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Abstract

Let (Xn) be a strictly stationary random sequence and Mn = max{X1, . . . , Xn}. Suppose that some of
the random variables X1, X2, . . . can be observed and denote by M̃n the maximum of observed random
variables from the set {X1, . . . , Xn}. We determine the limiting distribution of random vector (M̃n, Mn)

under some condition of weak dependency which is more restrictive than the Leadbetter condition. An
example concerning a storage process in discrete time with fractional Brownian motion as input is also
given.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let (Xn) be a strictly stationary random sequence with the marginal distribution function
F(x) = P{X1 6 x}. Suppose that some of the random variables X1, X2, X3, . . . can be observed.
If εk is the indicator of the event that random variable Xk is observed, then Sn = ε1+ε2+· · ·+εn
is the number of observed random variables from the set {X1, X2, . . . , Xn}.

Following [5], for a given stationary sequence (Xn) let us define the associated independent
sequence (X∗

n) to be i.i.d. with the same distribution function F(x) = P{X∗

1 6 x} = P{X1 6 x}.
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0304-4149/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2006.05.009

http://www.elsevier.com/locate/spa
mailto:paja@matf.bg.ac.yu
http://dx.doi.org/10.1016/j.spa.2006.05.009
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Throughout this paper we shall use the following notation:

Mn = max{X1, . . . , Xn},

M∗
n = max{X∗

1, . . . , X∗
n},

M̃n =

{
max{X j , 1 6 j 6 n, ε j = 1}, if Sn > 1,

inf{t |F(t) > 0}, if Sn = 0.

M̃∗
n =

{
max{X∗

j , 1 6 j 6 n, ε j = 1}, if Sn > 1,

inf{t |F(t) > 0}, if Sn = 0.

Under some conditions of weak dependence of random variables in the sequence (Xn) [6] proved
that random variables Mn and M∗

n have the same limiting distribution with the same normalizing
constants. In this paper we are interested in limiting distributions of random vectors (M̃∗

n , M∗
n )

and (M̃n, Mn). We show in Sections 2–7 that in natural Leadbetter-like weak dependence
conditions the limit distributions indicate asymptotic independence of the components of the
random vectors (given a first one is at most the second). As opposed to this general weak
dependence approach, we give in Section 8 an example of the storage process with fractional
Brownian motion (FBM) on input, in discrete time. In this case, when the Hurst parameter is
greater than 1/2, the components of the vector (M̃n, Mn) are asymptotically perfectly dependent.

2. Some preliminaries and examples

A distribution function F belongs to the domain of attraction of a non-degenerate distribution
function G (notation F ∈ D(G)) if there exist sequences an > 0 and bn ∈ R, n ∈ N, such that
the equality

lim
n→∞

Fn(an x + bn) = G(x) (2.1)

holds for every continuity point of G. Every distribution function with non-empty domain of
attraction is of one of the following three types:

Λ(x) = exp(−e−x ), −∞ < x < +∞; (2.2)

Φα(x) =

{
0, if x < 0,

exp(−x−α), if x > 0,
(α > 0), (2.3)

Ψα(x) =

{
exp(−(−x)α), if x < 0,

1, if x > 0,
(α > 0). (2.4)

We shall refer to Λ(x), Φα(x) and Ψα(x) as extreme value distribution functions. The
characterization of domains of attraction can be given in terms of the regular varying of tails
of corresponding distribution functions. For example, F ∈ D(Φα), for some α > 0, if and only
if

lim
t→∞

1 − F(t x)

1 − F(t)
= x−α, for every x > 0. (2.5)

For more details about domains of attraction of extreme value distribution functions see [2,8,3,
12].

Results concerning limiting distribution of random vector (M̃∗
n , M∗

n ) will be formulated under
some conditions on the sequence (εn) and random variable Sn = ε1 + ε2 + · · · + εn .
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Let (εn) be an i.i.d. sequence, independent of (X∗
n), and P{εk = 1} = p, P{εk = 0} = 1 − p,

where 0 < p < 1. Then Sn ∈ B(n, p), i.e. Sn is a binomial random variable with parameters n
and p. If un = an x + bn , vn = an y + bn , where an > 0, bn ∈ R, and x < y, then the following
equalities hold:

P{M̃∗
n 6 un, M∗

n 6 vn} =

n∑
k=0

P{Sn = k}P{M̃∗
n 6 un, M∗

n 6 vn | Sn = k}

=

n∑
k=0

(n

k

)
pk(1 − p)n−k(F(un))k(F(vn))n−k

= (pF(un) + (1 − p)F(vn))n . (2.6)

Example 2.1. Let (X∗
n) be an i.i.d. sequence with the common distribution function F(t) =

1 − e−t . Then, for every real x , P{M∗
n 6 x + ln n} → exp(−e−x ), as n → ∞ and F ∈ D(Λ).

