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Abstract

This paper aims to investigate the numerical approximation of a general second order parabolic
stochastic partial differential equation(SPDE) driven by multiplicative and additive noise. Our main
interest is on such SPDEs where the nonlinear part is stronger than the linear part, usually called
stochastic dominated transport equations. Most standard numerical schemes lose their good stability
properties on such equations, including the current linear implicit Euler method. We discretize the SPDE
in space by the finite element method and propose a novel scheme called stochastic Rosenbrock-type
scheme for temporal discretization. Our scheme is based on the local linearization of the semi-discrete
problem obtained after space discretization and is more appropriate for such equations. We provide a
strong convergence of the new fully discrete scheme toward the exact solution for multiplicative and
additive noise and obtain optimal rates of convergence. Numerical experiments to sustain our theoretical
results are provided.
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1. Introduction

We consider the numerical approximation of the following SPDE

d X (t) + [AX (t) + F(X (t))]dt = B(X (t))dW (t), X (0) = X0, t ∈ (0, T ], (1)

in the Hilbert space L2(Λ), where Λ ⊂ Rd , d = 1, 2, 3 is bounded with smooth boundary,
T > 0 is the final time, F and B are nonlinear functions, X0 is the initial data which is
random and A is a linear operator, unbounded, not necessary self-adjoint. Precise assumptions
on F , B, X0 and A will be given in the next section. Equations of type (1) are used to model
many real world phenomena in different fields such as biology, chemistry, physics [3,28,29,32].
In many cases explicit solutions of SPDEs are unknown, therefore numerical approximations
are powerful tools to provide realistic approximations. Numerical approximation of SPDE (1)
is therefore an active research area and has attracted a lot of attentions since two decades (see
e.g. [8,9,11,12,16,27,28,34–37]). Due to the time step restriction of the explicit Euler method,
linear implicit Euler method is used in many situations. Linear implicit Euler method has
been largely investigated in the literature (see e.g. [12,17,33,34] and the references therein).
The resolvent operator (I + ∆t Ah)−1 plays a key role to stabilize the linear implicit Euler
method, where Ah is the discrete version of A, obtained after the space discretization. Such
approach is justified when the linear operator A is strong. Indeed, when A is stronger than F ,
the linear operator A drives the SPDE (1) and the good stability properties of the linear implicit
Euler method and exponential integrators are guaranteed. In more concrete applications, the
nonlinear function F can be stronger. Typical examples are stochastic reaction equations with
stiff reaction term. For such equations, both linear implicit Euler method [12,17,33,34] and ex-
ponential integrators [8,16,35] behave like the standard explicit Euler method (see Section 2.3)
and therefore lose their good stabilities properties. For such problems in the deterministic
context, exponential Rosenbrock-type methods [7,31] and Rosenbrock-type methods [21,22,31]
were proved to be efficient. Recently, the exponential Rosenbrock method was extended to
the case of stochastic partial differential equations [20] and was proved to be very stable for
stochastic reactive dominated transport equations. However the computation of the stochastic
exponential matrix functions involved was far to be efficient. Since solving linear systems are
more straightforward than computing the exponential of a matrix, it is important to develop
alternative methods based on the resolution of linear systems, which may be more efficient
if the appropriate preconditioners are used. In this paper, we propose a novel scheme based
on the combination of the Rosenbrock-type method and the linear implicit Euler method. The
resulting numerical scheme that we call stochastic Rosenbrock-type scheme(SROS) is stable
and efficient in contrast to the exponential scheme in [20], which is only stable. The space
discretization is performed using the finite element method and our novel scheme is based on
the local linearization of the nonlinear drift part of the semi-discrete problem obtained after
spatial discretization. The local linearization therefore weakens the nonlinear part of the drift
function so that the linearized semi-discrete problem is driven by its new linear part, which
changes at each time step. The standard linear implicit Euler method [12,34] is then applied
to the linearized semi-discrete problem. This combination yields our novel SROS scheme. We
analyze the strong convergence of the novel fully discrete scheme toward the exact solution in
the root-mean-square L2-norm. The main challenge here comes from the fact that the resolvent
operator Sm

h,∆t (ω) appearing in the numerical scheme (33) is not constant as it changes at each
time step. Furthermore the operator Sm

h,∆t (ω) is a random operator. To address those challenges,
we provide in Section 3.1 novel stability estimates to handle the composition of the perturbed
random resolvent operators, useful in our convergence analysis. The results indicate how the
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convergence orders depend on the regularity of the initial data and the noise. More precisely,
we achieve the optimal convergence orders O

(
hβ + ∆t

min(β,1)
2

)
for multiplicative noise and the

optimal convergence orders O
(

hβ + ∆t
β
2 −ϵ

)
for additive noise, where β is the regularity’s

parameter of the noise (see Assumption 2.2) and ϵ > 0 is an arbitrary number small enough.
The rest of this paper is organized as follows. Section 2 deals with the well posedness

problem, the numerical scheme and the main results. In Section 3, we provide some error
estimates for the deterministic homogeneous problem as preparatory results along with proof
of the main results. Section 4 provides some numerical experiments to sustain the theoretical
findings. Those numerical experiments show the efficiency of the novel scheme comparing to
the exponential scheme developed in [20].

2. Mathematical setting and main results

2.1. Main assumptions and well posedness problem

Let us define functional spaces, norms and notations that will be used in the rest of the paper.
Let (H, ⟨., .⟩H , ∥.∥) be a separable Hilbert space. For all p ≥ 2 and for a Hilbert space U , we
denote by L p(Ω ,U ) the Banach space of all equivalence classes of p integrable U -valued
random variables. We denote by L(U, H ) the space of bounded linear mappings from U to H
endowed with the usual operator norm ∥.∥L(U,H ). By L2(U, H ) := H S(U, H ), we denote the
space of Hilbert–Schmidt operators from U to H . We equip L2(U, H ) with the norm

∥l∥2
L2(U,H ) :=

∞∑
i=1

∥lψi∥
2, l ∈ L2(U, H ), (2)

where (ψi )∞i=1 is an orthonormal basis of U . Note that (2) is independent of the orthonormal
basis of U . For simplicity, we use the notations L(U,U ) =: L(U ) and L2(U,U ) =: L2(U ). It
is well known that for all l ∈ L(U, H ) and l1 ∈ L2(U ), ll1 ∈ L2(U, H ) and

∥ll1∥L2(U,H ) ≤ ∥l∥L(U,H )∥l1∥L2(U ). (3)

In the rest of this paper, we take H = L2(Λ). In order to ensure the existence and the uniqueness
of the solution of (1), and for the purpose of the convergence analysis, we make the following
assumptions.

Assumption 2.1 (Linear Operator A). −A : D(A) ⊂ H −→ H is the generator of an analytic
semigroup S(t) =: e−At on L2(Λ), i.e. S(t) is given as follows [1,2,6,24]

S(t) =
1

2π i

∫
C

e−tλ(λI − A)−1dλ, t > 0,

where C denotes a path that surrounds the spectrum of −A.

Assumption 2.2 (Initial Value X0). The initial value X0 belongs to L p
(
Ω ,D

(
(A)

β
2

))
, for

some β ∈ (0, 2] and some p ∈ [2,∞).

As in the current literature for deterministic Rosenbrock-type methods [21,22], determin-
istic exponential Rosenbrock-type method [7,19] and stochastic exponential Rosenbrock-type
methods [20], we make the following assumption on the nonlinear drift term.
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Assumption 2.3 (Nonlinear Term F). The nonlinear map F : H −→ H is Fréchet
differentiable with bounded derivative, i.e. there exists a constant b > 0 such that

∥F ′(u)∥L(H ) ≤ b, u ∈ H. (4)

Moreover, as in [14, Page 6] for deterministic Rosenbrock-type method, we assume that the
resolvent set of −A − F ′(u) contains (0,∞) for all u ∈ H .

Remark 2.1. Inequality (4) together with the mean value theorem shows that there exists a
constant CF = CF (b) ≥ 0 such that

∥F(u) − F(v)∥ ≤ CF∥u − v∥, u, v ∈ H. (5)

In addition, if ∥F(0)∥ < ∞, then from (5) there exists a constant C = (CF , ∥F(0)∥) ≥ 0 such
that

∥F(u)∥ ≤ ∥F(0)∥ + ∥F(u) − F(0)∥ ≤ ∥F(0)∥ + CF∥u∥ ≤ C(1 + ∥u∥), u ∈ H.

Remark 2.2. An illustrative example for which the resolvent set of −A−F ′(u) contains (0,∞)
is obtained when A generates a contraction semigroup and the derivative of the nonlinear drift
term F satisfies the following coercivity condition⟨

F ′(u)v, v
⟩
H ≥ 0, u, v ∈ H. (6)

In fact, it follows from (6) that −F ′(u) is an relatively A-bounded and dissipative operator
with A-bound a0 = 0 (see e.g. [1, Chapter III, Definition 2.1]). Therefore, from [1, Chapter
III, Theorem 2.7], it follows that −A− F ′(u) is a generator of a contraction semigroup. Hence,
for all u ∈ H (0,∞) ⊂ ρ

(
−A − F ′(u)

)
.

Remark 2.3. The condition (0,∞) ⊂ ρ
(
−A − F ′(u)

)
on Assumption 2.3 can be relaxed,

but the drawback is that the resolvent set of the perturbed semigroup is smaller than that of
the initial semigroup.

Let (Ω ,F ,P) be a probability space and {Ft }t∈[0,T ] a normal filtration on (Ω ,F ,P), that is
{Ft }t∈[0,T ] is a filtration on (Ω ,F ,P) satisfying the following (see e.g. [26, Definition 2.1.11]):

• F0 contains all elements O ∈ F with P(O) = 0,
• Ft = Ft+ :=

⋂
s>t Fs for all t ∈ [0, T ].

Let Q : H −→ H be a linear selfadjoint and positive operator. In this work, the noise
W (t) = W (x, t) is assumed to be an H -valued Q-Wiener process defined in the filtered
probability space

(
Ω ,F ,P, {Ft }t≥0

)
. Let us recall below the definition of a Q-Wiener process.

Definition 2.1 (Q-Wiener Process [26, Definition 2.1.12]). An H -valued stochastic process
{W (t) : t ≥ 0} is called Q-Wiener process if

(i) W (0) = 0 almost surely (a.s).
(ii) The application t ↦−→ W (t, ω) is continuous from R+ to H for every ω ∈ Ω .

(iii) W (t) is Ft -adapted and W (t) − W (s) is independent of Fs for s < t .
(iv) For all 0 ≤ s ≤ t , the random variable W (t) − W (s) follows a normal distribution with

mean 0 and covariance operator (t − s)Q. We write W (t) − W (s) ∼ N (0, (t − s)Q).
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It is well known that if Q has finite trace,1 then the Q-Wiener process W (t) can be represented
as follows [26, Proposition 2.1.10]

W (x, t) =

∑
i∈N

√
qi ei (x)βi (t), t ∈ [0, T ], x ∈ Λ, (7)

where qi , ei , i ∈ N are respectively the eigenvalues and the eigenfunctions of the covariance
operator Q, and βi are independent and identically distributed standard Brownian motions.

