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Abstract

Suppose that L =
∑d

i; j=1 aij(x)@
2=@xi@xj is uniformly elliptic. We use XL(t) to denote the

di�usion associated with L. In this paper we show that, if the dimension of the set {x: [aij(x)] 6=
1
2 I} is strictly less than d, the random variable (XL(T ) − XL(0))=

√
T converges in distribution

to a standard Gaussian random variable. In fact, we also provide rates of convergence. As an
application, these results are used to study a problem of a random walk in a random environment.
c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let X (t); t¿0; denote Brownian motion in Rd (d¿1). Hence, for x∈Rd and rea-
sonably behaved functions g: Rd→R one has

Ex[g(X (t)− x)] =
∫
Rd

1
(2�t)d=2 exp

(
−y

2

2t

)
g(y) dy: (1)

Here Ex denotes the expectation with respect to the Brownian motion starting from x.
We can rescale Eq. (1) to yield

Ex

[
f
(
X (t)− x√

t

)]
=
∫
Rd

1
(2�)d=2 exp

(
− z

2

2

)
f(z) dz;

where f(z) = g(z
√
t). This is the same as

Ex

[
f
(
X (t)− x√

t

)]
= E[f(Y )]; (2)
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where Y is a d dimensional Gaussian variable with covariance matrix equal to the
identity. In this paper we shall be concerned with showing that identity (2) holds
approximately at large time for di�usions XL(t) associated with certain elliptic operators
of the form

L=
d∑

i; j=1

aij(x)
@2

@xi@xj
; (3)

where x∈Rd has coordinates (x1; : : : ; xd). We assume that the matrix A(x) = [aij(x)];
x ∈ Rd, is symmetric and that there are constants �; �¿ 0 such that

�I6A(x)6�I; x ∈ Rd; (4)

where I is the identity matrix. Therefore L is uniformly elliptic. The operator L gen-
erates a di�usion process which we denote by XL(t); t¿0. If A(x) = 1

2 I; x ∈ Rd, then
XL(t) is just Brownian motion.
Suppose that the operator L satis�es Eq. (4). We expect that Eq. (2) holds approx-

imately at large time for XL(t) provided the dimension of the set {x: A(x) 6= 1
2 I} is

strictly less than d. For 06�6d we shall say that a set U has dimension less than or
equal to � if there exists a constant C such that for all balls BR of radius R,

|U ∩ BR|6CR�; R¿1;

where | · | denotes the Lebesgue measure. This notion of dimension is very di�erent
from the Hausdor� dimension. For instance, a line in Rd has dimension 0, and so does
any hypersurface in Rd. From the de�nition above, one can check that any bounded
set in Rd has dimension 0. So our notion of dimension measures how big the set is
near in�nity. The following theorem is proved in Section 2.

Theorem 1.1. Suppose {x: A(x) 6= 1
2 I} has dimension less than or equal to �¡d.

Let f: Rd→R be a function such that

|f(x)|+
d∑
i=1

∣∣∣∣@f@xi (x)
∣∣∣∣+

d∑
i; j=1

∣∣∣∣ @2f@xi@xj
(x)
∣∣∣∣6AeM |x|; x ∈ Rd;

for some constants A;M . Then for any x0 ∈ Rd; T¿1; there is a constant C depending
only on A; M; � and � such that∣∣∣∣Ex0

[
f
(
XL(T )− x0√

T

)]
− E[f(Y )]

∣∣∣∣6 C
T (1−�=d)=2

: (5)

We prove Theorem 1.1 by using the Alexander–Bakelman–Pucci (ABP) inequality.
For a statement of the ABP inequality, see Gilbarg and Trudinger (1983). The es-
timate C=T (1−�=d)=2 given by the ABP inequality is not sharp. Consider the situation
where {x: A(x) 6= 1

2 I}⊂{x: |x1|¡ 1}. In this case � = d − 1 and Theorem 1.1 yields
an estimate C=T 1=(2d). The best possible estimate is C=

√
T for this case. We shall

also prove this in Section 2 and a corresponding result for the case when {x: A(x) 6=
1
2 I}⊂{x: |x1|¡ 1; |x2|¡ 1}.
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Theorem 1.2. Let f: Rd→R satisfy the conditions of Theorem 1:1 and x0 ∈ Rd.
If {x: A(x) 6= 1

2 I}⊂{x: |x1|¡ 1}; then∣∣∣∣Ex0
[
f
(
XL(T )− x0√

T

)]
− E[f(Y )]

∣∣∣∣6 C√
T
; T¿1; (6)

where C depends only on A; M; � and �. If {x: A(x) 6= 1
2 I}⊂{x: |x1|¡ 1; |x2|¡ 1};

then ∣∣∣∣Ex0
[
f
(
XL(T )− x0√

T

)]
− E[f(Y )]

∣∣∣∣6C |log T |
T

; T¿2; (7)

where C depends only on A; M; � and �.

Observe that Theorems 1.1 and 1.2 not only prove convergence in distribution. They
also give us a rate of convergence. This rate of convergence will become important in
Section 3 when we consider a problem of a random walk in a random environment.
The walk consists of a random walk with a drift which is random in both space and
time. To specify the walk let b(i; x), i = 1; 2; : : : ; x ∈ Zd, be a vector �eld on Zd
such that (1) the components of the vector b(i; x) are independent symmetric Bernoulli
random variables, i.e., they only take on the values ±1 and the probability that they
take the value ±1 are both 1=2 and (2) the collection {b(i; x), i = 1; 2; : : : ; x ∈ Zd}
of random vectors are independent. Suppose �( j); j=1; 2; : : : ; T; is a standard random
walk on Zd with measure dWT (�). For any i = 1; 2; : : : ; let ��i = �i − �i−1. Then for
any � ∈ Rd, the measure P�;b de�ned by

exp[�
∑T

i=1 b(i; �(i−1)) ·��i]dWT (�)
E[exp[�

∑T
i=1 b(i; �(i−1)) ·��i]]

=
exp[�

∑T
i=1 b(i; �(i−1)) ·��i]dWT (�)

(cosh �)T

(8)

gives us a new measure on the walks �. This measure is also Markovian. Indeed, one
can easily check that

P�;b(�T+1=xT+1|�0 =x0; : : : ; �T =xT ) = P
�;b(�0 =x0; : : : ; �T = xT ; �T+1 = xT+1)

P�;b(�0 = x0; : : : ; �T = xT )

=
1

cosh �
ExT [exp[�b(1; �0) ·��1]]:

This measure corresponds to a random walk with a drift. We denote the random walk
with measure (9) by �b.

