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Abstract

Max-stable processes arise in the limit of component-wise maxima of independent processes, under
appropriate centering and normalization. In this paper, we establish necessary and sufficient conditions
for the ergodicity and mixing of stationary max-stable processes. We do so in terms of their spectral
representations by using extremal integrals.

The large classes of moving maxima and mixed moving maxima processes are shown to be mixing.
Other examples of ergodic doubly stochastic processes and non-ergodic processes are also given. The
ergodicity conditions involve a certain measure of dependence. We relate this measure of dependence to
the one of Weintraub [K.S.Weintraub, Sample and ergodic properties of some min-stable processes, Ann.
Probab. 19 (2) (1991) 706–723] and show that Weintraub’s notion of ‘0-mixing’ is equivalent to mixing.
Consistent estimators for the dependence function of an ergodic max-stable process are introduced and
illustrated over simulated data.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Extreme value distributions arise in the limit of the maxima of independent and identically
distributed random variables or vectors, under appropriate normalization. They have thus
important applications in many diverse areas such as insurance, finance, telecommunications,
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the environment, and flood and natural disaster modeling (see e.g. [12]). The class of extreme
value distributions coincides with the class of max-stable laws. Recall that a random vector X in
Rn has a max-stable distribution if, for all a, b ∈ Rn , a, b ≥ 0, there exist c ≥ 0, c, d ∈ Rn ,
such that

aX ′
∨ bX ′′ d

= cX + d,

where X ′ and X ′′ are independent copies of X and the inequalities, multiplications, the max ‘∨’,
and the addition operations are taken coordinate-wise. When all finite-dimensional distributions
of a process X = {X t }t∈R are max-stable, it is said to be max-stable. These max-stable processes
are as important in extreme value theory as the Gaussian (or α-stable) processes are in the
classical ‘linear’ theory.

Max-stable processes have been studied extensively in the past 30 years and many of their
properties are well understood. For example, the structure of their finite-dimensional distributions
is well known. Insightful Poisson point process or spectral representations are available. Path,
large deviations, zero–one laws and many other properties have been established. This was done
in the seminal works of Balkema and Resnick [1], de Haan [7,8], de Haan and Pickands [10],
Giné, Hahn and Vatan [14], Resnick and Roy [20], and many others. More details and further
references can be found in the monographs of Resnick [18,19], and de Haan and Ferreira [9].

Despite this large body of knowledge on max-stable processes, surprisingly little is known
about their ergodicity and mixing properties. To the best of our knowledge, only Weintraub
[26] has addressed these questions. He introduced a certain measure of dependence and studied
several ‘mixing conditions’ based on this measure. Although natural, these conditions were not
explicitly related either to the ergodic or to the mixing properties of the process. Our goal in
this paper is to fill this gap. Here, by following a different approach, we obtain simple necessary
and sufficient conditions for ergodicity and mixing. These conditions are in terms of the spectral
representation of the process.

For convenience, we focus on max-stable processes with α-Fréchet distributions and use
extremal integrals rather than de Haan’s spectral representations to represent them. We start by
introducing some notation. Recall that a random variable Z has an α-Fréchet distribution, α > 0,
if

P{Z ≤ x} = exp{−σαx−α
}, x ∈ (0, ∞),

where σ > 0 is the scale coefficient of Z . We will frequently use the notation

‖Z‖α := σ

for the scale coefficient of Z . Observe that ‖Z‖α 6≡ (EZα)1/α
= ∞. The following definition

extends the notion of a Fréchet distribution to the multivariate setting.

Definition 1.1. A process X = {X t }t∈R is said to be α-Fréchet, α > 0, if for all t j ∈ R and
a j > 0, j = 1, . . . , n, the random variable,

Z := max{a j X t j , 1 ≤ j ≤ n} ≡

∨
1≤ j≤n

a j X t j

has an α-Fréchet distribution. Namely, all max-linear combinations of the X t ’s are α-Fréchet
variables.

All α-Fréchet processes are max-stable. Conversely, as shown in [7], any max-stable process
with α-Fréchet marginal distributions is an α-Fréchet process. Thus, for any (strictly) stationary
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max-stable process X = {X t }t∈R and α > 0, the process X̃ t := hα(X t ), t ∈ R, is α-Fréchet,
with a suitable strictly monotone function hα . Since monotone transformations of the marginals
do not affect the ergodicity and mixing properties of the process, it is enough to study the class
of α-Fréchet processes, for some (any) α > 0.

We focus on the class of stationary α-Fréchet processes X = {X t }t∈R with the extremal
integral representation:

X t =

∫e
E

ft (u)Mα(du), t ∈ R, with ft := Ut ( f0), (1.1)

where Mα is an α-Fréchet random sup-measure with control measure µ and where ft ∈

Lα
+(µ) := {g ≥ 0 : ‖g‖

α
Lα(µ) =

∫
E gαdµ < ∞} are the deterministic ‘spectral functions’ of

the process X . The extremal integral in (1.1) may be viewed as a maximum of the infinitesimal
α-Fréchet noise Mα(du), weighted by the deterministic kernels ft (u). See Section 2.1 below, for
more details.

The operators Ut : Lα
+(µ) → Lα

+(µ), t ∈ R in (1.1) form a group of max-linear isometries
on the space Lα

+(µ); that is, they preserve the max-linear combinations of functions and their
Lα-norms (Definition 2.3, below). The max-isometry and group properties of {Ut } ensure the
stationarity of the process X in (1.1). For example, when E = R and Mα has the Lebesgue
control measure µ(du) = du, with Ut ( f )(u) := f0(t + u), the process X in (1.1) becomes the
(stationary) moving maxima process:

X t =

∫e
R

f0(t + u)Mα(du), t ∈ R, (1.2)

where
∫
R f α

0 (u)du < ∞. More generally, when E = R × F , µ(du, dv) = duν(dv), for some
measure dν on F , with ft (u, v) := Ut ( f0)(u, v) = f0(t + u, v), one obtains the mixed moving
maxima:

X t =

∫e
R×F

f0(t + u, v)Mα(du, dv), t ∈ R. (1.3)

By choosing various spaces E and groups of max-linear isometries {Ut }, one can handle a wide
variety of stationary Fréchet processes.