For x < y let us define un = x + ln n and vn = y + ln n. If (εn) is the i.i.d. sequence, independent
of (X∗

n), and Sn ∈ B(n, p), where 0 < p < 1, then

P{M̃∗
n 6 un, M∗

n 6 vn} = (pF(un) + (1 − p)F(vn))n

=

{
p
(

1 − e−(x+ln n)
)

+ (1 − p)
(

1 − e−(y+ln n)
)}

=

{
1 −

pe−x
+ (1 − p)e−y

n

}n

→ e−pe−x
e−(1−p)e−y

, as n → ∞. (2.7)

Example 2.2. Let F ∈ D(Φα), where α > 0, and 0 < x 6 y < +∞,

an =

(
1

1 − F

)−1

(n) = inf
{

t : F(t) > 1 −
1
n

}
. (2.8)

If (εn) is the i.i.d. sequence, independent of (X∗
n), and Sn ∈ B(n, p), where 0 < p < 1, then we

shall prove that the following equality holds:

lim
n→∞

P{M̃∗
n 6 an x, M∗

n 6 an y} = e−px−α

e−(1−p)y−α

. (2.9)

If the constant an is given by (2.8), then an → ∞ and 1 − F(an) ∼
1
n as n → ∞. Consequently,

using (2.5) and (2.6), we obtain that

P{M̃∗
n 6 an x, M∗

n 6 an y} = (pF(an x) + (1 − p)F(an y))n

=

{
1 − p

1 − F(an x)

1 − F(an)
(1 − F(an)) − (1 − p)

1 − F(an y)

1 − F(an)
(1 − F(an))

}n

=

{
1 −

px−α

n
(1 + o(1)) −

(1 − p)y−α

n
(1 + o(1))

}n

=

{
1 −

px−α
+ (1 − p)y−α

n
+ o

(
1
n

)}n

→ e−px−α

e−(1−p)y−α

, as n → ∞. (2.10)



1980 P. Mladenović, V. Piterbarg / Stochastic Processes and their Applications 116 (2006) 1977–1991

Results concerning limiting distribution of random vector (M̃n, Mn) will be formulated under
conditions of weak dependency of random variables from the sequence (Xn) and some conditions
on the sequence (εn).

Definition 2.3. Let (Xn) be a strictly stationary random sequence, (un) and (vn) two sequences
of real numbers, and Nn = {1, 2, . . . , n}. The condition D(un, vn) is satisfied, if for all
A1, A2, B1, B2 ⊂ Nn , such that

b − a > l, for all a ∈ A1 ∪ A2, b ∈ B1 ∪ B2,

A1 ∩ A2 = ∅, B1 ∩ B2 = ∅,

the following inequality holds:∣∣∣∣∣P
( ⋂

j∈A1∪B1

{X j 6 un} ∩

⋂
j∈A2∪B2

{X j 6 vn}

)

− P

(⋂
j∈A1

{X j 6 un} ∩

⋂
j∈A2

{X j 6 vn}

)
· P

( ⋂
j∈B1

{X j 6 un} ∩

⋂
j∈B2

{X j 6 vn}

)∣∣∣∣∣
6 αn,l ,

and αn,ln → 0 as n → ∞ for some ln = o(n).

The condition D(un, vn) is a modification of the condition D(un) that was introduced by [6].
Both of these two conditions are satisfied if, for example, the Rosenblatt strong mixing condition
holds for the sequence (Xn).

Definition 2.4 ([5]). Let (Xn) be a strictly stationary random sequence and (un) a sequence of
real numbers. The condition D′(un) is satisfied if

lim
k→∞

lim sup
n→∞

n ·

[n/k]∑
j=2

P{X1 > un, X j > un} = 0.

3. Main results

In this section two general results concerning limiting distributions of random vectors
(M̃∗

n , M∗
n ) and (M̃n, Mn) will be formulated.

Theorem 3.1. Let us suppose that the following conditions are satisfied:
(a) F ∈ D(G), i.e. for some constants an > 0 and bn ∈ R, n ∈ N, and every real x the

equality (2.1) holds.
(b) (εn) is a sequence of indicators that is independent of (X∗

n) and such that

Sn

n
P

−→ p ∈ [0, 1] as n → ∞. (3.1)

Then, the following equality holds for all real x < y:

lim
n→∞

P{M̃∗
n 6 an x + bn, M∗

n 6 an y + bn} = G p(x)G1−p(y). (3.2)
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Theorem 3.2. Let us suppose that the following conditions are satisfied:
(a) F ∈ D(G), i.e. for some constants an > 0 and bn ∈ R, n ∈ N, and every real x the

equality (2.1) holds.
(b) (Xn) is a strictly stationary random sequence, such that conditions D(un, vn) and D′(un)

are satisfied for un = an x + bn and vn = an y + bn , where x < y.
(c) (εn) is a sequence of indicators that is independent of (Xn) and such that

Sn

n
P

−→ p ∈ [0, 1] as n → ∞, (3.3)

Then, the following equality holds for all real x < y:

lim
n→∞

P{M̃n 6 an x + bn, Mn 6 an y + bn} = G p(x)G1−p(y). (3.4)

Remark 3.3. The random variable Sn in Theorems 3.1 and 3.2 is not necessarily a binomial one.