Theorem 1.3. Let b(i; x) = (b(1)(i; x); : : : ; b(d)(i; x)); where b( j)(i; x); j = 1; : : : ; d;
i = 1; 2; : : : ; x ∈ Zd; are independent random variables with mean zero; taking values
±1. Suppose f: Rd→R satis�es the conditions of Theorem 1:1. Then
(i) when d¿3;

lim
N →∞

Ex0

[
f

(
�b(N )− x0√

N=d

)]
= E[f(Y )]; (9)

with probability 1 in b;
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(ii) when d= 2; Eq. (9) holds for N = an ∈ Z; an¿1; n= 1; 2; : : : ; with

∞∑
n=1

log an
an

¡∞:

(iii) when d= 1; Eq. (9) holds for N = an ∈ Z; an¿1; n= 1; 2; : : : ; with

∞∑
n=1

1√
an
¡∞:

The relation between Theorem 1.3 and Theorems 1.1 and 1.2 is as follows. To prove
Theorem 1.3 we estimate the mean square 
uctuation

Eb



{
Ex0

[
f

(
�b(N )− x0√

N=d

)]
− E[f(Y )]

}2 ; (10)

where Eb denotes expectation is taken with respect to b. This quantity turns out to be
a discrete version of the LHS of Eq. (5). Now the dimension of the space is 2d and
� = d in Theorem 1.1. Theorem 1.3 for d= 1; 2 follows then by establishing discrete
versions of inequalities (6), (7), respectively. To prove Theorem 1.3 for d¿3 we use
an argument from Conlon and Olsen (1996) which enables us to exploit the fact that
random walk in Z2d is non-recurrent to a set of dimension d provided d¿3.
In this paper we only estimate mean square 
uctuations similar to Eq. (10). It seems

likely that one could prove expression (9) converges along the entire integer sequence
in dimensions d=1; 2 by estimating moments higher than the mean square 
uctuation.
This is considerably more di�cult since to do this one must compare two di�erent
non-standard random walks. Mean square 
uctuations can be estimated by comparing
a non-standard random walk to the standard random walk.
The results in this paper should be compared to the problem of random walk with

a drift which is random only in space. It has been shown in Sinai (1982) that for
d = 1 this walk is strongly sub-di�usive and in Bricmont and Kupiainen (1991) that
for d¿3 it is di�usive with a renormalized di�usion constant provided the noise –
corresponding to � in Eq. (9) – is small. It is also interesting to compare the results
here to the problem of random walk with a random potential (Bolthausen, 1989; Imbrie
and Spencer, 1988; Olsen and Song, 1996; Song and Zhou, 1996). In that case it has
been proven that for d¿3 and small noise the walk is di�usive. Numerical evidence,
(Kardar, 1985; Kardar and Zhang, 1987) suggests the walk is super-di�usive at large
noise if d¿3 and for any noise if d=1; 2. Some rigorous results have been established
for a �rst passage percolation problem which is closely related to the d=1 large noise
problem, see Licea and Newman (1996), Licea et al. (1995) and Newman and Piza
(1995).
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2. Convergence in distribution to a Gaussian

We turn to the proof of Theorem 1.1. Let g: Rd→R and

w(x; t) = Ex[g(X (t))] =
1

(2�t)d=2

∫
Rd
exp

[
− (x − y)

2

2t

]
g(y) dy:

Then w satis�es the initial value problem

@w
@t
=
1
2
�w(x; t); x ∈ Rd; t ¿ 0;

w(x; 0) = g(x):

We can rewrite the heat equation above as

@w
@t
= Lw +

(
1
2
�− L

)
w:

Now let v be the solution of the initial value problem

@v
@t
= Lv+

(
1
2
�− L

)
w; x ∈ Rd; t ¿ 0;

v(x; 0) = 0:

Then it is clear that

Ex[g(XL(t))] = w(x; t)− v(x; t):
If we write now

h(x; t) = (12�− L)w(x; t);
then v has the probabilistic representation

v(x; t) = Ex

[∫ t

0
h(XL(t − s); s) ds

]
: (11)

Now suppose f: Rd→R and de�ne g: Rd→R by

g(x) = f
(
x − x0√
T

)
;

where x0 ∈ Rd is some arbitrary �xed point. Then

w(x; t) =
1

(2�t)d=2

∫
Rd
exp

[
− (x − x0 − z)

2

2t

]
f
(
z√
T

)
dz: (12)

It is easy to see from this formula that if f is of exponential growth,

|f(y)|6AeM |y|;

then there are constants A1 and M1 depending only on A and M such that

|w(x; t)|6A1eM1|x−x0|=
√
T ; 0¡t¡T:

To get an estimate on h(x; t); we interchange x di�erentiation with z di�erentiation in
Eq. (12) and integrate by parts. Hence if the second-order partial derivatives of f have
exponential growth

d∑
i; j=1

∣∣∣∣ @2f@xi@xj
(x)
∣∣∣∣6AeM |x|;



108 J.G. Conlon, R. Song / Stochastic Processes and their Applications 81 (1999) 103–128

there are constants A1 and M1 depending only on A and M such that

|h(x; t)|6A1
T
eM1|x−x0|=

√
T ; 0¡t¡T: (13)

Let U = {z: A(z) 6= 1
2 I} and 1U be the indicator function of U . Then from Eq. (13),

v(x; t) is bounded by

|v(x; t)|6Ex
[∫ t

0
1U (XL(t − s))A1T exp[M1|XL(t − s)− x0|=

√
T ] ds

]
; t ¡T:

Hence∣∣∣∣Ex0
[
f
(
XL(T )− x0√

T

)]
− Ex0

[
f
(
X (T )− x0√

T

)]∣∣∣∣
6Ex0

[∫ T

0

A1
T
1U (XL(T − s))eM1|XL(t−s)−x0|=

√
T ds

]
: (14)

Inequality (14) is basic to the argument of this section, since from here on we shall
estimate the RHS of this inequality. To do this we need the following:

Lemma 2.1. Let �R be the time for the di�usion process XL; started from x ∈ Rd; to
go a distance R. Then there is a constant 
¿ 0 depending only on � and � such
that

P(�R ¡ t)6e−
R
2=t ; R¿

√
t:

Proof. Let r ¿ 0 be arbitrary and �1 be the time taken for the process to exit the strip
{y: |y1 − x1|¡r}. If we put

u(y) = Ey[e−��1 ];

then u(y) satis�es the boundary value problem

Lu(y) = �u(y); |y1 − x1|¡r;

u(y) = 1; |y1 − x1|= r:
Now let w(z); −r ¡ z¡r, satisfy the boundary value problem

d2w
dz2

=
�
�
w(z); −r ¡ z¡r;

w(z) = 1; z =±r:
The function w is given explicitly by the formula

w(z) = cosh(z(�=�)1=2)=cosh(r(�=�)1=2):

If we put u(y) = w(y1 − x1), it is clear from Eq. (4) that

Lu(y)6�u(y); |y1 − x1|¡r;

u(y) = 1; |y1 − x1|= r:
Hence by the maximum principle we have u(y)6u(y) when |y1 − x1|¡r. Thus

Ex[e−��1 ]61=cosh(r(�=�)1=2):
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We can similarly de�ne �j; j = 2; 3; : : : ; d, to be the time for the process XL to exit
the strip {y: |yj − xj|¡r}. Taking r = R=√d it is clear that

P(�R ¡ t)6
d∑
j=1

P(�j ¡ t)6
d∑
j=1

e�tEx[e−��j ]

6 de�t=cosh(R�1=2=�1=2d1=2)

6 2d exp[�t − �1=2R=�1=2d1=2]:
If we optimize the last inequality with respect to � we obtain

P(�R ¡ t)62de−R
2=4�td

which yields the result.

Lemma 2.2. Suppose the set U ⊂Rd has dimension less than or equal to �¡d. Then
for any x ∈ Rd;

Ex

[∫ T

0
1U (XL(s)) ds

]
6CT (1+�=d)=2; (15)

Ex

[{∫ T

0
1U (XL(s)) ds

}2]
6CT 1+�=d; (16)

where the constant C depends only on � and �.