Max-linear isometries have been studied before in the seminal work of de Haan and
Pickands [10]. These authors explicitly introduced a class of max-linear isometries called pistons.
Their results imply that any strictly stationary and continuous in probability Fréchet process X
has the representation (1.1) with E = [0, 1], where {Ut } is a group of pistons. In Section 2.2, we
complete the picture of max-linear isometries by showing that all max-linear isometries have the
structure of the pistons of de Haan and Pickands (Proposition 2.4). This follows from a surprising
result that any max-linear isometry is also linear (Proposition 2.3). Thus the ‘piston structure’
of max-linear isometries is closely related, and in fact, follows from the Banach–Lamperti
representation of the linear isometries in L p-spaces, for p 6= 2.

In Section 3, we focus on the ergodicity and mixing properties of the process X in (1.1). We
first establish the measurability of X . It turns out that X in (1.1) has a measurable modification
if and only if it is continuous in probability. This parallels the result for α-stable processes
of Theorem 0 in [5]. In Section 3.2, we establish necessary and sufficient conditions for the
ergodicity and mixing of the process X . This is done in terms of a dependence measure
involving explicitly the kernel functions ft = Ut ( f0). Our methods rely on the extremal
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integral representation in (1.1), which resembles closely the corresponding stochastic integral
representations of α-stable (sum-stable) processes (see e.g. [22]). Cambanis, Hardin and Weron
[5] provide a thorough treatment of ergodicity and mixing for α-stable (sum-stable) processes.
Guided by their ideas, we obtain a complete characterization of ergodicity and mixing in the
max-stable setting (see Theorems 3.2–3.4 below). Our results are similar in spirit to ones in the
α-stable setting, but the proofs involve different tools.

Several examples of ergodic and non-ergodic processes are given in Section 4.1. The
ergodicity and mixing conditions given in Section 3.2 are easy to verify for large classes of
processes. The moving maxima or more generally the mixed moving maxima processes in (1.2)
and (1.3), for example, are always mixing. We discuss an example of a ‘doubly stochastic’
stationary Fréchet process, introduced by Brown and Resnick [4], and show that it is mixing.
In fact, we introduce a more general class of doubly stochastic Fréchet processes driven by Lévy
processes and show that they are mixing. An interesting open question is whether or not these
processes belong to the class of mixed moving maxima.

The dependence function of a stationary Fréchet process X (see (4.14) below) reflects the
structure of its distribution and may be viewed as the counterpart of the auto-covariance function
for Gaussian processes, for example. Thus, the estimation of the dependence function is an
important statistical problem. In Section 4.2, we propose estimators for this function for an
ergodic Fréchet process and show their strong consistency. We also illustrate their performance
with simulated data.

We conclude by comparing our results to the work of Weintraub [26]. We show that ‘0-mixing’
in the sense of Weintraub is equivalent to mixing. This is done by relating two measures of
dependence.

The paper is organized as follows. In Section 2, we briefly review extremal integral
representations and establish structural results on max-linear isometries, which are used in the
rest of the paper. Section 3 contains the main results of the paper on necessary and sufficient
conditions for ergodicity and mixing of max-stable processes. Simpler conditions for mixing are
given in Section 3.3 in terms of a natural measure of dependence. Examples and applications
are presented in Section 4. Weintraub’s results are discussed in Section 5. Appendix A contains
some proofs and auxiliary results.

2. Preliminaries

2.1. Extremal integral representations

We review here the representations of max-stable processes used in the rest of the paper. More
details and proofs can be found in [8,10] and also [23].

Definition 2.1. Let (E, E, µ) be a measure space with σ -finite, positive measure µ. A set-
indexed random process Mα = {Mα(A)}A∈E is said to be an independently scattered α-Fréchet
sup-measure with control measure µ, if:

(i) (independently scattered) For any collection of disjoint sets A j ∈ E, 1 ≤ j ≤ n, n ∈ N,
with µ(A j ) < ∞, the random variables Mα(A j ), 1 ≤ j ≤ n are independent.

(ii) (α-Fréchet) For any A ∈ E, µ(A) < ∞, we have

P{Mα(A) ≤ x} = exp{−µ(A)x−α
}, x > 0, (2.1)

that is, Mα(A) is α-Fréchet with scale coefficient ‖Mα(A)‖α = µ(A)1/α .
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(iii) (σ -sup-additive) For any collection of disjoint sets A j ∈ E, j ∈ N, such that µ(∪ j A j ) <

∞, we have that

Mα

⋃
j∈N

A j

 =

∨
j∈N

Mα(A j ) := sup
j∈N

Mα(A j ), almost surely.

By convention, we set Mα(A) = ∞, if µ(A) = ∞.

Random α-Fréchet sup-measures with control measure µ can be constructed on a sufficiently
rich probability space (Ω ,F, P) with the help of Kolmogorov’s extension theorem (Proposition
2.1 in [23]). Vervaat [24] introduced and studied random sup-measures in a general setting (see
also [17,20]). The additional structure of α-Féchet sup-measures allows one to study in more
detail extremal integrals. Specifically, let f (x) :=

∑n
j=1 a j 1A j (x), a j ≥ 0 be a non-negative

simple function, where A j ∈ E, j = 1, . . . , n are disjoint. The extremal integral of f with
respect to the α-Fréchet sup-measure Mα is defined as:∫e

E
f dMα ≡

∫e
E

f (x)Mα(dx) :=

∨
1≤ j≤n

a j Mα(A j ).

Since the independent Mα(A j )’s are α-Fréchet, so is the resulting extremal integral Z =∫e
E f dMα . One has, moreover, that

‖Z‖α =

∥∥∥∥∫e
E

f dMα

∥∥∥∥
α

=

(∫
E

f (x)αµ(dx)

)1/α

= ‖ f ‖Lα(µ), (2.2)

that is, the scale coefficient of the extremal integral equals the Lα-norm of the deterministic
integrand. By using this property, one can extend the definition of the extremal integral for an
arbitrary f ∈ Lα

+(µ) := { f ≥ 0,
∫

E f (x)αµ(dx) < ∞}.
Unlike the usual integrals, the extremal integrals are not linear but max-linear. In other words,

for any f, g ∈ Lα
+(µ), and a, b ≥ 0, we have∫e

E
(a f ∨ bg)dMα = a

∫e
E

f dMα ∨ b
∫e

E
gdMα, almost surely. (2.3)

Let now ft (x) ∈ Lα
+(µ(dx)), t ∈ R be an arbitrary collection of deterministic functions.

