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Abstract

We consider the path Z t described by a standard Brownian motion in Rd on some time interval [0, t].
This is a random compact subset of Rd . Using the support (curvature) measures of [D. Hug, G. Last,
W. Weil, A local Steiner-type formula for general closed sets and applications, Math. Z. 246 (2004)
237–272] we introduce and study two mean curvature functions of Brownian motion. The geometric
interpretation of these functions can be based on the Wiener sausage Z t

⊕r of radius r > 0 which is the

set of all points x ∈ Rd whose Euclidean distance d(Z t , x) from Z t is at most r . The mean curvature
functions can be easily expressed in terms of the Gauss and mean curvature of Z t

⊕r as integrated over the
positive boundary of Z t

⊕r . We will show that these are continuous functions of locally bounded variation. A
consequence is that the volume of Z t

⊕r is almost surely differentiable at any fixed r > 0 with the derivative
given as the content of the positive boundary of Z t

⊕r . This will imply that also the expected volume of
Z t

⊕r is differentiable with the derivative given as the expected content of the positive boundary of Z t
⊕r .

In fact it has been recently shown in [J. Rataj, V. Schmidt, E. Spodarev, On the expected surface area of
the Wiener sausage (2005) (submitted for publication) http://www.mathematik.uni-ulm.de/stochastik/] that
for d ≤ 3 the derivative is just the expected surface content of Z t

⊕r and that for d ≥ 4 this is true at
least for almost all r > 0. The paper [J. Rataj, V. Schmidt, E. Spodarev, On the expected surface area of
the Wiener sausage (2005) (submitted for publication) http://www.mathematik.uni-ulm.de/stochastik/] then
proceeds to use a result from [A.M. Berezhkovskii, Yu.A. Makhnovskii, R.A. Suris, Wiener sausage volume
moments, J. Stat. Phys. 57 (1989) 333–346] to get explicit formulae for this expected surface content. We
will use here this result to derive a linear constraint on the mean curvature functions. For d = 3 we will
provide a more detailed analysis of the mean curvature functions based on a classical formula in [F. Spitzer,
Electrostatic capacity, heat flow, and Brownian motion, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3
(1964) 110–121].
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1. Introduction

We consider a standard Brownian motion (Wt )t≥0 in Rd (d ≥ 2) defined on the probability
space (Ω ,A, P) and let

Z t
:= {Ws : 0 ≤ s ≤ t}

denote the path of the motion between 0 and t ≥ 0. This is a random closed set. Therefore we may
consider the (random) support (curvature) measures µ0(Z t

; ·), . . . , µd−1(Z t
; ·) as introduced

and studied (for arbitrary closed sets) in [7]. These are signed measures on Rd
× Sd−1 that are

supported by the normal bundle N (Z t ) ⊂ Z t
× Sd−1 of Z t , where Sd−1 denotes the unit sphere

in Rd . In contrast to Z t the normal bundle N (Z t ) is a (d−1)-dimensional set which is sufficiently
smooth to allow for the definition of (generalized) local curvatures. The local reach δ(Z t , x, u)

at a point (x, u) ∈ Z t
× Sd−1 is the maximal value s > 0 such that an open ball with centre

x + su and radius s does not intersect Z t . In a sense δ(Z t , x, ·) measures the degree of fractality
at x ∈ Z t . If δ(Z t , x, u) > 0 for some u ∈ Sd−1 then (x, u) ∈ N (Z t ) and x ∈ Z t is the metric
projection of some point in Rd

\Z t onto Z t . All those points x make up the positive boundary
of Z t . All other points of Z t cannot occur as metric projections. For any i ∈ {0, . . . , d − 1} and
any s > 0 the restriction of µi (Z t

; ·) to {δ(Z t , ·) > s} has a finite total variation with an even
finite expectation (see Proposition 3.5). The subject of the present paper is the mean curvature
functions of Brownian motion, defined by

Fi (t, s) := E
[∫

1{δ(Z t , x, u) > s} µi (Z t
; d(x, u))

]
, i ∈ {0, . . . , d − 1}.

Self-similarity will imply that these functions can be represented either as a function of time
t > 0 or of minimal local reach s > 0. Because the two-dimensional Hausdorff measure of Z t

vanishes (see [14]) we have in fact that Fi (t, s) = 0 for i ≥ 2.
A more direct geometric interpretation of the mean curvature functions can be based on the

Wiener sausage

Z t
⊕r := {x ∈ Rd

: d(Z t , x) ≤ r}

of radius r ≥ 0. This is the set of all points x ∈ Rd whose Euclidean distance d(Z t , x) from Z t

is at most r . We will see below (see (2.5) and Section 4) that

E[µi (Z t
⊕s; Rd

× Sd−1)] = si
(

d

d − i

)
κd

κd−i
F0(t, s)

+ 1{i ≥ 1}si−1
(

d − 1
d − i

)
κd−1

κd−i
F1(t, s) (1.1)

holds for all i ∈ {0, . . . , d − 1}, where κ j is the ( j-dimensional) volume of the Euclidean unit
ball in R j . In particular

F0(t, s) = E[µ0(Z t
⊕s; Rd

× Sd−1)],

F1(t, s) = E[µ1(Z t
⊕s; Rd

× Sd−1)] − sd
κd

κd−1
E[µ0(Z t

⊕s; Rd
× Sd−1)].
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The boundary of Z t
⊕s is in a sense smooth for almost all r > 0 (see e.g. [4]). According to

Corollary 2.5 in [7] we may interpret µ0(Z t
⊕s; Rd

× Sd−1) as the integral of the Gauss curvature
over the positive boundary of Z t

⊕s . The number µ1(Z t
⊕s; Rd

× Sd−1) equals the length of the
positive boundary of Z t

⊕s for d = 2. For d = 3 it can be interpreted as the integral of the mean
curvature over the positive boundary of Z t

