingale problem associated with A starting
from (x, k) ∈ Rd

× S, then the following assertions are true:

(a) For each f ∈ C2
b (Rd

× S) such that f is uniformly positive,

f (X (t),Λ(t)) exp
{
−

∫ t

0

A f (X (u),Λ(u))
f (X (u),Λ(u))

du
}

is a P-martingale.
(b) For each θ ∈ Rd ,

exp
{
i
⟨
θ, X (t) − X (0) −

∫ t

0
b(X (u),Λ(u))du

⟩
+

1
2

∫ t

0
⟨θ, a(X (u),Λ(u))θ⟩du

−

∫ t

0

∫
Rd

0

[ei⟨θ,y⟩
− 1 − i⟨θ, y⟩1B(0,ε0)(y)]ν(X (u),Λ(u), dy)du

}
is a P-martingale, where i :=

√
−1.

(c) Let g be a bounded measurable function on Rd which vanishes in a neighborhood of the
origin. Then for any θ ∈ Rd ,

exp
{
i
⟨
θ, X (t) − X (0) −

∫ t

0
b(X (u),Λ(u))du

⟩
+

1
2

∫ t

0
⟨θ, a(X (u),Λ(u))θ⟩du

+

∫
Rd

0

g(y)η(t, dy) −

∫ t

0

∫
Rd

0

[ei⟨θ,y⟩+g(y)
− 1 − i⟨θ, y⟩1B(0,ε0)(y)]

× ν(X (u),Λ(u), dy)du
}

is a P-martingale.
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(d) Define η̃(t,Γ ) := η(t,Γ ) −
∫ t

0 ν(X (u),Λ(u),Γ )du. Then for each θ ∈ Rd and any
measurable function g on Rd

0 satisfying the condition |g(y)|2 ≤ C(1∧|y|
2) for some positive

constant C,

exp
{
i
⟨
θ, X (t) − X (0) −

∫ t

0
b(X (u),Λ(u))du

⟩
+

1
2

∫ t

0
⟨θ, a(X (u),Λ(u))θ⟩du +

∫
Rd

0

g(y )̃η(t, dy)

−

∫ t

0

∫
Rd

0

[ei⟨θ,y⟩+g(y)
− 1 − i⟨θ, y⟩1B(0,ε0)(y) − g(y)]ν(X (u),Λ(u), dy)du

}
is a P-martingale. In particular, if 0 ̸∈ Γ̄ , then η̃(t,Γ ) is a P-martingale.

Proof. This theorem can be established using very similar arguments as those in the proof of
Theorem 4.2.1 in [31]. For brevity, we shall omit the details here. □

2. Martingale solution: special case

We first consider a special Q-matrix Q̂ =
(
q̂kl
)
, in which q̂kl = 1 for all k, l ∈ S with k ̸= l

and q̂kk = −(n0 − 1) for all k ∈ S. In other words, we have

Q̂ =
(
q̂kl
)

=

⎛⎜⎜⎜⎜⎝
−(n0 − 1) 1 · · · 1

1 −(n0 − 1) · · · 1
...

...
. . .

...

1 1 · · · −(n0 − 1)

⎞⎟⎟⎟⎟⎠ . (2.1)

Corresponding to this matrix Q̂, we introduce an operator Q̂ on B(S) as follows:

Q̂ f (k) =

∑
l∈S

q̂kl
(

f (l) − f (k)
)
, k ∈ S. (2.2)

For a given k ∈ S, a probability measure Q(k) on D([0,∞),S) is said to be a solution to
the martingale problem for the operator Q̂ starting from k, if Q(k)(Λ(0) = k) = 1 and for each
function f ∈ B(S),

N ( f )
t := f (Λ(t)) − f (Λ(0)) −

∫ t

0
Q̂ f (Λ(s))ds (2.3)

is an {Nt }-martingale with respect to Q(k). Here Λ is the coordinate process Λ(t, ω) := ω(t) with
ω ∈ D([0,∞),S) and t ≥ 0.

We have the following lemma from [42]:

Lemma 2.1. For any given k ∈ S, there exists a unique martingale solution Q(k) on D([0,∞),S)
for the operator Q̂ starting from k.

Let Λ be the coordinate process on D([0,∞),S) and let {τn} be the sequence of stopping
times defined by

τ0 ≡ 0, and for n ≥ 1, τn := inf{t > τn−1 : Λ(t) ̸= Λ(τn−1)}. (2.4)



F. Xi, C. Zhu / Stochastic Processes and their Applications 128 (2018) 4277–4308 4283

Then it is obvious that for any k ∈ S, Q(k) {limn→∞τn = +∞} = 1. Moreover, we have
Q(k)

(
τ1 ≥ t

)
= exp(−(n0 − 1)t) for all t ≥ 0 and

Q(k)(Λ(τ1) = l
)

= 1/(n0 − 1) for each l ∈ S \ {k}.

Clearly, the distributions of τ1 and Λ(τ1) under Q(k) are regular.
Now we introduce an operator Â on C2

c (Rd
× S) as follows:

Â f (x, k) := Lk f (x, k) + Q̂ f (x, k), (2.5)

where the operators Lk and Q̂ are defined in (1.2) and (2.2), respectively. Note that Â of (2.5) is
really a special case of the operator A defined in (1.1). We can define the martingale solution for
the operator Â similarly as in Definition 1.1. For convenience of later presentation, let us also
denote

M̂ ( f )
t := f (X (t),Λ(t)) − f (X (0),Λ(0)) −

∫ t

0
Â f (X (s),Λ(s))ds, (2.6)

where f ∈ C∞
c (Rd

× S) and (X,Λ) is the coordinate process on D([0,∞),Rd
× S).

We will show that for each (x, k) ∈ Rd
× S, there exists a unique martingale solution P̂(x,k)

for the operator Â starting from (x .k). Our construction of the desired probability measure P̂(x,k)

on D([0,∞),Rd
× S) as well as the proof of uniqueness for such a solution relies heavily on

the martingale solutions {P(x)
k : k ∈ S, x ∈ Rd

} and {Q(k)
: k ∈ S}, and the stopping times {τn}

defined in (2.4).
But first let us introduce a random point process and a family of counting measures on S as

follows. For t > 0, k ∈ S, and A ⊂ S, set

n(t, A) :=

∑
s≤t

1{Λ(s)∈A,Λ(s)̸=Λ(s−)}, (2.7)

and

ν(k; A) :=

∑
l∈A\{k}

q̂kl = #{A \ {k}}.

In view of Lemma 2.4 of [27], we know that
∫ t

0 ν(Λ(s); A)ds is the compensator of the point
process n(t, A); namely,

µ(t, A) := n(t, A) −

∫ t

0
ν(Λ(s); A)ds (2.8)

is a martingale measure with respect to Q(k). Moreover, notice that the operator Q̂ defined in
(2.2) can be represented as

Q̂ f (k) =

∑
l∈S

q̂kl
(

f (l) − f (k)
)

=

∫
S

(
f (l) − f (k)

)
ν(k; dl). (2.9)

Now we present the main result of this section:

Theorem 2.2. For any given (x, k) ∈ Rd
× S, there exists a unique martingale solution P̂(x,k) on

D([0,∞),Rd
× S) for the operator Â starting from (x, k).

Proof. The proof is divided into two steps. The first step establishes the existence of a martingale
solution P̂ for the operator Â starting from (x, k) while the second step deals with the uniqueness.
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Step 1. For any given (x, k) ∈ Rd
× S, we define a series of probability measures on (Ω ,F)

as follows:

P(1)
= P(x)

k × Q(k), and for n ≥ 1, P(n+1)
= P(n)

⊗τn

(
P(X (τn ))
Λ(τn ) × Q(Λ(τn ))), (2.10)

where Ω = D([0,∞),Rd
× S). Thanks to Theorem 6.1.2 of [31], P(n+1)

= P(n) on Fτn .
Let f ∈ C2

c (Rd
× S). We have

f (X (τ1 ∧ t), k) − f (X (0), k) −

∫ τ1∧t

0
Lk f (X (s), k)ds

is a martingale with respect to P(x)
k and hence P(1). On the other hand, using (2.9), we can write∫ τ1∧t

0
Q̂ f (X (s),Λ(s))ds

=

∫ τ1∧t

0

∫
S
[ f (X (s), l) − f (X (s),Λ(s))]ν(Λ(s), dl)ds

= −

∫ τ1∧t

0

∫
S
[ f (X (s), l) − f (X (s),Λ(s))]

(
n(ds, dl) − ν(Λ(s), dl)ds

)
+

∫ τ1∧t

0

∫
S
[ f (X (s), l) − f (X (s),Λ(s))]n(ds, dl)

= −

∫ τ1∧t

0

∫
S
[ f (X (s), l) − f (X (s),Λ(s))]µ(ds, dl)

+ f (X (τ1 ∧ t),Λ(τ1 ∧ t)) − f (X (τ1 ∧ t),Λ(τ1 ∧ t−)).

Then using the definitions of the operators Â, Lk and Q̂, we have

M̂ ( f )
τ1∧t = f (X (τ1 ∧ t),Λ(τ1 ∧ t)) − f (X (0),Λ(0)) −

∫ τ1∧t

0
Â f (X (s),Λ(s))ds

= f (X (τ1 ∧ t),Λ(0)) − f (X (0),Λ(0)) −

∫ τ1∧t

0
LΛ(0) f (X (s),Λ(0))ds

+ f (X (τ1 ∧ t),Λ(τ1 ∧ t)) − f (X (τ1 ∧ t),Λ(0))

+

∫ τ1∧t

0
LΛ(0) f (X (s),Λ(0))ds −

∫ τ1∧t

0
Â f (X (s),Λ(s))ds

= f (X (τ1 ∧ t),Λ(0)) − f (X (0),Λ(0)) −

∫ τ1∧t

0
LΛ(0) f (X (s),Λ(0))ds

+ f (X (τ1 ∧ t),Λ(τ1 ∧ t)) − f (X (τ1 ∧ t),Λ(0)) −

∫ τ1∧t

0
Q̂ f (X (s),Λ(s))ds

= f (X (τ1 ∧ t),Λ(0)) − f (X (0),Λ(0)) −

∫ τ1∧t

0
LΛ(0) f (X (s),Λ(0))ds

+

∫ τ1∧t

0

∫
S
[ f (X (s), l) − f (X (s),Λ(s))]µ(ds, dl).