The space of Hilbert–Schmidt operators from Q
1
2 (H ) to H is denoted by L0

2 =

L2(Q
1
2 (H ), H ) =: H S(Q

1
2 (H ), H ) with the corresponding norm ∥.∥L0

2
defined by

∥l∥L0
2

:= ∥l Q
1
2 ∥H S =

(
∞∑

i=1

∥l Q
1
2 ei∥

2

) 1
2

, l ∈ L0
2, (8)

where (ei )∞i=1 is an orthonormal basis of H . Note that (8) is also independent of the orthonormal
basis of H . Following [25, Chapter 7] or [10,12,16,37], we make the following assumption on
the diffusion term.

Assumption 2.4 (Diffusion Term). The operator B : H −→ L0
2 satisfies the global Lipschitz

condition, i.e. there exists a positive constant CB such that

∥B(0)∥L0
2

≤ CB, ∥B(u) − B(v)∥L0
2

≤ CB∥u − v∥, u, v ∈ H.

As a consequence of Assumption 2.4, it holds that

∥B(u)∥L0
2

≤ ∥B(0)∥L0
2
+∥B(u)− B(0)∥L0

2
≤ ∥B(0)∥L0

2
+CB∥u∥ ≤ CB(1+∥u∥), u ∈ H.

We equip Vα := D(A
α
2 ), α ∈ R with the norm ∥v∥α := ∥A

α
2 v∥, for all v ∈ Vα . It is well

known that (Vα, ∥.∥α) is a Banach space [6].
To establish our root-mean-square L2 strong convergence result when dealing with multi-

plicative noise, we will also need the following further assumption on the diffusion term when
β ∈ [1, 2), which was also used in [10,13] to achieve optimal regularity rates in space and
time, and in [12,16,20] to achieve optimal strong convergence rates.

Assumption 2.5. There exists a positive constant c ≥ 0 such that

B
(
D
(

A
(β−1)

2

))
⊂ H S

(
Q

1
2 (H ),D

(
A

(β−1)
2

))
and

A
(β−1)

2 B(v)


L0
2

≤ c
(
1 + ∥v∥β−1

)
for all v ∈ D

(
A

(β−1)
2

)
, where β comes from Assumption 2.2.

Typical examples fulfilling Assumption 2.5 are stochastic reaction diffusion equations (see
e.g. [10, Section 4]).

When dealing with additive noise (i.e. when B = I), the strong convergence proof will make
use of the following assumption, also used in [20,34,35].

Assumption 2.6. The covariance operator Q satisfies the following estimateA
β−1

2 Q
1
2


L2(H )

≤ CQ, (9)

where β comes from Assumption 2.2 and CQ is a positive constant.

1 In this case W (t) is called trace class noise.
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When dealing with additive noise, to achieve convergence order greater than 1
2 in time, we

use the following further assumption on the nonlinear function, also used in [20,34,35].

Assumption 2.7. The deterministic mapping F : H −→ H is twice differentiable and there
exist two constants L ≥ 0 and η ∈ (0, 2) such that

∥F ′(u)v∥ ≤ L∥v∥, ∥F ′′(u)(v1, v2)∥−η ≤ L∥v1∥.∥v2∥, u, v, v1, v2 ∈ H.

The following proposition will be useful in the rest of the paper.

Proposition 2.1 (Smoothing Properties of the Semigroup [6]). Let α > 0, δ ≥ 0 and
0 ≤ γ ≤ 1, then there exists a constant C > 0 such that

∥AδS(t)∥L(H ) ≤ Ct−δ, t > 0; ∥A−γ (I − S(t)) ∥L(H ) ≤ Ctγ , t ≥ 0;

AδS(t) = S(t)Aδ on D(Aδ) and ∥Dl
t S(t)v∥δ ≤ Ct−l− (δ−α)

2 ∥v∥α, t > 0,

v ∈ D(A
α
2 );

where l = 0, 1, and Dl
t =

d l

dt l
. Moreover, if δ ≥ γ then D(Aδ) ⊂ D(Aγ ).

The well posedness result is given in the following theorem.

Theorem 2.1 ([25, Theorem 7.2]). Let Assumptions 2.1, 2.3 and 2.4 be satisfied. If X0 is a
F0-measurable H-valued random variable, then there exists a unique mild solution X of (1),
which has the following representation

X (t) = S(t)X0 −

∫ t

0
S(t − s)F(X (s))ds +

∫ t

0
S(t − s)B(X (s))dW (s), t ∈ (0, T ] (10)

and satisfies

P
[∫ T

0
∥X (s)∥2ds < ∞

]
= 1.

Moreover, for any p ≥ 2, there exists a constant C = C(p, T ) > 0 such that

sup
t∈[0,T ]

E∥X (t)∥p
≤ C(1 + E∥X0∥

p).

2.2. Finite element discretization

In the rest of the paper, to simplify the presentation, we consider the linear operator A to
be of second-order. More precisely, we consider the SPDE (1) to be a second-order semilinear
parabolic SPDE of the following form

d X (t, x)+[−∇·(D∇ X (t, x))+q·∇ X (t, x)]dt+ f (x, X (t, x))dt = b(x, X (t, x))dW (t, x),
(11)

for x ∈ Λ and t ∈ (0, T ], where the functions f : Λ × R −→ R and b : Λ × R −→ R are
continuously differentiable with globally bounded derivatives. In the abstract framework (1),
the linear operator A is the L2(Λ) realization [2, p. 812] of the following differential operator

Au = −

d∑
i, j=1

∂

∂xi

(
Di j (x)

∂u
∂x j

)
+

d∑
i=1

qi (x)
∂u
∂xi

, D :=
(
Di, j

)
1≤i, j≤d , q := (qi )1≤i≤d . (12)



4974 J.D. Mukam and A. Tambue / Stochastic Processes and their Applications 130 (2020) 4968–5005

where Di j ∈ L∞(Λ), qi ∈ L∞(Λ) and there exists a constant c1 > 0 such that

d∑
i, j=1

Di j (x)ξiξ j ≥ c1|ξ |
2, ξ ∈ Rd , x ∈ Λ.

The functions F : H −→ H and B : H −→ H S
(

Q
1
2 (H ), H

)
are defined respectively by

(F(v)) (x) = f (x, v(x)) , (B(v)u) (x) = b (x, v(x)) .u(x), x ∈ Λ, v ∈ H,

u ∈ Q
1
2 (H ). (13)

For an appropriate family of eigenfunctions (ei )i∈N such that supi∈Nd
[
supx∈Λ ∥ei (x)∥

]
< ∞,

it is well known that the Nemytskii operator F related to f and the multiplication operator B
associated to the function b defined in (13) satisfy Assumptions 2.3–2.5, see e.g. [10, Section
4]. As in [2,16] we introduce two spaces H and V , such that H ⊂ V ; the two spaces depend
on the boundary conditions and the domain of the operator A. For Dirichlet (or first-type)
boundary conditions we take

V = H = H 1
0 (Λ) = {v ∈ H 1(Λ) : v = 0 on ∂Λ}.

For Robin (third-type) boundary condition and Neumann (second-type) boundary condition,
which is a special case of Robin boundary condition, we take V = H 1(Λ)

H = {v ∈ H 2(Λ) : ∂v/∂vA + α0v = 0, on ∂Λ}, α0 ∈ R,

where ∂v/∂vA is the normal derivative of v and vA is the exterior pointing normal at n = (ni )
to the boundary of A, given by

∂v/∂vA =

d∑
i, j=1

ni (x)Di j (x)
∂v

∂x j
, x ∈ ∂Λ.

Using Green’s formula and the boundary conditions, the corresponding bilinear form associated
to A and A is given by

a(u, v) =

∫
Λ

⎛⎝ d∑
i, j=1

Di j
∂u
∂xi

∂v

∂x j
+

d∑
i=1

qi
∂u
∂xi

v

⎞⎠ dx, u, v ∈ V,

for Dirichlet and Neumann boundary conditions, and

a(u, v) =

∫
Λ

⎛⎝ d∑
i, j=1

Di j
∂u
∂xi

∂v

∂x j
+

d∑
i=1

qi
∂u
∂xi

v

⎞⎠ dx +

∫
∂Λ

α0uvdx, u, v ∈ V,

for Robin boundary conditions. Using Gårding’s inequality (see e.g. [29]), it holds that there
exist two constants c0 and λ0 > 0 such that

a(v, v) ≥ λ0∥v∥
2
H1(Λ) − c0∥v∥

2, v ∈ V . (14)

By adding and subtracting c0 Xdt in both sides of (1), we have a new linear operator still
denoted by A, and the corresponding bilinear form is also still denoted by a. Therefore, the
following coercivity property holds

a(v, v) ≥ λ0∥v∥
2
1, v ∈ V . (15)
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Note that the expression of the nonlinear term F has changed as we included the term c0 X
in the new nonlinear term that we still denote by F . The coercivity property (15) implies that
−A is sectorial on L2(Λ), i.e. there exist C1, θ ∈ ( 1

2π, π) such that

∥(λI + A)−1
∥L(L2(Λ)) ≤

C1

|λ|
, λ ∈ Sθ ,

where Sθ :=
{
λ ∈ C : λ = ρeiφ, ρ > 0, 0 ≤ |φ| ≤ θ

}
(see e.g. [6]). The coercivity property

(15) implies that −A is the infinitesimal generator of a contraction semigroup S(t) = e−t A on
L2(Λ). The coercivity property (15) also implies that A is positive and its fractional powers
are well defined for any α > 0, by⎧⎨⎩A−α

=
1

Γ (α)

∫
∞

0
tα−1e−t Adt,

Aα = (A−α)−1,

(16)

where Γ (α) is the Gamma function (see [6]). Let us now turn our attention to the space
discretization of our problem (1). We start by splitting the domain Λ in finite triangles. Let
Th be the triangulation with maximal length h satisfying the usual regularity assumptions, and
Vh ⊂ V be the space of continuous functions that are piecewise linear over the triangulation
Th . We consider the projection Ph from H = L2(Λ) to Vh defined for every u ∈ H by

⟨Phu, χ⟩H = ⟨u, χ⟩H , χ ∈ Vh . (17)

The discrete operator Ah : Vh −→ Vh is defined by

⟨Ahφ, χ⟩H = ⟨A1/2φ, A∗1/2χ⟩H = a(φ, χ), φ, χ ∈ Vh, (18)

Like −A, −Ah is also a generator of a bounded analytic semigroup Sh(t) on Vh , given by (see
e.g. [2, Chapter II, (7.14)] or [15])

Sh(t) = e−t Ah =
1

2π i

∫
C

e−tλ(λI − Ah)−1dλ, t > 0,

where C is a path that surrounds the spectrum of −Ah . Let K be a constant satisfying

∥Sh(t)∥L(H ) ≤ K , t ≥ 0. (19)

As any semigroup and its generator, −Ah and Sh(t) satisfy the smoothing properties of
Proposition 2.1 with a uniform constant C (i.e. independent of h). Following [2,15,16], we
characterize the domain of the operator A

γ
2 , 1 ≤ γ ≤ 2 as follows:

D(A
γ
2 ) = H ∩ H γ (Λ) for Dirichlet boundary conditions,

D(A) = H, D(A
1
2 ) = H 1(Λ) for Robin boundary conditions.

The semi-discrete version of (1) consists to find X h(t) ∈ Vh , t ∈ (0, T ] such that

d X h(t) + [Ah X h(t) + Ph F(X h(t))]dt = Ph B(X h(t))dW (t), X h(0) = Ph X0,

t ∈ (0, T ]. (20)

The proof of the following lemma can be found in [20, Lemma 4 & Lemma 5]. Its provides
the space and time regularities of the mild solution X h(t) of (20).
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Lemma 2.1.