⊕s .
The Lebesgue measure Hd(Z t

⊕r ) of the Wiener sausage has been extensively studied in the
literature (see e.g. [12,5,13,1]). By means of the generalized Steiner formula in [7] this volume
can be expressed in terms of support measures and the reach function of Z t . Therefore the
expected volume E[Hd(Z t

⊕r )] can be expressed in terms of the mean curvature functions of
Brownian motion (see Theorem 4.5). We will show that these are continuous functions of locally
bounded variation. A consequence is that the volume of Z t

⊕r is almost surely differentiable at
any fixed r > 0 with the derivative given as the content of the positive boundary of Z t

⊕r . This
will imply that also the expected volume of Z t

⊕r is differentiable with the derivative given as the
expected content of the positive boundary of Z t

⊕r . In fact it has been recently shown in [10] that
for d ≤ 3 the derivative is just the expected surface content of Z t

⊕r while for d ≥ 4 this is true
at least for almost all distances r > 0. Moreover, the authors of [10] have used a result from [1]
to get explicit formulae for the expected surface content of Z t

⊕r . It is somewhat surprising that
earlier papers on the Wiener sausage paid little attention to the (expected) surface content. Using
the result from [1] we will derive in Theorem 4.8 a linear constraint on the mean curvature
functions. For the three-dimensional case we will use a classical formula from [12] to show in
Theorem 5.1 (see also Remark 5.2) that F0(t, s) = 1 + c

√
t/s + o(1/s) as s → ∞, where the

constant c ≥ 0 satisfies the inequality c ≤ 4/
√

2π .
As a technical tool, curvatures have been used in [10]. However, to the best of our knowledge

we make here the first systematic attempt to define and study mean curvatures of Brownian
motion. But even if these functions were known explicitly, the probabilistic behaviour of the
random support measures would still remain to be studied. Obtaining more detailed information
is a challenging but very interesting and promising task.

2. Support measures

The aim of this section is to define the support measures of [7] and to summarize some
of their basic properties. We are working in Rd with Euclidean norm | · | and unit sphere
Sd−1

:= {z ∈ Rd
: |z| = 1}. The i-dimensional Hausdorff measure in Euclidean space is

denoted by Hi . The closed Euclidean ball with centre a ∈ Rd and radius r ≥ 0 is denoted by
B(a, r), while B0(a, r) denotes the corresponding open ball.

We now consider an arbitrary non-empty closed subset A of Rd . The distance d(A, z) from a
point z ∈ Rd to A is defined as inf{|y − z| : y ∈ A}, where inf ∅ := ∞. We put p(A, z) := y
whenever y is a uniquely determined point in A with d(A, z) = |y − z|, and we call this point the
metric projection of z on A. If 0 < d(A, z) < ∞ and p(A, z) is defined, then p(A, z) lies on the
boundary ∂ A of A and we put u(A, z) := (z − p(A, z))/d(A, z). The exoskeleton exo(A) of A
consists of all points of Rd

\A which do not admit a metric projection on A. This is a measurable
set (see, e.g., Lemma 6.1 in [7]) satisfying Hd(exo(A)) = 0. If A is convex, then exo(A) = ∅.
We extend the definition of p(A, z) ∈ Rd and u(A, z) ∈ Sd−1 in a suitable and measurable way
to all z ∈ Rd .

The normal bundle of A is defined by

N (A) := {(p(A, z), u(A, z)) : z 6∈ A ∪ exo(A)}.
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It is a measurable subset of ∂ A×Sd−1. The positive boundary ∂+ A of A is defined as the set of all
x ∈ ∂ A for which there is some u ∈ Sd−1 such that (x, u) ∈ N (A). This is the set of all boundary
points occurring as metric projections on A. The reach function δ(A, ·) : Rd

× Sd−1
→ [0, ∞]

of A is defined by

δ(A, x, u) := inf{s ≥ 0 : x + su ∈ exo(A)}, (x, u) ∈ N (A),

and δ(A, x, u) := 0 for (x, u) 6∈ N (A). Note that δ(A, ·) > 0 on N (A). By Lemma 6.2 in [7],
δ(A, ·) is a measurable function. If x ∈ A, then we have for any u ∈ Sd−1 that

δ(A, x, u) = sup{s ≥ 0 : B(x + su, s) ∩ A = {x}}

= sup{s ≥ 0 : B0(x + su, s) ∩ A = ∅}.

This implies for any r > 0 that δ(A, x, u) = r if and only if (B(x + ru, r)\{x}) ∩ A 6= ∅ and
B0(x + ru, r) ∩ A = ∅. These facts will be used in Section 3.

A reach measure µ of A is a real-valued function defined on all Borel subsets of N (A) which
are contained in

{(x, u) : x ∈ B, δ(A, x, u) ≥ s},

for some s > 0 and some compact B ⊂ Rd . Moreover, it is a bounded signed measure on
{(x, u) : x ∈ B, δ(A, x, u) ≥ s}, for each s > 0 and each compact B ⊂ Rd . If µ is a reach
measure, then it is convenient to extend the domain of µ by setting µ(C) := 0 for any Borel set
C ⊂ Rd

× Sd−1
\N (A). The Hahn decomposition theorem then implies a unique representation

µ = µ+
− µ− with mutually singular σ -finite measures µ+ and µ− on Rd

× Sd−1 vanishing
outside N (A). Although µ+ and µ− are defined on all measurable sets, it is in general not
possible to extend µ to all measurable sets using µ = µ+