Recall that µ is a martingale measure with respect to Q(k) and hence P(1). Thus it follows that
M̂ ( f )
τ1∧· is a martingale with respect to P(1).
Next,

f (X (τ2 ∧ t),Λ(τ1)) − f (X (τ1),Λ(τ1)) −

∫ τ2∧t

τ1

LΛ(τ1) f (X (s),Λ(τ1))ds, t ≥ τ1
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is a martingale with respect to P(X (τ1))
Λ(τ1) × Q(Λ(τ1)). Then a similar argument as above gives that

f (X (τ2 ∧ t),Λ(τ2 ∧ t)) − f (X (τ1),Λ(τ1)) −

∫ τ2∧t

τ1

Â f (X (s),Λ(s))ds, t ≥ τ1

is a martingale with respect to P(X (τ1))
Λ(τ1) ×Q(Λ(τ1)). Notice that the above displayed equation is equal

to M̂ ( f )
τ2∧t − M̂ ( f )

τ1∧t . Then in view of Theorem 6.1.2 of [31], M̂ ( f )
τ2∧· is a martingale with respect to

P(2). In a similar fashion, we can show that M̂ ( f )
τn∧· is a martingale with respect to P(n) for any

n ≥ 1.
Next we show that limn→∞P(n)

{τn ≤ t} = 0 for any t ≥ 0. To this end, we consider functions
of the form f (x, k) = g(k), where g ∈ B(S). Then M ( f )

τn∧· is a P(n) martingale. But for any t ≥ 0,

M̂ ( f )
t = N (g)

t = g(Λ(t)) − g(Λ(0)) −

∫ t

0
Q̂g(Λ(s))ds

is a martingale with respect to Q(k). In particular, N (g)
τn∧· is a martingale with respect to Q(k) as

well. On the other hand, for any A ∈ N , we define Q̂(A) := P(n)
{D([0,∞),Rd ) × A}. Then

N (g)
τn∧· is a martingale with respect to Q̂. By the uniqueness result for the martingale problem for

Q̂ in Lemma 2.1, we have Q̂ = Q(k). Therefore it follows that

P(n)
{τn ≤ t} = Q̂{τn ≤ t} = Q(k)

{τn ≤ t} → 0, as n → ∞.

Recall that the probabilities P(n) constructed in (2.10) satisfy P(n+1)
= P(n) on Fτn . Hence by

Tulcea’s extension theorem (see, e.g., [31, Theorem 1.3.5]), there exists a unique P̂ on (Ω ,F)
such that P̂ equals P(n) on Fτn . Thus it follows that M̂ ( f )

τn∧· is a martingale with respect to P̂ for
every n ≥ 1. In addition, for any t ≥ 0, we have

P̂{τn ≤ t} = P(n)
{τn ≤ t} = 0. (2.11)

Thus τn → ∞ a.s. P̂ and hence M̂ ( f )
· is a martingale with respect to P̂. This establishes that P̂

is the desired martingale solution starting from (x, k) to the martingale problem for Â. When we
wish to emphasize the initial data dependence X (0) = x and Λ(0) = k, we write this martingale
solution as P̂(x,k).

Step 2. Next we show that there is at most one solution to the martingale problem associated
with Â starting from (x, k). To this purpose, we let P̃(x,k)

∈ P(Ω ,F) be another solution to the
martingale problem associated with Â starting from (x, k). We show that P̂(x,k) and P̃(x,k) agree
on Fτ1 . Recall that P̂(x,k) agrees with P(1)

= P(x)
k ×Q(k) on Fτ1 and that P(x)

k ∈ P(D([0,∞);Rd ))
is the unique solution to the martingale problem associated with Lk starting from x . Also notice
that any A ∈ Fτ1 is necessarily of the form A1 × δk , where A1 ⊂ D([0,∞),Rd ) and δk contains
all functions ω in D([0,∞),S) satisfying ω(t) = k for all 0 ≤ t < τ1 and ω(τ1) ∈ S \ {k}. Since
Q(k)(δk) = 1, it follows that

P̂(x,k)(A) = P(x)
k × Q(k)(A1 × δk) = P(x)

k (A1). (2.12)

On the other hand, since P̃(x,k) is a solution to the martingale problem associated with Â starting
from (x, k), for any g ∈ C2

c (Rd ), M̂ (g)
t is a P̃(x,k) martingale. In particular,

M̂ (g)
τ1∧t = g(X (t ∧ τ1)) − g(X (0)) −

∫ τ1∧t

0
Âg(X (s))ds

= g(X (t ∧ τ1)) − g(X (0)) −

∫ τ1∧t

0
Lk g(X (s))ds
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is a P̃(x,k) martingale. Now for any A1 ⊂ D([0,∞),Rd ) with A1 ∈ G, we define

P̃(A1) := P̃(x,k)(A1 × δk). (2.13)

Then M̂ (g)
τ1∧· is also a P̃ martingale and hence P̃ is a solution to the martingale problem associated

with Lk starting from x up to τ1. Now by the uniqueness of the martingale solution to Lk starting
from x , we conclude from (2.12) and (2.13) that P̂(x,k)(A) = P̃(x,k)(A) for any A ∈ Fτ1 . This
shows that the martingale solution to Â starting from (x, k) is uniquely determined on Fτ1 .

Now suppose that the martingale solution P̂(x,k) to Â starting from (x, k) is uniquely
determined on Fτn . By virtue of Theorem 6.2.1 of [31] (also Lemma 5.4.19 of [11]), there is
a P̂(x,k)-null set N ∈ Fτn such that

P̂(X (τn (ω)),Λ(τn (ω)))
:= δ(X (τn (ω)),Λ(τn (ω)),ω)⊗τn (ω)P̂ω

solves the martingale problem for Â starting from (X (τn(ω)),Λ(τn(ω))) whenever ω ̸∈ N , where
P̂ω is the regular conditional probability distribution of P̂(x,k) given Fτn , whose existence follows
from [11, Theorem 5.3.18]. By the argument in the previous paragraph, P̂(X (τn (ω)),Λ(τn (ω))) is
uniquely determined on Fτn+1 . Note that by virtue of Theorem 6.1.2 of [31],

P̂(x,k)
= P̂(x,k)

⊗τn (·)P̂(X (τn (·)),Λ(τn (·))),

In other words, the right-hand side of the above displayed equation satisfies

(i) P̂(x,k)
⊗τn (·)P̂(X (τn (·)),Λ(τn (·)))(A) = P̂(x,k)(A), for any A ∈ Fτn , and

(ii) δ(X (τn (ω)),Λ(τn (ω)),ω)⊗τn (ω)P̂ω is a regular conditional probability distribution of P̂(x,k)
⊗τn (·)

P̂(X (τn (·)),Λ(τn (·))) given Fτn .

Thus by the induction hypothesis, we conclude that P̂(x,k) is uniquely determined on Fτn+1 .
Now we define for any n ∈ N and A ∈ Fτn that Pn(A) := P̂(x,k)(A). Apparently Pn satisfies

that Pn = Pn+1 on Fτn and that for any t ≥ 0, Pn{τn ≤ t} = P̂(x,k)
{τn ≤ t} → 0 as n → ∞,

where we used (2.11). Therefore by Tulcea’s extension theorem (e.g., [31, Theorem 1.3.5]), the
sequence Pn has a unique extension P̂ on (Ω ,F) such that P̂ = Pn on Fτn . The measure P̂ solves
the martingale problem for the operator Â starting from (x, k). This completes the proof. □

3. Martingale solution: general case

In this section we construct the martingale solution for the general case. To proceed, for any
given t ≥ 0, we define a function Mt on the sample path space as follows:

Mt
(
X (·),Λ(·)

)
:=

n(t)−1∏
i=0

qΛ(τi )Λ(τi+1)
(
X (τi+1)

)
× exp

(
−

n(t)∑
i=0

∫ τi+1∧t

τi

[
qΛ(τi )(X (s)) − n0 + 1

]
ds
)
,

(3.1)

where

qk(x) =

∑
l∈S\{k}

qkl(x), n(t) = max{i ∈ N : τi ≤ t},

and {τi } is the sequence of stopping times defined in (2.4). In case n(t) = 0, we use the convention
that

∏
−1
i=0ai := 1 in (3.1).
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Lemma 3.1. We have that
(
Mt ,Ft , P̂

)
is a non-negative martingale with mean one.

Proof. Step 1. We first observe that if qkl(x) > 0 for all k ̸= l and x ∈ Rd , then

n(t)−1∏
i=0

qΛ(τi )Λ(τi+1)
(
X (τi+1)

)
= exp

{n(t)−1∑
i=0

log qΛ(τi )Λ(τi+1)
(
X (τi+1)

)}
= exp

{∫
[0,t]×S

log qΛ(s−)l
(
X (s)

)
n(ds, dl)

}
,

where n(t, A) is the Poisson random measure defined in (2.7). Then it follows from the definition
of M in (3.1) that

Mt
(
X (·),Λ(·)

)
= exp{Z (t)}, (3.2)

where

Z (t) :=

∫
[0,t]×S

log qΛ(s−)l
(
X (s)

)
n(ds, dl) −

∫ t

0

[
qΛ(s)(X (s)) − n0 + 1

]
ds,

Now we apply Itô’s formula for jump processes (see, e.g., [10, Theorem II.5.1]) to the process
Mt :

Mt
(
X (·),Λ(·)

)
− 1 = eZ (t)

− eZ (0)

=

∫ t

0

∫
S

eZ (s−)[qΛ(s−)l
(
X (s)

)
− 1]n(ds, dl) −

∫ t

0
eZ (s)[qΛ(s)(X (s)) − n0 + 1

]
ds. (3.3)

Recall from Section 2 that for any s ≥ 0, P̂{Λ(s) = l,Λ(s) ̸= Λ(s−)} =
1

n0−1 . Thus we
have

EP̂[n(t, A)] = EP̂
[∑

s≤t

1{Λ(s)∈A,Λ(s)̸=Λ(s−)}

]
= EP̂

[∑
k∈S

∑
s≤t

1{Λ(s)∈A,Λ(s)̸=Λ(s−),Λ(s−)=k}

]
= (n0 − 1)

∫ t

0

∫
A

1
n0 − 1

dlds =

∫ t

0

∫
A

dlds,

where dl is the counting measure on S. Then it follows that∫ t

0
eZ (s)[qΛ(s)(X (s)) − n0 + 1

]
ds =

∫ t

0
eZ (s)

∑
l ̸=Λ(s−)

[
qΛ(s−)l(X (s)) − 1

]
ds

=

∫ t

0

∫
S

eZ (s) [qΛ(s−)l(X (s)) − 1
]

dlds.