(i) Let Assumptions 2.1 (with β ∈ [0, 1)), 2.2–2.4 be fulfilled. Then the mild solution X h(t)
of (20) satisfies the following regularity estimatesA

β
2
h X h(t)


L p(Ω,H )

≤ C
(

1 +

A
β
2 X0


L p(Ω,H )

)
, t ∈ [0, T ], (21)X h(t2) − X h(t1)


L p(Ω,H )

≤ C |t2 − t1|
β
2

(
1 +

A
β
2 X0


L p(Ω,H )

)
, t1, t2 ∈ [0, T ]. (22)

Moreover, if β ∈ [1, 2) and if Assumption 2.5 is fulfilled, thenX h(t2) − X h(t1)


L p(Ω,H ) ≤ C |t2 − t1|
1
2

(
1 +

A
β
2 X0


L p(Ω,H )

)
, t1, t2 ∈ [0, T ].

(ii) Let Assumptions 2.1–2.3 and 2.7 be fulfilled with β ∈ [0, 2). Then in the case of additive
noise, the mild solution X h(t) of (20) satisfies the following regularity estimatesA

β
2
h X h(t)


L p(Ω,H )

≤ C
(

1 +

A
β
2 X0


L p(Ω,H )

)
, t ∈ [0, T ], (23)

X h(t2) − X h(t1)


L p(Ω,H ) ≤ C |t2 − t1|
min(β,1)

2

(
1 +

A
β
2 X0


L p(Ω,H )

)
,

t1, t2 ∈ [0, T ]. (24)

Here C = C(CF ,CB,CQ, ∥F(0)∥, T, β) is a positive constant, independent of h, t , t1 and t2.

Corollary 2.1. As a consequence of Lemma 2.1, it holds that

∥X h(t)∥L p(Ω,H ) ≤ C,
F

(
X h(t)

)
L p(Ω,H ) ≤ C,

B
(
X h(t)

)
L p(Ω,H ) ≤ C,

t ∈ [0, T ].

2.3. Standard linear implicit Euler method and stability properties

Let us recall that the linear implicit Euler scheme applied to the semi-discrete problem (30)
is given by

Z h
m+1 = Sh,∆t Z h

m + ∆t Sh,∆t Ph F(Z h
m) + Sh,∆t Ph B(Z h

m), (25)

Sh,∆t := (I + ∆t Ah)
−1 , Z h

0 = Ph X0. (26)

If the linear operator A tends to the null2 operator, its corresponding discrete version Ah tends to
the null operator and Sh,∆t tends to the identity operator I. In this case, the numerical scheme
(25) and the standard exponential integrator [16] behave like the unstable Euler–Maruyama
scheme. See also [20, Section 2.3] for more details. For a simple illustration of the stability
properties of such problems, let us consider the following deterministic linear differential
equation

y′
= ay + cy, a > 0, c < 0, such that c < −a. (27)

2 Think for instance of the Laplace operator A = α∆, with α −→ 0. Here the null operator is understood in
the sense of Au = 0 for all u ∈ D(A).
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The linear implicit Euler method applied to (27) by considering F(y) = cy as the nonlinear
part is given by

yn+1 =
1 + c∆t
1 − a∆t

yn, n ≥ 0. (28)

The numerical scheme (28) is stable [23,31] if and only if ∆t < 2
a−c . Note that when a is

small enough and |c| large enough, the numerical scheme (28) behaves like the explicit Euler
method and the stability region becomes very small. Rosenbrock-type methods were proved to
be efficient in such situations and were studied in [4,5,23] for ordinary differential equations.
Applying the Rosenbrock–Euler method to the linear problem (27) yields

yn+1 =
1

1 − (a + c)∆t
yn, n ≥ 0. (29)

Note that (29) coincides with the full implicit method with F(y) = cy. Rosenbrock–Euler
method (29) is unconditionally stable (A-stable). This demonstrates the strong stability property
of Rosenbrock-type methods for stiff problems. Authors of [21,22] extended Rosenbrock-type
methods to parabolic partial differential equations and the methods were proved to be efficient
for solving transport equations in porous media [31]. To the best of our knowledge, the case
of stiff stochastic partial differential equations is not yet studied in the scientific literature and
will be the aim of this paper.

2.4. Novel fully discrete scheme and main results

Let us build a more stable scheme, robust when the linear operator A tends to null operator.
For the time discretization, we consider the one-step method which provides the numerical
approximated solution X h

m of X h(tm) at discrete time tm = m∆t , m = 0, . . . ,M . The method
is based on the continuous linearization of (20). More precisely, we linearize (20) at each time
step as follows

d X h(t)+ [Ah X h(t)+ J h
m X h(t)]dt = Gh

m

(
X h(t)

)
dt + Ph B

(
X h(t)

)
dW (t), tm ≤ t ≤ tm+1,

(30)

where J h
m is the Fréchet derivative of Ph F at X h

m and Gh
m is the remainder at X h

m . Both J h
m and

Gh
m are random variables and are defined for all ω ∈ Ω by

J h
m(ω) := (Ph F)′(X h

m(ω)) = Ph F ′(X h
m(ω)), (31)

Gh
m(ω)(X h(t)) := −Ph F(X h(t)) + J h

m(ω)X h(t). (32)

Applying the linear implicit Euler method to (30) yields the following fully discrete scheme,
called stochastic Rosenbrock-type scheme (SROS){

X h
0 = Ph X0,

X h
m+1 = Sm

h,∆t X h
m + ∆t Sm

h,∆t G
h
m(X h

m) + Sm
h,∆t Ph B(X h

m)∆Wm,
(33)

where ∆Wm and Sh,∆t are defined respectively by

∆Wm := Wtm+1 − Wtm , Sm
h,∆t (ω) :=

(
I + ∆t Ah,m(ω)

)−1
, (34)

and the linear operator Ah,m is given by

Ah,m(ω) := Ah + J h
m(ω), ω ∈ Ω . (35)
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In the numerical scheme (33), the resolvent operator (defined in (34)) is random and changes
at each time step. Having the numerical method (33) in hand, our goal is to analyze its strong
convergence toward the exact solution in the root-mean-square L2 norm for multiplicative and
additive noise.

Throughout this paper we take tm = m∆t ∈ [0, T ], where ∆t =
T
M for m,M ∈ N, m ≤ M ,

C is a generic constant that may change from one place to another but is independent of both
∆t and h. The main results of this paper are formulated in the following theorems.

Theorem 2.2 (Multiplicative Noise). Let X (tm) and X h
m be respectively the mild solution given

by (10) and the numerical approximation given by (33) at tm = m∆t . Let Assumptions 2.1 and
2.2 (with p = 2), 2.3 and 2.4 be fulfilled.

(i) If 0 < β < 1, then the following error estimate holds

∥X (tm) − X h
m∥L2(Ω,H ) ≤ C

(
hβ + ∆t

β
2

)
.

(ii) If 1 ≤ β ≤ 2 and if Assumption 2.5 is fulfilled, then the following error estimate holds

∥X (tm) − X h
m∥L2(Ω,H ) ≤ C

(
hβ + ∆t

1
2

)
,

where C = C(CF ,CB, T, ∥F(0)∥, c, X0) is a positive constant independent of h, M and ∆t .

Theorem 2.3 (Additive Noise). When dealing with additive noise (i.e. when B = I), let
Assumptions 2.1, 2.2 with p = 4, 2.3, 2.6 and 2.7 be fulfilled. Then the following error estimate
holds for the mild solution X (t) of (1) and the numerical approximation (33)

∥X (tm) − X h
m∥L2(Ω,H ) ≤ C

(
hβ + ∆t

β
2 −ϵ

)
, (36)

where C = C(CF ,CQ, T, ∥F(0)∥, X0) is a positive constant independent of h, M and ∆t .

3. Proof of the main results

The proofs of the main results require some preparatory results.

3.1. Preparatory results

For non commutative operators H j in a Banach space, we introduce the following notation,
which will be used in the rest of the paper.

k∏
j=l

H j :=

{
Hk Hk−1 · · · Hl , if k ≥ l,
I, if k < l.

Lemma 3.1. [20, Lemma 10] Let Assumption 2.2 be fulfilled. Then for all ω ∈ Ω the following
estimate holds

⎛⎝ m∏
j=l

e∆t Ah, j (ω)

⎞⎠ Aγh


L(H )

≤ Ct−γ

m+1−l , 0 ≤ l ≤ m, 0 ≤ γ < 1. (37)

Lemma 3.2 ([20, Lemma 5]). For all m ∈ N and all ω ∈ Ω , the random linear operator

Ah + J h
m(ω) is the generator of an analytic semigroup Sh

m(ω)(t) =: e
(

Ah+J h
m (ω)

)
t , called random
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(or stochastic) perturbed semigroup, which is uniformly bounded on [0, T ], i.e. there exists a
positive constant C1 = C1(b, T ) independent of h, m, ∆t and the sample ω such thate

(
Ah+J h

m (ω)
)

t


L(H )
≤ K eK bt , t ≥ 0

≤ C1, 0 ≤ t ≤ T .

The following lemma is an analogous of [18, (3.31)], but here our semigroup is not constant.
In fact, it is random and further its changes at each time step.

Lemma 3.3. Let Assumptions 2.1 and 2.3 be fulfilled.

(i) For all α ∈ [0, 1], n > 1, j ≥ 0 and all ω ∈ Ω , it holds thatAαh
(
I + t Ah, j (ω)

)−n


L(H )
≤ C((n − 1)t)−α ≤ C(nt)−α, t > 0. (38)

(ii) For all α ∈ [0, 1), j ≥ 0 and ω ∈ Ω , it holds thatAαh
(
I + t Ah, j (ω)

)−1


L(H )
≤ Ct−α, t > 0. (39)

(iii) For all n, j ∈ N, it holds that(I + t Ah, j (ω)
)−n


L(H )
≤ C, t > 0, (40)

where C = C(b, T, α) is a positive constant independent of h, j and ∆t .

Proof. Note that for all n ≥ 2, 1
2 nt ≤ (n − 1)t . Therefore ((n − 1)t)−α ≤ C(nt)−α . It remains

to prove the first inequality of (38). Using the interpolation theory, we only need to prove (38)
for α = 0 and α = 1. Since 1

t > 0 and the resolvent set of −Ah, j contains (0,∞),3 it follows
from [24, (5.23)] that(

I + t Ah, j (ω)
)−n

v = t−n
(

1
t

I + Ah, j (ω)
)−n

v

=
t−n

(n − 1)!

∫
∞

0
sn−1e−

1
t s Sh

j (ω)(s)vds, v ∈ H. (41)

Taking the norm in both sides of (41) and using the uniformly boundedness of Sh
j (ω) (see

Lemma 3.2) yields(I + t Ah, j (ω)
)−n

v

 ≤
Ct−n

(n − 1)!

∫
∞

0
sn−1e−

1
t s

∥v∥ds. (42)

Using the change of variable r =
s
t yields(I + t Ah, j (ω)

)−n
v

 ≤
C

(n − 1)!

∫
∞

0
rn−1e−r

∥v∥dr ≤ C∥v∥. (43)

This shows that (38) holds for α = 0. Pre-multiplying both sides of (41) by Ah yields

Ah
(
I + t Ah, j (ω)

)−n
v =

t−n

(n − 1)!