Consider the stochastic process X = {X t }t∈R, where

X t :=

∫e
E

ft dMα, t ∈ R. (2.4)

The max-linearity of the extremal integral implies that X is an α-Fréchet process. Conversely,
Proposition 3.2 in [23] implies that any α-Fréchet process X , which is separable in probability
has the representation in (2.4). This is so, in particular, if X is continuous in probability (see also
Theorem 3 in [8]). Since in the sequel we will only work with stochastically continuous, strictly
stationary α-Fréchet processes, we can always assume that X is expressed in terms of extremal
integrals as in (2.4).

Observe that by applying (2.2) and (2.3), we obtain

P{X t j ≤ x j , 1 ≤ j ≤ n} = exp
{
−

∫
E

(
∨1≤ j≤n x−1

j ft j (u)
)α

µ(du)

}
, (2.5)
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for any t j ∈ R, x j > 0, j = 1, . . . , n. That is, one can explicitly handle the finite-
dimensional distributions of X in terms of its extremal integral representation. When (E, E, µ) ≡

([0, 1],B, du), the representation (2.5) is commonly known as the spectral representation of X
and the functions ft (x) are called spectral functions (see, e.g. Proposition 5.11′ in [18]).

Two extremal integrals ξ :=
∫e

E f dMα and η :=
∫e

E gdMα are “close” if so are the integrands
f and g. In fact, the convergence in probability of max-stable integrals is equivalent to the
convergence of their integrands in a suitable metric on Lα

+(µ). To best describe this isometry
relation, we need the notions of Fréchet spaces and max-linear isometries.

Definition 2.2. A non-empty setM of random variables is said to be an α-Fréchet space, α > 0,
if:

(i) it is closed with respect to taking max-linear combinations (with non-negative scalars)
(ii) its elements are α-Fréchet.
An α-Fréchet space is said to be closed if it contains its limits in probability.

Any α-Fréchet spaceM can be equipped with the metric

ρα,M(ξ, η) := 2‖ξ ∨ η‖
α
α − ‖ξ‖

α
α − ‖η‖

α
α,

which metrizes the convergence in probability. In fact, any closed α-Fréchet space M is a
complete metric space with respect to the metric ρα,M, and we have moreover the following

Proposition 2.1. (i) The set M of all extremal integrals of functions f ∈ Lα
+(µ) is a closed

α-Fréchet space.(ii) For any ξ :=
∫e

E f dMα and η :=
∫e

E gdMα , f, g ∈ Lα
+(µ),

ρα,M(ξ, η) =

∫
E

| f (u)α − g(u)α|µ(du) =: ρα,µ( f, g). (2.6)

(iii) (Lα
+(µ), ρα,µ) is a complete metric space.

The proof of this result follows from Proposition 2.6 and Theorem 2.1 in [23]. Observe that
Proposition 2.1 implies that the extremal integral operator I ( f ) :=

∫e
E f dMα, f ∈ Lα

+(µ) is an
isometry between the complete metric spaces (Lα

+(µ), ρα,µ) and (M, ρα,M). In particular, for a
sequence ξn = I ( fn), fn ∈ Lα

+(µ), n ∈ N,

ξn
P

−→ ξ, n → ∞, if and only if
∫

E
| fn(u)α − f (u)α|µ(du), n → ∞,

where ξ = I ( f ).

2.2. Max-linear isometries

An α-Fréchet process X can have many equivalent extremal integral representations (2.4),
defined over the same or different measure spaces. The notion of max-linear isometry can be
used to relate two such representations.

Definition 2.3. Let α > 0 and consider the spaces Lα
+(µ) and Lα

+(ν), defined over two measure
spaces (E, E, µ) and (F,F, ν), respectively, where µ and ν are positive and σ -finite measures.
The map G : Lα

+(µ) → Lα
+(ν), is said to be a max-linear isometry, if:

(i) For any f, g ∈ Lα
+(µ) and a, b ≥ 0, G(a f ∨ bg) = aG( f ) ∨ bG(g), ν-a.e.

(ii) For any f ∈ Lα
+(µ), ‖G( f )‖Lα

+(ν) = ‖ f ‖Lα
+(µ).

The max-linear isometry G is called a max-linear isomorphism if it is onto. It is an
automorphism, if in addition, the two measure spaces coincide.
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Observe that the max-linear isometries preserve the metrics, that is, ρα,ν(G( f ), G(g)) =

ρα,µ( f, g), ∀ f, g ∈ Lα
+(µ). Indeed, this follows from Definition 2.3 and the fact that ∀ f, g ∈

Lα
+(µ),

ρα,µ( f, g) =

∫
E

| f α
− gα

|dµ = 2
∫

E
( f α

∨ gα)dµ −

∫
E

f αdµ −

∫
E

gαdµ.

The next result illustrates the role of max-linear isometries in relating two representations.

Proposition 2.2. Let X = {X t }t∈R be an α-Fréchet process with extremal integral representation
(2.4). Consider another measure space (F,F, ν) with positive σ -finite measure, and let G :

(Lα
+(µ), ρα,µ) → (Lα

+(ν), ρα,ν) be a max-linear isometry.
Then, the process X̃ = {X̃ t }t∈R,

X̃ t :=

∫e
F

G( ft )dM̃α

has the same finite-dimensional distributions as X. Here M̃α is an independently scattered
α-Fréchet random sup-measure with control measure ν.

The result follows by applying the definition of max-linear isometry to Relation (2.5).
The following surprising result shows that the class of max-linear isometries coincides with

the class of linear isometries between two metric spaces (Lα
+(µ), ρα,µ) and (Lα

+(ν), ρα,ν), for
any α > 0.