Putting these observations into (3.3) and using (3.2), we obtain

Mt
(
X (·),Λ(·)

)
− 1 =

∫
[0,t]×S

Ms−
(
X (·),Λ(·)

) [
qΛ(s−)l

(
X (s)

)
− 1

]
ñ(ds, dl), (3.4)

where ñ(t, A) = n(t, A) −EP̂[n(t, A)] is the compensated Poisson random measure with respect
to P̂ and also a martingale measure on [0,∞) × S.

Step 2. In general, there may exist some i ̸= j and x ∈ Rd so that qi j (x) = 0. We define
qεkl(x) := qkl(x) + ε for all k, l ∈ S with k ̸= l and x ∈ Rd . Also, we let qεkk(x) := qkk(x)
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− (n0 − 1)ε for all k ∈ S and x ∈ Rd . Then as ε ↓ 0, we have

qεkl(x) → qkl(x), and qεkk(x) → qkk(x)

uniformly with respect to x ∈ Rd for all l ̸= k ∈ S. Next we define

Mε
t (X (·),Λ(·)) := exp

{∫
[0,t]×S

log qεΛ(s−)l(X (s))n(dl, ds)

−

∫ t

0

[
qεΛ(s)(X (s)) − n0 + 1

]
ds
}
.

Thanks to Assumption 1.2 and the bounded convergence theorem, we have Mε
t (X (·),Λ(·)) →

Mt (X (·),Λ(·)) as ε ↓ 0. Moreover, by (3.4) in Step 1, we have

Mε
t (X (·),Λ(·)) − 1 =

∫ t

0

∫
S

Mε
s−(X (·),Λ(·))

[
qεΛ(s−)l

(
X (s)

)
− 1

]
ñ(ds, dl).

Now passing to the limit as ε ↓ 0, we obtain from the bounded convergence theorem that

Mt
(
X (·),Λ(·)

)
− 1 =

∫
[0,t]×S

Ms−
(
X (·),Λ(·)

) [
qΛ(s−)l

(
X (s)

)
− 1

]
ñ(ds, dl). (3.5)

Step 3. From (3.5), we can see that Mt (X (·),Λ(·)) is a martingale with mean 1 under P̂. This
completes the proof. □

Lemma 3.2. For any T > 0 and (x, k) ∈ Rd
× S, the function MT (X (·),Λ(·)) defined in (3.1) is

integrable with respect to the measure P̂.

Proof. The proof is similar to that of [36, Lemma 4.4] and we shall omit the details here. □

Let ε > 0 and notice that in view of (1.3), ν(x, k,Rd
\B(0, ε)) < ∞ for each (x, k) ∈ Rd

×S.
Then we can define a sequence of stopping times as follows. Let ζ (ε)

0 := 0 and for n ≥ 0,

ζ
(ε)
n+1 := inf{t ≥ ζ (ε)

n : |∆X (t)| = |X (t) − X (t−)| ≥ ε}. (3.6)

Lemma 3.3. Let Xε(t) := X (t) −
∫
|y|≥ε

yη(t, dy) for t ≥ 0 and define F
ζ

(ε)
1 −

:= σ {Xε(t ∧

ζ
(ε)
1 ),Λ(t ∧ ζ

(ε)
1 ) : t ≥ 0}. Then we have

P̂{τ1 > t} = exp{−(n0 − 1)t}, (3.7)

P̂
{
ζ

(ε)
1 > t |F

ζ
(ε)
1 −

}
= exp

{
−

∫ t

0
ν(Xε(u ∧ ζ

(ε)
1 ),Λ(u ∧ ζ

(ε)
1 ),Rd

\B(0, ε))du
}
. (3.8)

Proof. Eq. (3.7) follows directly from the construction of P̂ in Theorem 2.2. Now we prove
(3.8). Let Γ := Rd

\B(0, ε), and recall η(t,Γ ) defined in (1.8). Let us also denote

η̃(t,Γ ) := η(t,Γ ) −

∫ t

0
ν(X (u),Λ(u),Γ )du.



F. Xi, C. Zhu / Stochastic Processes and their Applications 128 (2018) 4277–4308 4289

Thanks to Theorem 1.4, η̃(t,Γ ) is a P̂-martingale. Consequently, for any t ≥ 0, we have

EP̂
[
η(t ∧ ζ

(ε)
1 ;Γ )

⏐⏐F
ζ

(ε)
1 −

]
= EP̂

[∫ t∧ζ (ε)
1

0
ν(X (u),Λ(u),Γ )du|F

ζ
(ε)
1 −

]
= EP̂

[∫ t

0
1

{ζ
(ε)
1 >u}

ν(X (u ∧ ζ
(ε)
1 ),Λ(u ∧ ζ

(ε)
1 ),Γ )du|F

ζ
(ε)
1 −

]
=

∫ t

0
P̂
{
ζ

(ε)
1 > u

⏐⏐F
ζ

(ε)
1 −

}
ν(Xε(u ∧ ζ

(ε)
1 ),Λ(u ∧ ζ

(ε)
1 ),Γ )du.

(3.9)

On the other hand, note that

η(t ∧ ζ
(ε)
1 ;Γ ) =

{
1 if ζ (ε)

1 ≤ t,
0 otherwise.

Thus we have

P̂
{
ζ

(ε)
1 > t

⏐⏐F
ζ

(ε)
1 −

}
= EP̂

[
1

{ζ
(ε)
1 >t}

⏐⏐F
ζ

(ε)
1 −

]
= EP̂

[(
1 − η(t ∧ ζ

(ε)
1 ;Γ )

)⏐⏐F
ζ

(ε)
1 −

]
= 1 − EP̂

[
η(t ∧ ζ

(ε)
1 ;Γ )

⏐⏐F
ζ

(ε)
1 −

]
.

(3.10)

Combining (3.9) and (3.10), we arrive at

1 − P̂
{
ζ

(ε)
1 > t

⏐⏐F
ζ

(ε)
1 −

}
=

∫ t

0
P̂
{
ζ

(ε)
1 > s

⏐⏐F
ζ

(ε)
1 −

}
× ν(Xε(s ∧ ζ

(ε)
1 ),Λ(s ∧ ζ

(ε)
1 ),Γ )ds. (3.11)

Let us denote u(t) := P̂{ζ
(ε)
1 > t |F

ζ
(ε)
1 −

} and v(t) := ν(Xε(t ∧ ζ
(ε)
1 ),Λ(t ∧ ζ

(ε)
1 ),Γ ). Then we

can rewrite (3.11) as u(t) +
∫ t

0 u(s)v(s)ds = 1, which, in turn, implies that

d
dt

(
e
∫ t

0 v(r )dr
∫ t

0
u(r )v(r )dr

)
= e

∫ t
0 v(r )drv(t)

[
u(t) +

∫ t

0
u(r )v(r )dr

]
= e

∫ t
0 v(r )drv(t).

Then it follows that

e
∫ t

0 v(r )dr
∫ t

0
u(r )v(r )dr =

∫ t

0
e
∫ s

0 v(r )drv(s)ds = e
∫ t

0 v(r )dr
− 1,

and hence

u(t) = 1 −

∫ t

0
u(s)v(s)ds = 1 −

(
1 − e−

∫ t
0 v(r )dr

)
= e−

∫ t
0 v(r )dr .

This establishes (3.8) and hence completes the proof of the lemma. □

Lemma 3.4. Let ε > 0 and define the stopping times ζ (ε)
n as in (3.6) and recall the sequence of

stopping times {τn} defined in (2.4). Then under P̂, {ζ (ε)
n , n ≥ 1} and {τn : n ≥ 1} are mutually

disjoint with probability 1.

Proof. It is enough to show that for any T > 0, {ζ (ε)
n : n ≥ 1, ζ (ε)

n ≤ T } and {τn : n ≥ 1, τn ≤ T }

are mutually disjoint with probability 1. To this end, we let M > 1 and for m = 0, 1, . . . ,M −1,
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we denote

J (ε)((m − 1)/M,m/M] := max
{
n ∈ N : ζ (ε)

n ≤ m/M
}

− max
{
n ∈ N : ζ (ε)

n ≤ (m − 1)/M
}
,

S((m − 1)/M,m/M] := max {n ∈ N : τn ≤ m/M}

− max {n ∈ N : τn ≤ (m − 1)/M} ,

and

Am :=
{

J (ε)((m − 1)/M,m/M] ≥ 1
}
, Bm := {S((m − 1)/M,m/M] ≥ 1} .

Thanks to (1.7), it follows that there exists some positive constant Kε such that

ν(x, k,Rd
\B(0, ε)) ≤ Kε < ∞, for all (x, k) ∈ Rd

× S. (3.12)

Then we have from (3.7), (3.8), (3.12), and Lemma 3.3 that

P̂
{
{ζ (ε)

n : n ≥ 1, ζ (ε)
n ≤ T } ∩ {τn : n ≥ 1, τn ≤ T } ̸= ∅

}
≤ P̂

{
there are one jump and one switch in the interval

(m − 1
M

,
m
M

]
for some m

}
≤

M−1∑
m=0

P̂ {Am ∩ Bm} =

M−1∑
m=0

P̂(Am )̂P(Bm |Am)

≤

M−1∑
m=0

(
1 − exp

{
−

∫ m
M

m−1
M

ν(Xε(s),Λ(s),Rd
\B(0, ε))ds

})(
1 − exp

{
−(n0 − 1)

1
M

})

≤

M−1∑
m=0

(
1 − exp

{
−Kε

1
M

})(
1 − exp

{
−(n0 − 1)

1
M

})
.

Furthermore, using the elementary inequality 1 − e−a
≤ a for a ≥ 0, we obtain

P̂
{
{ζ (ε)

n : n ≥ 1, ζ (ε)
n ≤ T } ∩ {τn : n ≥ 1, τn ≤ T } ̸= ∅

}
≤

M−1∑
m=0

n0 − 1
M

Kε

M
=

(n0 − 1)Kε

M
,

which can be arbitrarily small since the denominator M is arbitrary. This implies the desired
conclusion and hence completes the proof. □

Note that since X ∈ D([0,∞),Rd ), the set of discontinuity points of X is at most countable
for almost all ω ∈ Ω , see, e.g. [23]. Therefore we can again define the sequence of jump times for
X as follows. Let ζ0 := 0 and for n ≥ 0, define ζn+1 := inf{t ≥ ζn : |∆X (t)| = |X (t) − X (t−)|
> 0}.

Proposition 3.5. Under P̂, {ζn : n ≥ 1} and {τn : n ≥ 1} are mutually disjoint with
probability 1.