∫
∞

0
sn−1e−

1
t s Ah Sh

j (ω)(s)vds. (44)

3 Since Assumption 2.3 is fulfilled.
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Taking the norm in both sides of (44) and using [20, Lemma 9 (iii)] yields(I + t Ah, j (ω)
)−n

v

 ≤
Ct−n

(n − 1)!

∫
∞

0
sn−2e−

1
t s

∥v∥ds. (45)

Using the change of variable r =
s
t yields(I + t Ah, j (ω)

)−n
v

 ≤
Ct−1

(n − 1)!

∫
∞

0
un−2e−r

∥v∥dr

≤
Ct−1(n − 2)!

(n − 1)!
∥v∥ = C ((n − 1)t)−1

∥v∥. (46)

This proves that (38) holds for α = 1, and the proof of (38) is completed by interpolation
theory. The proofs of (39) and (40) follow from the integral equation (41). ■

The following lemma will be useful in our convergence analysis.

Lemma 3.4. Let Assumptions 2.1 and 2.3 be fulfilled.

(i) For all α ∈ (0, 1] it holds thatAαh

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠
L(H )

≤ Ct−α
m−i+1, 0 ≤ i ≤ m ≤ M, 0 ≤ k ≤ M.

(ii) For all α1, α2 ∈ [0, 1) it holds thatAα1
h

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠ A−α2
h


L(H )

≤ Ct−α1+α2
m−i+1 , 0 ≤ i ≤ m ≤ M, 0 ≤ k ≤ M,

where C = C(b, T, α, α1, α2) is a positive constant independent of h, i , m, M and ∆t .

Proof. Note that the proof of the lemma in the case i = m is straightforward from Lemma 3.3.
We only concentrate on the case i < m.

(i) Using Lemma 3.3 it holds thatAαh (I + ∆t Ah,i (ω))−(m−i+1)


L(H ) ≤ Ct−α
m−i+1. (47)

It remains to estimate Aαh∆
h
m,i (ω), where

∆h
m,i (ω) :=

m∏
j=i

S j
h,∆t (ω) −

(
Si

h,∆t (ω)
)m−i+1

. (48)

One can easily check that the following identity holds(
I + ∆t Ah, j+1(ω)

)−1
− (I + ∆t Ah,i (ω))−1

= ∆t(I + ∆t Ah, j+1(ω))−1 (Ah,i (ω) − Ah, j+1(ω)
)

(I + ∆t Ah,i (ω))−1

= ∆t(I + ∆t Ah, j+1(ω))−1 (J h
i (ω) − J h

j+1(ω)
)

(I + ∆t Ah,i (ω))−1. (49)
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Using the telescopic sum, it holds that

∆h
m,i (ω) =

m−i−1∑
j=0

⎛⎝ m∏
k= j+i+1

Sk
h,∆t (ω)

⎞⎠(I + ∆t Ah, j+i+1(ω)
)

[(
I + ∆t Ah, j+i+1(ω)

)−1
− (I + ∆t Ah,i (ω))−1

] (
I + ∆t Ah,i (ω)

)− j−1
. (50)

Substituting the identity (49) in (50) yields

∆h
m,i (ω)

= ∆t
m−i−1∑

j=0

⎛⎝ m∏
k= j+i+1

Sk
h,∆t (ω)

⎞⎠(J h
i (ω) − J h

j+i+1(ω)
) (

I + ∆t Ah,i (ω)
)− j−2

= ∆t
m−i−1∑

j=0

(
I + ∆t Ah, j+i+1(ω)

)−(m− j−i) (J h
i (ω) − J h

j+i+1(ω)
)

×
(
I + ∆t Ah,i (ω)

)− j−2

+ ∆t
m−i−1∑

j=0

∆h
m, j+i+1(ω)

(
J h

i (ω) − J h
j+i+1(ω)

) (
I + ∆t Ah,i (ω)

)− j−2
. (51)

Therefore we have

Aαh∆
h
m,i (ω)

= ∆t
m−i−1∑

j=0

Aαh
(
I + ∆t Ah, j+i+1(ω)

)−(m− j−i) (J h
i (ω) − J h

j+i+1(ω)
)

×
(
I + ∆t Ah,i (ω)

)− j−1

+ ∆t
m−i−1∑

j=0

Aαh∆
h
m, j+i+1(ω)

(
J h

i (ω) − J h
j+i+1(ω)

) (
I + ∆t Ah,i (ω)

)− j−1
. (52)

Taking the norm in both sides of (52), using triangle inequality and Lemma 3.3 yields

∥Aαh∆
h
m,i (ω)∥L(H ) ≤ C∆t

m−i−1∑
j=0

t−α
m− j−i + C∆t

m−i−1∑
j=0

∥Aαh∆
h
m, j+i+1(ω)∥L(H )

≤ C + C∆t
m∑

j=i+1

∥Aαh∆
h
m, j (ω)∥L(H ). (53)

Applying the discrete Gronwall‘s lemma to (53) yields

∥Aαh∆
h
m,i (ω)∥L(H ) ≤ C.

This completes the proof of (i).
(ii) Following the same lines as in Lemma 3.3, we can show thatAα1

h

(
I + ∆t Ah,i (ω)

)−(m−i+1) A−α2
h,i


L(H )

≤ Ct−α1+α2
m−i+1 . (54)
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It remains to bound Aα1
h ∆h

m,i (ω)A−α2
h , where ∆h

m,i (ω) is defined by (48). From (51), it
holds that

Aα1
h ∆h

m,i (ω)A−α2
h = ∆t

m−i−1∑
j=0

Aα1
h

(
I + ∆t Ah, j+i+1(ω)

)−(m− j−i)

×
(
J h

i (ω) − J h
j+i+1(ω)

)
(
I + ∆t Ah,i (ω)

)− j−1 A−α2
h

+ ∆t
m−i−1∑

j=0

Aα1
h ∆h

m, j+i+1(ω)
(
J h

i (ω) − J h
j+i+1(ω)

)
(
I + ∆t Ah,i (ω)

)− j−1 A−α2
h . (55)

Taking the norm in both sides of (55), using triangle inequality, Lemmas 3.3 and 3.4(i)
yields

∥Aα1
h ∆h

m,i (ω)A−α2
h ∥L(H ) ≤ C∆t

m−i−1∑
j=0

Aα1
h ∆h

m, j+i+1(ω)


L(H )

+ C∆t
m−i−1∑

j=0

Aα1
h

(
I + ∆t Ah, j+i+1(ω)

)−(m− j−i)


L(H )

≤ C∆t
m−i−1∑

j=0

+C∆t
m−i−1∑

j=0

t−α1
m− j−i

≤ C.

This proves (ii) and the proof of the lemma is completed. ■

The following lemma will be useful in our convergence analysis.

Lemma 3.5. Let Assumptions 2.1 and 2.3 be fulfilled.

(i) For all α1, α2 ∈ (0, 1], 0 ≤ j ≤ M and ω ∈ Ω the following estimate holdsA−α1
h

(
eAh, j (ω)∆t

− S j
h,∆t (ω)

)
A−α2

h


L(H )

≤ C∆tα1+α2 . (56)

(ii) For all α1 ∈ [0, 1], α2 ∈ (0, 1), 0 ≤ j ≤ M and ω ∈ Ω the following estimate holdsAα1
h

(
eAh, j (ω)∆t

− S j
h,∆t (ω)

)
A−α2

h


L(H )

≤ C∆t−α1+α2 , (57)

where C = C(b, T, α1, α2) is a positive constant independent of h, j , M and ∆t .

Proof. We only prove (56) since the proof of (57) is similar. Let us set

K j
h,∆t (ω) := eAh, j (ω)∆t

− S j
h,∆t (ω).
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One can easily check that

− K j
h,∆t (ω) =

∫ ∆t

0

d
ds

((
I + s Ah, j (ω)

)−1 e−(∆t−s)Ah, j (ω)
)

ds

=

∫ ∆t

0
s A2

h, j (ω)
(
I + s Ah, j (ω)

)−2 e−(∆t−s)Ah, j (ω)ds

=

∫ ∆t

0
s Ah, j (ω)

(
I + s Ah, j (ω)

)−2 Ah, j (ω)e−(∆t−s)Ah, j (ω)ds. (58)

From (58) it holds that

− A−α1
h K j

h,∆t (ω)A−α2
h =

∫ ∆t

0
s A−α1

h Ah, j (ω)
(
I + s Ah, j (ω)

)−2

× e−(∆t−s)Ah, j Ah, j (ω)A−α2
h ds. (59)

Taking the norm in both sides of (59) yields−A−α1
h K j

h,∆t (ω)A−α2
h


L(H )

≤

∫ ∆t

0
s
A−α1

h Ah, j (ω)
(
I + s Ah, j (ω)

)−2


L(H )

e−(∆t−s)Ah, j (ω) Ah, j (ω)A−α2
h


L(H )

ds. (60)

Using triangle inequality and Lemma 3.3, it holds thatA−α1
h Ah, j (ω)

(
I + s Ah, j (ω)

)−2


L(H )

≤

A−α1+1
h

(
I + s Ah, j (ω)

)−2


L(H )
+

A−α1
h J h

j (ω)
(
I + s Ah, j (ω)

)−2


L(H )

≤ Cs−1+α1 + C

≤ Cs−1+α1 . (61)

Using triangle inequality and [20, Lemma 9 (ii)], it holds thate−(∆t−s)Ah, j (ω) Ah, j (ω)A−α2
h


L(H )

≤

e−(∆t−s)Ah, j (ω) A1−α2
h


L(H )

+

e−(∆t−s)Ah, j (ω) J h
j A−α2

h


L(H )

≤ C(∆t − s)−1+α2 + C

≤ C(∆t − s)−1+α2 . (62)

Substituting (62) and (61) in (60) yields−A−α1
h K j

h,∆t (ω)A−α2
h


L(H )

≤ C
∫ ∆t

0
ss−1+α1 (∆t − s)−1+α2ds ≤ C∆tα1+α2 .

This completes the proof of (56). The proof of (57) is similar. ■

The following lemma can be found in [15].

Lemma 3.6. For all α1, α2 > 0 and α ∈ [0, 1], there exist two positive constants Cα1α2 and
Cα,α2 such that

∆t
m∑

j=1

t−1+α1
m− j+1t−1+α2

j ≤ Cα1α2 t−1+α1+α2
m , ∆t

m∑
j=1

t−α
m− j+1t−1+α2

j ≤ Cαα2 t−α+α2
m . (63)
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Proof. The proof of the first estimate of (63) comes from the comparison with the integral∫ t

0
(t − s)−1+α1s−1+α2ds.

The proof of the second estimate of (63) is a consequence of the first one. ■

Lemma 3.7. Let 0 ≤ α < 2 and let Assumption 2.1 be fulfilled.

(i) If v ∈ D
(

(A
α
2 )
)

, ω ∈ Ω , 0 ≤ i ≤ M, then the following estimate holds
⎛⎝ m∏

j=i

eAh, j (ω)∆t

⎞⎠ Phv −

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠ Phv

 ≤ C∆t
α
2 ∥v∥α.

(ii) For non-smooth data, i.e. for v ∈ H and for all ω ∈ Ω , 0 ≤ i < m ≤ M, it holds that
⎛⎝ m∏

j=i

eAh, j (ω)∆t

⎞⎠ Phv −

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠ Phv

 ≤ C∆t
α
2 t

−
α
2

m−i∥v∥.