Proof. Let �R be the time for XL started at x to go a distance R. Then we can write

Ex

[∫ T

0
1U (XL(s)) ds

]
=

∞∑
n=0

Ex

[∫ T∧�(n+1)√T

T∧�n√T

1U (XL(s)) ds

]

6
∞∑
n=0

Ex

[∫ �(n+1)
√
T

�n
√
T

1U (XL(s)) ds; �n
√
T ¡T

]
:

Thus

Ex

[∫ T

0
1U (XL(s)) ds

]
6

∞∑
n=0

P(�n
√
T ¡T )Ex

[∫ �(n+1)
√
T

�n
√
T

1U (XL(s)) ds|�n√T ¡T

]
:

(17)

We can bound the expectation in the last sum by using the ABP inequality. Thus

Ex

[∫ �(n+1)
√
T

�n
√
T

1U (XL(s)) ds|�n√T ¡T

]
6 sup

y:|y−x|=n√T
Ey

[∫ T

0
1U (XL(s)) ds

]
; (18)

where � is the time taken for the di�usion process started at y to exit the ball {z: |z−
x|6(n+ 1)√T}. It follows from the ABP inequality that

Ey

[∫ T

0
1U (XL(s)) ds

]
6C(n+ 1)

√
T

[∫
|z−x|¡(n+1)√T

1U (z) dz

]1=d

6C(n+ 1)1+�=dT (1+�=d)=2;
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where the constant C depends only on � and �. Hence we have the inequality

Ex

[∫ T

0
1U (XL(s)) ds

]
6CT (1+�=d)=2

∞∑
n=0

P(�n
√
T ¡T )(n+ 1)1+�=d:

From Lemma 2.1 it easily follows that
∞∑
n=0

P(�n
√
T ¡T )(n+ 1)1+�=d6C;

where C depends only on � and �. Inequality (15) follows from this and the previous
inequality.
Next we turn to the proof of Eq. (16). We write the left-hand side of Eq. (16) as

2Ex

[∫
0¡s¡s′¡T

1U (XL(s))1U (XL(s′)) ds ds′
]

=2Ex

[∫ T

0
ds1U (XL(s))E

[∫ T

s
1U (XL(s′)) ds′ |XL(s)

]]
:

From Eq. (15) it follows that

E
[∫ T

s
1U (XL(s′)) ds′ |XL(s)

]
6CT (1+�=d)=2;

whence

Ex

[{∫ T

0
1U (XL(s)) ds

}2]
6 2CT (1+�=d)=2Ex

[∫ T

0
1U (XL(s)) ds

]

6 2CT (1+�=d)=2CT (1+�=d)=2

= 2C2T 1+�=d;

again by using Eq. (15).

Proof of Theorem 1.1. We estimate the term on the RHS of Eq. (14). Thus

Ex0

[∫ T

0
1U (XL(T − s))exp[M1|XL(T − s)− x0|=

√
T ]
]

6
∞∑
n=0

Ex0

[∫ T

0
1U (XL(s)) ds exp[M1(n+ 1)]; sup

0¡s¡T
|XL(s)− x0|¿n

√
T
]

6
∞∑
n=0

exp[M1(n+ 1)]Ex0

[{∫ T

0
1U (XL(s)) ds

}2]1=2

×Px0
(
sup0¡s¡T |XL(s)− x0|¿n

√
T
)1=2

6CT (1+�=d)=2
∞∑
n=0

exp[M1(n+ 1)]Px0

(
sup

0¡s¡T
|XL(s)− x0|¿n

√
T
)1=2

;
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by Lemma 2.2. Now from Lemma 2.1 it follows that

Px0

(
sup

0¡s¡T
|XL(s)− x0|¿n

√
T
)
6exp[− 
n2]:

We conclude then from Eq. (14) that Eq. (5) holds.

We turn to the proof of Theorem 1.2. Evidently the theorem will follow if we can
obtain an improvement of inequality (15) of Lemma 2.2. Estimate (6) is therefore a
consequence of the following lemma.

Lemma 2.3. Let U = {x: |x1|¡ 1}. Then there is a constant C depending only on �
and � such that

Ex

[∫ T

0
1U (XL(s)) ds

]
6C

√
T ; T¿1:

Proof. From Eqs. (17) and (18) it will be su�cient to show that

u(y) = Ey

[∫ �R

0
1U (XL(s)) ds

]
6CR; y ∈ BR; (19)

where BR is an arbitrary ball of radius R¿1 and �R is the time for the di�usion started
at y ∈ BR to hit the boundary @BR. We can prove this using the maximum principle
since u is a solution of the boundary value problem

−Lu(y) = 1U (y); y ∈ BR;
u(y) = 0; y ∈ @BR:

Suppose BR is centered at the point x = (x1; : : : ; xd). If |x1|¿R+ 1 then u ≡ 0 so we
shall assume |x1|¡R+ 1. Let v(z) be the solution of the one dimensional problem

−v′′(z) = 1(−1;1)(z); |z|¡ 2R+ 1;

v(z) = 0; |z|= 2R+ 1:
One can explicitly solve this problem and see that 06v(z)6CR; |z|¡ 2R+1; for some
universal constant C. By the maximum principle one has

u(y)6�−1v(y1); y = (y1; : : : ; yd) ∈ BR;
where � is given by Eq. (4). Inequality (19) follows from this and hence the result.

Estimate (7) is a consequence of the following lemma.

Lemma 2.4. Let U={x: A(x) 6= 1
2 I}⊂{x: |x1|¡ 1; |x2|¡ 1}: Then there is a constant

C depending only on � and � such that

Ex

[∫ T

0
1U (XL(s)) ds

]
6C|log T |; T¿2:

Proof. Again from Eqs. (17) and (18) it will be su�cient to show that

u(y) = Ey

[∫ �R

0
1U (XL(s)) ds

]
6C|logR|; R¿2: (20)
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To prove this observe that the di�usion process is just regular Brownian motion outside
the set U . Consider the cylinders Sn; n= 0; 1; 2; : : : ; de�ned by

Sn = {x = (x1; : : : ; xd): (x21 + x22)1=2 = 2n+1}:
We view the di�usion as a random walk on the cylinders Sn. Observe that U is
contained completely inside S0. Hence the transition probabilities for the walk are
determined by the Brownian motion probabilities. Let the walk be denoted by Y (i);
i=0; 1; 2; : : : ; where i is an integer time variable. Then Y (i) will take one of the values
0; 1; 2; : : : ; denoting which cylinders the walk is on. In particular we have

P(Y (i + 1) = 1 |Y (i) = 0) = 1;
P(Y (i + 1) = n+ 1 |Y (i) = n) = 1

2 ; n¿1;

P(Y (i + 1) = n− 1 |Y (i) = n) = 1
2 ; n¿1:

This follows from the fact that for n¿1, the probability that Brownian motion started
on Sn exits the region between Sn−1 and Sn+1 through Sn+1 is 1

2 . Let N¿3 be an
arbitrary integer. We wish to estimate the number of times the walk hits S0 before
exiting through SN . If the walk starts at n; 06n6N , the expectation of this quantity is

w(n) = En

[
�N∑
i=0

�0(Y (i))

]
;

where �N is the exit time to the cylinder SN and �0 is the Kronecker �; �0(k) = 0
if k 6= 0; �0(0) = 1. The function w satis�es the �nite di�erence equation

w(n) = 1
2w(n+ 1) +

1
2w(n− 1); 16n6N − 1;

w(0) = 1 + w(1);

w(N ) = 0:

The solution to this is evidently given by the formula w(n) = N − n; 06n6N .
We can use the function w to estimate the function u(y) as in Eq. (20). In fact let

N be the smallest integer such that 2N+1¿R. For z inside S0 let � be the time for the
di�usion process started at z to hit S1. Then we have for y outside S0, the inequality

Ey

[∫ �R

0
1U (XL(s))ds

]
6E

[
En(y)