− µ−. The measure |µ| := µ+
+ µ−

is the total variation measure of µ. For any measurable function f : Rd
× Sd−1

→ [−∞, ∞],
we define the integral

∫
f dµ as

∫
f dµ+

−
∫

f dµ− whenever this difference is well defined,
i.e. whenever the integrals

∫
f dµ+ and

∫
f dµ− are both defined and the above difference is not

of the form −∞ + ∞ or ∞ − ∞. Subsequently, we write a ∧ b := min{a, b} for a, b ∈ R.
By Theorem 2.1 in [7], there exist reach measures µ0(A; ·), . . . , µd−1(A; ·) of A satisfying∫

1{x ∈ B}(δ(A, x, u) ∧ r)d− j
|µ j |(A; d(x, u)) < ∞, (2.1)

j = 0, . . . , d − 1, for all compact sets B ⊂ Rd and all r > 0, and, for any measurable bounded
function f : Rd

→ R with compact support,∫
Rd\A

f (z) dz =

d−1∑
i=0

(d − i)κd−i

∫
∞

0

∫
sd−1−i 1{δ(A, x, u) > s}

× f (x + su) µi (A; d(x, u)) ds. (2.2)

These measures are called support measures of A. They are uniquely defined by the local Steiner
formula (2.2).

Eq. (2.2) yields in particular a formula for the volume of the parallel set A⊕r of a compact set
A at distance r ≥ 0, i.e. of the set of all points x ∈ Rd whose distance from A is at most r :

Hd(A⊕r ) = Hd(A) +

d−1∑
i=0

(d − i)κd−i

∫ r

0
sd−i−1 fi (A, s) ds
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= Hd(A) +

d−1∑
i=0

κd−i

∫
δ(A, x, u)d−i

∧ rd−i µi (A; d(x, u)), (2.3)

where

fi (A, s) :=

∫
1{δ(A, x, u) > s} µi (A; d(x, u)), s > 0, i ∈ {0, . . . , d − 1}.

If A is convex, then this simplifies to the classical Steiner formula

Hd(A⊕r\A) =

d−1∑
i=0

rd−iκd−i Vi (A), (2.4)

where the coefficients V0(A), . . . , Vd−1(A) are the intrinsic volumes of the convex body A (see,
e.g., [11, (4.2.27)]). Corollary 4.4 in [7] provides a geometric interpretation of the functions
fi (A, s) in the general case:

µi (A⊕s; Rd
× Sd−1) =

i∑
j=0

si− j
(

d − j

d − i

)
κd− j

κd−i
f j (A, s), i ∈ {0, . . . , d − 1}. (2.5)

In particular,

f0(A, s) = µ0(A⊕s; Rd
× Sd−1),

f1(A, s) = µ1(A⊕s; Rd
× Sd−1) − sd

κd

κd−1
µ0(A⊕s; Rd

× Sd−1).

Let A ⊂ Rd be compact. Proposition 4.9 in [7] implies for any c > 0, any s > 0, and any
j ∈ {0, . . . , d − 1} that∫

1{δ(cA, x, u)>s} µ j (cA; d(x, u)) = c j
∫

1{δ(A, x, u)>c−1s} µ j (A; d(x, u)). (2.6)

The same equation holds if µ j is replaced with |µ j |.
In the remainder of this section we will state a few more basic properties of support measures

that are not explicitly mentioned in [7] but needed later. The first property follows from Corollary
2.5 in [7] and the fact that the principal curvatures occurring there are locally defined (see the
first paragraph of the proof of Theorem 2.1 in [7]).

Proposition 2.1. Let A, B ⊂ Rd be non-empty closed sets. Then we have for all i ∈ {0, . . . , d −

1} that∫
1{(x, u) ∈ ·}1{(x, u) ∈ N (A) ∩ N (B)} µi (A; d(x, u))

=

∫
1{(x, u) ∈ ·}1{(x, u) ∈ N (A) ∩ N (B)} µi (B; d(x, u)).

The next result is a consequence of inequality (2.11) and equation (2.23) in [7].

Proposition 2.2. For any i ∈ {0, . . . , d − 1}∫
1{(x, u) ∈ ·, δ(A, x, u) = ∞}µi (A; d(x, u)) ≥ 0.
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Next we prove:

Proposition 2.3. If A ⊂ Rd is non-empty and compact then∫
1{δ(A, x, u) = ∞}µ0(A; d(x, u)) = 1.

Proof. From the argument leading to Proposition 2.2 and Proposition 4.10 in [7] we get

dκd

∫
1{δ(A, x, u) = ∞}µ0(A; d(x, u))

=

∫
Sd−1

∑
x∈N (A,u)

1{δ(A, x, u) = ∞}Hd−1(du), (2.7)

where N (A, u) := {x ∈ Rd
: (x, u) ∈ N (A)}. Fixing u ∈ Sd−1 we first show that N (A, u) 6= ∅.

Indeed, since A is compact there is an x ∈ A such that

〈y, u〉 ≤ 〈x, u〉, y ∈ A,

where 〈y, u〉 denotes the inner product of y and u. Hence B(x + su, s) ∩ A = {x} for all s > 0
proving that δ(A, x, u) = ∞. Hence (2.7) implies that

b0 :=

∫
1{δ(A, x, u) = ∞}µ0(A; d(x, u)) ≥ 1.

To show the converse inequality we take r > 0 and apply the Steiner formula (2.2) to get∫
1{0 < d(A, z) ≤ r, δ(A, p(A, z), u(A, z)) = ∞} dz =

d−1∑
i=0

κd−ir
d−i bi , (2.8)

where

bi :=

∫
1{δ(A, x, u) = ∞}µi (A; d(x, u)).