(iii) For all α1, α2 ∈ [0, 1) such that α1 ≤ α2, ω ∈ Ω and 0 ≤ i < m ≤ M, it holds that
⎡⎣⎛⎝ m∏

j=i

eAh, j (ω)∆t

⎞⎠−

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠⎤⎦ Aα1−α2
h


L(H )

≤ C∆tα2 t−α1
m−i ,

where C = C(b, T, α, α1, α2) is a positive constant independent of h, i , m, M and ∆t .

Proof.

(i) Using the telescopic identity, we have⎛⎝ m∏
j=i

eAh, j (ω)∆t

⎞⎠ Phv −

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠ Phv

=

m−i+1∑
k=1

⎛⎝ m∏
j=i+k

eAh, j (ω)∆t

⎞⎠(eAh,i+k−1(ω)∆t
− Si+k−1

h,∆t (ω)
)⎛⎝i+k−2∏

j=i

S j
h,∆t (ω)

⎞⎠ Phv. (64)

Writing down the first and the last terms of (64) explicitly, we obtain⎛⎝ m∏
j=i

eAh, j (ω)∆t

⎞⎠ Phv −

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠ Phv

=
(
eAh,m (ω)∆t

− Sm
h,∆t (ω)

)⎛⎝m−1∏
j=i

S j
h,∆t (ω)

⎞⎠ Phv

+

⎛⎝ m∏
j=i+1

eAh, j (ω)∆t

⎞⎠(eAh,i (ω)∆t
− Si

h,∆t (ω)
)

Phv

+

m−i∑
k=2

⎛⎝ m∏
j=i+k

eAh, j (ω)∆t

⎞⎠(eAh,i+k−1(ω)∆t
− Si+k−1

h,∆t (ω)
)⎛⎝i+k−2∏

j=i

S j
h,∆t (ω)

⎞⎠ Phv. (65)
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Taking the norm in both sides of (65), inserting an appropriate power of Ah and using
triangle inequality yields

⎛⎝ m∏
j=i

eAh, j (ω)∆t

⎞⎠ Phv −

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠ Phv


≤

(eAh,m (ω)∆t
− Sm

h,∆t (ω)
)

A
−
α
2

h A
α
2
h

⎛⎝m−1∏
j=i

S j
h,∆t (ω)

⎞⎠ A
−
α
2

h A
α
2
h Phv


+


⎛⎝ m∏

j=i+1

eAh, j (ω)∆t

⎞⎠(eAh,i (ω)∆t
− Si

h,∆t (ω)
)

A
−
α
2

h A
α
2
h Phv


+

m−i∑
k=2

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
⎛⎝ m∏

j=i+k

eAh, j (ω)∆t

⎞⎠ A1−ϵ
h A−1+ϵ

h

(
eAh,i+k−1(ω)∆t

− Si+k−1
h,∆t (ω)

)
A

−
α
2 −ϵ

h

.A
α
2 +ϵ

h

⎛⎝i+k−2∏
j=i

S j
h,∆t (ω)

⎞⎠ A
−
α
2

h A
α
2
h Phv

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐

=: I1 + I2 + I3. (66)

Using Lemmas 3.5, 3.4(ii) and [20, Lemma 1] yields

I1

≤

(eAh,m (ω)∆t
− Sm

h,∆t (ω)
)

A
−
α
2

h


L(H )

A
α
2
h

⎛⎝m−1∏
j=i

S j
h,∆t (ω)

⎞⎠ A
−
α
2

h


L(H )

∥A
α
2
h Phv∥

≤ C∆t
α
2 ∥v∥α. (67)

Using Lemmas 3.1, 3.5 and [20, Lemma 1] yields

I2 ≤


⎛⎝ m∏

j=i+1

eAh, j (ω)∆t

⎞⎠
L(H )

(eAh,i (ω)∆t
− Si

h,∆t (ω)
)

A
−
α
2

h


L(H )

∥A
α
2
h Phv∥

≤ C∆t
α
2 ∥v∥α. (68)

Using Lemmas 3.1, 3.5, 3.4(ii), 3.6 and [20, Lemma 1] yields

I3 ≤

m−i∑
k=2


⎛⎝ m∏

j=i+k

eAh, j (ω)∆t

⎞⎠ A1−ϵ
h


L(H )

×

A−1+ϵ
h

(
eAh,i+k−1(ω)∆t

− Si+k−1
h,∆t (ω)

)
A

−
α
2 −ϵ

h


L(H )

×

A
α
2 +ϵ

h

⎛⎝i+k−2∏
j=i

S j
h,∆t (ω)

⎞⎠ A
−
α
2

h


L(H )

∥A
α
2
h Phv∥
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≤ C
m−i∑
k=2

t−1+ϵ
m+1−i−k∆t1+

α
2 t−ϵ

k−1 = C∆t
α
2

m−i∑
k=2

t−1+ϵ
m−i−k+1t−ϵ

k−1∆t

≤ C∆t
α
2 . (69)

Substituting (69), (68) and (67) in (66) yields
⎛⎝ m∏

j=i

eAh, j (ω)∆t

⎞⎠ Phv −

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠ Phv

 ≤ C∆t
α
2 ∥v∥α.

This completes the proof of (i).
(ii) For non-smooth initial data, taking the norm in both sides of (65) and inserting an

appropriate power of Ah yields
⎛⎝ m∏

j=i

eAh, j (ω)∆t

⎞⎠ Phv −

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠ Phv


≤

(eAh,m (ω)∆t
− Sm

h,∆t (ω)
)

A
−
α
2

h


L(H )

A
α
2
h

⎛⎝m−1∏
j=i

S j
h,∆t (ω)

⎞⎠ Phv


+


⎛⎝ m∏

j=i+1

eAh, j (ω)∆t

⎞⎠ A
α
2
h


L(H )

A
−
α
2

h

(
eAh,i (ω)∆t

− Si
h,∆t (ω)

)
Phv


+

m−i∑
k=2


⎛⎝ m∏

j=i+k

eAh, j (ω)∆t

⎞⎠ A1−ϵ
h


L(H )

×
A−1+ϵ

h

(
eAh,i+k−1(ω)∆t

− Si+k−1
h,∆t (ω)

)
A−1+ϵ

h


L(H )

×

A1−ϵ
h

⎛⎝i+k−2∏
j=i

S j
h,∆t (ω)

⎞⎠ Phv

 . (70)

Using Lemmas 3.5, 3.4(i), 3.6 and 3.1, it follows that
⎛⎝ m∏

j=i

eAh, j (ω)∆t

⎞⎠ Phv −

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠ Phv


≤ C∆t

α
2 t

−
α
2

m−i∥v∥ + C∆t
α
2 t

−
α
2

m−i∥v∥ + C∆t1−ϵ

m−i∑
k=2

∆t t−1+ϵ
m−i−k+1t−1+ϵ

k−1 ∥v∥

≤ C∆t
α
2 t

−
α
2

m−i−k∥v∥ + C∆tα/2t
−
α
2

m−i∥v∥ + C∆t1−ϵ t−1+2ϵ
m−i ∥v∥

≤ C∆t
α
2 t

−
α
2

m−i∥v∥. (71)



J.D. Mukam and A. Tambue / Stochastic Processes and their Applications 130 (2020) 4968–5005 4987

(iii) Taking the norm in both sides of (65) and inserting an appropriate power of Ah yields
⎡⎣⎛⎝ m∏

j=i

eAh, j (ω)∆t

⎞⎠−

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠⎤⎦ Aα1−α2
h


L(H )

≤

(eAh,m (ω)∆t
− Sm

h,∆t (ω)
)

A−α2
h


L(H )

Aα2
h

⎛⎝m−1∏
j=i

S j
h,∆t (ω)

⎞⎠ Aα1−α2
h


L(H )

+


⎛⎝ m∏

j=i+1

eAh, j (ω)∆t

⎞⎠ Aα1
h


L(H )

A−α1
h

(
eAh,i (ω)∆t

− Si
h,∆t (ω)

)
A−(α2−α1)

h


L(H )

+

m−i∑
k=2


⎛⎝ m∏

j=i+k

eAh, j (ω)∆t

⎞⎠ Aα2+ϵ

h


L(H )

×

A−α2−ϵ

h

(
eAh,i+k−1(ω)∆t

− Si+k−1
h,∆t (ω)

)
A−1+ϵ

h


L(H )

×

A1−ϵ
h

⎛⎝i+k−2∏
j=i

S j
h,∆t (ω)

⎞⎠ A−(α2−α1)
h


L(H )

. (72)

Using Lemmas 3.5, 3.4(ii), 3.6 and 3.1, it follows from (72) that
⎡⎣⎛⎝ m∏

j=i

eAh, j (ω)∆t

⎞⎠−

⎛⎝ m∏
j=i

S j
h,∆t (ω)

⎞⎠⎤⎦ Aα1−α2
h


L(H )

≤ C∆tα2 t−α1
m−i + C∆tα2 t−α1

m−i + C∆tα2

m−i∑
k=2

∆t t−α2−ϵ

m−i−k+1t−1+ϵ+α2−α1
k−1

≤ C∆tα2 t−α1
m−i−k + C∆tα2 t−α1

m−i + C∆tα2 t−α1
m−i

≤ C∆tα2 t−α1
m−i .

This completes the proof of (iii). ■

Lemma 3.8.

(i) Let Assumption 2.6 be fulfilled. Then the following estimate holds(Ah)
β−1

2 Ph Q
1
2


L2(H )

≤ CQ,

where β comes from Assumption 2.1.
(ii) Under Assumption 2.7, for all ω ∈ Ω and m ∈ N, the following estimates hold(Gh

m(ω)
)′

(u)v
 ≤ C∥v∥, u, v ∈ H,(Ah)

−η
2
(
Gh

m(ω)
)′′

(u)(v1, v2)
 ≤ C∥v1∥∥v2∥, u, v1, v2 ∈ H,

where η comes from Assumption 2.7 and C = C(CF , T, L , η) is a positive constant
independent of h, ω, m, M and ∆t ..
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Proof. The proof of (i) can be found in [20, Lemma 11] and the proof of (ii) can be found
in [20, Lemma 12]. ■

With the above preparation, we are now in position to prove our main results.

3.2. Proof of Theorem 2.2

Iterating the numerical solution (33) at tm by replacing X h
i , i = m − 1, . . . , 2, 1 by its

expression only on the first term yields

Xh
m =

(m−1∏
k=0

Sk
h,∆t

)
Ph X0 + ∆t Sm−1

h,∆t G
h
m−1(Xh

m−1) + Sm−1
h,∆t Ph B(Xh

m−1)∆Wm−1

+ ∆t
m−1∑
i=2

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠Gh
m−i (Xh

m−i ) +

m−1∑
i=2

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠ Ph B(Xh
m−i )∆Wm−i . (73)

Iterating the mild solution (30) at time tm yields

X h(tm) =

(
m−1∏
k=0

eAh,k∆t

)
Ph X0 +

∫ tm

tm−1

e(tm−s)Ah,m−1 Gh
m−1

(
X h(s)

)
ds

+

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠ e(tm−i −s)Ah,m−i−1 Gh
m−i

(
X h(s)

)
ds

+

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠ e(tm−i −s)Ah,m−i−1 Ph B
(
X h(s)

)
dW (s)

+

∫ tm

tm−1

e(tm−s)Ah,m−1 Ph B
(
X h(s)

)
dW (s). (74)

Subtracting (74) from (73), taking the L2 norm and using triangle inequality yieldsX h(tm) − X h
m

2
L2(Ω,H ) ≤ 25

4∑
i=0

∥I Ii∥
2
L2(Ω,H ), (75)

where

I I0 =

⎛⎝m−1∏
j=0

eAh, j∆t

⎞⎠ Ph X0 −

⎛⎝m−1∏
j=0

S j
h,∆t

⎞⎠ Ph X0,

I I1 =

∫ tm

tm−1

(
e(tm−s)Ah,m−1 Gh

m−1

(
X h(s)

)
− Sm−1

h,∆t G
h
m−1

(
X h

m−1

))
ds,

I I2 =

∫ tm

tm−1

(
e(tm−s)Ah,m−1 Ph B

(
X h(s)

)
− Sm−1

h,∆t Ph B
(
X h

m−1

))
dW (s),

I I3 =

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠ e(tm−i −s)Ah,m−i−1 Gh
m−i

(
X h(s)

)
ds

−

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠Gh
m−i

(
X h

m−i

)
ds,



J.D. Mukam and A. Tambue / Stochastic Processes and their Applications 130 (2020) 4968–5005 4989

I I4 =

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠ e(tm−i −s)Ah,m−i−1 Ph B
(
X h(s)

)
dW (s)

−

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠ Ph B
(
X h

m−i

)
dW (s).