[
�N∑
i=0

�0(Y (i)) sup
z∈S0

Ez

[∫ �

0
1U (XL(s))ds

]]]
;

where Sn(y) denotes the �rst cylinder hit by the di�usion process started at y. By the
same maximum principle argument that we had in Lemma 2.3 it follows that

sup
z∈S0

Ez

[∫ �

0
1U (XL(s))ds

]
6C;

for some constant C depending only on � and �. Hence

u(y)6CE[w(n(y))]6cN;

whence Eq. (20) follows.
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3. Random walk in random environment

We turn to the proof of Theorem 1.3. We consider the expression

Eb

{
Ex0

[
f
(
�b(N )− x0√

N

)]2}

=
∫
f
(
�(N )− x0√

N

)
f
(
�(N )− x0√

N

)

×Eb
[
exp

[
�

N∑
i=1

b(i; �(i − 1)) ·��i + b(i; �(i − 1)) ·��i
]]
dWN (�)dWN (�)
(cosh �)2N

;

where � and � are independent standard random walks on Zd. De�ne a random walk
XL on Z2d by XL(i) = (�(i); �(i)); i = 0; 1; 2; : : : . Then if we let g: R2d→R be given
by g(x; y) = f(x)f(y), it follows that

Eb

{
Ex0

[
f
(
�b(N )− x0√

N

)]2}
= E(x0 ; x0)

[
g
(
XL(N )− (x0; x0)√

N

)]
;

where XL(i); i = 0; 1; : : : ; N , has measure

Eb

[
exp

[
�

N∑
i=1

b(i; �(i − 1)) ·��i + b(i; �(i − 1)) ·��i
]]
dWN (�)dWN (�)
(cosh �)2N

: (21)

It is clear that the measure (21) is Markovian. We can compute the transition proba-
bilities for XL. In fact

P(�XL(i) = (�x; �y) |XL(i − 1) = (x; y)) =
(
1
2d

)2
;

for vectors �x; �y ∈ Zd of length 1 provided x 6= y. We also have

P(�XL(i) = (�x; �y) |XL(i − 1) = (x; x)) =
(
1
2d

)2
; (22)

provided �x 6= ±�y. If �x = ±�y, then the transition probability depends on �. We
have

P(�XL(i) = (�x; �x) |XL(i − 1) = (x; x)) =
(
1
2d

)2 cosh(2�)
(cosh�)2

; (23)

P(�XL(i) = (�x;−�x) |XL(i − 1) = (x; x)) =
(
1
2d

)2 1
(cosh �)2

: (24)

Let X (i); i = 0; 1; 2; : : : , denote the random walk in Z2d with transition probabilities

P(�X (i) = (�x; �y) |X (i − 1) = (x; y)) =
(
1
2d

)2
; (25)

for vectors �x; �y ∈ Zd of length 1, x; y ∈ Zd. Then X is a translation invariant
random walk in Z2d, whence it converges to Brownian motion in a large time limit.
The walk XL is like X except on the diagonal set {(x; x): x ∈ Zd} where the transition
probabilities are di�erent. If we take the scaling limit then the generator of XL converges
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to an elliptic operator of form (3) where the coe�cients di�er from the Laplacian
coe�cients only along the diagonal set, that is a set of co-dimension d. Hence we
should be able to prove a theorem analogous to Theorem 1.2.

Theorem 3.1. Let g: R2d→R be a function such that

|g(x; y)|+
2d∑
i=1

∣∣∣∣ @g@zi (z)
∣∣∣∣+

2d∑
i; j=1

∣∣∣∣ @2g@zi@zj
(z)
∣∣∣∣6A exp[M |z|]; z ∈ R2d; (26)

for some constants A and M. Then for any x0; y0 ∈ Zd; there is a constant C
depending only on A;M; � such that∣∣∣∣Ex0 ;y0

[
g
(
XL(N )− (x0; y0)√

N

)]
− Ex0 ;y0

[
g
(
X (N )− (x0; y0)√

N

)]∣∣∣∣6C=
d(N );
where


1(N ) =
√
N;


2(N ) = N=|logN |; N¿2;


d(N ) = N [1 + |x0 − y0|d−2] if d¿3:

To prove Theorem 3.1 we shall do a discrete version of the argument of Section 2.
Our �rst goal is to establish the analogue of Eq. (14). To do this let q: R2d→R be
an arbitrary function and w(x; y; t) be de�ned by

w(x; y; t) = Ex;y[q(X (t))]; x; y ∈ Zd; t = 0; 1; : : : (27)

Then

w(x; y; t + 1)− w(x; y; t) = 1
2�w(x; y; t);

where

1
2
�w(x; y; t) =

(
1
2d

)2∑
�x;�y

[w(x + �x; y + �y; t)− w(x; y; t)];

where the sum is over �x; �y ∈ Zd of length 1. Next consider u(x; y; t) de�ned by

u(x; y; t) = Ex;y[q(XL(t))]; x; y ∈ Zd; t = 0; 1; : : :

Then

u(x; y; t + 1)− u(x; y; t) = Lu(x; y; t);

where

Lu(x; y; t) = 1
2�u(x; y; t); x 6= y;



J.G. Conlon, R. Song / Stochastic Processes and their Applications 81 (1999) 103–128 115

and

Lu(x; x; t) =
(
1
2d

)2 ∑
�x 6=±�y

[u(x + �x; x + �y; t)− u(x; x; t)]

+
(
1
2d

)2∑
�x

[
cosh(2�)
(cosh �)2

u(x + �x; x + �x; t)

+
1

(cosh �)2
u(x + �x; x − �x; t)− 2u(x; x; t)

]
;

where again the sum is over �x; �y ∈ Zd of length 1. If we put v(x; y; t) =w(x; y; t)−
u(x; y; t), then

v(x; y; t + 1)− v(x; y; t) = Lv(x; y; t) + h(x; y; t);
where

h(x; y; t) = (12�− L)w(x; y; t):
Evidently v(x; y; 0) = 0. Hence v(x; y; t) is given by the formula

v(x; y; t) =
t∑
s=1

(I + L)t−sh(x; y; s− 1);

where I is the identity matrix. We can write this as an expectation value, namely

v(x; y; t) = Ex;y

[
t∑
s=1

h(XL(t − s); s− 1)
]
:

This is the analogue of formula (11). Next we wish to prove the analogue of Eq. (13).

Lemma 3.1. Suppose g: R2d→R satis�es the conditions of Theorem 3:1. Let x0; y0 ∈
Zd and q: R2d ∈ R be de�ned by

q(x; y) = g
(
x − x0√
N
;
y − y0√
N

)
; x; y ∈ Rd;

and w be given by Eq. (27); with h = (12� − L)w. Then there are constants A1 and
M1 depending only on A and M such that

|h(x; y; t)|6A1
N
exp[M1{|x − x0|+ |y − y0|}=

√
N ]; 0¡t6N:

Proof. By translation invariance we have

w(x; y; t) = Ex;y

[
g
(
X (t)− (x0; y0)√

N

)]
= E0;0

[
g
(
X (t)− (x − x0; y − y0)√

N

)]
:

If we use now the fact that � and L are given by second-order di�erences and the
bound (26) on g we can conclude that

h(x; y; t)6
A
N
E0;0[exp[M |�(t) + x − x0|=

√
N +M |�(t) + y − y0|

√
N ]]

where � and � are independent standard random walks on Zd. Hence we need to
show that

E0[exp[M |�(t) + z0|=
√
N ]]6A1exp[M1|z0|=

√
N ]; 0¡t¡N;
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for constants A1 and M1 depending only on M . This follows from the standard estimate

P0(�(t) = m)6
C�
td=2

exp[− �|m|2=t];
where �¿ 0 is su�ciently small and C� is a constant depending only on �.