Proof. We first notice that {ζn : n ≥ 1} =
⋃

∞

m=1{ζ
(1/m)
n : n ≥ 1} and hence

{ζn : n ≥ 1} ∩ {τn : n ≥ 1} =

∞⋃
m=1

{ζ (1/m)
n : n ≥ 1} ∩ {τn : n ≥ 1}.
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Moreover, for each m = 1, 2, . . ., since (3.12) holds with ε =
1
m , Lemma 3.4 implies that

P̂
{
{ζ (1/m)

n : n ≥ 1} ∩ {τn : n ≥ 1} ̸= ∅
}

= 0. (3.13)

Therefore we deduce

P̂ {{ζn : n ≥ 1} ∩ {τn : n ≥ 1} ̸= ∅} ≤

∞∑
m=1

P̂
{
{ζ (1/m)

n : n ≥ 1} ∩ {τn : n ≥ 1} ̸= ∅
}

= 0.

This completes the proof. □

By virtue of Mt and P̂, we can construct another probability measure P on D([0,∞),Rd
×S)

such that P is a solution to the martingale problem for the operator A.

Theorem 3.6. For any given (x, k) ∈ Rd
× S, there exists a unique martingale solution P(x,k) on

D([0,∞),Rd
× S) for the operator A starting from (x, k).

Proof. For each t ≥ 0 and each A ∈ Ft , define

P(x,k)
t (A) =

∫
A

Mt (X (·),Λ(·)) dP̂(x,k). (3.14)

Thanks to Lemma 3.1, the family of probability measures {P(x,k)
t }t≥0 is consistent in the sense

that if 0 ≤ t1 ≤ t2 and A ∈ Ft1 , then P(x,k)
t2 (A) = P(x,k)

t1 (A). Thus by Tulcea’s extension theorem
(see, e.g., [31, Theorem 1.3.5]), there exists a unique probability measure P(x,k) on (Ω ,F) which
coincides with P(x,k)

t on Ft for all t ≥ 0. Moreover, we will prove that the P is the desired
martingale solution for the operator A starting from (x, k). To do so, analogously to the proof of
Lemma 4.2 in [36], we first prove that for each function f ∈ C∞

c (Rd
× S),

(
Mt M ( f )

t ,Ft , P̂
)

is a
martingale, where M ( f )

t is defined in (1.5). In fact, using integration by parts, we derive that

Mt M ( f )
t =

∫ t

0
M ( f )

s− dMs +

∫ t

0
Ms−dM̂ ( f )

s

+

∫ t

0
Ms−

(
dM ( f )

s − dM̂ ( f )
s

)
+

∑
s≤t

(
Ms − Ms−

)(
M ( f )

s − M ( f )
s−
)
,

(3.15)

where M̂ ( f )
t is defined in (2.6). Using (1.5), (3.1), and Proposition 3.5, we can compute∑

s≤t

(
Ms − Ms−

)(
M ( f )

s − M ( f )
s−
)

=

∑
s≤t

(Ms − Ms−)[ f (X (s),Λ(s)) − f (X (s),Λ(s−))]

=

∫
[0,t]×S

Ms−

(
Ms

Ms−
− 1

)
[ f (X (s), l) − f (X (s),Λ(s−))]n(ds, dl)

=

∫
[0,t]×S

Ms−
(
qΛ(s−)l(X (s)) − 1

)
[ f (X (s), l) − f (X (s),Λ(s−))]n(ds, dl).
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On the other hand,∫ t

0
Ms−

(
dM ( f )

s − dM̂ ( f )
s

)
= −

∫ t

0
Ms−

∑
l∈S

(
qΛ(s−)l(X (s)) − 1

)[
f (X (s), l) − f (X (s),Λ(s−))

]
ds.

Combining the last two displayed equations, and using the observations concerning the martin-
gale measure ñ(·, ·) in the proof of Lemma 3.1, we obtain∫ t

0
Ms−

(
dM ( f )

s − dM̂ ( f )
s

)
+

∑
s≤t

(
Ms − Ms−

)(
M ( f )

s − M ( f )
s−
)

=

∫
[0,t]×S

Ms−
(
qΛ(s−)l(X (s)) − 1

)
[ f (X (s), l) − f (X (s),Λ(s−))]̃n(ds, dl).

Then upon plugging the above equation into (3.15), it follows that

Mt M ( f )
t =

∫ t

0
M ( f )

s− dMs +

∫ t

0
Ms−dM̂ ( f )

s

+

∫
[0,t]×S

Ms−
(
qΛ(s−)l(X (s)) − 1

)
× [ f (X (s), l) − f (X (s),Λ(s−))]̃n(ds, dl).

(3.16)

We have shown respectively in Theorem 2.2 and Lemma 3.1 that M̂ ( f )
· and M· are martingales

under the measure P̂(x,k). Also recall from the proof of Lemma 3.1 that ñ(·, ·) is a martingale
measure on [0,∞)×S under P̂(x,k). Thus in view of (3.16), we conclude immediately that Mt M ( f )

t
is a martingale under P̂(x,k).

We now prove that for each function f ∈ C∞
c (Rd

× S),
(
M ( f )

t ,Ft ,P(x,k)
)

is a martingale.
Indeed, for any given 0 ≤ s < t and any given A ∈ Fs , we have∫

A
M ( f )

t dP(x,k)
=

∫
A

Mt M ( f )
t dP̂(x,k)

=

∫
A

Ms M ( f )
s dP̂(x,k)

=

∫
A

M ( f )
s dP(x,k),

where the second equality follows from the martingale property of
(
Mt M ( f )

t ,Ft , P̂(x,k)
)
, while

the first and third equalities hold true since P(x,k) coincides with the probability measure P(x,k)
t

given in (3.14). This shows that P(x,k) is a martingale solution for the operator A starting from
(x, k).

It remains to show that any martingale solution P̃ for the operator A starting from (x, k) must
agree with P(x,k) and therefore establishing the desired uniqueness. From [33], for any martingale
solution P(x,k) to the operator A, we have

P(x,k)(Λ(τ1) ∈ S \ {k}|Fτ1−

)
= −

∑
l∈S\{k}S\{k}

qkl

qkk

(
X (τ1−)

)
= 1.

Then the uniqueness can be established by using a similar argument as that in the proof of
Theorem 2.2. □

Remark 3.7. Thanks to Theorem 3.6, the martingale problem for the operator A defined in
(1.1) with any initial condition (x, k) ∈ Rd

× S is well-posed. Thus the process (X,Λ) is strong
Markov.
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4. Feller property

We proved in Theorem 3.6 that the martingale problem for the operator A defined in (1.1)
is well-posed. Consequently for any (x, k), there exists a unique probability measure P on
Ω = D([0,∞),Rd

×S) under which the coordinate process (X (t),Λ(t)) satisfies P{(X (0),Λ(0))
= (x, k)} = 1 and that for any f ∈ C∞

c (Rd
× S), the process M f

t defined in (1.5) is an
{Ft }-martingale. In this section, we will prove that in the probability space (Ω ,F ,P), the process
(X (t),Λ(t)) possesses the Feller property under the following conditions.

Assumption 4.1. Assume that there exist a positive constant H and a nondecreasing and concave
function ρ : [0,∞) ↦→ [0,∞) satisfying ρ(r ) > 0 for r > 0 and∫

0+

dr
ρ(r )

= ∞, (4.1)

such that for all k ∈ S and x, z ∈ Rd ,

∥σ (x, k) − σ (z, k)∥2
+ 2⟨x − z, b(x, k) − b(z, k)⟩ ≤ H |x − z|ρ(|x − z|), (4.2)

and ∫
Rd

0

|u|∥ν(x, k, ·) − ν(z, k, ·)∥(du) ≤ Hρ(|x − z|), (4.3)

where σ (x, k) ∈ Rd×d satisfies σ (x, k)σ (x, k)T
= a(x, k), and ∥ · ∥ denotes the Hilbert–Schmidt

norm for matrices or the total variation norm for signed measures. Here and below, T denotes the
transpose of a vector or matrix.

Assumption 4.2. Assume that

|qkl(x) − qkl(z)| ≤ H |x − z| (4.4)

for all x, z ∈ Rd and k ̸= l ∈ S, where constant H > 0 is the same as that in Assumption 4.1
without loss of generality.

Remark 4.3. For existence of a square root σ (x, k) of a(x, k) such as in Assumption 4.1
and the equivalence of different choices of the square root, we refer the reader to Stroock and
Varadhan [31] for details. Some common functions satisfying the conditions in Assumption 4.1
include ρ(r ) = r and concave and increasing functions such as ρ(r ) = r log(1/r ), ρ(r ) =

r log(log(1/r )), and ρ(r ) = r log(1/r ) log(log(1/r )) for r ∈ (0, δ) with δ > 0 small enough.

The main result of this section is:

Theorem 4.4. Suppose that Assumptions 1.2, 4.1 and 4.2 hold. Then the process (X,Λ) has
Feller property.

Let us first briefly describe our strategy toward the proof of Theorem 4.4. We first use the
coupling method to show in Lemma 4.6 that the Lévy type process X̃ (k) corresponding to the
operator Lk of (1.2) has Feller property under Assumptions 1.2(i) and 4.1. Lemma 4.7 further
establishes the Feller property for the killed Lévy type process X (k) under Assumption 4.2. Next
we show in Lemma 4.9 that the resolvent of (X,Λ) can be represented by a series of the resolvents
of the killed processes X (k), k ∈ S. This representation further helps us to establish (4.28). Finally
we use (4.28) together with Proposition 6.1.1 in [17] to derive the Feller property for the process
(X,Λ).
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Remark 4.5. (i) The recent paper Wang [32] also establishes the Feller property for the
Lévy type process X̃ (k) under a different set of conditions. In particular, the Lévy type kernel
is assumed to have a certain representation in [32]. By contrast, our goal is to establish the
Feller property for the two-component process (X,Λ) under Assumptions 1.2, 4.1 and 4.2. This
is achieved by establishing the Feller property for the Lévy type process X̃ (k) as well as the
killed Lévy type process X (k) under these assumptions. It is worth pointing out that Lemma 4.6
indicates that Assumptions 1.2(i) and 4.1 are sufficient conditions for the Feller property for the
Lévy type process X̃ (k). These assumptions, in particular, Assumption 4.1, seem more direct and
easier to verify in some sense compared with those in [32].