Proposition 2.3. The map G : (Lα
+(µ), ρα,µ) → (Lα

+(ν), ρα,ν) is a max-linear isometry of
metric spaces, if and only if, it is a linear isometry of metric spaces. Note that Lα

+(µ) and Lα
+(ν)

contain only non-negative functions.
Any such max-linear isometry G extends uniquely to a linear isometry between the spaces

(Lα(µ), ρ̃α,µ) and (Lα(ν), ρ̃α,ν), equipped with the metric ρ̃α,µ( f, g) := ρα,µ( f+, g+) +

ρα,µ( f−, g−), for all f, g ∈ Lα(µ) = { f : E → R,
∫

E | f (u)|αµ(du) < ∞}, where
f± := max{± f, 0}.

In addition, one has the representation:

ρ̃α,µ( f, g) =

∫
E

| f 〈α〉(u) − g〈α〉(u)|µ(du), (2.7)

where f 〈α〉(u) = sign( f (u))| f (u)|α .

The proof is given in Appendix A.

Examples of max-linear isometries

1. Let T : (E, E, µ) → (F,F, ν) be a measure preserving transformation; then the map
GT ( f ) := f ◦ T −1, f ∈ Lα

+(µ) is a max-linear isometry.
2. De Haan and Pickands [10] introduced a rich class of max-linear automorphisms for the

Lebesgue space L1
+([0, 1], du) called pistons. The map G : L1

+([0, 1], du) → L1
+([0, 1], du)

is said to be a piston, if:
(i)
∫ 1

0 G( f )(u)du =
∫ 1

0 f (u)du, for all f (u) ∈ L1
+([0, 1], du) and

(ii) G( f ) = r(u) f (H(u)), for some measurable functions r and H , such that r(u) > 0 and
H : [0, 1] → [0, 1] is a bijection.
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When the spaces Lα
+(µ) and Lα

+(ν) coincide with L1
+([0, 1], du), the transformation GT in the

previous example yields the special case of permutation pistons.
As stated in [10] (after Definition 2.2 therein), by Lamperti’s Theorem (Ch. 15.5, Theorem

16 in [21]), the pistons are precisely the linear automorphisms on L1
+([0, 1], du). The following

Proposition 2.4 proves this statement and also shows that the piston structure of the max-linear
automorphisms is valid over a general space Lα

+(µ), α > 0.
Consider a measure space (E, E, µ) with a σ -finite measure µ. Following Lamperti [16], we

say that a set–mapping T : E → E , defined modulo sets of µ-measure zero, is a regular set
isomorphism if:

(i) T (E \ A) = T (E) \ T (A), for all A ∈ E ;
(ii) T (∪∞

n=1 An) = ∪
∞

n=1 T (An), for disjoint An’s in E ;
(iii) µ(T (A)) = µ(A), for all A ∈ E .

The map T induces a canonical linear transformation T : Lα(µ) → Lα(µ), defined as
T (1A) := 1T (A), for all indicator functions. We shall denote the image of f ∈ Lα(µ) with
respect to this transformation as T ( f ).

Proposition 2.4. Let G : (Lα
+(µ), ρα) → (Lα

+(µ), ρα), be a max-linear isometry, for some
α > 0 over the measure space (E, E, µ) with σ -finite measure µ. Then, there exist a regular set
isomorphism T : E → E and a measurable, non-negative function h : E → R+, such that

G( f )(u) = h(u)T ( f )(u), ∀ f ∈ Lα
+(µ). (2.8)

The function h is unique (mod µ), the map T is unique on the set {u ∈ E : h(u) > 0} and

h =

(
dµ ◦ T −1

dµ

)1/α

. (2.9)

Conversely, any G as in (2.8) where (2.9) holds is a max-linear isometry.

Proof. Consider the bijection Iα : Lα
+(µ) → L1

+(µ), where Iα( f ) := f α . Then, the map
G̃ := Iα ◦ G ◦ I −1

α is a max-linear isometry of L1
+(µ) into itself if and only if G is a max-linear

isometry of Lα
+(µ) into itself.

By Proposition 2.3, G̃ extends uniquely to a linear isometry of L1(µ) into itself, equipped
with the metric

ρ̃α( f, g) =

∫
E

| f 〈1〉
− g〈1〉

|dµ =

∫
E

| f − g|dµ.

Thus, in this case the metric ρ̃α( f, g) coincides with the usual norm ‖ f − g‖L1(µ). Hence, by
Theorem 3.1 of [16], we obtain

G̃( f̃ ) = h̃ · T ( f̃ ), ∀ f̃ ∈ L1(µ),

where h̃ is unique (mod µ) and T is a regular set isomorphism, which is (mod µ) unique on
{u ∈ E : h̃(u) 6= 0}. One also has that h̃ is the Radon–Nikodym derivative dν/dµ of the
measure ν := µ ◦ T −1, defined on the range of T , with respect to µ. Observe that h̃ ≥ 0 (mod
µ) since the linear extension of G̃ maps non-negative elements of L1(µ) into non-negative ones.

Let now f̃ = Iα( f ) = f α , for any f ∈ Lα
+(µ), and note that

Iα ◦ G( f ) = G̃( f̃ ) = h̃ · T ( f α).
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Since T ( f α) = T ( f )α , this implies (2.8) and (2.9) with h := h̃1/α , and hence completes the
proof of the proposition. �

Remarks.

1. The equivalence between the max-linear and linear isometries established in Proposition 2.3
relies on the fact that we consider only sets of non-negative functions. This is why images of
functions with disjoint supports have disjoint supports. This last property is also essential in
Lamperti’s characterization of the isometries of L p(µ) spaces, for 1 ≤ p < ∞, p 6= 2.

2. De Haan and Pickands [10] developed an elegant theory of proper spectral representations
for stationary min-stable processes. This theory applies to the max-stable α-Fréchet processes
and carries a strong resemblance to the theory of minimal representations for α-(sum-)stable
processes of Hardin [15]. The structural results in Propositions 2.3 and 2.4 indicate that the
theory of proper spectral representations extends to max-stable processes defined as extremal
integrals over general measure spaces.

3. Ergodic properties of max-stable processes

Here, following Cambanis, Hardin and Weron [5], we establish necessary and sufficient
conditions for the ergodicity of strictly stationary α-Fréchet processes. We do so in Section 3.2
below. We address first the measurability of these processes.