From Lemma 3.1 it follows that∣∣∣∣Ex0 ;y0
[
g
(
XL(N )− (x0; y0)√

N

)]
− Ex0 ;y0

[
g
(
X (N )− (x0; y0)√

N

)]∣∣∣∣
=|v(x0; y0; N )|

6
A1
N
Ex0 ;y0

[
N∑
s=1

1U (XL(N − s))exp[M1|XL(N − s)− (x0; y0|=
√
N ]

]
; (28)

where U is the set U = {(x; x) ∈ Z2d: x ∈ Zd}. Inequality (28) corresponds to relation
(14). It is clear now that Theorem 3.1 will follow by the argument of Section 2
provided we can establish the analogues of Lemmas 2.1 and 2.2. The analogue of
Lemma 2.1 is as follows.

Lemma 3.2. Let �R be the time for the random walk XL started at (x0; y0) ∈ Z2d to
go a distance R. Then there is a constant 
¿ 0 depending only on d such that

P(�R ¡ t)6e−
R
2=t ; R¿

√
t:

Proof. Let us write x0 = (x
(1)
0 ; : : : ; x

(d)
0 ) and y0 = (y

(1)
0 ; : : : ; y

(d)
0 ). For (m; n) ∈ Z2d; m=

(m(1); : : : ; m(d)); n = (n(1); : : : ; n(d)) let �1 be the time taken for the random walk to
exit the strip {(m; n) ∈ Z2d: |m(1) − x(1)0 |¡r}, where r is an arbitrary positive integer.
Consider the function u(m; n) de�ned by

Lu(m; n) = �u(m; n); |m(1) − x(1)0 |¡r;

u(m; n) = 1; |m(1) − x(1)0 |= r:
Then u(m; n) is given as an expectation value by

u(m; n) = E(m;n)[(1 + �)−�1 ]:

We can obtain an explicit formula for u(m; n). To see this let w( j); j ∈ Z satisfy
1
2 [w( j + 1) + w( j − 1)− 2w( j)] = d�w( j); |j − x(1)0 |¡r;

w( j) = 1; |j − x(1)0 |= r:
It is easy to see that u(m; n) = w(m(1)). We also have that

w( j) = cosh(( j − x(1)0 )k)=cosh(rk); | j − x(1)0 |¡r;

where

k = cosh−1(1 + d�):

Hence

Ex0 ;y0 [(1 + �)
−�1 ]61=cosh(rk):
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Arguing now as in Lemma 2.1 we conclude that

P(�R ¡ t)62d(1 + �)t =cosh(Rk=(2d)1=2):

If we use the fact that

cosh(Rk=(2d)1=2)¿ 1
2 exp[Rk=(2d)

1=2]; 1 + �6e�;

we have that

P(�R ¡ t)64d exp[�t − Rk=(2d)1=2]: (29)

Evidently there is a constant c depending only on d such that if R¿ct then P(�R ¡ t)=
0. Hence we can assume that

√
t6R6ct. Observe also that for any �0¿1 there is a

constant c0¿ 0 depending only on �0; d such that k¿c0
√
�; 0¡�6�0. Hence relation

(29) yields the inequality

P(�R ¡ t)64d exp[�t − Rc0√�=(2d)1=2]:
Optimizing this inequality with respect to � yields

P(�R ¡ t)64d exp[− R2c20=(8dt)];
where the optimizing � is given by

�=
c20
8d

(
R
t

)2
:

Since we are assuming R6ct we can choose an appropriate �0.

Next we prove the analogue of Lemma 2.3 in the case d= 1.

Lemma 3.3. Let U = {(x; x) ∈ Z2: x ∈ Z}. Then for any x0; y0 ∈ Z; one has

Ex0 ;y0

[
N−1∑
s=0

1U (XL(s))

]
6C

√
N; N¿1;

where the constant C depends only on �.

Proof. In view of Lemma 3.2 it will be su�cient to show that

Ex0 ;y0

[
�R∑
s=0

1U (XL(s))

]
6CR; (30)

where �R is the time taken for the random walk to exit the disc of radius R centered
at (x0; y0). To estimate this we consider XL as a random walk on the lines Hn =
{(x − n; x + n): x ∈ Z}; n ∈ Z. Clearly U =H0. Denote this random walk by Y .
Then for i = 0; 1; 2; : : : ; Y (i) = n if and only if XL(i) ∈ Hn. The walk Y is Markovian
and we can easily compute the transition probabilities. We have

P(�Y (i) = 0 |Y (i − 1) = n) = 1
2 ;

P(�Y (i) = 1 |Y (i − 1) = n) = 1
4 ;

P(�Y (i) =−1 |Y (i − 1) = n) = 1
4 ;
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provided n 6= 0.
P(�Y (i) = 0 |Y (i − 1) = 0) = cosh(2�)=(2(cosh �)2);

P(�Y (i) = 1 |Y (i − 1) = 0) = 1=(4(cosh �)2);

P(�Y (i) =−1 |Y (i − 1) = 0) = 1=(4(cosh �)2):
Suppose now that the random walk Y starts at a point n ∈ Z inside the interval

{n ∈ Z: n0 − r6n6n0 + r}. Let �r be the �rst time it exits this interval and put

w(n) = En

[
�r∑
i=0

�0(Y (i))

]
;

where �0 is the Kronecker �; �0( j) = 0 if j 6= 0; �0(0) = 1. Evidently if y0 − x0 is
even and we put n0 = (y0 − x0)=2 then

Ex0 ;y0

[
�R∑
s=0

1U (XL(s))

]
6En0

[
�r∑
i=0

�0(Y (i))

]
;

for any r satisfying r¿R=
√
2. The function w(n) satis�es a �nite di�erence equation

w(n) = 1
2w(n− 1) + 1

2w(n+ 1); n0 − r ¡n¡n0 + r; n 6= 0;

w(0) = 1 +
cosh(2�)
2(cosh �)2

w(0) +
1

4(cosh �)2
[w(1) + w(−1)];

w(n0 − r) = w(n0 + r) = 0: (31)

Here we are assuming that n0− r; n0 + r 6= 0. Let us assume that n0− r ¡ 0¡n0 + r,
for otherwise w is identically zero. We can then solve problem (31) by a piecewise
linear function. We put

w(n) = �(n0 + r − n)=(n0 + r); 0¡n6n0 + r;

w(n) = �(n− n0 + r)=(r − n0); n0 − r6n¡ 0:

Solving the second equation in relation (31) for � we obtain

�= 2(r2 − n20)(cosh �)2=r:
Since n0− r ¡ 0¡n0 + r it follows that �¿ 0. Hence there is a constant C depending
only on � such that

w(n)6Cr; n0 − r ¡n¡n0 + r:

We conclude that Eq. (30) holds and hence the result.