Recall that for each k ∈ S and x ∈ Rd , Assumption 1.2 guarantees that the operator Lk of
(1.2) uniquely determines a Lévy type process X̃ (k)(x) with initial condition X̃ (k)(x)(0) = x . Next
we kill the process X̃ (k)(x) at rate (−qkk):

Ek[ f (X (k)(x)(t))] = Ek[ f (X̃ (k)(x)(t)); t < τ ]

= Ek

[
exp

{∫ t

0
qkk(X̃ (k)(x)(s))ds

}
f (X̃ (k)(x)(t))

]
,

(4.5)

where τ := inf{t ≥ 0 : Λ(t) ̸= Λ(0)}. Equivalently, the killed Lévy type X (k)(x) can be defined
as X (k)(x)(t) = X̃ (k)(x)(t) if t < τ and X (k)(x)(t) = ∂ if t ≥ τ , where ∂ is a cemetery point
added to Rd . Moreover, we denote the transition probability families of the Lévy type process
X̃ (k) and the killed Lévy type process X (k) by {P̃ (k)(t, x, A) : t ≥ 0, x ∈ Rd , A ∈ B(Rd )} and
{P (k)(t, x, A) : t ≥ 0, x ∈ Rd , A ∈ B(Rd )}, respectively.

For an arbitrarily fixed k ∈ S, we now construct a coupling of the Lévy type process X̃ (k). To
this end, we need only to construct a coupling for its generator Lk . For x, z ∈ Rd , set

a(x, z, k) =

(
a(x, k) σ (x, k)σ (z, k)T

σ (z, k)σ (x, k)T a(z, k)

)
, b(x, z, k) =

(
b(x, k)
b(z, k)

)
.

Obviously, a(x, z, k) is nonnegative definite for all x, z ∈ Rd . For h(x, z) ∈ C2
0 (Rd

× Rd ), set

Ω̃d (k)h(x, z) =
1
2

tr
(
a(x, z, k)∇2h(x, z)

)
+ ⟨b(x, z, k),∇h(x, z)⟩, (4.6)

which is a coupling of the diffusion part in the generator Lk defined in (1.2) (refer to Chen and
Li [4]). Next, for h(x, z) ∈ C2

0 (Rd
× Rd ), set

Ω̃ j (k)h(x, z)

=

∫
[h(x + u, z) − h(x, z) − ⟨∇x h(x, z), u⟩1B(0,ε0)(u)]

(
ν(x, k, du) − ν(z, k, du)

)+
+

∫
[h(x, z + u) − h(x, z) − ⟨∇zh(x, z), u⟩1B(0,ε0)(u)]

×
(
ν(z, k, du) − ν(x, k, du)

)+
+

∫
[h(x + u, z + u) − h(x, z) − ⟨∇x h(x, z), u⟩1B(0,ε0)(u)

− ⟨∇zh(x, z), u⟩1B(0,ε0)(u)]
(
ν(x, k, (·)) ∧ ν(z, k, (·))

)
(du),

(4.7)

where (ν(x, k, ·) − ν(z, k, ·))+ = sup{ν(x, k, A) − ν(z, k, A) : A ∈ B(Rd
0 )} and (ν(z, k, ·) −

ν(x, k, ·))+ is defined in a similar fashion. Note that the operator Ω̃ j (k) defined in (4.7) is
a coupling of the jump part in the generator Lk defined in (1.2). Finally, combining the two
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couplings together, we get a coupling L̃k of the generator Lk as follows:

L̃kh(x, z) = Ω̃d (k)h(x, z) + Ω̃ j (k)h(x, z), (4.8)

for h(x, z) ∈ C2
0 (Rd

× Rd ).
To proceed, we now introduce the Wasserstein metric between two probability measures as

follows. For two probability measures P1 and P2 on (Rd ,B(Rd )), define

W
(
P1, P2

)
= inf

P̃

∫
|x − z|P̃(dx, dz),

where P̃ varies over all coupling probability measures with marginals P1 and P2; that is,

P̃(A × Rd ) = P1(A), and P̃(Rd
× A) = P2(A), for any A ∈ B(Rd ).

Lemma 4.6. Suppose that Assumptions 1.2(i) and 4.1 hold. For each k ∈ S, the Lévy type
process X̃ (k) generated by the Lévy type operator Lk defined in (1.2) has Feller property.

Proof. For an arbitrarily fixed k ∈ S, we need only to prove that for any t > 0, x, z ∈ Rd ,
P̃ (k)(t, x, ·) converges weakly to P̃ (k)(t, z, ·) as x → z. By virtue of Theorem 5.6 in [3], it
suffices to prove that

W
(
P̃ (k)(t, x, ·), P̃ (k)(t, z, ·)

)
→ 0 as x → z. (4.9)

We use the coupling L̃k constructed in (4.8) to establish (4.9). Let (X̃ (k), Z̃ (k)) denote the
coupling process corresponding to the coupling generator L̃k . Also let Pk denote the distribution
of (X̃ (k), Z̃ (k)) and Ek the corresponding expectation with a slight abuse of notation. By
Assumption 1.2 we readily know that the coupling process (X̃ (k), Z̃ (k)) is non-explosive.
Similarly to the proof of Theorem 2.3 in [4], set

TR := inf{t ≥ 0 : |X̃ (k)(t)|
2
+ |Z̃ (k)(t)|

2
> R}.

Thanks to the assumptions imposed on the function ρ, we can find a strictly decreasing
sequence {an} ⊂ (0, 1] with a0 = 1, limn→∞an = 0 and

∫ an−1
an

ρ−1(r )dr = n for every n ≥ 1.
For each n ≥ 1, there exists a continuous function ρn on R with support in (an, an−1) so that
0 ≤ ρn(r ) ≤ 2n−1ρ−1(r ) holds for every r > 0, and

∫ an−1
an

ρn(r )dr = 1.
Now consider the sequence of functions

ψn(r ) :=

∫
|r |

0

∫ y

0
ρn(u)dudy, r ∈ R, n ≥ 1. (4.10)

We can immediately verify that ψn is even and continuously differentiable, with |ψ ′
n(r )| ≤ 1

and limn→∞ψn(r ) = |r | for r ∈ R. Furthermore, for each r > 0, the sequence {ψn(r )}n≥1

is nondecreasing. Note also that for each n ∈ N , ψn, ψ
′
n and ψ ′′

n all vanish on the interval
(−an, an).

For any x, z ∈ Rd , set

A(x, z, k) = a(x, k) + a(z, k) − 2σ (x, k)σ (z, k)T ,

B̂(x, z, k) = ⟨x − z, b(x, k) − b(z, k)⟩,

and

A(x, z, k) = ⟨x − z, A(x, z, k)(x − z)⟩/|x − z|2.
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Then as in the proof of Theorem 3.1 in [4], we can verify directly that

2Ω̃d (k)ψn(|x − z|) = ψ ′′

n (|x − z|)A(x, z, k)

+
ψ ′

n(|x − z|)
|x − z|

[
tr(A(x, z, k)) − A(x, z, k) + 2B̂(x, z, k)

]
.

(4.11)

Note that tr(A(x, z, k)) = ∥σ (x, k) − σ (z, k)∥2 and hence we obtain from (4.2) that

trA(x, z, k) + 2B̂(x, z, k) ≤ H |x − z|ρ(|x − z|).

On the other hand, using (4.2) again,

A(x, z, k) =
⟨x − z, (σ (x, k) − σ (z, k))(σ (x, k) − σ (z, k))T (x − z)⟩

|x − z|2

≤ H |x − z|ρ(|x − z|).

Thanks to the construction of ψn , we have 0 ≤ ψ ′
n(r ) ≤ 1 and ψ ′′

n (r ) = ρn(r ) ≤
2

nρ(r ) I(an ,an−1)(r )
for all r ≥ 0. Putting the above estimates into (4.11), it then follows that

Ω̃d (k)ψn(|x − z|) ≤
1
2
ψ ′′

n (|x − z|)H |x − z|ρ(|x − z|) +
1
2
ψ ′

n(|x − z|)Hρ(|x − z|)

≤
H
n

|x − z|I(an ,an−1)(|x − z|) +
1
2

Hρ(|x − z|)

≤
Han−1

n
+

1
2

Hρ(|x − z|). (4.12)

By virtue of the mean value theorem and the fact that |ψ ′
n| ≤ 1, we have

ψn(|x + u − z|) − ψn(|x − z|) ≤ ||x + u − z| − |x − z|| ≤ |u|,

and ⏐⏐⟨∇xψn(|x − z|), u⟩1B(0,ε0)(u)
⏐⏐ ≤ |u|.

Then it follows that∫ (
ψn(|x + u − z|) − ψn(|x − z|) − ⟨∇xψn(|x − z|), u⟩1B(0,ε0)(u)

)
×
(
ν(x, k, du) − ν(z, k, du)

)+
≤ 2

∫
|u|
(
ν(x, k, du) − ν(z, k, du)

)+
.

Similarly, we have∫ (
ψn(|x − z − u|) − ψn(|x − z|) − ⟨∇zψn(|x − z|), u⟩1B(0,ε0)(u)

)
×
(
ν(z, k, du) − ν(x, k, du)

)+
≤ 2

∫
|u|
(
ν(x, k, du) − ν(z, k, du)

)+
.

Note that ∇xψn(|x − z|) = −∇zψn(|x − z|). Thus∫ [
ψn(|x + u − z − u|) − ψn(|x − z|) − ⟨∇xψn(|x − z|), u⟩1B(0,ε0)(u)

− ⟨∇zψn(|x − z|), u⟩1B(0,ε0)(u)
](
ν(x, k, du) ∧ ν(z, k, du)

)
= 0.
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Then, using the definition of Ω̃ j (k) in (4.7), we obtain

Ω̃ j (k)ψn(|x − z|)

≤ 2
∫

|u|
(
ν(x, k, du) − ν(z, k, du)

)+
+ 2

∫
|u|
(
ν(z, k, du) − ν(x, k, du)

)+
≤ 2

∫
|u|∥ν(x, k, ·) − ν(z, k, ·)∥(du) ≤ 2Hρ(|x − z|), (4.13)

where the last inequality follows from (4.3).
A combination of (4.12) and (4.13) yields

L̃kψn(|x − z|) = Ω̃d (k)ψn(|x − z|) + Ω̃ j (k)ψ(|x − z|)

≤
Han−1

n
+ 3Hρ(|x − z|), ∀x, z ∈ Rd .

Now we apply Itô’s formula to the process ψn(|X̃ (k)(x)(·) − Z̃ (k)(z)(·)|) to obtain

Ek
[
ψn(|X̃ (k)(x)(t ∧ TR) − Z̃ (k)(z)(t ∧ TR)|)

]
= ψn(|x − z|) + Ek

[∫ t∧TR

0
L̃kψn(|X̃ (k)(x)(s) − Z̃ (k)(z)(s)|)ds

]
≤ ψn(|x − z|) +

Han−1t
n

+ 3HEk

[∫ t∧TR

0
ρ
(
|X̃ (k)(x)(s) − Z̃ (k)(z)(s)|

)
ds
]
.