Remark 3.4. The limit theorem for joint distribution of maxima of a Gaussian process in
continuous and discrete time was proved by Piterbarg [11].

Remark 3.5. Theorem 8.3, Section 8, exhibits an opposite situation. For the storage process in
discrete time with FBM on input, the limit distribution of (M̃n, Mn) is G(min{x, y}), that is we
have perfect asymptotic dependence. This result is obtained for the Hurst parameter of FBM
greater than 1/2 and the condition P{Sn = 0} → 0 as n → ∞. By Lemma 8.2, the considered
storage process satisfies D(un, vn), and therefore does not satisfy the condition D′(un).

4. Some auxiliary results

In this section we shall formulate some lemmas needed for proving Theorems 3.1 and 3.2.

Lemma 4.1. Let the condition (a) of Theorem 3.2 be satisfied, un = an x + bn , vn = an y + bn ,
where x < y and 0 < G(x) 6 G(y) 6 1.

(a) The following equality holds:

lim
n→∞

n(1 − pF(un) − (1 − p)F(vn)) = −p ln G(x) − (1 − p) ln G(y). (4.1)

(b) If k is a fixed positive integer and m =
[ n

k

]
, then the following equality holds:

lim
n→∞

m(F(un) − F(vn)) =
ln G(x) − ln G(y)

k
. (4.2)

Lemma 4.2. Let (Xn) be a strictly stationary random sequence such that the condition
D(un, vn) is satisfied for un = an x + bn and vn = an y + bn , where x < y. Let I1, I2, . . . , Ik
be subsets of Nn = {1, 2, . . . , n}, such that |b − a| > l for all a ∈ Is , b ∈ It , where s 6= t , and
suppose that (εn) is a sequence of indicators independent of (Xn). If we define

M(Is) = max{X j : j ∈ Is},

M̃(Is) = max{X j : j ∈ Is, ε j = 1},
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then the following inequality holds:∣∣∣∣∣P
(

k⋂
s=1

{M̃(Is) 6 un, M(Is) 6 vn}

)

−

k∏
s=1

P{M̃(Is) 6 un, M(Is) 6 vn}

∣∣∣∣∣ 6 (k − 1)αn,l . (4.3)

Lemma 4.3. Let (Xn) be a strictly stationary random sequence such that condition D(un, vn)

and condition (a) of Theorem 3.2 are satisfied. Let k be a fixed positive integer, m = [n/k], and

Ks = { j : (s − 1)m + 1 6 j 6 sm},

M(Ks) = max{X j : j ∈ Ks},

M̃(Ks) = max{X j : j ∈ Ks, ε j = 1},

for s ∈ {1, 2, . . . , k}. Then the following equality holds:

lim
n→∞

(
P{M̃n 6 un, Mn 6 vn} −

k∏
s=1

P{M̃(Ks) 6 un, M(Ks) 6 vn}

)
= 0. (4.4)

5. Proof of Theorem 3.1

Let 0 < ε < p and let us define un = an x + bn , vn = an y + bn . Then, we get

P{M̃∗
n 6 un, M∗

n 6 vn} =

n∑
k=0

P{Sn = k}P{M̃∗
n 6 un, M∗

n 6 vn | Sn = k}

=

n∑
k=0

P{Sn = k}(F(un))k(F(vn))n−k . (5.1)

Let us define

Σ1 = Σ1(n, p, ε) =

∑
k:

∣∣∣ k
n −p

∣∣∣>ε

P{Sn = k}(F(un))k(F(vn))n−k, (5.2)

Σ2 = Σ2(n, p, ε) =

∑
k:

∣∣∣ k
n −p

∣∣∣6ε

P{Sn = k}(F(un))k(F(vn))n−k . (5.3)

Using the condition (b), we obtain that

Σ1 6
∑

k:

∣∣∣ k
n −p

∣∣∣>ε

P{Sn = k} → 0, as n → ∞. (5.4)

The following inequalities hold:

Σ2 6 (F(un))n(p−ε)
· (F(vn))n−n(p+ε)

·

∑
k:

∣∣∣ k
n −p

∣∣∣6ε

P{Sn = k}, (5.5)
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Σ2 > (F(un))n(p+ε)
· (F(vn))n−n(p−ε)

·

∑
k:

∣∣∣ k
n −p

∣∣∣6ε

P{Sn = k}. (5.6)

Using (5.5), (5.6) and (2.1) and the condition (b), we obtain that for every ε ∈ (0, p) the
following inequalities hold:

lim sup
n→∞

P{M̃∗
n 6 un, M∗

n 6 vn} 6 G p−ε(x) · G1−p−ε(y), (5.7)

lim inf
n→∞

P{M̃∗
n 6 un, M∗

n 6 vn} > G p+ε(x) · G1−p+ε(y). (5.8)

Finally, if ε ↓ 0, then it follows from (5.7) and (5.8) that

lim sup
n→∞

P{M̃∗
n 6 un, M∗

n 6 vn} 6 G p(x)G1−p(y), (5.9)

lim inf
n→∞

P{M̃∗
n 6 un, M∗

n 6 vn} > G p(x)G1−p(y), (5.10)

and the statement of the theorem follows. �

6. Proof of auxiliary results

Proof of Lemma 4.1. Note that the following equalities hold:

n(1 − pF(un) − (1 − p)F(vn)) = p · n(1 − F(un)) + (1 − p) · n(1 − F(vn)), (6.1)

m(F(un) − F(vn)) = m(1 − F(vn)) − m(1 − F(un)). (6.2)

Equalities (4.1) and (4.2) are easy consequences of (2.1), equalities (6.1) and (6.2) and Theorem
1.5.1 from Leadbetter et al. [7]. �

Proof of Lemma 4.2. We shall use the method of mathematical induction. For k = 2, the
inequality (4.3) is just the condition D(un, vn). Suppose that inequality (4.3) holds for arbitrary
k − 1 sets, such that the distance between any two of them is not less then l.

Let us consider k sets I1, I2, . . . , Ik ⊂ Nn , for which conditions of Lemma 4.2 are satisfied.
Define

Bs = {M̃(Is) 6 un, M(Is) 6 vn}, s ∈ {1, 2, . . . , k}.

Using the condition D(un, vn) and the assumption that the statement of Lemma 4.2 holds for
k − 1 sets, we obtain that

|P(B1 B2 . . . Bk) − P(B1)P(B2) . . . P(Bk)|

6 |P(B1 B2 . . . Bk−1 Bk) − P(B1 B2 . . . Bk−1)P(Bk)|

+ |P(B1 B2 . . . Bk−1) − P(B1)P(B2) . . . P(Bk−1)| · P(Bk)

6 αn,l + (k − 2)αn,l = (k − 1)αn,l . �

Proof of Lemma 4.3. For any positive integer n let us define Nn = {1, 2, . . . , n}. Let k be a
fixed positive integer and m = [n/k]. For large values of n we can choose a positive integer l
such that k < l < m. Let

Nmk = (I1 ∪ J1) ∪ (I2 ∪ J2) ∪ · · · ∪ (Ik ∪ Jk)

be the representation of the set Nmk = {1, 2, . . . , mk} as the union of mutually disjoint sets, such
that the following conditions are satisfied:
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• Every one of the sets I1, J1, I2, J2, . . . , Ik , Jk consists of consecutive positive integers.
• Cardinal numbers of these sets are given by

|I1| = |I2| = · · · = |Ik | = m − l,

|J1| = |J2| = · · · = |Jk | = l.

• The set I1 consists of the first m − l positive integers; the set J1 consists of the next l positive
integers; I2 consists of the next m − l positive integers; J2 consists of the next l positive
integers; etc. Obviously, Ks = Is ∪ Js for all s ∈ {1, 2, . . . , k}.

Since mk 6 n < (m + 1)k < mk + l, we get |Nn \ Nmk | < k < l. Let us define sets Ik+1 and
Jk+1 in the following way:

Jk+1 = {mk + 1, mk + 2, . . . , mk + l},

Ik+1 = {mk − m + l + 1, . . . , mk − 1, mk}.

Then, |Ik+1| = m − l, |Jk+1| = l. The set Jk+1 contains the set Nn \ Nmk , and the set Ik+1 is
a subset of Nmk . We shall use that maxima on the sets I1, I2, . . . , Ik are weakly dependent, and
that small intervals J1, J2, . . . , Jk, Jk+1 can be neglected.