3.1. Measurability of stationary α-Fréchet processes

Fix α > 0 and let Mα be a random α-Fréchet sup-measure, defined on the measure
space (E, E, µ) (see Definition 2.1). Let f ∈ Lα

+(µ) be arbitrary, and consider the process
X = {X t }t∈R

X t :=

∫e
E

Ut ( f )dMα, t ∈ R, (3.1)

where Ut : Lα
+(µ) → Lα

+(µ), is a group of max-linear automorphisms, indexed by t ∈ R:
Ut+s ≡ Ut ◦ Us , s, t ∈ R and U0( f ) := id( f ) ≡ f, f ∈ Lα

+(µ).
By using Relation (2.5) and the max-isometry property of the Ut ’s, one can show that X is a

(strictly) stationary α-Fréchet process (see also Proposition 2.2). By choosing various measure
spaces and groups of max-linear automorphisms, one can construct rich classes of stationary
α-Fréchet processes (see e.g. Section 4.1 below).

To be able to discuss the ergodicity of X , the process should admit a measurable modification.
The following result shows that any measurable X as in (3.1) is necessarily continuous in
probability (see also Theorem 0 in [5]).

Theorem 3.1. The stationary α-Fréchet process X = {X t }t∈R in (3.1) has a measurable
modification if and only if it is continuous in probability.

Proof. If X is continuous in probability, then it has a measurable modification (see e.g. Ch. III,
Theorem 1 in [13]). Conversely, if X has a measurable modification, then so does the process
Xα

= {Xα
t }t∈R. It is thus enough to show that Xα is continuous in probability. Observe that {Xα

t }

is now a 1-Fréchet process with the representation {
∫e

E Ut ( f )(u)α M1(du)}, where M1(du) is a
1-Fréchet sup-measure with control measure µ. Thus, without loss of generality, we will suppose
that α = 1.
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The max-linear isometries {Ut } extend uniquely to a group of linear isometries on the metric
space (L1, ρ̃α) (Proposition 2.3). Since α = 1, however, ρ̃α(g1, g2) =

∫
E |g1−g2|dµ is the usual

L1-norm ‖g1 − g2‖L1(µ). Equip the normed space L1(µ), ‖ · ‖L1(µ) with the Borel σ -algebra.
By Theorem 3 in [6], and in view of Proposition 2.1, the measurability of t 7→ Xα

t implies that
the map t 7→ Ut (g) is Borel measurable for each g ∈ FU . Therefore, the maps t 7→ Ut (g) are
Borel measurable for all g ∈ FU := span{FU }L1(µ). This, however, implies the strong continuity
of the group of linear operators {Ut } on FU (see, e.g. page 616 in [11]). That is, for all t0 ∈ R,
and g ∈ FU , we have ‖Ut (g) − Ut0(g)‖L1(µ) → 0, as t → t0. Hence, in particular

ρ1,M(X t , X t0) = ρ1(Ut ( f ), Ut0( f )) = ‖Ut ( f ) − Ut0( f )‖L1(µ) → 0, as t → t0.

Since ρ1,M metrizes the convergence in probability (Proposition 2.1), this implies the continuity
in probability of X and completes the proof. �

Theorem 6.1 first presented in the seminal work de Haan and Pickands [10] implies (for
the case of maxima) that any continuous in probability stationary α-Fréchet process has the
representation in (3.1). Moreover, the space (E, E, µ) can be chosen to be the Lebesgue space
([0, 1],B, du), where the max–automorphisms Ut ’s were called pistons (see also Proposition 3.1
in [23]). In summary, we have the following

Corollary 3.1. Any continuous in probability stationary α-Fréchet process X = {X t }t∈R has the
representation (3.1), for some measure space (E, E, µ).

3.2. Necessary and sufficient conditions for ergodicity and mixing

Recall that a stationary process X is ergodic if and only if, for any bounded h : RR → R,
measurable with respect to the product Borel σ -algebra,

ξT (h) :=
1
T

∫ T

0
h ◦ Sτ (X)dτ

a.s.
−→ Eh(X), as T → ∞. (3.2)

Here Sτ : RR → RR denotes the shift operator, Sτ (x) = (xt+τ )t∈R, where x = (xt )t∈R ∈ RR.
The measurability of X implies that h ◦ Sτ (X) is measurable and one can consider the integrals
in (3.2).

Let X be as in (3.1) and let

FU ( f ) := ∨−span{Ut ( f ), t ∈ R}

denote the minimal closed subset of (Lα
+(µ), ρα,µ), which contains all max-linear combinations

∨1≤ j≤n a jUt j ( f ), a j ≥ 0, t j ∈ R, j = 1, . . . , n.
To gain information about the process X , it is natural to focus on the set of functions FU . This

is because the Fréchet space generated by the random variables X t , t ∈ R is precisely the set
of extremal integrals

∫e
E gdMα , for all g ∈ FU ( f ). The next result provides conditions for the

ergodicity of X in terms of FU ( f ).

Theorem 3.2. Let X be a measurable α-Fréchet process, defined by (3.1). The process X is
ergodic, if and only if, for some (any) p > 0,

1
T

∫ T

0
‖Uτ g ∧ g‖

p
Lα(µ)dτ −→ 0, (3.3)

as T → ∞, for all g ∈ FU ( f ), where a ∧ b = min{a, b}.
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Proof. The convergence (3.2) holds for all bounded Borel measurable h if and only if it holds
for all h(x) := I (a1 < xt1 ≤ b1, . . . , an < xtn ≤ bn), ai , bi , ti ∈ R, 1 ≤ i ≤ n. In our case, it is
enough to show that (3.3) is equivalent to (3.2) for all functions of the type

h(x) := I (xt1 ≤ a1, . . . , xtn ≤ an), ai > 0, 1 ≤ i ≤ n. (3.4)

This is because the X t ’s are positive and since the indicators of cylinder sets can be represented
as finite linear combinations of functions as in (3.4).