In the following sections we estimate I Ii , i = 0, . . . , 4 separately.

3.2.1. Estimation of I I0, I I1 and I I2
Using Lemma 3.7(i) with α = β, it holds that

∥I I0∥L2(Ω,H ) ≤

⎛⎜⎝E

⎡⎢⎣

⎛⎝m−1∏

j=0

eAh, j∆t

⎞⎠ Ph X0 −

⎛⎝m−1∏
j=0

S j
h,∆t

⎞⎠ Ph X0


2
⎤⎥⎦
⎞⎟⎠

1
2

≤ C∆t
β
2
([
E∥X0∥

2
β

]) 1
2 ≤ C∆t

β
2 . (76)

The term I I1 can be recast in three terms as follows:

I I1 =

∫ tm

tm−1

e(tm−s)Ah,m−1
(
Gh

m−1

(
X h(s)

)
− Gh

m−1

(
X h(tm−1)

))
ds

+

∫ tm

tm−1

(
e(tm−s)Ah,m−1 − Sm−1

h,∆t

)
Gh

m−1

(
X h(tm−1)

)
ds

+

∫ tm

tm−1

Sm−1
h,∆t

(
Gh

m−1

(
X h(tm−1)

)
− Gh

m−1

(
X h

m−1

))
ds

:= I I11 + I I12 + I I13. (77)

Therefore using triangle inequality we obtain

∥I I1∥L2(Ω,H ) ≤ ∥I I11∥L2(Ω,H ) + ∥I I12∥L2(Ω,H ) + ∥I I13∥L2(Ω,H ). (78)

Using Corollary 2.1 yields

∥I I11∥L2(Ω,H ) ≤ C
∫ tm

tm−1

Gh
m−1

(
X h(s)

)
L2(Ω,H ) ds

+

∫ tm

tm−1

Gh
m−1

(
X h(tm−1)

)
L2(Ω,H ) ds

≤ C
∫ tm

tm−1

(
1 + ∥X0∥L2(Ω,H )

)
ds ≤ C∆t. (79)

Using Lemma 3.7(i) with α = 0 and Corollary 2.1, it holds that

∥I I12∥L2(Ω,H ) ≤ C
∫ tm

tm−1

Gh
m−1

(
X h(tm−1)

)
L2(Ω,H ) ds ≤ C

∫ tm

tm−1

(
1 + ∥X0∥L2(Ω,H )

)
ds

≤ C∆t. (80)

Using Lemma 3.4(i) with α = 0 and Assumption 2.3, it holds that

∥I I13∥L2(Ω,H ) ≤ C∆t
X h(tm−1) − X h

m−1


L2(Ω,H ) . (81)
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Substituting (81), (80) and (79) in (78) yields

∥I I1∥L2(Ω,H ) ≤ C∆t + C∆t
X h(tm−1) − X h

m−1


L2(Ω,H ) . (82)

We can recast I I2 as follows:

I I2 =

∫ tm

tm−1

e(tm−s)Ah,m−1
(
Ph B

(
X h(s)

)
− Ph B

(
X h(tm−1)

))
dW (s)

+

∫ tm

tm−1

(
e(tm−s)Ah,m−1 − Sm−1

h,∆t

)
Ph B

(
X h(tm−1)

)
dW (s)

+

∫ tm

tm−1

Sm−1
h,∆t

(
Ph B

(
X h(tm−1)

)
− Ph B

(
X h

m−1

))
dW (s)

:= I I21 + I I22 + I I23. (83)

Therefore using triangle inequality we obtain

∥I I2∥
2
L2(Ω,H ) ≤ 9∥I I21∥

2
L2(Ω,H ) + 9∥I I22∥

2
L2(Ω,H ) + 9∥I I23∥

2
L2(Ω,H ). (84)

Using Itô-isometry, [20, Lemma 5], Assumption 2.4 and Lemma 3.2, it holds that

∥I I21∥
2
L2(Ω,H ) =

∫ tm

tm−1

e(tm−s)Ah,m−1
(
Ph B

(
X h(s)

)
− Ph B

(
X h(tm−1)

))2
L2(Ω,H ) ds

≤ C
∫ tm

tm−1

(s − tm−1)min(β,1)ds ≤ C∆tmin(β+1,2). (85)

Using again Itô-isometry, Lemma 3.7(i) with α = 0 and Corollary 2.1 yields

∥I I22∥
2
L2(Ω,H ) =

∫ tm

tm−1

(e(tm−s)Ah,m−1 − Sm−1
h,∆t

)
Ph B

(
X h(tm−1)

)2

L2(Ω,H )
ds

≤ C
∫ tm

tm−1

(
1 + ∥X0∥

2
L2(Ω,H )

)
ds ≤ C∆t. (86)

The Itô-isometry together with Lemma 3.4(i) (with α = 0) and Assumption 2.4 yields

∥I I23∥
2
L2(Ω,H ) =

∫ tm

tm−1

Sm−1
h,∆t

(
Ph B

(
X h(tm−1)

)
− Ph B

(
X h

m−1

))2

L2(Ω,H )
ds

≤ C∆t
X h(tm−1) − X h

m−1

2
L2(Ω,H ) . (87)

Substituting (87), (86) and (85) in (84) yields

∥I I2∥
2
L2(Ω,H ) ≤ C∆t + C∆t

X h(tm−1) − X h
m−1

2
L2(Ω,H ) . (88)

3.2.2. Estimation of I I3
We can recast I I3 in four terms as follows:

I I3 =

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠(e(tm−i −s)Ah,m−i−1 − I
)

Gh
m−i

(
X h(s)

)
ds

+

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠(Gh
m−i

(
X h(s)

)
− Gh

m−i

(
X h(tm−i )

))
ds
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+

m−1∑
i=2

∫ tm−i

tm−i−1

⎡⎣⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠−

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠⎤⎦Gh
m−i

(
X h(tm−i )

)
ds

+

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠(Gh
m−i

(
X h(tm−i )

)
− Gh

m−i

(
X h

m−i

))
ds

:= I I31 + I I32 + I I33 + I I34.

Therefore, using triangle inequality we obtain

∥I I3∥L2(Ω,H ) ≤ ∥I I31∥L2(Ω,H ) + ∥I I32∥L2(Ω,H ) + ∥I I33∥L2(Ω,H ) + ∥I I34∥L2(Ω,H ). (89)

Inserting an appropriate power of Ah , using Lemma 3.1 and Corollary 2.1 yields

∥I I31∥L2(Ω,H ) ≤

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠ A1−ϵ
h


2

L(H )

×
A−1+ϵ

h

(
e(tm−i −s)Ah,m−i−1 − I

)2
L(H )

Gh
m−i

(
X h(s)

)2
ds
] 1

2

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

t−1+ϵ
i (tm−i − s)1−ϵds

≤ C∆t1−ϵ

m−1∑
i=2

∆t t−1+ϵ
i ≤ C∆t1−ϵ . (90)

Using triangle inequality, Lemma 3.1, Assumption 2.3 and Lemma 2.1 yields

∥I I32∥L2(Ω,H )

≤

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠
2

L(H )

∥Gh
m−i

(
X h(s)

)
− Gh

m−i

(
X h(tm−i )

)
∥

2

⎤⎥⎦
1
2

ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

X h(s) − X h(tm−i )


L2(Ω,H ) ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

(tm−i − s)
min(β,1)

2 ds ≤ C∆t
min(β,1)

2 . (91)

Using triangle inequality, Lemma 3.7(ii) and Corollary 2.1, it holds that

∥I I33∥L2(Ω,H ) ≤

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠−

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠
2

L(H )

×
Gh

m−i

(
X h(tm−i )

)2

⎤⎥⎦
1
2

ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

t
−
β
2

i−1∆t
β
2 ds ≤ C∆t

β
2 . (92)
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Using Lemma 3.4(i) with α = 0 and Assumption 2.3 yields

∥I I34∥L2(Ω,H )

≤

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

S j
h,∆t

⎞⎠
2

L(H )

×
(Gh

m−i

(
X h(tm−i )

)
− Gh

m−i

(
X h

m−i

))2
L2(Ω,H )

⎤⎥⎦
1
2

ds

≤ C∆t
m−1∑
i=2

X h(tm−i ) − X h
m−i


L2(Ω,H ) . (93)

Substituting (93), (92), (91) and (90) in (89) yields

∥I I3∥L2(Ω,H ) ≤ C∆t
min(β,1)

2 + C∆t
m−1∑
i=2

X h(tm−i ) − X h
m−i


L2(Ω,H ) . (94)

3.2.3. Estimation of I I4
We can recast I I4 in four terms as follows.

I I4 =

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠(e(tm−i −s)Ah,m−i−1 − I
)

Ph B
(
X h(s)

)
dW (s)

+

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠(Ph B
(
X h(s)

)
− Ph B

(
X h(tm−i )

))
dW (s)

+

m−1∑
i=2

∫ tm−i

tm−i−1

⎡⎣⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠−

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠⎤⎦ Ph B
(
X h(tm−i )

)
dW (s)

+

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠[Ph B
(
X h(tm−i )

)
− Ph B

(
X h

m−i

)]
dW (s)

:= I I41 + I I42 + I I43 + I I44. (95)

Therefore using triangle inequality we have

∥I I4∥
2
L2(Ω,H ) ≤ 16∥I I41∥

2
L2(Ω,H ) +16∥I I42∥

2
L2(Ω,H ) +16∥I I43∥

2
L2(Ω,H ) +16∥I I44∥

2
L2(Ω,H ).

(96)

Using Itô isometry, inserting an appropriate power of Ah , using Lemma 3.1 and Corollary 2.1
yields

∥I I41∥
2
L2(Ω,H )

=

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠(e(tm−i −s)Ah,m−i−1 − I
)

Ph B
(
X h(s)

)
2

L0
2

⎤⎥⎦ ds
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≤

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠ A
1−ϵ

2
h


2

L(H )

×

A
−1+ϵ

2
h

(
e(tm−i −s)Ah,m−i−1 − I

)2

L(H )

Ph B
(
X h(s)

)2
L0

2

⎤⎥⎦ ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

t−1+ϵ
i (tm−i − s)1−ϵds ≤ C∆t1−ϵ

m−1∑
i=2

∆t t−1+ϵ
i ≤ C∆t1−ϵ . (97)