Theorem 3.1 for the case of d= 1 follows from Lemma 3.3. To establish Theorem
3.1 for d¿ 1 we need to make a comparison between random walk probabilities and
Brownian motion probabilities. For R¿ 0; d¿0; let AR;d denote the annulus,

AR;d = {(x; y) ∈ R2d: x; y ∈ Rd; R¡ |y − x|¡ 4R}:
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Let wR;d(x; y) be the probability that Brownian motion started at (x; y) ∈ AR;d exits
AR;d through the boundary {(x′; y′): |y′ − x′| = R}. Thus wR;d satis�es the Dirichlet
problem

�wR;d(x; y) = 0; (x; y) ∈ AR;d;
wR;d(x; y) = 1; |y − x|= R;
wR;d(x; y) = 0; |y − x|= 4R:

It is easy to see that wR;d is given by the formulas

wR;2(x; y) = log(4R=|y − x|)=log4;

wR;d(x; y) =

[(
4R

|y − x|
)d−2

− 1
]/

[4d−2 − 1]; d¿3:

Lemma 3.4. For (x; y) ∈ AR;d ∩Z2d let uR;d(x; y) be the probability that the random
walk X de�ned by Eq. (25) exits AR;d through the boundary {(x′; y′): |y′ − x′|= R}.
Then there is a constant C depending only on d such that

|uR;d(x; y)− wR;d(x; y)|6C=R; (x; y) ∈ AR;d ∩ Z2d:

Proof. The function uR;d(x; y) satis�es the boundary value problem∑
�x;�y

[uR;d(x + �x; y + �y)− uR;d(x; y)] = 0; (x; y) ∈ Int(AR;d) ∩ Z2d;

uR;d(x; y) = 0; (x; y) ∈ Z2d; |y − x|¿4R;
uR;d(x; y) = 1; (x; y) ∈ Z2d; |y − x|6R;

where the sum is over all vectors �x; �y ∈ Zd of length 1. We use the Taylor expansion
wR;d((x; y) + v) =wR;d(x; y) + v · ∇wR;d(x; y) + 1

2 (v · ∇)2wR;d(x; y)
+1
6 (v · ∇)3wR;d((x; y) + �v);

for some, �; 0¡�¡ 1. It is clear that for (x; y) ∈ Int(AR;d) ∩ Z2d, we have∑
�x;�y

[wR;d(x + �x; y + �y)− wR;d(x; y)]

=1
2�xwR;d(x; y) +

1
2�ywR;d(x; y) + O(1=R

3);

whence∣∣∣∣∣∣
∑
�x;�y

[wR;d(x + �x; y + �y)− wR;d(x; y)]
∣∣∣∣∣∣6C=R3; (x; y) ∈ Int(AR;d) ∩ Z2d:

Next let us extend wR;d by wR;d(x; y) = 0; |y − x|¿4R + 3; wR;d by wR;d(x; y) = 1;
|y − x|6R − 3. Since |∇wR;d| = O(1=R), it follows that the function v = uR;d − wR;d
satis�es∣∣∣∣∣∣

∑
�x;�y

[vR;d(x + �x; y + �y)− vR;d(x; y)]
∣∣∣∣∣∣6C=R3; (x; y) ∈ Int(AR;d) ∩ Z2d;
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|v(x; y)|6C=R; |y − x|6R or |y − x|¿4R;
where C is a constant depending only on d. Hence

|v(x; y)|6C
R
+

C
(2d)2R3

Ex;y[�];

where � is the time taken for the random walk X started at (x; y) to exit AR;d. It is
easy to see that

Ex;y[�]6 1
2 [(4R+

√
2d)2 − |y − x|2];

whence the result follows.

Lemma 3.5. Let U = {(x; x) ∈ Z4: x ∈ Z2}. Then for any (x0; y0) ∈ Z2; one has

Ex0 ;y0

[
N−1∑
s=0

1U (XL(s))

]
6C|logN |; N¿2;

where the constant C depends only on �.

Proof. We follow the lines of the proof of Lemma 2.4. From Lemma 3.2 it will be
su�cient to show that

Ex0 ;y0

[
�R∑
s=0

1U (XL(s))

]
6C|logR|; R¿2; (32)

where �R is the time taken for the random walk to exit the cylinder {(x; y) ∈ Z4:
|y − x|¡R}. For n= 0; 1; : : : ; let �n be the cylinder

�n = {(x; y) ∈ Z4: 2n+1 − 26|x − y|¡ 2n+1}:
Evidently the �n are disjoint and U ⊂�0. Further, the random walk XL hits a point in
�n for each n. Hence we may regard XL as a random walk on the cylinders �n.
We can estimate the expected number of times XL visits �0 before hitting �M ; M¿1,

by using Lemma 3.4 and the argument of Lemma 3:17 of Conlon and Olsen (1997).
Thus for j = 1; : : : ; M − 1 let pj(m;m′); m ∈ �j; m′ ∈ �j+1 be the probability that
the random walk XL started at m exits the region between �j−1 and �j+1 through the
point m′. Let us put

pj = inf
m∈�j

∑
m′∈�j+1

pj(m;m′):

From Lemma 3.4 it follows that there is a constant C such that

pj¿ 1
2 exp[− C2−j]; j = 1; 2; : : : : (33)

Putting qj=1−pj; j=1; 2; : : : ; it follows from the argument of Lemma 3:17 of Conlon
and Olsen (1997) that

Em[N0]61 +
M−1∑
j=1

j∏
i=1

qi
pi
; m ∈ �0; (34)

where N0 is the number of times the walk hits �0 before hitting �M . In view of
Eq. (33) it follows that

Em[N0]6CM
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for some constant C. If we take now M to be the smallest integer such that 2M+1¿R+
2, then

Ex0 ;y0

[
�R∑
s=0

1U (XL(s))

]
6CM sup

(x0 ;y0)∈�0
Ex0 ;y0

[
�1∑
s=0

1U (XL(s))

]
;

where �1 is the �rst time the walk XL hits �1. Inequality (32) will follow now if we
can establish that there is a constant C(�) depending on � such that

sup
(x0 ;y0)∈�0

Ex0 ;y0 [�1]6C(�):

It is a well known fact that if we put


(�) = sup
(x0 ;y0)∈�0

Px0 ;y0 (�1¿ 10);

then

sup
(x0 ;y0)∈�0

Ex0 ;y0 [�1]6
∞∑
n=1

10n
(�)n−1 = 10=[1− 
(�)]2;

provided 
(�)¡ 1. Since we can easily construct a path from any point in �0 to �1
in less than 10 steps it follows that 
(�)¡ 1.

Theorem 3.1 for the case of d= 2 follows from Lemma 3.5. To establish Theorem
3.1 for the case of d¿3 we prove the following:

Lemma 3.6. Let U = {(x; x) ∈ Z2d: x ∈ Zd}. Then for any (x0; y0) ∈ Z2d; d¿3;
one has

Ex0 ;y0

[
N−1∑
s=0

1U (XL(s))

]
6C;

where C depends only on d and �.

Proof. We proceed exactly as in Lemma 3.5. Thus for n = 0; 1; : : : ; let �n be the
cylinder

�n = {(x; y) ∈ Z2d: 2n+1 − 26|x − y|¡ 2n+1}: (35)

De�ning pj(m;m′) and pj as in Lemma 3.5 we can conclude from Lemma 3.4 that

pj¿
2d−2

2d−2 + 1
exp[− C2−j]; j = 1; 2; : : : : (36)

Hence from Eq. (34) it follows that Em[N0]6C; m ∈ �0, for some constant C
depending only on d. The result follows now by continuing the argument exactly
as in Lemma 3.5.