Choosing R > 0 such that A is contained in a ball with radius R, we obtain from (2.8) that

κd(R + r)d
≥ κdrdb0 +

d−1∑
i=1

κd−ir
d−i bi .

Dividing by rd and letting r → ∞ gives the desired inequality 1 ≥ b0. �

Finally we will need the following result.

Proposition 2.4. Let A ⊂ Rd be non-empty and closed and k ∈ {1, . . . , d − 1} such that
Hk(∂ A) = 0. Then µk(A; ·) ≡ 0.

Proof. In view of Lemma 2.3 in [7] it is sufficient to show that

µk(A; N (B) ∩ ·) = 0

holds for any compact B ⊂ Rd with positive reach. By Proposition 2.1 we have

µk(A; N (B) ∩ ·) = µk(B; N (A) ∩ ·).

Since N (A) ⊂ ∂ A × Sd−1, the desired equality is a consequence of Theorem 5.5 in [2]. �
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3. Preliminaries on Brownian paths

The first lemma permits to consider Z t as a random element in the spaceFd equipped with the
usual Fell–Matheron “hit-or-miss” topology (see [9]). We skip the proof which is quite standard.
For further measurability properties of support measures and the reach function (tacitly used in
the sequel) we refer the reader to Section 6 in [7].

Lemma 3.1. The mapping (ω, t) 7→ Z t (ω) from Ω × [0, ∞) into Fd is measurable.

From (2.3) we obtain that

Hd(Z t
⊕r ) = Hd(Z t ) +

d−1∑
i=0

(d − i)κd−i

∫ r

0
sd−i−1 fi (t, s) ds, (3.1)

where

fi (t, s) :=

∫
1{δ(Z t , x, u) > s} µi (Z t

; d(x, u)). (3.2)

A geometric interpretation of these functions is provided by Eq. (2.5). From (3.1) we see that
r 7→ Hd(Z t

⊕r ) is differentiable everywhere with the exception of at most countably many points
(see also Corollary 4.5 in [7]). On the other hand we obtain from Lemma 1 in [6] (a version of
Lemma 3.2.34 in [3]) that

Hd(Z t
⊕r ) = Hd(Z t ) +

∫ r

0
Hd−1(∂ Z t

⊕s) ds, r ≥ 0,

everywhere on Ω . Together with (3.1) this implies

Hd−1(∂ Z t
⊕s) =

d−1∑
i=0

(d − i)κd−i s
d−i−1 fi (t, s) H1-a.e. s ≥ 0 (3.3)

everywhere on Ω . Hence the mapping s 7→ Hd(Z t
⊕s) is everywhere on Ω and forH1-a.e. r > 0

differentiable at r with the derivative given by the surface content Hd−1(∂ Z t
⊕r ). However, this

does not imply that s 7→ Hd(Z t
⊕s) is almost surely differentiable at a given fixed r > 0. For

d ≤ 3 this property has recently been established in [10] using the theory of Lipschitz manifolds.
In the next section we will prove this in any dimension, using a different method.

It is known (see [14]) that Brownian paths have almost surely Hausdorff dimension 2 and that
H2(Z t ) = 0 P-almost surely. Therefore Proposition 2.4 implies that

µi (Z t , ·) ≡ 0, t ≥ 0, i ∈ {2, . . . , d − 1} P-a.s. (3.4)

Hence

Hd(Z t
⊕r ) = dκd

∫ r

0
sd−1 f0(t, s) ds + (d − 1)κd−1

∫ r

0
sd−2 f1(t, s) ds, r ≥ 0, (3.5)

holds outside a measurable set of P-measure zero.
The next lemma provides an important continuity property of the reach function. In contrast

to all further arguments it is of a purely geometric nature. Only continuity of Brownian paths is
being used.
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Lemma 3.2. Let t, r > 0 and assume that Wt 6∈ ∂+Z t . Then

lim
s→t−

1{(x, u) ∈ N (Z t ) : δ(Z s, x, u) = r} = 1{(x, u) ∈ N (Z t ) : δ(Z t , x, u) = r}.

Proof. Let Z t−
:= {Ws : 0 ≤ s < t}. Then

1{(x, u) ∈ N (Z t ) : δ(Z s, x, u) = r}

= 1{(x, u) ∈ N (Z t ) : δ(Z s, x, u) = r, B0(x + ru, r) ∩ Z t
= ∅}

+ 1{(x, u) ∈ N (Z t ) : δ(Z s, x, u) = r, B0(x + ru, r) ∩ Z t−
6= ∅}, (3.6)

where we have used the fact that the continuity of Brownian paths implies the equivalence of
B0(x +ru, r)∩ Z t

= ∅ with B0(x +ru, r)∩ Z t−
= ∅. The second term on the above right-hand

side is less than

1{(x, u) ∈ N (Z t ) : B0(x + ru, r) ∩ Z s
= ∅, B0(x + ru, r) ∩ Z t−

6= ∅}

and hence converges to 0 as s → t−. The first term on the right-hand side of (3.6) equals

h(s, x, u) := 1{(x, u) ∈ N (Z t ) : x ∈ Z s, δ(Z t , x, u) = r, (B(x + ru, r)\{x}) ∩ Z s
6= ∅}.

Obviously

lim
s→t−

h(s, x, u)

= 1{(x, u) ∈ N (Z t ) : x ∈ Z t−, δ(Z t , x, u) = r, (B(x + ru, r)\{x}) ∩ Z t−
6= ∅}.

From now on we assume that Wt 6∈ ∂+Z t and prove next that

{(x, u) ∈ N (Z t ) : x ∈ Z t−, δ(Z t , x, u) = r, (B(x + ru, r)\{x}) ∩ Z t−
6= ∅}

= {(x, u) ∈ N (Z t ) : δ(Z t , x, u) = r}. (3.7)

Let (x, u) be a member of the right-hand side of (3.7). In particular x ∈ ∂+Z t so that x 6= Wt .
Hence x ∈ Z t− and it remains to show that

(B(x + ru, r)\{x}) ∩ Z t−
6= ∅.