Let us define

∆ = P{M̃n 6 un, Mn 6 vn} −

k∏
s=1

P{M̃(Is ∪ Js) 6 un, M(Is ∪ Js) 6 vn}, (6.3)

∆1 = P

(
k⋂

s=1

{M̃(Is) 6 un, M(Is) 6 vn}

)
− P{M̃n 6 un, Mn 6 vn}, (6.4)

∆2 = P

(
k⋂

s=1

{M̃(Is) 6 un, M(Is) 6 vn}

)
−

k∏
s=1

P{M̃(Is) 6 un, M(Is) 6 vn}, (6.5)

∆3 =

k∏
s=1

P{M̃(Is) 6 un, M(Is) 6 vn} −

k∏
s=1

P{M̃(Is ∪ Js) 6 un, M(Is ∪ Js) 6 vn, }.

(6.6)

Then, the following equality holds:

∆ = −∆1 + ∆2 + ∆3. (6.7)

Note that the following inclusion holds:(
k⋂

s=1

{M̃(Is) 6 un, M(Is) 6 vn}

)
\ {M̃n 6 un, Mn 6 vn}

⊂

k+1⋃
s=1

(
{M̃(Is) 6 un < M̃(Js)} ∪ {M(Is) 6 vn < M(Js)}

)
. (6.8)

Using the condition that (Xn) is a strictly stationary random sequence, and relations (6.4) and
(6.8), we obtain that

0 6 ∆1 6
k+1∑
s=1

P{M̃(Is) 6 un < M̃(Js)} + (k + 1)P{M(I1) 6 vn < M(J1)}. (6.9)
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Using Lemma 4.2, we get

|∆2| 6 (k − 1)αn,l . (6.10)

Note that∣∣∣∣∣ k∏
s=1

as −

k∏
s=1

bs

∣∣∣∣∣ 6
k∑

s=1

|as − bs |, for all as, bs ∈ [0, 1]. (6.11)

Indeed, for a1, a2, b1, b2 ∈ [0, 1] we get

|a1a2 − b1b2| = |a1a2 − b1a2 + b1a2 − b1b2|

6 |a2| · |a1 − b1| + |b1| · |a2 − b2| 6 |a1 − b1| + |a2 − b2|

and for arbitrary k, inequality (6.11) follows by induction. The following inclusions also hold:

{M̃(Is ∪ Js) 6 un, M(Is ∪ Js) 6 vn} ⊂ {M̃(Is) 6 un, M(Is) 6 vn}, (6.12)

{M̃(Is) 6 un, M(Is) 6 vn} \ {M̃(Is ∪ Js) 6 un, M(Is ∪ Js) 6 vn}

⊂ {M̃(Is) 6 un < M̃(Js)} ∪ {M(Is) 6 vn < M(Js)}. (6.13)

Using relations (6.11)–(6.13) we obtain that

0 6 ∆3 6

6
k∑

s=1

(
P{M̃(Is) 6 un, M(Is) 6 vn} − P{M̃(Is ∪ Js) 6 un, M(Is ∪ Js) 6 vn}

)
=

k∑
s=1

P
(
{M̃(Is) 6 un, M(Is) 6 vn} \ {M̃(Is ∪ Js) 6 un, M(Is ∪ Js) 6 vn}

)
6

k∑
s=1

P{M̃(Is) 6 un < M̃(Js)} +

k∑
s=1

P{M(Is) 6 vn < M(Js)}

=

k∑
s=1

P{M̃(Is) 6 un < M̃(Js)} + k · P{M(I1) 6 vn < M(J1)}. (6.14)

Using (6.7), (6.9), (6.10) and (6.14) we get

|∆| 6 (k − 1)αn,l + 2
k+1∑
s=1

P{M̃(Is) 6 un < M̃(Js)}

+ (2k + 1)P{M(I1) 6 vn < M(J1)}. (6.15)

Let us define

p1 = P{M(I1) 6 vn < M(J1)}, (6.16)

p̃s = P{M̃(Is) 6 un < M̃(Js)}, s ∈ {1, 2, . . . , k + 1}. (6.17)
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Let us estimate p1 and p̃s . The following inequalities hold:

p1 6 P{vn < M(J1)} = P

( ⋃
j∈J1

{X j > vn}

)
6
∑
j∈J1

P{X j > vn} =
l

n
· n(1 − F(un)), (6.18)

p̃s 6 P{un < M̃(Js)} 6 P{un < M(Js)}

6
∑
j∈Js

P{X j > un} =
l

n
· n(1 − F(un)). (6.19)

Having in mind extreme value distributions Φα(x) and Ψα(x), we shall suppose that real numbers
x < y are such that 0 < G(x) < G(y) < 1. If n → ∞ and l = ln = o(n), then
n(1 − Fn(x)) → − ln G(x), n(1 − Fn(y)) → − ln G(y), and from (6.18) and (6.19) we get
p1 → 0, ps → 0 for all s ∈ {1, 2, . . . , k + 1}. Now, (4.4) follows from (6.15). �

7. Proof of Theorem 3.2

Let k be a fixed positive integer, m = [n/k], un = an x + bn , vn = an y + bn , where x < y
and 0 < G(x) < G(y) < 1. Let us define

Ks = { j : (s − 1)m + 1 6 j 6 sm}, s ∈ {1, 2, . . . , k}; (7.1)

Bs = { j : j ∈ Ks, ε j = 1}, s ∈ {1, 2, . . . , k}; (7.2)

As j = {X(s−1)m+ j > un}, j ∈ {1, 2, . . . , m}. (7.3)

Note that Ssm − S(s−1)m is the number of ε j that equal 1 in (s − 1)m + 1 6 j 6 sm. Since
Sn/n →P p, the following relation also holds:

Ssm − S(s−1)m

m
= s

Ssm

sm
− (s − 1)

S(s−1)m

(s − 1)m
P

−→ p, as n → ∞. (7.4)

For a fixed s ∈ {1, 2, . . . , k} let us consider the event {M̃(Ks) 6 un, M(Ks) 6 vn}. The
following equality holds:

{M̃(Ks) 6 un, M(Ks) 6 vn}
c

=

⋃
j∈Bs

{X j > un} ∪

⋃
j∈Ks\Bs

{X j > vn}. (7.5)

Using the equality (7.5) and the Bonferoni inequality, we obtain that

1 − P{M̃(Ks) 6 un, M(Ks) 6 vn} =

m∑
t=0

P{Ssm − S(s−1)m = t}

× P

(⋃
j∈Bs

{X j > un} ∪

⋃
j∈Ks\Bs

{X j > vn}

∣∣∣∣∣ Ssm − S(s−1)m = t

)

6
m∑

t=0

P{Ssm − S(s−1)m = t} (t (1 − F(un)) + (m − t)(1 − F(vn))) . (7.6)
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Since {X i > un, X j > vn} ⊂ {X i > un, X j > un} for i 6= j , we get in a similar way

1 − P{M̃(Ks) 6 un, M(Ks) 6 vn} >
m∑

t=0

P{Ssm − S(s−1)m = t}

×

(
t (1 − F(un)) + (m − t)(1 − F(vn)) − m

m∑
j=2

P(As1 As j )

)
. (7.7)

Using inequalities (7.6) and (7.7), we obtain that

1 −

m∑
t=0

P{Ssm − S(s−1)m = t} (s(1 − F(un)) + (m − t)(1 − F(vn)))

6 P{M̃(Ks) 6 un, M(Ks) 6 vn} 6 1 −

m∑
t=0

P{Ssm − S(s−1)m = t}

× (t (1 − F(un)) + (m − t)(1 − F(vn))) + m
m∑

j=2

P(As1 As j ). (7.8)

Let us define

T (n, k) = m
m∑

j=2

P(As1 As j ) =

[n

k

] m∑
j=2

P(As1 As j ). (7.9)

Since the sequence (Xn) is strictly stationary, the sum in (7.9) does not depend on s. Using the
condition D′(un), we obtain that

T0(k) := lim sup
n→∞

T (n, k) = o

(
1
k

)
, k → ∞. (7.10)

Using (7.8) and (7.9), we get

P{M̃(Ks) 6 un, M(Ks) 6 vn} 6 1 − (1 − F(un)) · E(Ssm − S(s−1)m)

− (1 − F(vn))(m − E(Ssm − S(s−1)m)) + T (n, k)

= 1 − m + F(un) · E(Ssm − S(s−1)m)

+ F(vn)(m − E(Ssm − S(s−1)m)) + T (n, k)

= 1 − m

{
1 − F(un)

E(Ssm − S(s−1)m)

m

− F(vn)

(
1 −

E(Ssm − S(s−1)m)

m

)}
+ T (n, k). (7.11)

Since the relation (7.4) holds and the sequence (Ssm − S(s−1)m)/m, m = 1, 2, . . ., is uniformly
integrable, we get for any fixed s the following equality:

lim
m→∞

E

(
Ssm − S(s−1)m

m

)
= p.

Hence,

E(Ssm − S(s−1)m)

m
= p + ηs, where ηs → 0 as n → ∞. (7.12)
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It follows from (7.11) and (7.12) that

P{M̃(Ks) 6 un, M(Ks) 6 vn}

6 1 − m{1 − F(un)(p + ηs) − F(vn)(1 − p − ηs)} + T (n, k)

= 1 − m{1 − pF(un) − (1 − p)F(vn)} + mηs(F(un) − F(vn)) + T (n, k).

(7.13)

Using (4.1), (4.2) and (7.13), one obtains

lim sup
n→∞

P{M̃(Ks) 6 un, M(Ks) 6 vn} 6 1 +
p ln G(x) + (1 − p) ln G(y)

k
+ T0(k).