(4.14)

Recall that ψn(|x |) ↑ |x | and an → 0 as n → ∞. Therefore, passing to the limit as n → ∞

on both sides of (4.14), it follows from the monotone convergence theorem that

Ek
[
|X̃ (k)(x)(t ∧ TR) − Z̃ (k)(z)(t ∧ TR)|

]
≤ |x − z| + 3HEk

[∫ t∧TR

0
ρ
(
|X̃ (k)(x)(s) − Z̃ (k)(z)(s)|

)
ds
]
.

Furthermore, passing to the limit as R → ∞, we have by Fatou’s lemma and the monotone
convergence theorem that

Ek
[
|X̃ (k)(x)(t) − Z̃ (k)(z)(t)|

]
≤ |x − z| + 3HEk

[∫ t

0
ρ
(
|X̃ (k)(x)(s) − Z̃ (k)(z)(s)|

)
ds
]

≤ |x − z| + 3HEk

[∫ t

0
ρ
(
|X̃ (k)(x)(s) − Z̃ (k)(z)(s)|

)
ds
]

≤ |x − z| + 3H
∫ t

0
ρ
(
Ek
[
|X̃ (k)(x)(s) − Z̃ (k)(z)(s)|

])
ds, (4.15)

where the last inequality follows from Fubini’s theorem and Jenson’s inequality. Denote u(t) :=

Ek
[
|X̃ (k)(x)(t) − Z̃ (k)(z)(t)|

]
and v(t) := |x − z| + 3H

∫ t
0 ρ(u(s))ds. Then by (4.15), we have

0 ≤ u(t) ≤ v(t). Define G(r ) :=
∫ r

1
ds
ρ(s) for r > 0. Then G is nondecreasing and satisfies

limr↓0G(r ) = −∞ thanks to (4.1). In addition, we have

G(u(t)) ≤ G(v(t)) = G(|x − z|) +

∫ t

0
G ′(v(s))v′(s)ds

= G(|x − z|) + 3H
∫ t

0

ρ(u(s))
ρ(v(s))

ds ≤ G(|x − z|) + 3Ht,

where the last inequality follows from the assumption that ρ is nondecreasing. Let also G−1(r ) :=

inf{s ≥ 0 : G(s) > r} for r ∈ R. Then G−1 is nondecreasing and satisfies limr→−∞G−1(r ) = 0.
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Furthermore, we have

0 ≤ u(t) = Ek
[
|X̃ (k)(x)(t) − Z̃ (k)(z)(t)|

]
≤ G−1(G(|x − z|) + 3Ht). (4.16)

In particular, when |x − z| → 0, we see that the right most expression of (4.16) converges to 0
and so does u(t). This implies (4.9) and hence completes the proof. □

Lemma 4.7. Suppose that Assumptions 1.2, 4.1 and 4.2 hold. For each k ∈ S, the killed Lévy
type process X (k) introduced in (4.5) has Feller property.

Proof. For an arbitrarily fixed k ∈ S, we need only to prove that for any given t > 0 and
f ∈ Cb(Rd ),⏐⏐Ek

[
f (X (k)(x)(t))

]
− Ek

[
f (X (k)(z)(t))

]⏐⏐
=

⏐⏐⏐⏐Ek

[
f (X̃ (k)(x)(t)) exp

{∫ t

0
qkk(X̃ (k)(x)(s))ds

}]
− Ek

[
f (X̃ (k)(z)(t)) exp

{∫ t

0
qkk(X̃ (k)(z)(s))ds

}]⏐⏐⏐⏐
(4.17)

tends to zero as |x − z| → 0. Using the coupling process (X̃ (k), Z̃ (k)) generated by the coupling
generator L̃k as in the proof of Lemma 4.6, we obtain that for any given ε > 0, the right-hand
side of equality (4.17) equals⏐⏐⏐⏐Ek

[
f (X̃ (k)(x)(t)) exp

{∫ t

0
qkk(X̃ (k)(x)(s))ds

}]
− Ek

[
f (Z̃ (k)(z)(t)) exp

{∫ t

0
qkk(Z̃ (k)(z)(s))ds

}]⏐⏐⏐⏐
≤ Ek

[⏐⏐⏐⏐ f (X̃ (k)(x)(t)) exp
{∫ t

0
qkk(X̃ (k)(x)(s))ds

}
− f (Z̃ (k)(z)(t)) exp

{∫ t

0
qkk(Z̃ (k)(z)(s))ds

}⏐⏐⏐⏐]
≤ ∥ f ∥Ek

[⏐⏐⏐⏐ exp
{∫ t

0
qkk(X̃ (k)(x)(s))ds

}
− exp

{∫ t

0
qkk(Z̃ (k)(z)(s))ds

}⏐⏐⏐⏐] (4.18)

+ 2∥ f ∥Ek

[
exp

{∫ t

0
qkk(Z̃ (k)(z)(s))ds

}
1{| f (X̃ (k)(x)(t))− f (Z̃ (k)(z)(t))|≥ε}

]
+ εEk

[
exp

{∫ t

0
qkk(Z̃ (k)(z)(s))ds

}
1{| f (X̃ (k)(x)(t))− f (Z̃ (k)(z)(t))|<ε}

]
:= (4.18.I) + (4.18.II) + (4.18.III),

where ∥ f ∥ denotes the uniform (or supremum) norm of the function f . Noting that qkk ≤ 0 and
the elementary inequality |e−a

− e−b
| ≤ |a − b| for a, b > 0, we obtain from (4.4) and (4.16)

that

(4.18).I ≤ ∥ f ∥Ek

[⏐⏐⏐⏐ ∫ t

0
qkk(X̃ (k)(x)(s))ds −

∫ t

0
qkk(Z̃ (k)(z)(s))ds

⏐⏐⏐⏐]
≤ (n0 − 1)H∥ f ∥

∫ t

0
Ek

[⏐⏐⏐X̃ (k)(x)(s) − Z̃ (k)(z)(s)
⏐⏐⏐]ds

≤ (n0 − 1)H∥ f ∥

∫ t

0
G−1(G(|x − z|) + 3Hs)ds,

(4.19)
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where G and G−1 are the functions defined in the proof of Lemma 4.6. Since both G and
G−1 are nondecreasing, for all s ∈ [0, t] and x, z ∈ Rd with |x − z| ≤ 1, we have
0 ≤ G−1(G(|x − z|) + 3Hs) ≤ G−1(G(1) + 3Ht) = G−1(3Ht), which is integrable on the
interval [0, t]. Thus it follows from the dominated convergence theorem and (4.16) that (4.18).I
→ 0 as |x − z| → 0. Moreover, in view of (4.16), we have that X̃ (k)(x)(t) converges to Z̃ (k)(z)(t)
in probability Pk as |x − z| → 0. Thus, from the continuity of f , we obtain that f (X̃ (k)(x)(t))
also converges to f (Z̃ (k)(z)(t)) in probability Pk as |x − z| → 0. Combining this with qkk ≤ 0,
we derive that

(4.18).II ≤ 2∥ f ∥Pk
(⏐⏐ f (X̃ (k)(x)(t)) − f (Z̃ (k)(z)(t))

⏐⏐ ≥ ε
)

→ 0 (4.20)

as |x − z| → 0. Using the fact that qkk ≤ 0 again, we see that (4.18).III does not exceed ε; which
can be arbitrarily small. Combining this, (4.18), (4.19) and (4.20) together, we conclude that the
right-hand side of equality (4.17) tends to zero as |x − z| → 0. The proof is complete. □

Lemma 4.8. Let Z be the subprocess of Z̃ killed at the rate q with lifetime ζ , that is,

E[ f (Z (x)(t))] = E
[

f (Z̃ (x)(t)); t < ζ
]

= E
[

exp
{
−

∫ t

0
q(Z̃ (x)(s))ds

}
f (Z̃ (x)(t))

]
, (4.21)

where Z̃ is a right continuous strong Markov process, q ≥ 0 on Rd , and f ∈ Bb(Rd ). Then for
any nonnegative function φ on Rd and constant α > 0, we have

E[e−αζφ(Z (x)(ζ−))] = G Z
α (qφ)(x), (4.22)

where {G Z
α , α > 0} denotes the resolvent for the killed process Z.

Proof. By the definition of the resolvent and (4.21), we get

G Z
α (qφ)(x) = E

[∫
∞

0
e−αt (qφ)(Z (x)(t))dt

]
= E

[∫
∞

0
e−αt (qφ)(Z̃ (x)(t)) exp

{
−

∫ t

0
q(Z̃ (x)(s))ds

}
dt
]
,

which by page 286 in [26] (putting m t = exp{−
∫ t

0 q(Z̃ (s))ds}1(t<ζ ) there) equals the left-hand
side in (4.22). □

For each k ∈ S, let {G(k)
α , α > 0} be the resolvent for the generator Lk + qkk . Let us also

denote by {Gα, α > 0} the resolvent for the generator A defined in (1.1). Let

G0
α =

⎛⎜⎜⎜⎜⎝
G(1)
α 0 · · · 0
0 G(2)

α · · · 0
...

...
. . .

...

0 0 · · · G(n0)
α

⎞⎟⎟⎟⎟⎠ and

Q0(x) = Q(x) −

⎛⎜⎜⎜⎜⎝
q11(x) 0 · · · 0

0 q22(x) · · · 0
...

...
. . .

...

0 0 · · · qn0n0 (x)

⎞⎟⎟⎟⎟⎠ .
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Lemma 4.9. Suppose that Assumption 1.2 holds. There exists a constant α1 > 0 such that for
any α ≥ α1 and any f (·, k) ∈ Bb(Rd ) with k ∈ S,

Gα f = G0
α f +

∞∑
m=1

G0
α

(
Q0G0

α

)m f. (4.23)

Proof. Let f (x, k) ≥ 0 on Rd
× S. Applying the strong Markov property at the first switching

time τ and recalling the construction of (X,Λ), we obtain

Gα f (x, k) = Ex,k

[∫
∞

0
e−αt f (X (t),Λ(t))dt

]
= Ex,k

[∫ τ

0
e−αt f (X (t), k)dt

]
+ Ex,k

[∫
∞

τ

e−αt f (X (t),Λ(t))dt
]

= G(k)
α f (x, k) + Ex,k

[
e−ατGα f (X (τ ),Λ(τ ))

]
= G(k)

α f (x, k) +

∑
l∈S\{k}

Ex,k

[
e−ατ

(
−

qkl

qkk

)
(X (τ−))Gα f (X (τ−), l)

]
= G(k)

α f (x, k) +

∑
l∈S\{k}

G(k)
α (qkl Gα f (·, l))(x),

where the last equality follows from (4.22) in Lemma 4.8. Hence we have

Gα f (x, k) = G(k)
α f (·, k)(x) + G(k)

α

( ∑
l∈S\{k}

qkl Gα f (·, l)
)

(x). (4.24)

Of course, we know that the second term on the right hand side of (4.24) equals

G(k)
α

( ∑
l∈S\{k}

qkl G(l)
α f (·, l)

)
(x) = G(k)

α

( ∑
l∈S\{k}

qkl G(l)
α

( ∑
l1∈S\{l}

qll1 Gα f (·, l1)
))

(x).