Assuming on the contrary that this is not the case we get from δ(Z t , x, u) = r that

Wt ∈ B(x + ru, r)\{x}.

Since on the other hand (B0(x +ru, r)\{x})∩Z t
= ∅ we obtain that Wt ∈ ∂+Z t , a contradiction.

This concludes the proof of the lemma. �

The next result is due to the fact that Brownian motion is an isotropic diffusion.

Lemma 3.3. For any t > 0 we have that P(0 ∈ ∂+Z t ) = P(Wt ∈ ∂+Z t ) = 0.

Proof. For any v ∈ Sd−1 we consider the open spherical cone

Cv := {x ∈ Rd
: 〈x, v〉 > |x |/2}.

We then find a finite set V ⊂ Sd−1 such that⋃
v∈V

Cv = Rd
\{0}
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and

min{|u − v| : v ∈ V } ≤ 1/4, u ∈ Sd−1. (3.8)

Due to the spherical symmetry of Brownian motion and Blumenthal’s 0–1-law (see
Corollary 19.18 in [8]) we have

inf{s > 0 : Ws ∈ Cv ∩ B(0, k−1)} = 0, v ∈ V, k ∈ N, (3.9)

on a set A ∈ A with P(A) = 1. Now we argue on A and assume that 0 ∈ ∂+Z t . Then there are
u ∈ Sd−1 and ε > 0 (both depending on ω ∈ A) such that

B0(εu, ε) ∩ Z t
= ∅. (3.10)

By (3.9) we find some v ∈ V such that |u − v| ≤ 1/4. Choosing k ∈ N such 1/k < ε/2, we will
prove that

Cv ∩ B0(0, k−1) ⊂ B0(εu, ε). (3.11)

Because this contradicts (3.9) and (3.10) we obtain A ∩ {0 ∈ ∂+Z t
} = ∅ and hence P(0 ∈

∂+Z t ) = 0.
To show (3.11) we take x ∈ Cv ∩ B0(0, k−1) and obtain

|x − εu|
2
− ε2

= |x |
2
− 2ε〈x, u〉

= |x |
2
− 2ε〈x, v〉 + 2ε〈x, v − u〉

≤ |x |
2
− ε|x | + 2ε|x ||v − u|

= |x |(|x | − ε + 2ε|v − u|)

≤ |x |(1/k − ε/2) < 0.

To prove that also P(Wt ∈ ∂+Z t ) = 0 we consider the process

W̃s := Wt−s − Wt , 0 ≤ s ≤ t,

which is a Brownian motion on [0, t]. Hence P(0 ∈ ∂+ Z̃) = 0, where

Z̃ := {W̃s : 0 ≤ s ≤ t} = Z t
− Wt .

Since ∂+ Z̃ = ∂+Z t
− Wt , the desired result follows. �

Lemma 3.4. For any a, t > 0, we have that Zat d
=

√
aZ t .

Proof. The result follows easily from Lemma 3.1 and Brownian scaling:

(Ws)
d
= (

√
aWs/a). �

The lemma implies that

Hd(Z t
⊕r )

d
= td/2Hd(Z1

⊕r/
√

t
), t, r > 0. (3.12)

We will need the following integrability properties.

Proposition 3.5. For any t > 0

E
[∫

(δ(Z t , x, u)d−i
∧ rd−i ) |µi |(Z t

; d(x, u))

]
< ∞, i = 0, . . . , d − 1. (3.13)
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In particular, we have for any t, ε > 0,

E
[∫

1{δ(Z t , x, u) ≥ ε} |µi |(Z t
; d(x, u))

]
< ∞, i = 0, . . . , d − 1. (3.14)

Proof. We will prove that

E[Hd(Z t
⊕r )] < ∞, (3.15)

so that Theorem 6.5 in [7] implies the assertion (3.13). We proceed as in [10] and define
ξ := max{|Ws | : 0 ≤ s ≤ t}. Since Z t

⊕r ⊂ B(0, ξ + r) it is enough to prove that ξ has
a finite dth moment. But it is well known that ξ has finite moments of all orders. Indeed, ξ

is bounded by the sum of d independent random variables each of which has distribution of
B∗

t := max{Bs : 0 ≤ s ≤ t}, where (Bs) is a Brownian motion in R. It is a basic property of

Brownian motion (see e.g. Proposition 13.13 in [8]) that B∗
t

d
= |Bt |. �

4. Mean curvature functions

Proposition 3.5 implies that the functions

Fi (t, s) := E
[∫

1{δ(Z t , x, u) > s} µi (Z t
; d(x, u))

]
,

Gi (t, s) := E
[∫

1{δ(Z t , x, u) > s} |µi |(Z t
; d(x, u))

] (4.1)

are well defined and real valued for i ∈ {0, 1} and all t, s > 0. We call F0 and F1 the mean
curvature functions of Brownian motion. Because of (2.5) these functions satisfy (1.1).

We will now show that these functions are continuous in both variables. Moreover, they are
actually functions of just one variable, where we may either choose time or minimal local reach.