Lemma 3.7. Let U = {(x; x) ∈ Z2d: x ∈ Zd}. For (x0; y0) ∈ Z2d let Px0 ;y0 (U ) be the
probability that the walk XL; started at (x0; y0); hits U before exiting to in�nity.
Then there is a constant C depending only on d¿3 such that

Px0 ;y0 (U )6C=[1 + |x0 − y0|d−2]:
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Proof. We use the notations of Lemma 3.6. For M¿1 let Px0 ;y0 ;M be the probability
of hitting �0 before �M for the random walk XL started at (x0; y0). Then by Lemma
6:3 of Conlon and Redondo (1995) we have, for any (x0; y0) ∈ �M ′ ; 0¡M ′¡M;

Px0 ;y0 ;M6
1 + pM−1

qM−1
+ pM−1pM−2

qM−1qM−2
+ · · ·+∏M−M ′−1

j=1
pM−j

qM−j

1 + pM−1

qM−1
+ pM−1pM−2

qM−1qM−2
+ · · ·+∏M−1

j=1
pM−j

qM−j

:

From Eq. (36) and the above inequality we can conclude that

Px0 ;y0 ;M6C=2
M ′(d−2); (x0; y0) ∈ �M ′ ; 0¡M ′¡M;

for some constant C depending only on d. Letting M→∞ and using the fact that
U ∈ �0 it follows that

Px0 ;y0 (U )6C=2
M ′(d−2); (x0; y0) ∈ �M ′ ; 0¡M ′¡M:

The result follows from this last inequality.

Theorem 3.1 for d¿3 is a consequence now of Lemmas 3.6, 3.7 and the argument
of Section 2.

4. Convergence with probability one of RWRE to a Gaussian

Here we shall use Theorem 3.1 to prove Theorem 1.3. First we give a proof of the
central limit theorem for the standard random walk in Zd; d¿1.

Lemma 4.1. Let f: Rd→R be a function such that

|f(y)|+
d∑
i=1

∣∣∣∣@f@xi (y)
∣∣∣∣6A exp[M |y|]; y ∈ Rd; (37)

for some constant A and M . Let �(t); t = 0; 1; 2; : : : ; be the standard random walk
on Zd. Then for any x0 ∈ Zd;∣∣∣∣∣Ex0

[
f

(
�(N )− x0√

N=d

)]
− E[f(Y )]

∣∣∣∣∣6C=
√
N;

where the constant C depends only on A;M; d.

Proof. We have

E[f(Y )] =
1

(2�Nd )
d=2

∫
Rd
exp

[
− y2

2N=d

]
f

(
y√
N=d

)
dy

=
∑
m∈Zd

1
(2�N=d)d=2

∫
Qd

exp
[
− (z + m)

2

2N=d

]
f

(
z + m√
N=d

)
dz; (38)

where Qd is the unit cube in Rd centered at the origin. Since � is the standard random
walk in Zd it is well known that there exists �¿ 0 and a constant C� such that

P(�(N )− �(0) = m)6 C�
Nd=2

exp[− �m2=N ]; m ∈ Zd: (39)
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We also have that

P(�(N )− �(0) = m) =
1

(2�N=d)d=2 exp
[
− m2

2N=d

]
[1 + O(1=N 1−4�)]; (40)

provided |m|6N 1=2+� and � satis�es 0¡�¡ 1=4. We have now

Ex0

[
f

(
�(N )− x0√

N=d

)]
=
∑
m∈Zd

P(�(N )− �(0) = m)f
(

m√
N=d

)
:

From Eq. (37), it follows that for any �¿ 0,

∑
m∈Zd;|m|¿N 1=2+�

1
Nd=2

exp
[
− �m

2

N

] ∣∣∣∣∣f
(

m√
N=d

)∣∣∣∣∣6C exp
[
− �N

2�

2

]
;

where C depends only on A; M and d. Hence from Eqs. (39) and (40) it follows that∣∣∣∣∣∣Ex0
[
f

(
�(N )− x0√

N=d

)]
−
∑
m∈Zd

1
(2�N=d)d=2 exp

[
− m2

2N=d

]
f

(
m√
N=d

)∣∣∣∣∣∣6C=N 1−4�;
(41)

where C depends only on A; M and d. Observe next that for any z ∈ Qd; m ∈ Zd,∣∣∣∣∣exp
[
− m2

2N=d

]
f

(
m√
N=d

)
−exp

[
− (z + m)

2

2N=d

]
f

(
z + m√
N=d

)∣∣∣∣∣6 C√
N
exp

[
− m2

4N=d

]
;

where the constant C depends only on A; M and d. The result follows from this last
inequality and Eqs. (38) and (41) provided we take �¡ 1=8.

Proof of Theorem 1.3. Case d= 1: Let ZN be the random variable

ZN = Ex0

[
f

(
�b(N )− x0√

N=d

)]
− Ex0

[
f

(
�(N )− x0√

N=d

)]
: (42)

Then from Theorem 3.1 we have that

E[Z2N ]6C=
√
N;

where C depends only on A; M and �. Hence by standard argument

lim
N →∞

ZN = 0; with probability 1; (43)

provided N goes to in�nity along a sequence N = an, where
∞∑
n=1

1√
an
¡∞:

Theorem 3.1 for d= 1 follows now from Eq. (43) and Lemma 4.1.

Case d= 2: By Theorem 3.1 the random variable ZN satis�es the inequality

E[Z2N ]6C(logN )=N; N¿3:

Hence the result follows just as in the case d= 1.
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Case d¿3: Observe that just as in the d=1; 2 cases the result would hold if we let
N = an, where

∞∑
n=1

1
an
¡∞:

To get convergence through the full integer sequence we follow the strategy in
Conlon and Olsen (1996). Thus, let �b(t; x); t = 0; 1; : : : ; x ∈ Zd, be the probability
density for �b(t),

�b(t; x) = P(�b(t) = x|�b(0) = x0):
Let 0¡
¡ 1 and consider the random variable

WN = Ex0

[
f

(
�b(N )− x0√

N=d

)]
−
∑
x∈Zd

�b(N
; x)Ex

[
f

(
�(N − N
)− x0√

N=d

)]
:

Lemma 4.2. For any p¿ 1; there is a constant C depending only on p; A; M; d; 

and � such that

E[W 2
N ]6C=N

1−
=p+
d=(2p):

Proof. Observe that if we condition on the variables b(t; z); t6N
; z ∈ Zd, then
E[W 2

N |b(t; z); t6N
; z ∈ Zd] =
∑
x;y∈Zd

�b(N
; x)�b(N
; y)

×
{
Ex;y

[
g
(
XL(N − N
)− (x0; x0)√

N

)]

−Ex;y
[
g
(
X (N − N
)− (x0; x0)√

N

)]}
;

where X; XL are the random variables in Z2d de�ned in Section 3 and the function g
is given in terms of f by

g(x; y) = f(x
√
d)f(y

√
d); x; y;∈ Rd:

It follows now from Theorem 3.1 that

E[W 2
N |b(t; z); t6N
; z ∈ Zd]

6
∑
x;y∈Zd

�b(N
; x)�b(N
; y)
C

N [1 + |x − y|d−2] exp
[
M |x − x0|√

N=d
+
M |y − x0|√

N=d

]
;

where M is the constant of Theorem 1.1 and C depends only on A; M; d; 
 and �.
Observing next that

Eb[�b(N
; x)�b(N
; y)] = P(XL(N
) = (x; y) |XL(0) = (x0; x0))];
we conclude that

E[W 2
N ]6

C
N
Ex0 ; x0 [h(XL(N


))exp[
√
d=NM |XL(N
)− (x0; x0)|]];

where the function h is given by

h(x; y) = 1=[1 + |x − y|d−2]; x; y ∈ Rd:
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Let p satisfy the inequality 1¡p¡d=(d− 2). Then Holder’s inequality yields

E[W 2
N ]6

C
N
Ex0 ; x0 [h(XL(N


))p]1=pEx0 ; x0 [exp[p
′√d=NM |XL(N
)− (x0; x0)|]]1=p

′

where 1=p+ 1=p′ = 1. It follows easily from Lemma 3.2 that

Ex0 ; x0 [exp[p
′√d=NM |XL(N
)− (x0; x0)|]]1=p

′
6C;

where the constant C depends only on p′; d; 
. Hence we conclude that there is a
constant C such that