Using Itô isometry, Lemma 3.1, Assumption 2.4 and Lemma 2.1 yields

∥I I42∥
2
L2(Ω,H )

=

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠(Ph B
(
X h(s)

)
− Ph B

(
X h(tm−i )

))
2

L0
2

⎤⎥⎦ ds

≤

m−1∑
i=2

∫ tm−i

tm−i−1

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠
2

L(H )

Ph B
(
X h(s)

)
− Ph B

(
X h(tm−i )

)2
L0

2

⎤⎥⎦ ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

X h(s) − X h(tm−i )
2

L2(Ω,H ) ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

(tm−i − s)min(β,1)ds ≤ C∆tmin(β,1). (98)

Using Itô isometry, Lemma 3.7(ii) with α =
1−ϵ

2 and Corollary 2.1, it holds that

∥I I43∥
2
L2(Ω,H )

=

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎡⎣⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠−

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠⎤⎦ Ph B
(
X h(tm−i )

)
2

L0
2

⎤⎥⎦ ds

≤

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠−

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠
2

L(H )

Ph B
(
X h(tm−i )

)2
L0

2

⎤⎥⎦ ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

t1−ϵ
i−1 ∆t1−ϵds ≤ C∆t1−ϵ . (99)

Using Itô isometry, Lemma 3.4(i) with α = 0 and Assumption 2.4 yields

∥I I44∥
2
L2(Ω,H )

=

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

S j
h,∆t

⎞⎠(Ph B
(
X h(tm−i )

)
− Ph B

(
X h

m−i

))
2

L0
2

⎤⎥⎦ ds
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≤

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

S j
h,∆t

⎞⎠
2

L(H )

Ph B
(
X h(tm−i )

)
− Ph B

(
X h

m−i

)2
L0

2

⎤⎥⎦ ds

≤ C∆t
m−1∑
i=2

X h(tm−i ) − X h
m−i

2
L2(Ω,H ) . (100)

Substituting (100), (99), (98) and (97) in (96) yields

∥I I4∥
2
L2(Ω,H ) ≤ C∆tmin(β,1−ϵ)

+ C∆t
m−1∑
i=2

∥X h(tm−i ) − X h
m−i∥

2
L2(Ω,H ). (101)

Substituting (101), (94), (88), (82) and (76) in (75) yieldsX h(tm) − X h
m

2
L2(Ω,H ) ≤ C∆tmin(β,1−ϵ)

+ C∆t
m−1∑
i=1

X h(ti ) − X h
i

2
L2(Ω,H ) . (102)

Applying the discrete Gronwall’s lemma to (102) yieldsX h(tm) − X h
m


L2(Ω,H ) ≤ C∆t

min(β,1−ϵ)
2 .

This completes the proof of Theorem 2.2.

3.3. Proof of Theorem 2.3

Let us recall that

∥X h(tm) − X h
m∥

2
L2(Ω,H ) ≤ 25

4∑
i=0

∥I I Ii∥
2
L2(Ω,H ), (103)

where I I I0 and I I I1 are exactly the same as I I0 and I I1 respectively. Therefore from (76)
and (82) we have

∥I I I0∥L2(Ω,H ) + ∥I I I1∥L2(Ω,H ) ≤ C∆t
β
2 + C∆t∥X h(tm−1) − X h

m−1∥L2(Ω,H ). (104)

It remains to re-estimate I I I3 in order to achieve higher order convergence rate. We also need
to re-estimate the terms involving the noise I I I2 and I I I4, which are given below

I I I2 =

∫ tm

tm−1

(
e(tm−s)Ah,m−1 − Sm−1

h,∆t

)
PhdW (s),

I I I3 =

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠ e(tm−i −s)Ah,m−i−1 Gh
m−i

(
X h(s)

)
ds

−

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠Gh
m−i

(
X h

m−i

)
ds

I I I4 =

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠ e(tm−i −s)Ah,m−i−1 PhdW (s)

−

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠ PhdW (s).
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3.3.1. Estimation of I I I2
We can split I I I2 in two terms as follows:

I I I2 =

∫ tm

tm−1

[
e(tm−s)Ah,m−1 − e∆t Ah,m−1

]
PhdW (s) +

∫ tm

tm−1

[
e∆t Ah,m−1 − Sm−1

h,∆t

]
PhdW (s)

:= I I I21 + I I I22. (105)

Using itô isometry, Lemma 3.2, [20, Lemma 9 (i) & (ii)] and Lemma 3.8(i), it holds that

∥I I I21∥
2
L2(Ω,H )

=

∫ tm

tm−1

E
[(e(tm−s)Ah,m−1 − e(tm−tm−1)Ah,m−1

)
Ph Q1/2

2
L2(H )

]
ds

≤

∫ tm

tm−1

E

[e(tm−s)Ah,m−1
(
I − e(s−tm−1)Ah,m−1

)
A

1−β
2

h

2

L(H )

A
β−1

2
h Ph Q

1
2

2

L2(H )

]
ds

≤

∫ tm

tm−1

E

[e(tm−s)Ah,m−1 A
1−ϵ

2
h

2

L(H )

A
−1+ϵ

2
h

(
I − e(s−tm−1)Ah,m−1

)
A

1−β
2

h

2

L(H )

×

A
β−1

2
h Ph Q

1
2

2

L2(H )

]
ds

≤ C
∫ tm

tm−1

(tm − s)−1+ϵ(s − tm−1)β−ϵds ≤ C∆tβ−ϵ

∫ tm

tm−1

(tm − s)−1+ϵds ≤ C∆tβ . (106)

Applying Itô isometry, using Lemma 3.7(i) and Lemma 3.8(i) yields

∥I I I22∥
2
L2(Ω,H ) =

∫ tm

tm−1

E
[(e∆t Ah,m−1 − Sm−1

h,∆t

)
Ph Q

1
2

2

L2(H )

]
ds

≤ C
∫ tm

tm−1

∆tβ−1
A

β−1
2

h Ph Q
1
2

2

L2(H )
ds ≤ C∆tβ . (107)

Substituting (107), (106) in (105) yields

∥I I I2∥
2
L2(Ω,H ) ≤ 2∥I I I21∥

2
L2(Ω,H ) + 2∥I I I22∥

2
L2(Ω,H ) ≤ C∆tβ . (108)

3.3.2. Estimation of I I I3
Since I I I3 is the same as I I3, it follows from (89) that

I I I3 = I I I31 + I I I32 + I I I33 + I I I34, (109)

where I I I31 I I I32, I I I33 and I I I34 are respectively the same as I I31 I I32, I I33 and I I34.
Therefore from (90), (92) and (93) we have

∥I I I31∥L2(Ω,H ) + ∥I I I33∥L2(Ω,H ) + ∥I I I34∥L2(Ω,H )

≤ C∆tβ + C∆t
m−1∑
i=2

∥X h(tm−i ) − X h
m−i∥L2(Ω,H ). (110)
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To achieve convergence order greater than 1
2 we need to re-estimate I I I32 by using

Assumption 2.7. Recall that I I I32 is given by

I I I32 =

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠(Gh
m−i

(
X h(s)

)
− Gh

m−i

(
X h(tm−i )

))
ds. (111)

Using Taylor‘s formula in Banach space yields

I I I32

=

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠(e(s−tm−i−1)Ah,m−i − I
)

X h(tm−i )ds

+

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠(Gh
m−i

)′ (
X h(tm−i )

)
×

∫ s

tm−i−1

e(s−σ )Ah,m−i−1
(
Gh

m−i (X h(σ ))
)

dσds

+

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠(Gh
m−i

)′ (
X h(tm−i )

) ∫ s

tm−i−1

e(s−σ )Ah,m−i−1 PhdW (σ )ds

+

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠ Rh
m−i ds

=: I I I (1)
32 + I I I (2)

32 + I I I (3)
32 + I I I (4)

32 , (112)

where the remainder Rh
m−i is given by

Rh
m−i :=

∫ 1

0

(
Gh

m−i

)′′ (
X h(tm−i ) + λ

(
X h(s) − X h(tm−i )

))
(
X h(s) − X h(tm−i ), X h(s) − X h(tm−i )

)
(1 − λ)dλ.

Inserting an appropriate power of Ah , using Lemma 3.1 and Corollary 2.1, it holds that

∥I I I (1)
32 ∥L2(Ω,H ) ≤

m−1∑
i=2

∫ tm−i

tm−i−1

⎡⎢⎣E

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠ A1−ϵ
h


2

L(H )

×
A−1+ϵ

h

(
e(s−tm−i−1)Ah,m−i − I

)
L(H ) ∥X h(tm−i )∥

⎤⎥⎦
1
2

ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

t−1+ϵ
i (s − tm−i−1)1−ϵds

≤ C∆t1−ϵ

m−1∑
i=2

t−1+ϵ
i ∆t ≤ C∆t1−ϵ . (113)
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Using Lemmas 3.1, 3.8(ii) and Corollary 2.1 yields

∥I I I (2)
32 ∥

2
L2(Ω,H ) ≤ C

m−1∑
i=2

∫ tm−i

tm−i−1


∫ s

tm−i−1

e(s−σ )Ah,m−i−1
(
Gh

m−i

)
(X h(σ ))dσ


L2(Ω,H )

ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

(s − tm−i−1)ds ≤ C∆t. (114)

Since the expectation of the cross-product vanishes, using Itô isometry, triangle inequality,
Hölder inequality and Lemma 3.1 yields

∥I I I (3)
32 ∥

2
L2(Ω,H )

= E

⎡⎣⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠(Gh
m−i

)′ (
X h(tm−i )

)

×

∫ s

tm−i−1

e(s−σ )Ah,m−i−1 PhdW (σ )ds

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
2
⎤⎥⎦

=

m−1∑
i=2

E

⎡⎣⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
∫ tm−i

tm−i−1

∫ s

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠(Gh
m−i

)′ (
X h(tm−i )

)

× e(s−σ )Ah,m−i−1 PhdW (σ )ds

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
2
⎤⎥⎦

≤ ∆t
m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎣⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
∫ s

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠(Gh
m−i

)′ (
X h(tm−i )

)

× e(s−σ )Ah,m−i−1 PhdW (σ )

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
2
⎤⎥⎦ ds

≤ ∆t
m−1∑
i=2

∫ tm−i

tm−i−1

∫ s

tm−i−1

E

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠(Gh
m−i

)′ (
X h(tm−i )

)

× e(s−σ )Ah,m−i−1 Ph Q
1
2

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
2

L2(H )

dσds

≤ ∆t
m−1∑
i=2

∫ tm−i

tm−i−1

∫ s

tm−i−1

E
(Gh

m−i

)′ (
X h(tm−i )

)
e(s−σ )Ah,m−i−1 Ph Q

1
2

2

L2(H )
dσds. (115)
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Using Lemma 3.8 yields

E
(Gh

m−i

)′ (
X h(tm−i )

)
e(s−σ )Ah,m−i−1 Ph Q

1
2

2

L2(H )

= E
(Gh

m−i

)′ (
X h(tm−i )

)
e(s−σ )Ah,m−i−1 A

1−β
2

h A
β−1

2
h Ph Q

1
2

2

L2(H )

≤ E
(Gh

m−i

)′ (
X h(tm−i )

)
e(s−σ )Ah,m−i−1 A

1−β
2

h

2

L(H )

A
β−1

2
h Ph Q

1
2

2

L2(H )

≤ E
e(s−σ )Ah,m−i−1 A

1−β
2

h

2

L(H )

A
β−1

2
h Ph Q

1
2

2

L2(H )