Proposition 4.1. The functions F0, F1, G0 and G1 are continuous on (0, ∞)×(0, ∞) and satisfy

Fi (s
2t, s) = si Fi (t, 1), Gi (s

2t, s) = si Gi (t, 1), s, t > 0, i ∈ {0, 1}. (4.2)

Proof. We fix i ∈ {0, 1}. From (2.6) and Lemma 3.4 we obtain that

Gi (at, bs) = ai/2Gi (t, a−1/2bs), a, b, s, t > 0, (4.3)

and a similar equation for Fi . Choosing a = s2 and b = 1 gives (4.2). Choosing a = t−1 and
b = t−1/2 gives the first equality in

Gi (t, s) = t i/2Gi (1, t−1/2s) = si Gi (ts
−2, 1), s, t > 0, (4.4)

while the second follows from (4.3) upon taking a = s−2 and b = s−1. Clearly Gi (t, ·) is
decreasing and right-continuous for any t > 0 and we have from (4.4) that

Gi (t, s−) = t i/2Gi (1, (t−1/2s)−), s, t > 0. (4.5)

We now prove that Gi is continuous. By (4.4) we have to show that Gi (1, ·) is left-continuous.
Let us fix some t > 0. Since the set of discontinuities of the function Gi (1, ·) is at most countable,
we find a sequence tn ↑ t such that

0 = t i/2
n Gi (1, t−1/2

n −) − t i/2
n Gi (1, t−1/2

n ) = Gi (tn, 1−) − Gi (tn, 1), n ∈ N,
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where we have used (4.5) (with s = 1) to get the second equation. Hence

lim sup
n→∞

(Gi (tn, 1−) − Gi (tn, 1)) = 0.

On the other hand we will show below that

lim sup
n→∞

(Gi (tn, 1−) − Gi (tn, 1)) ≥ Gi (t, 1−) − Gi (t, 1). (4.6)

It follows that the function t 7→ Gi (t, 1−) − Gi (t, 1) vanishes everywhere on (0, ∞). By (4.5)
(for s = 1) this means that

Gi (1, t−1/2
−) − Gi (1, t−1/2) = t−i/2(Gi (t, 1−) − Gi (t, 1)) = 0, t > 0.

Hence Gi (1, ·) is left-continuous.
From (4.2) we have

Fi (t, 1) = t i/2 Fi (1, t−1/2), Fi (1, t) = t i Fi (t
−2, 1), t > 0. (4.7)

As above we conclude that continuity of Fi is a consequence of left-continuity of Fi (1, ·). The
latter follows from

0 ≤ |Fi (1, t−) − Fi (1, t)| ≤ Gi (1, t−) − Gi (1, t) = 0, t > 0.

It remains to prove (4.6). We will use Lemma 3.2 with r = 1. Taking s ∈ (0, t) and recalling
that {(x, u) ∈ Rd

× Sd−1
: δ(Z s, x, u) = 1} ⊂ N (Z s) we first note that for all ε ∈ (0, 1):∫

1{δ(Z s, x, u) = 1} |µi |(Z s
; d(x, u))

≥

∫
1{δ(Z t , x, u) ≥ ε, δ(Z s, x, u) = 1} |µi |(Z s

; d(x, u))

=

∫
1{δ(Z t , x, u) ≥ ε, δ(Z s, x, u) = 1} |µi |(Z t

; d(x, u)), (4.8)

where the equality is due to Proposition 2.1. Together with bounded convergence, Lemmas 3.2
and 3.3 imply that the expression (4.8) converges, as s → t−, almost surely towards∫

1{δ(Z t , x, u) ≥ ε, δ(Z t , x, u) = 1} |µi |(Z t
; d(x, u))

=

∫
1{δ(Z t , x, u) = 1} |µi |(Z t

; d(x, u)).

In view of (3.14) we can use bounded convergence (now with respect to P) to obtain that

lim sup
n→∞

(Gi (t
n, 1−) − Gi (t

n, 1)) = lim sup
n→∞

E
[∫

1{δ(Z tn , x, u) = 1} |µi |(Z tn ; d(x, u))

]
≥ E

[∫
1{δ(Z t , x, u) = 1} |µi |(Z t

; d(x, u))

]
.

Assertion (4.6) follows. �

Remark 4.2. Let i ∈ {0, 1} and t > 0. The function Fi (t, ·) is not only continuous but also of
locally bounded variation. Indeed, using the Hahn decomposition of µi (Z t

; ·) we have

Fi (t, ·) = F+

i (t, ·) − F−

i (t, ·),
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where

F+

i (t, s) := E
[∫

1{δ(Z t , x, u) > s} µ+

i (Z t
; d(x, u))

]
, s > 0,

and F−

i (t, ·) is defined similarly. The functions F+

i (t, ·) and F−

i (t, ·) are continuous and
decreasing.

Theorem 4.3. Let t > 0 and r > 0. Then the function s 7→ Hd(Z t
⊕s) is almost surely

differentiable at r . Outside a P-null set the derivative is given by

d
ds
Hd(Z t

⊕s)

∣∣∣∣
s=r

= dκdrd−1 f0(t, r) + (d − 1)κd−1rd−2 f1(t, r), (4.9)

(with fi (t, r) given by (3.2)) and equalsHd−1(∂+Z t
⊕r ).

Proof. It follows from (3.1) (see also Corollary 4.5 in [7]) that s 7→ Hd(Z t
⊕s) is differentiable

at r if ∫
1{δ(Z t , x, u) = r} |µi |(Z t

; d(x, u)) = 0, i = 0, . . . , d − 1. (4.10)

In this case the derivative is given by

d
ds
Hd(Z t

⊕s)

∣∣∣∣
s=r

=

d−1∑
i=0

(d − i)κd−ir
d−i−1 fi (t, r).