(7.14)

Similarly we get

lim inf
n→∞

P{M̃(Ks) 6 un, M(Ks) 6 vn} > 1 +
p ln G(x) + (1 − p) ln G(y)

k
. (7.15)

Since inequalities (7.14) and (7.15) hold for all s ∈ {1, 2, . . . , k}, it follows that(
1 +

p ln G(x) + (1 − p) ln G(y)

k

)k

6 lim inf
n→∞

k∏
s=1

P{M̃(Ks) 6 un, M(Ks) 6 vn}

6 lim sup
n→∞

k∏
s=1

P{M̃(Ks) 6 un, M(Ks) 6 vn}

6

(
1 +

p ln G(x) + (1 − p) ln G(y)

k
+ T0(k)

)k

. (7.16)

Using Lemma 4.3 and inequalities (7.16) we obtain(
1 +

p ln G(x) + (1 − p) ln G(y)

k

)k

6 lim inf
n→∞

P{M̃n 6 un, Mn 6 vn} 6 lim sup
n→∞

P{M̃n 6 un, Mn 6 vn}

6

(
1 +

p ln G(x) + (1 − p) ln G(y)

k
+ T0(k)

)k

. (7.17)

Finally, (3.4) follows from (7.17) if we let k → ∞. �

8. A storage process in discrete time

Let X (t), t > 0, X (0) = 0 a.s., be a fractional Brownian motion, that is a Gaussian zero mean
process with stationary increments such that E(X (t)− X (s))2

= |t −s|2H , 0 < H 6 1. Consider
a random sequence

Yk = sup
j>k

(X ( j) − X (k) − c( j − k)),
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where c > 0 and k, l ∈ Z . Since X has stationary increments, Yk is a stationary sequence; we call
it a discrete time storage process with fractional Brownian motion as input, see for details [10],
where the storage process with continuous time

Y (t) = sup
σ>t

(X (σ ) − X (t) − c(σ − t))

was studied. We have

P

{
max

k=1,...,K
Yk 6 u

}
= P{X (u(s + τ)) − X (su) 6 u + cuτ, for some τ > 0, s ∈ [0, u−1 K ], su, τu ∈ Z}

= P

{
sup

τ>0,s∈[0,u−1 K ],su,τu∈Z

X (u(s + τ)) − X (su)

τ H u H v(τ)
6 u1−H

}
, (8.1)

where v(τ) = τ−H
+ cτ 1−H . The Gaussian random field

Z(s, τ ) :=
X (u(s + τ)) − X (su)

τ H u H v(τ)
, τ > 0, s ∈ R,

is studied in [10]. Its distribution does not depend on u, Z(s, τ ) is stationary in s but not in τ ,
its variance σ 2

Z (τ ) depends only on τ and has a single maximum point at τ0 = H/(c(1 − H));
moreover,

σZ (τ ) = v−1(τ ) =
1
A

−
B

2A2 (τ − τ0)
2
+ O((τ − τ0)

3) (8.2)

as τ → τ0, where

A :=
1

1 − H

(
H

c(1 − H)

)−H

= v(τ0), (8.3)

B := H

(
H

c(1 − H)

)−H−2

= v′′(τ0). (8.4)

For the correlation function r(s, τ ; s′, τ ′) of Z one has

r(s, τ ; s′, τ ′) = 1 −
1 + o(1)

2τ 2H
0

(|s − s′
+ τ − τ ′

|
2H

+ |s − s′
|
2H ), (8.5)

as s − s′
→ 0, τ − τ ′

→ 0, and, for sufficiently large |s − s′
| and an absolute constant C ,

|r(s, τ ; s′, τ ′)| 6 C |s − s′
|
2H−2, (8.6)

if 2H 6= 1. For 2H = 1, we have r(s, τ ; s′, τ ′) = 0 for large |s − s′
| since the increments of the

Brownian motion on disjoint intervals are independent; see for details [10,4].
Here we consider the Gaussian field Z(s, τ ) on the gridRu = u−1(Z+ × Z).

Lemma 8.1. Assume that 1/2 < H < 1. There exists δ > 0 such that

P

{
max

k=1,...,K
Yk > u

}
∼ P

{
max

t∈[0,K ]

Y (t) > u

}
∼ P{Y (0) > u} ∼ P{Y1 > u}

as u → ∞, where K may tend to infinity such that K = O(eδu2
).
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Proof. The second relation is proved in [10], Theorem 1. To prove the first and third relations,
we use (8.1) and the fact that the grid Ru is dense for the Gaussian field Z and the level
u1−H , in the sense of [11]. Indeed, for the level u1−H , in view of (8.2) and (8.5), we get that
(u1−H )−2/(2H)

= u1−1/H , and for H > 1/2, u−1
= o(u1−1/H ). �

Lemma 8.2. Let un, vn → +∞ as n → ∞, such that un/vn is bounded from zero and infinity.
Then the condition D(un, vn) is fulfilled for the sequence (Yk).