≤ C(s − σ )min(−1+β,0). (116)

Substituting (116) in (115) yields

∥I I I (3)
32 ∥

2
L2(Ω,H ) ≤ C∆t

m−1∑
i=2

∫ tm−i

tm−i−1

∫ s

tm−i−1

(s − σ )min(−1+β,0)dσds ≤ C∆tmin(1+β,2). (117)

Using Lemma 3.8(ii) and 2.1 yieldsA
−
η
2

h Rh
h,m−i


L2(Ω,H )

≤ C
X h(s) − X h(tm−i )

2


L2(Ω,H )

≤ C
X h(s) − X h(tm−i )

2
L4(Ω,H ) ≤ C∆tmin(β,1). (118)

Therefore we obtain the following estimate for I I I (4)
32

∥I I I (4)
32 ∥L2(Ω,H ) ≤ C∆tmin(β,1)

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠ A
η
2
h


2

L(H )

⎤⎥⎦ ds

≤ C∆tmin(β,1)
m−1∑
i=2

t
−
η
2

i ∆t ≤ C∆tmin(β,1). (119)

Substituting (119), (117), (114) and (113) in (112) yields

∥I I I32∥L2(Ω,H ) ≤ ∥I I I (1)
32 ∥L2(Ω,H ) + ∥I I I (2)

32 ∥L2(Ω,H )

+∥I I I (3)
32 ∥L2(Ω,H ) + ∥I I I (4)

32 ∥L2(Ω,H )

≤ C∆t
β
2 −ϵ . (120)

Substituting (120) and (95) in (111) yields

∥I I I32∥L2(Ω,H ) ≤ ∥I I I (1)
32 ∥L2(Ω,H ) + ∥I I I (2)

32 ∥L2(Ω,H ) ≤ C∆t
β
2 −ϵ . (121)

Substituting (121) and (110) in (109) yields

∥I I I3∥L2(Ω,H ) ≤ C∆t
β
2 −ϵ . (122)
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3.3.3. Estimation of I I I4
We can recast I I I4 in two terms as follows

I I I4 =

m−1∑
i=2

∫ tm−i

tm−i−1

⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠(e(tm−i −s)Ah,m−i − I
)

PhdW (s)

+

m−1∑
i=2

∫ tm−i

tm−i−1

⎡⎣⎛⎝ m−1∏
j=m−i

e∆t Ah, j

⎞⎠−

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠⎤⎦ PhdW (s)

=: I I I41 + I I I42. (123)

Using Itô isometry, Lemma 3.8(i), [20, Lemma 9 (i) & (iv)], Lemma 3.1 and [20, Lemma 10]
yields

∥I I I41∥
2
L2(Ω,H )

=

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠(e(tm−i −s)Ah,m−1 − I
)

Ph Q
1
2


2

L2(H )

⎤⎥⎦ ds

≤

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠(e(tm−i −s)Ah,m−1 − I
)

A
1−β

2
h


2

L(H )

×

A
β−1

2
h Ph Q

1
2

2

L2(H )

⎤⎥⎦ ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠ A
1−ϵ

2
h


2

L(H )

(e(tm−i −s)Ah,m−1 − I
)

A
−β+ϵ

2
h

2

L(H )

⎤⎥⎦ ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

t−1+ϵ
i (tm−i − s)β−ϵds ≤ C∆tβ−ϵ

m−1∑
i=2

t−1+ϵ
i ∆t ≤ C∆tβ−ϵ . (124)

Using Itô isometry and Lemma 3.8(i) yields

∥I I I42∥
2
L2(Ω,H )

=

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎡⎣⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠−

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠⎤⎦ Ph Q
1
2


2

L2(H )

⎤⎥⎦ ds

≤

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎡⎣⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠−

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠⎤⎦ A
1−β

2
h


2

L(H )
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×

A
β−1

2
h Ph Q

1
2

2

L2(H )

⎤⎥⎦ ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎢⎣

⎡⎣⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠−

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠⎤⎦ A
1−β

2
h


2

L(H )

⎤⎥⎦ ds. (125)

If 0 < β < 1 then applying Lemma 3.7(ii) yields

∥I I I42∥
2
L2(Ω,H ) ≤ C

m−1∑
i=2

∫ tm−i

tm−i−1

E

⎡⎣⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
⎡⎣⎛⎝ m−1∏

j=m−i

e∆t Ah, j

⎞⎠
−

⎛⎝ m−1∏
j=m−i

S j
h,∆t

⎞⎠⎤⎦ A
1−ϵ

2
h

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
2

L(H )

⎤⎥⎦ ds

≤ C
m−1∑
i=2

∫ tm−i

tm−i−1

∆t1−ϵ t−1+ϵ
i−1 ds ≤ C∆t1−ϵ

m−1∑
i=2

t−1+ϵ
i−1 ∆t ≤ C∆t1−ϵ . (126)

If β ∈ [1, 2] then applying Lemma 3.7(iii) yields

∥I I I42∥
2
L2(Ω,H ) ≤ C

m−1∑
i=2

∫ tm−i

tm−i−1

∆tβ−ϵ t−1+ϵ
i−1 ds ≤ C∆tβ−ϵ . (127)

Therefore for all β ∈ (0, 2] it holds that

∥I I I42∥
2
L2(Ω,H ) ≤ C∆tβ−ϵ . (128)

Substituting (128) and (124) in (123) yields

∥I I I4∥
2
L2(Ω,H ) ≤ 2∥I I I41∥

2
L2(Ω,H ) + 2∥I I I42∥

2
L2(Ω,H ) ≤ C∆tβ−ϵ . (129)

Substituting (129), (122), (108) and (104) in (103) yieldsX h(tm) − X h
m

2
L2(Ω,H ) ≤ C∆tβ−2ϵ

+ C∆t
m−1∑
i=2

X h(tm−i ) − X h
m−i

2
L2(Ω,H ) .

Applying the discrete Gronwall’s lemma yieldsX h(tm) − X h
m


L2(Ω,H ) ≤ C∆t

β
2 −ϵ .

This completes the proof of Theorem 2.3.

4. Numerical simulations

We consider the following stochastic reactive dominated advection diffusion equation with
constant diagonal diffusion tensor

d X =

[
∇ · (D∇ X ) − ∇ · (qX ) −

10X
X + 1

]
dt + b(X )dW, D =

(
10−1 0

0 10−2

)
. (130)

with mixed Neumann–Dirichlet boundary conditions on Λ = [0, L1] × [0, L2]. The Dirichlet
boundary condition is X = 1 at Γ = {(x, y) : x = 0} and we use the homogeneous Neumann



J.D. Mukam and A. Tambue / Stochastic Processes and their Applications 130 (2020) 4968–5005 5001

boundary conditions elsewhere. The eigenfunctions {ei, j } = {e(1)
i ⊗ e(2)

j }i, j≥0 of the covariance
operator Q are the same as for Laplace operator −∆ with homogeneous boundary condition
and are given by

e(l)
0 (x) =

√
1
L l
, e(l)

i (x) =

√
2
L l

cos
(

iπ
L l

x
)
, l ∈ {1, 2} , x ∈ Λ, i ∈ N.

We assume that the noise can be represented as

W (x, t) =

∑
i∈N2

√
λi, j ei, j (x)βi, j (t), (131)

where βi, j (t) are independent and identically distributed standard Brownian motions, λi, j ,
(i, j) ∈ N2 are the eigenvalues of Q, with

λi, j =
(
i2

+ j2)−(β+ϵ)
, β > 0, (132)

in the representation (131) for some small ϵ > 0. When dealing with additive noise, we take
b(u) = 1, so Assumption 2.6 is obviously satisfied for any β ∈ (0, 2]. When dealing with
multiplicative noise, we take b(u) = u in (13), Therefore, from [10, Section 4] it follows that
the operators B defined by (13) fulfills obviously Assumptions 2.4 and 2.5. For both additive

and multiplicative noise, the function F(X ) = −
10X

1 + X
obviously satisfies the global Lipschitz

condition in Assumptions 2.3 and 2.7. We obtain the Darcy velocity field q = (qi ) by solving
the following system

∇ · q = 0, q = −
k
µ

∇ p, (133)

with Dirichlet boundary conditions on Γ 1
D = {0, L1} × [0, L2] and Neumann boundary

conditions on Γ 1
N = (0, L1)× {0, L2} such that

p =

{
1 in {0} × [0, L2]
0 in {L1} × [0, L2]

and −k ∇ p(x, t) · n = 0 in Γ 1
N . Note that k is the permeability tensor. We use a random

permeability field as in [32] and take µ = 10. The finite volume method viewed as a finite
element method (see [30]) is used for the advection and the finite element method is used for
the remainder. In the legends of our graphs, we use the following notations:

1. ‘Rosenbrock-A-noise’ is used for graphs from our Rosenbrock scheme with additive
noise.

2. ‘Rosenbrock-M-noise’ is used for graphs from our Rosenbrock scheme with multiplica-
tive noise.

3. ‘Expo-Rosenbrock-A-noise’ is used for graphs of stochastic exponential Rosenbrock
scheme presented in [20] with additive noise.

4. ‘Expo-Rosenbrock-M-noise’ is used for graphs of stochastic exponential Rosenbrock
scheme presented in [20] with multiplicative noise.

We take L1 = 2 and L2 = 2 and our reference solutions samples are numerical solutions
with time step ∆t = 1/2048. The errors are computed at the final time T = 1. The initial
solution is X0 = 0, so we can therefore expect high orders convergence, which depend
only on the noise term. For both additive and multiplicative noise, we use β = 2 and
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Fig. 1. Convergence in the root mean square L2 norm at T = 1 as a function of ∆t for additive noise (a) and
multiplicative noise (c). We take β = 2, and ϵ = 10−1 in relation (132) and use 80 realizations. Graph (b) and
graph (d) show the CPU time per sample versus the root mean square L2 errors for additive noise and multiplicative
noise respectively.

ϵ = 10−1. The streamline of velocity is given at Fig. 2(a) while a sample of the numerical
solution with the stochastic Rosenbrock scheme for additive noise is given at Fig. 2(b). In
Fig. 1(a) and (c), the graphs of strong errors versus the time steps are plotted for stochastic
Rosenbrock scheme and exponential Rosenbrock for additive noise and multiplicative noise
respectively. The orders of convergence are 0.59 (exponential Rosenbrock scheme) and 0.55
(Rosenbrock scheme) for multiplicative noise, 1.03 (exponential Rosenbrock scheme) and 0.92
(Rosenbrock scheme) for additive noise, which are close to 0.5 and 1 in our theoretical results
in Theorems 2.2 and 2.3 respectively. The implementation of the stochastic Rosenbrock-type
scheme is straightforward and only needs the resolution of a linear system of equations at
each time step. For efficiency, all linear systems are solved using the Matlab function bicgstab
coupled with ILU(0) preconditioners with no fill-in. The ILU(0) are done on the deterministic
part of the matrix Ah , that is (I +∆t Ah), at each time step. Fig. 1(b) and (d) show the mean of
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Fig. 2. (a) The streamline of velocity (a) and a sample of the numerical solution with the stochastic Rosenbrock
scheme for additive noise.

CPU time per sample versus the root mean square L2 errors corresponding for Fig. 1(a)(additive
noise) and Fig. 1(c)(multiplicative noise) respectively. As we can observe, the novel stochastic
Rosenbrock scheme is more efficient than the stochastic exponential Rosenbrock scheme,
thanks to the preconditioners.
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