By Corollary 4.6 in [7] the right-hand side of this equation is just Hd−1(∂+Z t
⊕r ). Since

Proposition 4.1 and (3.4) imply that Eq. (4.10) holds almost surely, we obtain the assertion from
(3.4). �

Remark 4.4. For d ≤ 3 it has been shown in [10] that outside a P-null set the derivative of
s 7→ Hd(Z t

⊕s) at some (arbitrary) fixed r > 0 is given byHd−1(∂ Z t
⊕r ). This means that

Hd−1(∂+Z t
⊕r ) = Hd−1(∂ Z t

⊕r )

holds P-almost surely.

For brevity we now define

V (t, r) := E[Hd(Z t
⊕r )], t, r > 0. (4.11)

The partial derivatives of V are denoted by V(1)(t, r) and V(2)(t, r), whenever they exist.

Theorem 4.5. Let t > 0. Then the function V (t, ·) is continuously differentiable on (0, ∞). The
derivative is given by

V(2)(t, r) = dκdrd−1 F0(t, r) + (d − 1)κd−1rd−2 F1(t, r), (4.12)

where the mean curvature functions F0 and F1 are defined by (4.1). Moreover,

V(2)(t, r) = E[Hd−1(∂+Z t
⊕r )], r > 0, (4.13)

V(2)(t, r) = E[Hd−1(Z t
⊕r )] H1-a.e. r > 0. (4.14)
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Proof. Taking into account (3.4) we take the expectations on both sides of (3.1). By
Proposition 3.5 we are allowed to use Fubini’s theorem to get

E[Hd(Z t
⊕r )] =

1∑
i=0

(d − i)κd−i

∫ r

0
sd−i−1 Fi (t, s) ds. (4.15)

Eq. (4.12) follows from Proposition 4.1 and the fundamental theorem of calculus. Integrating
(3.3) and using (3.4) gives∫ r

0
E[Hd−1(Z t

⊕s)] ds =

1∑
i=0

(d − i)κd−i

∫ r

0
sd−i−1 Fi (t, s) ds, r > 0,

and hence assertion (4.14). Eq. (4.13) follows from the last part of Theorem 4.3. �

Remark 4.6. On the basis of different methods, relationship (4.14) has been proved in [10]. For
d ≤ 3 equation Eq. (4.14) even holds for all r > 0 (see Remark 4.4).

Corollary 4.7. The function V is continuously differentiable on (0, ∞)× (0, ∞) and the partial
derivatives satisfy the equation

V(1)(t, r) +
1
2t

V(2)(t, r) = td/2V (r, t). (4.16)

Proof. Eq. (3.12) implies that

V (t, r) = td/2V (1, r t−1/2), t, r > 0.

The assertion can now easily be derived from Theorem 4.5. �

It has been pointed out in [10] that Corollary 4.7 is actually an old result. Indeed, a formula
in [1] says that

V (t, r) = κdrd
+

d(d − 2)

2
κd trd−2

+
4dκdrd

π2

∫
∞

0

1 − exp(−y2t/2r2)

y3(J 2
ν (y) + Y 2

ν (y))
dy, (4.17)

where Jν and Yν are Bessel functions of the first and second kind, respectively, of order
ν := (d − 2)/d (see [15]). As noticed in [10] this formula can be differentiated with respect
to r to give

V(2)(t, r) = dκdrd−1
+

κdd(d − 2)2

2
trd−3

+
4d2κd

π2 rd−1
∫

∞

0

1 − exp(−y2t/2r2)

y3(J 2
ν (y) + Y 2

ν (y))
dy

−
4dκd

π2 trd−3
∫

∞

0

exp(−y2t/2r2)

y(J 2
ν (y) + Y 2

ν (y))
dy. (4.18)

By (4.13) the right-hand side of (4.18) gives the expected content of ∂+Z t
⊕r (cf. also Remark 4.4

and (4.14)).
Our next result yields an explicit formula for a linear combination of the mean curvature

functions. It does not seem to be possible to extract from (4.18) further information on the mean
curvature functions.
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Theorem 4.8. We have

dκd F0(t, 1) + (d − 1)κd−1 F1(t, 1) = dκd +
κdd(d − 2)2

2
t

+
4d2κd

π2

∫
∞

0

1 − exp(−y2t/2)

y3(J 2
ν (y) + Y 2

ν (y))
dy −

4dκd

π2 t
∫

∞

0

exp(−y2t/2)

y(J 2
ν (y) + Y 2

ν (y))
dy. (4.19)

Proof. From (4.12) and the scaling relation (4.2) we obtain that

V(2)(tr
2, r) = rd−1(dκd F0(t, 1) + (d − 1)κd−1 F1(t, 1)). (4.20)

Using (4.18) to express the above left-hand side gives the result. �

Remark 4.9. From (3.12) we have

V (tr2, t) = rd V (t, 1), t, r > 0, (4.21)

while (4.20) implies that

V(2)(tr
2, t) = rd−1V (t, 1), t, r > 0, (4.22)

in accordance with (4.13) and Brownian scaling.

5. The three-dimensional case

In this section we assume that d = 3. Then the last integral in (4.17) can be simplified to yield

V (t, r) = 2πr t + 4
√

2πr2√t +
4
3
πr3. (5.1)

This is a classical result of Spitzer [12]. To state the main result of this section we introduce the
constant

c1 := E
[∫

1{δ(Z1, x, u) = ∞}µ1(Z1
; d(x, u))

]
. (5.2)

Proposition 2.2 implies that c1 ≥ 0.