Hence, we further obtain that for any fixed k ∈ S and any integer m ≥ 1,

Gα f (x, k) =

m∑
i=0

ψ
(k)
i (x) + R(k)

m (x), (4.25)

where

ψ
(k)
0 = G(k)

α f (·, k),

ψ
(k)
1 = G(k)

α

( ∑
l∈S\{k}

qkl G(l)
α f (·, l)

)
= G(k)

α

( ∑
l∈S\{k}

qklψ
(l)
0

)
,

and for i ≥ 1,

ψ
(k)
i = G(k)

α

( ∑
l∈S\{k}

qklψ
(l)
i−1

)
.

By Assumption 1.2 we know that +∞ > H := max{∥qkk∥ : k ∈ S} ≥ max{∥qkl∥ : k ̸= l ∈ S},
where ∥qkl∥ denotes the uniform (or supremum) norm of the function qkl as before and constant
H is the same as that in Assumption 4.1. Therefore,

∥ψ
(k)
1 ∥ ≤

∑
l∈S\{k}

∥G(k)
α (qklψ

(l)
0 )∥ ≤

H
α

∑
l∈S\{k}

∥ψ
(l)
0 ∥.
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Thus, we get that∑
k∈S

∥ψ
(k)
1 ∥ ≤

(n0 − 1)H
α

∑
k∈S

∥ψ
(k)
0 ∥ ≤

1
2

∑
k∈S

∥ψ
(k)
0 ∥

when α ≥ α1 := 2(n0 − 1)H . A similar argument yields that for i ≥ 1,∑
k∈S

∥ψ
(k)
i ∥ ≤

1
2

∑
k∈S

∥ψ
(k)
i−1∥ ≤

1
2i

∑
k∈S

∥ψ
(k)
0 ∥ (4.26)

and

∥R(k)
m (·)∥ ≤

1
2m

∑
k∈S

∥Gα f (·, k)∥ (4.27)

when α ≥ α1. Combining (4.26) and (4.27) with (4.25) and letting m ↑ ∞, we conclude that for
each k ∈ S, Gα f (·, k) =

∑
∞

i=0ψ
(k)
i , which clearly implies (4.23). The lemma is proved. □

Lemma 4.9 and in particular (4.23) establishes the relationship between the resolvent of (X,Λ)
and those of the killed Lévy type processes X (k), k ∈ S. Now we are in the position to give the
proof of Theorem 4.4.

Proof of Theorem 4.4. Denote the transition probability family of Markov process (X,Λ) by
{P(t, (x, k), A) : t ≥ 0, (x, k) ∈ Rd

× S, A ∈ B(Rd
× S)}. We first prove that for any given

t > 0, x ∈ Rd , k, l ∈ S and A ∈ B(Rd ),

P(t, (x, k), A × {l})

= δkl P (k)(t, x, A) +

+∞∑
m=1

∫
· · ·

∫
0<t1<t2<···<tm<t

∑
l0,l1,l2,...,lm∈S

li ̸=li+1,l0=k,lm=l

∫
Rd

· · ·

∫
Rd

P (l0)

× (t1, x, dy1)ql0l1 (y1)

× P (l1)(t2 − t1, y1, dy2) · · · qlm−1lm (ym)P (lm )(t − tm, ym, A)dt1dt2 · · · dtm, (4.28)

where δkl is the Kronecker symbol in k, l, which equals 1 if k = l and 0 if k ̸= l. To prove (4.28),
denote its the right-hand side by P̃(t, (x, k), A × {l}) for brevity. For any bounded function
f (x, k) defined on Rd

× S such that f (·, k) is Lipschitz continuous for each k ∈ S, we define

Pt f (x, k) := Ex,k[ f (X (t),Λ(t))] =

∑
l∈S

∫
Rd

f (y, l)P(t, (x, k), dy × {l}), (4.29)

and

P̃t f (x, k) :=

∑
l∈S

∫
Rd

f (y, l)P̃(t, (x, k), dy × {l})

=

∑
l∈S

[∫
Rd
δkl f (y, l)P (k)(t, x, dy) +

+∞∑
m=1

∫
· · ·

∫
0<t1<t2<···<tm<t∑

l0,l1,l2,...,lm∈S
li ̸=li+1,l0=k,lm=l

∫
Rd

· · ·

∫
Rd

P (l0)(t1, x, dy1)ql0l1 (y1)P (l1)(t2 − t1, y1, dy2) · · ·

× qlm−1lm (ym)P (lm )(t − tm, ym, dy)dt1dt2 · · · dtm

]
. (4.30)
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Since the process (X,Λ) has right continuous sample paths, it follows from the continuity of
f and the bounded convergence theorem that the function t ↦→ Pt f (x, k) is right continuous.
Similarly for every l ∈ S and each m = 0, 1, . . ., every term on the right-hand side of (4.30)
is a right-continuous function in t . Moreover, using Assumption 1.2 and the boundedness of the
function f , we can see that the series on the right-hand side of (4.30) is absolutely convergent.
Therefore it follows that the function t ↦→ P̃t f (x, k) is also right continuous.

On the other hand, using Lemma 4.9 and in particular (4.23), for any α > 0, we have∫
∞

0
e−(α+α1)t eα1t Pt f (x, k)dt =

∫
∞

0
e−(α+α1)t eα1t P̃t f (x, k)dt,

where α1 is as in the statement of Lemma 4.9. Since both Pt f (x, k) and P̃t f (x, k) are right
continuous in t , we can apply the uniqueness theorem of Laplace transform (refer to [3, Theorem
1.38]) to conclude that eα1t Pt f (x, k) = eα1t P̃t f (x, k). That is,∑

l∈S

∫
f (y, l)P(t, (x, k), dy × {l}) =

∑
l∈S

∫
f (y, l)P̃(t, (x, k), dy × {l}). (4.31)

Now we prove (4.28) by the Monotone Class Theorem (see, e.g., Theorem 1.35 in [3]). Denote
by L the family of bounded and Borel measurable functions defined on Rd

× S such that (4.31)
holds. From the above argument, we know that L contains all bounded and Lipschitz continuous
functions on Rd

×S. Next we show that L is a so-called L-system (c.f. Definition 1.34 in Section
1.5 of [3]). Firstly, L obviously contains the constant function 1. Secondly, for c1 and c2 in R
and f1 and f2 in L , we clearly have c1 f1 + c2 f2 in L . Thirdly, if fn ∈ L with 0 ≤ fn ↑ f , then
f ∈ L by the monotone convergence theorem. Hence, according to the definition of L-system
[3, Definition 1.34], L is an L-system. Moreover, let C denote the set of all the open sets in
Rd

× S. Note that C is a π -system and recall that L contains the set of all bounded Lipschitz
continuous functions defined on Rd

× S. Therefore, by virtue of the monotone class theorem
(refer to [3, Theorem 1.35]), the family L contains the set of all bounded measurable functions
defined on Rd

× S. In particular, for any given A ∈ B(Rd ) and l ∈ S, the family L contains the
function 1A×{l}(x, k), which implies that (4.28) holds.

Finally, we use (4.28) to prove the Feller property for (X,Λ). By Lemma 4.7, we know that
for every k ∈ S, X (k) has the Feller property. Therefore, in view of Proposition 6.1.1 in [17] and
Assumption 1.2, we derive that P (k)(t, x, A) and every term in the series on the right-hand side
of (4.28) are lower semicontinuous with respect to x whenever A is an open set in B(Rd ). This
then implies that the left-hand side of (4.28) is lower semicontinuous with respect to (x, k) for
every l ∈ S whenever A is an open set in B(Rd ) by noting that S is a finite set and has discrete
metric. Consequently, (X,Λ) has the Feller property (see Proposition 6.1.1 in [17] again). The
theorem is proved. □

5. Strong Feller property

In this section, we study the strong Feller property for the coordinate process (X (t),Λ(t)) in
the underlying probability space (Ω ,F ,P) as specified in Section 4. We first make the following
assumption.

Assumption 5.1. There exists a λ0 > 0 such that ⟨ξ, a(x, k)ξ⟩ ≥ λ0|ξ |
2 for all x, ξ ∈ Rd and

k ∈ S. Denote by σλ0 (x, k) the unique symmetric nonnegative definite matrix-valued function
such that σ 2

λ0
(x, k) = a(x, k) − λ0 I . In addition, there exist positive constants δ0, H and a
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nonnegative function ϑ defined on [0, δ0] satisfying limr→0ϑ(r ) = 0 such that

2⟨x − z, b(x, k) − b(z, k)⟩ + |σλ0 (x, k) − σλ0 (z, k)|2 ≤ 2H |x − z|ϑ(|x − z|), (5.1)∫
Rd

0

|u|∥ν(x, k, ·) − ν(z, k, ·)∥(du) ≤
H
2
ϑ(|x − z|) (5.2)

for all x, z ∈ Rd with |x − z| ≤ δ0 and all k ∈ S.

Remark 5.2. The uniform ellipticity condition for the diffusion matrix a(x, k) in Assumption 5.1
is quite standard in the literature. Indeed, similar assumptions were used in [20–22] to obtain the
strong Feller property.

Proposition 5.3. Under Assumptions 4.1, 4.2, and 5.1, for each k ∈ S, both the Lévy type process
X̃ (k) and the killed Lévy type process X (k) are strong Feller.

Proof. The proof is motivated by Priola and Wang [21]. Fix an arbitrary k ∈ S throughout
the proof. Let σλ0 (x, k) be as in Assumption 5.1 and put c(x, z, k) := λ0(I − 2(x − z)(x −

z)T /|x − z|2) + σλ0 (x, k)σλ0 (z, k)T for all x, z ∈ Rd . For x, z ∈ Rd , set

â(x, z, k) =

(
a(x, k) c(x, z, k)

c(x, z, k)T a(z, k)

)
, b(x, z, k) =

(
b(x, k)
b(z, k)

)
.