E[W 2
N ]6

C
N
Ex0 ; x0 [h(XL(N


))p]1=p: (44)

We bound the RHS of Eq. (44) by using the methodology of Lemma 3.6. We de�ne
regions Un; n = 0; 1; : : : by U0 = �0; Un is the region bounded by �n+1 and disjoint
from Un−1; n= 1; 2; : : : ; where the sets �n are de�ned by Eq. (35). Thus

Un = {(x; y) ∈ Z2d: 2n+1 − 26|x − y|¡ 2n+2 − 2}; n¿1:

Hence

Ex0 ; x0 [h(XL(N

))p]6

∞∑
n=0

P(XL(N
) ∈ Un)
[1 + (2n+1 − 2)d−2]p :

We de�ne the random variable n∗ by

n∗ = sup{n ∈ Z: XL(s) ∈ Un; for some s; 06s¡N
}:
From the argument of Lemma 3.7 we can conclude that there is a constant C depending
only on d such that

P(XL(N
) ∈ Un)6P(n∗¡n) + C
∞∑
m=n

P(n∗ = m)
2(m−n)(d−2)

:

Since p¿ 1 it follows that
m∑
n=0

1
2(m−n)(d−2)

1
[1 + (2n+1 − 2)d−2]p6

C
2m(d−2)

;

for some constant C depending only on p and d. Hence we have the inequality

Ex0 ; x0 [h(XL(N

))p]6C

∞∑
m=0

P(n∗6m)
2m(d−2)

;

for some constant C depending only on p and d. De�ne m0 as the smallest integer
such that 2m0¿N
=2. We shall see that there are constants C; �¿ 0 depending only on
d and � such that

P(n∗6m)6C exp[− �22(m0−m)]; m6m0: (45)

It follows from this that

Ex0 ; x0 [h(XL(N

))p]6C

∞∑
m=m0+1

1
2m(d−2)

+ C
m0∑
m=0

exp[− �22(m0−m)] 1
2m(d−2)

6
C1

2m0(d−2)
6

C1
N
(d−2)=2

;
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for some constant C1 depending only on d and �. The result follows from this last
inequality and Eq. (44) provided we can prove Eq. (45).
To see this we de�ne regions WR by

WR = {(x; y) ∈ Z2d: |x − y|¡R}:
Let �R be the time taken for the walk XL to exit the region WR. Then

P(n∗6m)6Px0 ; x0 (�2m+2¿N
):

Inequality (45) follows from this if we can show that

Px;y(�R ¿ t)6C exp[− �t=R2]; t¿0; (46)

for any (x; y)∈WR. It is well known that inequality (46) is a consequence of the
inequality

u(x; y) = Ex;y[�R]6C1R2; (x; y) ∈ WR; (47)

where C1 depends only on d and �. In view of Eqs. (22)–(24) it follows that

u(x; y) = 1 +
(
1
2d

)2∑
�x;�y

u(x + �x; y + �y); x 6= y;

and

u(x; x) = 1 +
(
1
2d

)2 ∑
�x 6=±�y

u(x + �x; x + �y)

+
(
1
2d

)2∑
�x

cosh(2�)
(cosh �)2

u(x + �x; x + �x)

+
(
1
2d

)2∑
�x

1
(cosh �)2

u(x + �x; x − �x);

where �x; �y range over vectors in Zd of length 1. The boundary condition on u is
u(x; y) = 0; (x; y) 6∈ WR. Let w be the function

w(x; y) = (R+
√
2d)2 − |y − x|2:

Then one has

w(x; y) = 2 +
(
1
2d

)2∑
�x;�y

w(x + �x; y + �y); x 6= y;

and

w(x; x) =
2d− 2
d

+
2
d

1
(cosh �)2

+
(
1
2d

)2 ∑
�x 6=±�y

w(x + �x; x + �y)

+
(
1
2d

)2∑
�x

cosh(2�)
(cosh �)2

w(x + �x; x + �x)

+
(
1
2d

)2∑
�x

1
(cosh �)2

w(x + �x; x − �x):
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If we extend w by zero for |y − x|¿R +
√
2d then it is clear that w(x; y)¿0;

(x; y) 6∈ WR. It follows then from the last two equations that

u(x; y)6
[
2d− 2
d

+
2
d

1
(cosh �)2

]−1
w(x; y); (x; y) ∈ WR:

Inequality (47) follows from this last inequality.

For any 
; 0¡
¡ 1, one can �nd p¿ 1 su�ciently small such that 1 − 
=p +

d=(2p)¿ 1. Hence

lim
N →∞

WN = 0 with probability 1 (48)

as N goes to in�nity through the whole integer sequence. Now with ZN given by Eq.
(42) one has

WN − ZN =
∑
x∈Zd

�b(N
; x)

{
Ex0

[
f

(
�(N )− x0√

N=d

)]
−Ex

[
f

(
�(N − N
)−x0√

N=d

)]}
:

Lemma 4.3. As N goes to in�nity through the whole integer sequence;

lim
N →∞

(WN − ZN ) = 0 with probability 1:

Proof. It is easy to see that there is a constant C depending only on d and the constants
A;M in Theorem 1.1 such that for any x ∈ Zd,∣∣∣∣∣Ex0

[
f

(
�(N )− x0√

N=d

)]
−Ex

[
f

(
�(N − N
)−x0√

N=d

)]∣∣∣∣∣6C exp[M |x−x0|(d=N )1=2]:

Let us de�ne the random variable YN by

YN =
∑

|x−x0|¿N (1+
)=4
�b(N
; x) exp[M |x − x0|(d=N )1=2]:

Then

E[YN ] = E[exp[M |�(N
)− �(0)|(d=N )1=2]; |�(N
)− �(0)|¿N (1+
)=4];

where � is the standard random walk on Zd. In view of Eq. (39) it follows that
E[YN ]6C� exp[− �N (1−
)=2];

for some �¿ 0 and constant C� depending only on �; 
; d. It follows that limN →∞YN=0
with probability 1 as N goes to in�nity through the integer sequence.
Evidently we have

|WN − ZN |6 |YN |+ sup
|x−x0|¡N (1+
)=4

∣∣∣∣∣Ex0
[
f

(
�(N )− x0√

N=d

)]

− Ex

[
f

(
�(N − N
)− x0√

N=d

)]∣∣∣∣∣ :
It follows now from Lemma 4.1 that if 
¡ 1=2,∣∣∣∣∣Ex0

[
f

(
�(N )− x0√

N=d

)]
− E[f(Y )]

∣∣∣∣∣6C=
√
N;
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and for any x ∈ Zd,∣∣∣∣∣Ex
[
f

(
�(N − N
)− x0√

N=d

)]
− E

[
f

(
Y +

x − x0√
N=d

)]∣∣∣∣∣
6C exp[M |x − x0|(d=N )1=2]=

√
N;

where the constant C depends only on d and A;M of Theorem 1.1. It is easy to see
that ∣∣∣∣∣E

[
f

(
Y +

x − x0√
N=d

)]
− E[f(Y )]

∣∣∣∣∣6C=N (1−
)=4; |x − x0|¡N (1+
)=4;

where C depends only on d; A;M . We conclude then that

|WN − ZN |6|YN |+ C=N (1−
)=4;
whence the result follows.

Theorem 1.3 follows now from Lemma 4.1, Lemma 4.3 and Eq. (48).
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