Consider an arbitrary h as in (3.4). The Birkhoff theorem implies that ξT (h) converges almost
surely and in L1, as T → ∞, to an integrable random variable ξinv, invariant with respect
to shifts. Observe that, since h is bounded, so is ξT (h), uniformly in T , and therefore since
EξT (h) = Eh(X), Relation (3.2) holds if and only if,

EξT (h)2/(EξT (h))2
−→ 1, as T → ∞. (3.5)

Thus, to complete the proof, it is enough to show that (3.3) and (3.5) are equivalent for all h as
in (3.4). The Fubini’s theorem implies that EξT (h)2 equals

E
(

1
T

∫ T

0
h ◦ Sτ (X)dτ

)2

= E
(

1
T

∫ T

0
I (Xτ+t1 ≤ a1, . . . , Xτ+tn ≤ an)dτ

)2

=
1

T 2

∫ T

0

∫ T

0
P{Xτ ′+ti ≤ ai , Xτ ′′+ti ≤ ai , ∀i, 1 ≤ i ≤ n}dτ ′dτ ′′. (3.6)

In view of (2.5) and (3.1), the last probability equals

exp
{
−

∫
E

(
Uτ ′ g ∨ Uτ ′ ′ g

)α dµ

}
= exp

{
−

∫
E

(
Uτ ′−τ ′ ′ g ∨ g

)α dµ

}
, (3.7)

where g(u) :=
∨

1≤i≤n a−1
i Uti f (u) and where in the last relation, we used the fact that {Uτ }τ∈R

is a group of max-linear isometries.
Similarly, since

∫
E gαdµ =

∫
E (Uτ g)αdµ, ∀τ ∈ R (by the max-linear isometry property), we

have

EξT (h) =
1
T

∫ T

0
exp

{
−

∫
E
(Uτ g)αdµ

}
dτ = exp

{
−

∫
E

gαdµ

}
. (3.8)

By combining Relations (3.6)–(3.8), we obtain

EξT (h)2

(EξT (h))2 =
1

T 2

∫ T

0

∫ T

0
exp

{
−

∫
E

(
Uτ ′−τ ′ ′ g ∨ g

)α dµ +

∫
E

(
Uτ ′−τ ′ ′ g

)α dµ

+

∫
E

gαdµ

}
dτ ′dτ ′′. (3.9)

Note that −a ∨ b + a + b = a ∧ b, ∀a, b ≥ 0, and thus the argument of the last exponent equals

R(τ ′
− τ ′′) :=

∫
E
(Uτ ′−τ ′ ′ g ∧ g)αdµ =

∫
E
(Uτ ′ g ∧ Uτ ′ ′ g)αdµ. (3.10)

Observe that the function (τ ′, τ ′′) 7→ R(τ ′
− τ ′′) in (3.10) is non-negative definite. Indeed,

for µ-almost all u ∈ E and all τ j ∈ R, θ j ∈ C, j = 1, . . . , m, we have∑
1≤i, j≤m

θiθ j (Uτi g(u))α ∧ (Uτ j g(u))α = E

( ∑
1≤i, j≤m

θiθ j Zi Z j

)
= E|

m∑
i=1

θi Zi |
2

≥ 0,
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with Zi := B(Uτ j g(u)α), where B = {B(s)}s≥0 is the standard Brownian motion. This implies
that (τ ′, τ ′′) 7→ R(τ ′

− τ ′′) =
∫

E Uτ ′ g(u)α ∧ Uτ ′′ g(u)αµ(du) is non-negative definite.
Since X is measurable, it is also continuous in probability and τ 7→ Uτ g is continuous in

(Lα
+(µ), ρα,µ) (Theorem 3.1, Section 2.1). Hence, R(·) is a continuous function, bounded by

R(0) =
∫

E gαdµ, and as shown above, non-negative definite. Thus, by Bochner’s representation
theorem

R(τ ′
− τ ′′) ≡

∫
E
(Uτ ′−τ ′ ′ g ∧ g)αdµ =

∫
∞

−∞

ei(τ ′
−τ ′ ′)uν(du), ∀τ ′, τ ′′

∈ R, (3.11)

for some symmetric, positive and finite measure ν.
Now, note that(∫

∞

−∞

ei(τ ′
−τ ′′)uν(du)

)n

=

∫
∞

−∞

ei(τ ′
−τ ′′)uν∗n(du), n ∈ N,

where ν∗n(du) = ν(du)∗ · · · ∗ν(du) denotes the n-th convolution power of the measure ν. Thus,
for the exponent in (3.9), we obtain

EξT (h)2

(EξT (h))2 =
1

T 2

∫ T

0

∫ T

0
exp{R(τ ′

− τ ′′)}dτ ′dτ ′′

= 1 +

∞∑
n=1

1

n! T 2

∫ T

0

∫ T

0

∫
∞

−∞

ei(τ ′
−τ ′′)uν∗n(du)dτ ′dτ ′′. (3.12)

Since the measures ν∗n(du) are finite and symmetric, and since ei(τ ′
−τ ′′)u is bounded, by using

the Fubini’s theorem, we get ∀n ∈ N,

1

T 2

∫ T

0

∫ T

0

∫
∞

−∞

ei(τ ′
−τ ′′)uν∗n(du)dτ ′dτ ′′

=

∫
∞

−∞

sin2(T u/2)

(T u/2)2 ν∗n(du) −→ ν∗n
{0}, as T → ∞.

This convergence and the fact that the convergent series
∑

∞

n=1 ν∗n(R)/n! dominates the series
on the right-hand side of (3.12) (uniformly in T ) imply that

EξT (h)2

(EξT (h))2 −→ 1 +

∞∑
n=1

1
n!

ν∗n
{0}, as T → ∞.

Therefore, Relation (3.5) holds, if and only if ν∗n
{0} = 0, ∀n ∈ N. Since ν is finite and

symmetric, by the Fubini’s theorem, we also have that

1
T

∫ T

0
R(τ )ndτ =

∫
∞

−∞

sin(T u)

T u
ν∗n(du) −→ ν∗n

{0}, as T → ∞. (3.13)

Since R(τ ) =
∫

E (Uτ g ∧ g)αdµ = ‖Uτ g ∧ g‖
α
Lα(µ), is a bounded and non-negative function, in

view of Lemma A.2 (i) below, and (3.13), Relation (3.3) is equivalent to ν∗n
{0} = 0, ∀n ∈ N.

This completes the proof of the theorem. �

The next result provides a necessary and sufficient condition for mixing. Recall that a strictly
stationary and measurable process X = {X t }t∈R is mixing if and only if,

P(A ∩ Bτ ) −→ P(A)P(B), as τ → ∞, (3.14)
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for all A ∈ F− := σ {X t , t ≤ 0}, and B ∈ F+ := σ {X t , t ≥ 0}, where Bτ denotes the ‘time-
shifted’ version of B.