We can verify directly that â(x, z, k) is symmetric and nonnegative definite for all x, z ∈ Rd .
Then we define

Ω̂d (k)h(x, z) :=
1
2

tr(̂a(x, z, k)∇2h(x, z)) + ⟨b(x, z, k),∇h(x, z)⟩,

and

L̂kh(x, z) := Ω̂d (k)h(x, z) + Ω̃ j (k)h(x, z), (5.3)

where h ∈ C2
0 (Rd

× Rd ) and Ω̃ j (k) is defined in (4.7). Let

A(x, z, k) = a(x, k) + a(z, k) − 2c(x, z, k),

A(x, z, k) =
1

|x − z|2
⟨x − z, A(x, z, k)(x − z)⟩,

B(x, z, k) = ⟨x − z, b(x, k) − b(z, k)⟩.

Straightforward computations lead to

tr(A(x, z, k)) = ∥σ (x, k) − σ (z, k)∥2
+ 4λ0 and A(x, z, k) ≥ 4λ0. (5.4)

Consider the function F(r ) :=
r

1+r , r ≥ 0. Then F ′(r ) =
1

(1+r )2 > 0 and F ′′(r ) =
−2

(1+r )3 < 0 for
all r ≥ 0. Consequently it follows from (5.1) and (5.4) that

Ω̃d (k)F(|x − z|) =
1
2

F ′′(|x − z|)A(x, z, k)

+
F ′(|x − z|)

2|x − z|

[
tr(A(x, z, k)) − A(x, z, k) + 2B(x, z, k)

]
≤ 2λ0 F ′′(|x − z|) + H F ′(|x − z|)ϑ(|x − z|)

=
−4λ0

(1 + |x − z|)3 +
H

(1 + |x − z|)2ϑ(|x − z|), (5.5)

for all x, z ∈ Rd with |x − z| ≤ δ0.
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Next we estimate Ω̃ j (k)F(|x − z|). To this end, we note that since F is concave, it follows that
for any x, z ∈ Rd and u ∈ Rd

0 , we have

F(|x + u − z|) − F(|x − z|) − ⟨∇x F(|x − z|), u⟩1B(0,ε0)(u)

≤ F ′(|x − z|)(|x + u − z| − |x − z|) −
F ′(|x − z|)

|x − z|
⟨x − z, u⟩1B(0,ε0)(u)

≤
2|u|

(1 + |x − z|)2 .

Hence it follows that∫ [
F(|x + u − z|) − F(|x − z|) − ⟨∇x F(|x − z|), u⟩1B(0,ε0)(u)

]
×
(
ν(x, k, du) − ν(z, k, du)

)+
≤

2
(1 + |x − z|)2

∫
|u|
(
ν(x, k, du) − ν(z, k, du)

)+
.

In the same manner, we have∫ [
F(|x − (z + u)|) − F(|x − z|) − ⟨∇z F(|x − z|), u⟩1B(0,ε0)(u)

]
×
(
ν(x, k, du) − ν(z, k, du)

)+
≤

2
(1 + |x − z|)2

∫
|u|
(
ν(z, k, du) − ν(x, k, du)

)+
.

On the other hand, since ∇x F(|x − z|) = −∇z F(|x − z|), we have∫ [
F(|x + u − z − u|) − F(|x − z|) − ⟨∇x F(|x − z|), u⟩1B(0,ε0)(u)

− ⟨∇z F(|x − z|), u⟩1B(0,ε0)(u)
](
ν(x, k, du) ∧ ν(z, k, du)

)
= 0.

Then, using the definition of Ω̃ j (k) in (4.7) and condition (5.2), we obtain

Ω̃ j (k)F(|x − z|)

≤
2

(1 + |x − z|)2

[ ∫
|u|
(
ν(x, k, du) − ν(z, k, du)

)+
+

∫
|u|
(
ν(z, k, du) − ν(x, k, du)

)+]
≤

2
(1 + |x − z|)2

∫
|u|∥ν(x, k, ·) − ν(z, k, ·)∥(du)

≤
H

(1 + |x − z|)2ϑ(|x − z|), (5.6)

for all x, z ∈ Rd with |x − z| ≤ δ0.
Plugging (5.5) and (5.6) into (5.3), we obtain that for all x, z ∈ Rd with |x − z| ≤ δ0,

L̂k F(|x − z|) ≤
−4λ0

(1 + |x − z|)3 +
2H

(1 + |x − z|)2ϑ(|x − z|)

≤
−4λ0

(1 + δ0)3 + 2Hϑ(|x − z|).
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Furthermore, since λ0 > 0 and limr↓0ϑ(r ) = 0, it follows that there exist positive constants κ
and δ (0 < δ < δ0), we have

L̂k F(|x − z|) ≤ −κ, for all 0 < |x − z| ≤ δ. (5.7)

Given x ̸= z with δ > |x − z| > 1
m0

, where m0 ∈ N. Let (X̃ (k)(x), Z̃ (k)(z)) be the coupling

process corresponding to the operator L̂k and denote by T the coupling time. For n, N ∈ N and
the δ in (5.7), define

Tn := inf
{

t ≥ 0 : |X̃ (k)(x)(t) − Z̃ (k)(z)(t)| <
1
n

}
,

σN := inf{t ≥ 0 : |X̃ (k)(x)(t)| + |Z̃ (k)(z)(t)| > N },

and

Sδ := inf{t ≥ 0 : |X̃ (k)(x)(t) − Z̃ (k)(z)(t)| > δ}.

We have

0 ≤ F(δ)Pk {Tn ∧ σN > Sδ}

≤ Ek[F(|X̃ (k)(x)(Tn ∧ Sδ ∧ σN ) − Z̃ (k)(z)(Tn ∧ Sδ ∧ σN )|)]

= F(|x − z|) + Ek

[∫ Tn∧Sδ∧σN

0
L̂k F(|X̃ (k)(x)

− Z̃ (k)(z)
|)ds

]
≤ F(|x − z|) − κEk[Tn ∧ Sδ ∧ σN ],

where the last inequality follows from (5.7). Then it follows that

F(δ)Pk {Tn ∧ σN > Sδ} + κ Ek[Tn ∧ Sδ ∧ σN ] ≤ F(|x − z|).

Since Tn → T a.s. as n → ∞ and σN → ∞ a.s. as N → ∞, we have

F(δ)Pk {T > Sδ} + κ Ek[T ∧ Sδ] ≤ F(|x − z|).

Then for any t > 0 and 0 < |x − z| < δ,

Pk {T > t} = Pk {T > t, Sδ > t} + Pk {T > t, Sδ ≤ t}

≤ Pk {T ∧ Sδ > t} + Pk {T > Sδ}

≤
1
t
Ek[T ∧ Sδ] + Pk {T > Sδ}

≤

(
1
tκ

+
1

F(δ)

)
F(|x − z|).

This implies the strong Feller property for the Lévy type process X̃ (k) immediately. Indeed, for
any f ∈ Bb(Rd ), t > 0, and 0 < |x − z| < δ, we have⏐⏐Ek

[
f (X̃ (k)(x)(t))

]
− Ek

[
f (X̃ (k)(z)(t))

]⏐⏐ ≤ Ek
[⏐⏐ f (X̃ (k)(x)(t)) − f (X̃ (k)(z)(t))

⏐⏐]
= Ek

[⏐⏐ f (X̃ (k)(x)(t)) − f (X̃ (k)(z)(t))
⏐⏐I{T>t}

]
≤ 2∥ f ∥∞Pk {T > t} → 0, as |x − z| → 0.
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Finally, as in the proof of Lemma 4.7, for any f ∈ Bb(Rd ), t > 0, and 0 < |x − z| < δ, we can
write ⏐⏐Ek

[
f (X (k)(x)(t))

]
− Ek

[
f (X (k)(z)(t))

]⏐⏐
≤ Ek

[⏐⏐⏐ f (X̃ (k)(x)(t))e
∫ t

0 qkk (X̃ (k)(x)(s))ds
− f (Z̃ (k)(z)(t))e

∫ t
0 qkk (Z̃ (k)(z)(s))ds

⏐⏐⏐]
≤ Ek

[⏐⏐ f (X̃ (k)(x)(t)) − f (Z̃ (k)(z)(t))
⏐⏐e∫ t

0 qkk (X̃ (k)(x)(s))ds
]

+ Ek

[
f (Z̃ (k)(z)(t))

⏐⏐e∫ t
0 qkk (X̃ (k)(x)(s))ds

− e
∫ t

0 qkk (Z̃ (k)(z)(s))ds
⏐⏐]

≤ 2∥ f ∥∞Pk {T > t} + ∥ f ∥∞Ek

[⏐⏐⏐⏐ ∫ t

0
qkk(X̃ (k)(x)(s))ds −

∫ t

0
qkk(Z̃ (k)(z)(s))ds

⏐⏐⏐⏐]
≤ 2∥ f ∥∞

(
1
tκ

+
1

F(δ)

)
F(|x − z|) + H (n0 − 1)∥ f ∥∞

× Ek

[∫ t

0

⏐⏐X̃ (k)(x)(s) − Z̃ (k)(z)(s)
⏐⏐ds
]

≤ 2∥ f ∥∞

(
1
tκ

+
1

F(δ)

)
F(|x − z|) + H (n0 − 1)∥ f ∥∞

∫ t

0
G−1(G(|x − z|) + 3Hs)ds,

where the second last inequality above follows from Assumption 4.2 and the last inequality
follows from (4.16). Note that F(·) is continuous with F(0) = 0. In addition, recall that we
argued in the proof of Lemma 4.7 that

∫ t
0 G−1(G(|x − z|) + 3Hs)ds → 0 as |x − z| → 0. Thus

it follows that
⏐⏐Ek

[
f (X (k)(x)(t))

]
− Ek

[
f (X (k)(z)(t))

]⏐⏐ → 0 as |x − z| → 0. On the other hand,
for any |x − z| ≥ δ, we have⏐⏐Ek

[
f (X (k)(x)(t))

]
− Ek

[
f (X (k)(z)(t))

]⏐⏐ ≤ 2δ−1
∥ f ∥∞|x − z|.

Therefore we obtain the desired strong Feller property for the killed Lévy process X (k). This
completes the proof. □

With Proposition 5.3 at our hands, we can use exactly the same arguments as those in the
proof of Theorem 4.4 to establish the following theorem.

Theorem 5.4. Under the conditions of Proposition 5.3, the process (X,Λ) possesses the strong
Feller property.
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