Theorem 5.1. The limit

c0 := lim
r→∞

rE
[∫

1{r < δ(Z1, x, u) < ∞} µ0(Z1
; d(x, u))

]
(5.3)

exists, is non-negative, and satisfies the linear equation

2c0 + c1 =
8

√
2π

, (5.4)

where c1 is given by (5.2). Furthermore

c0 = lim
s→0

s−1/2E
[∫

1{1 < δ(Z s, x, u) < ∞} µ0(Z s
; d(x, u))

]
. (5.5)
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Proof. By (4.12),

V(2)(t, r) = 4πr2 F0(t, r) + 2πr F1(t, r). (5.6)

For i ∈ {0, 1} we write

F<∞

i (t, r) := E
[∫

1{r < δ(Z t , x, u) < ∞} µi (Z t
; d(x, u))

]
,

F∞

i (t) := E
[∫

1{δ(Z t , x, u) = ∞}µi (Z t
; d(x, u))

]
.

By Proposition 2.3, F∞

0 (t) = 1. Hence we obtain that

V(2)(t, r) = 4πr2
+ 4πr2 F∞

0 (t) + 2πr F<∞

1 (t, r) + 2πr F∞

1 (t). (5.7)

Lemma 3.4 and Eq. (2.6) imply that

F∞

1 (t) =
√

tE
[∫

1{δ(Z1, x, u) = ∞}µ1(Z1
; d(x, u))

]
= c1

√
t .

Inserting this and (5.1) into (5.7) we obtain that

2π t + 8
√

2πr
√

t = 4πr2 F<∞

0 (t, r) + 2πr F<∞

1 (t, r) + 2πc1
√

tr. (5.8)

From (3.14) and monotone convergence we have

lim
r→∞

E
[∫

1{r < δ(Z t , x, u) < ∞} |µ1|(Z t
; d(x, u))

]
= 0.

Dividing both sides of (5.8) by r and letting r → ∞ yields the existence of the limit

c0(t) := lim
r→∞

r F<∞

0 (t, r)

as well as the equation

8
√

2π
√

t = 4πc0(t) + 2πc1
√

t . (5.9)

The function F<∞

0 has the same scaling properties as F0 and G0, i.e. (see (4.2) and (4.4))

F<∞

0 (s2t, s) = F<∞

0 (t, 1) = F<∞

0 (1, t−1/2), t, s > 0. (5.10)

We obtain that

c0(t) = lim
r→∞

r F<∞

0 (1, r t−1/2) =
√

t lim
r→∞

F<∞

0 (1, r) = c0(1)
√

t = c0
√

t .

Substituting in (5.9) gives (5.4). The inequality c1 ≥ 0 comes from Fatou’s Lemma. Eq. (5.5) is
a consequence of (5.10). �

Remark 5.2. Let t > 0. Recalling
∫

1{δ(Z t , x, u) = ∞}µ0(Z t
; d(x, u)) = 1 and using the

scaling properties of F0, we can write Theorem 5.1 as

lim
r→∞

r(F0(t, r) − 1) =
√

t lim
r→∞

r(F0(t, r) − 1) =
√

t

(
4

√
2π

−
c1

2

)
or

F0(t, r) = 1 +

√
t

r

(
4

√
2π

−
c1

2

)
+ o

(
1
r

)
as r → ∞.
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Remark 5.3. In view of Corollary 2.5 in [7] and the intrinsic symmetry properties of Brownian
motion it is tempting to guess that

E
[∫

1{r < δ(Z t , x, u) < ∞} µ1(Z t
; d(x, u))

]
= 0, r > 0. (5.11)

Then (5.8) would imply

2π t + 8
√

2πr
√

t = 4πr2 F<∞

0 (t, r) + 2πc1
√

tr, (5.12)

i.e.

F0(t, r) = 1 +

√
t

r

(
4

√
2π

−
c1

2

)
+

t

2r2 . (5.13)

This is a polynomial in
√

t/r .

Acknowledgements

The author would like to thank Evgueni Spodarev for a helpful discussion on formula (4.17)
and the referee for a very careful reading of the paper.

References

[1] A.M. Berezhkovskii, Yu.A. Makhnovskii, R.A. Suris, Wiener sausage volume moments, J. Stat. Phys. 57 (1989)
333–346.

[2] A. Colesanti, D. Hug, Hessian measures of semi-convex functions and applications to support measures of convex
bodies, Manuscripta Math. 101 (2) (2000) 209–238.

[3] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.
[4] S. Ferry, When ε-boundaries are manifolds, Fund. Math. 90 (1976) 199–210.
[5] J.F. Le Gall, Sur la saucisse de Wiener et les points multiples du mouvement Brownien, Ann. Probab. 14 (4) (1986)

1219–1244.
[6] M. Heveling, D. Hug, G. Last, Does polynomial parallel volume imply convexity? Math. Ann. 328 (2004) 469–479.
[7] D. Hug, G. Last, W. Weil, A local Steiner–type formula for general closed sets and applications, Math. Z. 246

(2004) 237–272.
[8] O. Kallenberg, Foundations of Modern Probability, second edn, Springer, New York, 2002.
[9] G. Matheron, Random Sets and Integral Geometry, Wiley, New York, 1975.

[10] J. Rataj, V. Schmidt, E. Spodarev, On the expected surface area of the Wiener sausage, 2005 (submitted for
publication), http://www.mathematik.uni-ulm.de/stochastik/.

[11] R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press, 1993.
[12] F. Spitzer, Electrostatic capacity, heat flow, and Brownian motion, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete

3 (1964) 110–121.
[13] A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer, Berlin, 1998.
[14] S.J. Taylor, The Hausdorff α-dimensional measure of Brownian paths in n-space, Proc. Cambridge Philos. Soc. 53

(1953) 31–39.
[15] A.I. Zayed, Handbook of Function and Generalized Function Transformations, CRC Press, Boca Raton, 1996.

http://www.mathematik.uni-ulm.de/stochastik/

	On mean curvature functions of Brownian paths
	Introduction
	Support measures
	Preliminaries on Brownian paths
	Mean curvature functions
	The three-dimensional case
	Acknowledgements
	References