Theorem 3.3. Let X be a measurable α-Fréchet process, defined by (3.1). The process X is
mixing if and only if

‖Uτ h ∧ g‖Lα(µ) −→ 0, as τ → 0, (3.15)

for all g ∈ F−

U := ∨−span{Ut ( f ), t ≤ 0} and h ∈ F+

U := ∨−span{Ut ( f ), t ≥ 0}.

Proof. Since X t > 0, a.s. as in the proof of Theorem 3.2, it is enough to prove (3.14), for all
cylinder sets:

A = {X ti ≤ ai , i = 1, . . . , n} and B = {X ti ≤ bi , i = 1, . . . , n},

with ai , bi ∈ (0, ∞], i = 1, . . . , n, where ai = ∞ for ti > 0 and bi = ∞ for ti ≤ 0, ensures that
A ∈ F− and B ∈ F+.

We have

P(A ∩ Bτ ) = P{∨1≤i≤n a−1
i X ti ≤ 1, ∨1≤i≤n b−1

i X ti +τ ≤ 1}.

Thus, in view of (3.1), we obtain

P(A ∩ Bτ ) = exp
{
−

∫
E
(Uτ (h) ∨ g)αdµ

}
,

where

g := ∨1≤i≤n a−1
i Uti ( f ) and h := ∨1≤i≤n b−1

i Uti ( f ).

Since

P(A) = exp
{
−

∫
E

gαdµ

}
and P(B) = P(Bτ ) = exp

{
−

∫
E

Uτ (h)αdµ

}
,

we get (as in (3.9) and (3.10))

P(A ∩ Bτ )

P(A)P(B)
= exp

{
−

∫
E

Uτ (h)α ∨ gαdµ +

∫
E

Uτ (h)αdµ +

∫
E

gαdµ

}
= exp

{∫
E

Uτ (h)α ∧ gαdµ

}
.

This implies the equivalence of (3.14) and (3.15), and completes the proof of the theorem. �

Remarks.

1. Observe that as expected (3.15) implies (3.3) since mixing implies ergodicity (see e.g. [25]).
Here by mixing we understand strong mixing.

2. Theorems 3.2 and 3.3 are similar in spirit to the criteria for ergodicity and mixing in the
sum-stable case (see, Theorems 1 and 2 in [5]).

3. As in the sum-stable setting, (3.3) (and (3.15)) can be shown to hold for many classes of
processes such as moving maxima and mixed moving maxima, for example (Section 4.1).

4. Theorems 3.2 and 3.3 are stated for continuous-time processes. Corresponding discrete-time
analogs of these results are also valid. We omit them for the sake of conciseness.

In the next section, we provide further equivalent conditions for mixing that can be easier to
check.
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3.3. A measure of dependence

The conditions for ergodicity and mixing in Theorems 3.2 and 3.3 above suggest the following
measure of dependence. For two jointly α-Fréchet variables ξ and η, define

dα(ξ, η) := ‖ξ‖
α
α + ‖η‖

α
α − ‖ξ ∨ η‖

α
α.

Let ξ =
∫e

E f dMα and η =
∫e

E gdMα , with f, g ∈ Lα
+(µ), for some α-Fréchet sup-measure Mα

with control measure µ, defined on the measurable space (E, E). We then have

dα(ξ, η) =

∫
E

f αdµ +

∫
E

gαdµ −

∫
E

f α
∨ gαdµ =

∫
E

f α
∧ gαdµ. (3.16)

In this case, we will also write dα( f, g) for dα(ξ, η).
Observe that dα(c f, cg) = cαdα( f, g), ∀c > 0 and dα( f, g) ≥ 0. Moreover, dα( f, g) = 0

if and only if the functions f and g have disjoint supports (mod µ), or equivalently, if ξ =∫e
E f dMα and η =

∫e
E gdMα are independent. In this sense, the measure of dependence dα( f, g)

for α-Fréchet processes, is analogous to the covariance function for Gaussian processes.
Let now X be as in (3.1), where ft (u) := Ut ( f )(u), for some group of max-linear isometries

{Ut }t∈R, and observe that

dα(Xτ , X0) =

∫
R

f α
τ ∧ f α

0 dµ = ‖Uτ ( f ) ∧ f ‖Lα(µ). (3.17)

Thus, by Theorem 3.3, if X is mixing, then dα(Xτ , X0) → 0, as τ → 0. The converse is also
true:

Theorem 3.4. Let X be a stationary and continuous in probability α-Fréchet process. The
process X is mixing if and only if dα(Xτ , X0) → 0, as τ → 0.

Proof. In view of Corollary 3.1, we can assume that X has the representation (3.1). As argued
above, the ‘only if’ part follows from Theorem 3.3 and (3.17). We now prove the ‘if’ part.
Observe that Xα

= {Xα
t }t∈R is a 1-Fréchet process with the representation

{Xα
t }t∈R

d
=

{∫e
E

f α
t dM1

}
t∈R

,

where M1 is a 1-Fréchet random sup-measure with control measure µ (Proposition 2.9 in [23]).
We also have dα(X t , Xs) = d1(Xα

t , Xα
s ), s, t ∈ R, and the process X is mixing if and only if Xα

is mixing. Thus, without loss of generality, we will assume that α = 1.
It suffices to show that (3.15) holds. Since α = 1, the metric ρ̃α(g, h) on L1

:= L1(µ)

coincides with the usual L1-norm ‖g − h‖L1 (see Proposition 2.3, above). Let now g ∈

∨−span{Ut ( f ), t ≤ 0} and h ∈ ∨−span{Ut ( f ), t ≥ 0} be arbitrary.
For any ε > 0, there exist gε ∈ ∨−span{Ut ( f ), t ≤ 0} and hε ∈ ∨−span{Ut ( f ), t ≥ 0}

such that ‖g − gε‖L1 ≤ ε and ‖h − hε‖L1 ≤ ε. Then, since |a ∧ b − c ∧ d| ≤ |a − c| + |b − d|,
for all a, b, c, d ≥ 0,

|Uτ (h) ∧ g − Uτ (hε) ∧ gε | ≤ |Uτ (h) − Uτ (hε)| + |g − gε |.