Proof. By (8.1), Definition 2.3 reduces to the Gaussian field Z and levels u1−H
n and v1−H

n . Then
the assertion of the Lemma follows from Theorem 1.1, [9], by an argument similar to that in the
proofs of Theorems 2.1 and 2.2. Besides, in estimating αn,ln one uses relations (8.2) and (8.6).

�

Theorem 8.3. Assume that 1/2 < H < 1. Let (εn) be a sequence of indicators that is
independent of the sequence (Yk) and let us define Sn = ε1 + · · · + εn ,

M̃n = max{Y j | 1 6 j 6 n, ε j = 1},

Mn = max{Y1, . . . , Yn},

an =
(2A−2)1/(2(1−H))

2(1 − H)
(ln n)−(1−2H)/(2(1−H)),

bn = (2A−2 ln n)1/(2(1−H))
+

[
h(2A−2)1/(2(1−H)) ln(2A−2 ln n)

4(1 − H)2

+
(2A−2)1/(2(1−H)) ln c

2(1 − H)

]
(ln n)−(1−2H)/(2(1−H)),

where A is given by (8.3), h = 2(1−H)2/H −1, c = a2/H (2b)−1/2H2
2H A2/H−2, a = 1/(2τ 2H

0 ),
b = B/(2A) and H2H is the Pickands constant given by

H2H = lim
T →∞

1
T

E exp
{

max
06t6T

(
√

2 X (t) − |t |2H )

}
.

If P{Sn = 0} → 0 as n → ∞, then the following equality holds:

lim
n→∞

P{M̃n 6 an x + bn, Mn 6 an y + bn} = exp(− exp(− min{x, y})). (8.7)

Proof. If x > y, the equality (8.7) follows immediately from Theorem 1 in [4]. Let x < y and
un(x) = an x+bn , un(y) = an y+bn . Then, the equality (8.7) also follows from above mentioned
Theorem 1 and the following relations:

P{M̃n 6 un(x), Mn 6 un(y)} ∼ P{M̃n 6 un(x)}

∼ P{Mn 6 un(x)}. (8.8)

The second asymptotic relation in (8.8) follows from Lemma 8.1 if P{Sn = 0} → 0 as n → ∞.
The first relation in (8.8) is a consequence of the following relations:

{M̃n 6 un(x)} = {M̃n 6 un(x), Mn 6 un(y)} ∪ {M̃n 6 un(x), Mn > un(y)},

{M̃n 6 un(x), Mn > un(y)} ⊂ {M̃n 6 un(y)} \ {Mn 6 un(y)},

{M̃n 6 un(y)} ∼ {Mn 6 un(y)}. �
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Remark 8.4. Let X = {X (t)}t>0 be an infinitely divisible stochastic process, with no Gaussian
component, that is self-similar with index H > 0. For given constants c > 0 and γ > H , the
storage process with a self-similar and infinitely divisible input is defined by

Y (t) = sup
s>t

(X (s) − X (t) − c(s − t)γ ), t > 0. (8.9)

For an input process X with stationary increments the storage process Y is stationary, if finite.
Under some additional conditions on the process X and the function t = t (u), [1] proved that

lim
u→∞

P

{
sup

s∈[0,t]
Y (s) > u

}

P

{
inf

s∈[0,t]
Y (s) > u

} = 1. (8.10)

In some cases, the function t (u) may tend to infinity (Corollary 2, [1]). Let (Yk) be a sequence
defined by Yk = Y (k), k ∈ {1, 2, . . .}. We call it a discrete time storage process with a self-similar
and infinitely divisible input. Apparently, using (8.10), it would be possible to get the result that
the components of the vector (M̃n, Mn) are asymptotically perfectly dependent, where M̃n and
Mn are defined as in our Theorem 8.3.

Acknowledgements

The authors would like to thank the anonymous referee for useful suggestions and remarks
which led to an improvement of the paper.

The first author is supported by the Ministry of Science and Environmental Protection of the
Republic of Serbia, Grant No. 144032 and Grant No. 149041. The second author is partially
supported by RFFI grants 04-01-00700 and 06-01-00454 from the Russian Federation.

References

[1] J.M.P. Albin, G. Samorodnitsky, On overload in a storage model, with a self-similar and infinitely divisible input,
Ann. Appl. Probab. 14 (2004) 820–844.

[2] B.V. Gnedenko, Sur la distribution limite du terme maximum d’une série aléatoire, Ann. Math. 44 (1943) 423–453.
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