The max-linear isometries Uτ are also linear (Proposition 2.3), and thus∣∣‖Uτ (h) ∧ g‖L1 − ‖Uτ (hε) ∧ gε‖L1

∣∣ ≤ ‖Uτ (h − hε)‖L1 + ‖g − gε‖L1 ≤ 2ε.
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Therefore, it is enough to prove (3.15) for all h = ∨1≤i≤n xi fti , and g = ∨1≤i≤n yi fti with
ti ∈ R, where xi , yi ≥ 0, i = 1, . . . , n.

Notice that, for all ai , bi ≥ 0, i = 1, . . . , n, we have

(∨1≤i≤n ai ) ∧ (∨1≤i≤n bi ) =

∨
1≤i, j≤n

(ai ∧ b j ).

By setting ai := xiUτ ( fti ) and bi := yi fti , we get that ‖Uτ (h) ∧ g‖L1 equals∫
R

Uτ (h) ∧ g dµ ≤ C
∨

1≤i, j≤n

∫
R

Uτ ( fti ) ∧ ft j dµ = C
∨

1≤i, j≤n

d1(Xτ+ti −t j , X0), (3.18)

where C := ∨1≤i≤n(xi ∨ yi ). Thus, since C , n and the ti ’s are fixed, Relation (3.18) implies that
‖Uτ (h) ∧ g‖L1 → 0 as τ → 0, which completes the proof of the theorem. �

Remarks.
1. Theorem 3.4 above provides a convenient way of proving mixing by using only the

dependence function dα(t − s) = dα(X t , Xs). This is analogous to the classical result for
Gaussian processes where mixing is equivalent to the convergence of the auto-covariance
function to zero.

2. The continuity in probability assumption in Theorem 3.4 is used only in the continuous-time
setting to ensure that X has a measurable version (Theorem 3.1). The result of Theorem 3.4
is also valid in the discrete-time setting, where continuity is irrelevant.

3. Theorem 3.4 applies to any continuous in probability stationary α-Fréchet process. Since

dα(X t , Xs) = ‖X t‖
α
α + ‖Xs‖

α
α − ‖X t ∨ Xs‖

α
α

one can calculate the dependence function dα(t − s) = dα(X t , Xs) without knowing the
functions Ut ( f ) or the isometries Ut explicitly. This feature is important in applications (see,
e.g. the doubly stationary process of Brown and Resnick in Section 4 below).

4. Applications

Here, we first give several important examples of ergodic, mixing and non-ergodic Fréchet
processes and then, we discuss the estimation of the dependence function dα .

4.1. Examples: Mixed moving maxima, doubly stochastic processes and random fields

• Moving maxima and mixed moving maxima
Theorem 3.4 implies that the moving maxima and more generally, the mixed moving-maxima

processes are mixing. Namely, let

X t :=

∫e
R×E

f (t − u, v)Mα(du, dv), t ∈ R, (4.1)

where Mα(du, dv) is an α-Fréchet sup-measure with control measure du × ν(dv). X = {X t }t∈R
is a strictly stationary α-Fréchet process called mixed moving maxima (see p. 256 in [23]). By
the Lebesgue’s theorem,

ρα,M(X t , X0) =

∫
R

| f (t + u, v)α − f (u, v)α|duν(dv)

tends to zero as t → 0. Hence X is continuous in probability (Proposition 2.1) and it has a
measurable modification.
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Proposition 4.1. The mixed moving maxima process X in (4.1) is mixing (and hence ergodic).

Proof. By Theorem 3.4, it is enough to prove that dα(Xτ , X0) → 0, τ → 0. Observe that, by
the Monotone Convergence Theorem,∫

R×E
f α
n (u, v)duν(dv) :=

∫
R×E

1{|u|≥n} f α(u, v)duν(dv) → 0,

as n → ∞. Thus, by writing f α(u, v) = f α
n (u, v)+gα

n (u, v), where gα
n (u, v) = 1{|u|<n} f α(u, v)

and using the inequality (a + b) ∧ (c + d) ≤ (a ∧ c) + b + d, valid for all a, b, c, d ≥ 0, we
obtain

dα(X t , X0) ≤

∫
R×E

gα
n (t + u, v) ∧ gα

n (u, v) duν(dv)

+

∫
R×E

f α
n (t + u, v) duν(dv) +

∫
R×E

f α
n (u, v) duν(dv). (4.2)

The last two terms are equal, they do not depend on t , and vanish as n → ∞. Now, fix n to
be sufficiently large, and note that the first term in the right-hand side of (4.2) also vanishes, as
t → ∞ since the supports of the functions gα

n (t + ·, ·) and gα
n (·, ·), are disjoint for t > 2n. This

shows that dα(X t , X0) → 0, as t → ∞, which completes the proof of the proposition. �

• Doubly stochastic processes
Let Mα be an α-Fréchet random sup-measure on the space (E, E, µ) with control measure

µ. We now suppose that the measure µ is a probability measure, and thus (E, E, µ) becomes a
probability space. Consider the extremal integrals

X t :=

∫e
E

ft (u)Mα(du), t ∈ R, (4.3)

where ft = ft (u) ≥ 0 and Eµ f α
t :=

∫
E f α

t (u)µ(du) < ∞, t ∈ R. One can view the kernels
{ ft }t∈R as a stochastic process on the space (E, E, µ). Thus, the Fréchet process X = {X t }t∈R
can be viewed as doubly stochastic, since it involves the stochastic measure Mα and also the
‘random’ kernels ft ’s. Note, however, that from the perspective of the measure Mα , the kernels
ft are deterministic.

The value of this approach is in the fact that many non-negative stochastic processes can
be plugged-in as the kernels ft to the extremal integrals above. Therefore, insights about the
stochastic process { ft }t∈R can yield results for the corresponding Fréchet process X .

We now discuss an interesting example of a doubly stochastic process introduced by Brown
and Resnick [4]. Let α = 1 and w = {wt (u)}t≥0 be the standard Brownian motion defined on
the probability space (E, E, µ). Set

X t :=

∫e
E

ewt (u)−t/2 M1(du), t ≥ 0. (4.4)

The process X = {X t }t≥0 is a well-defined, (one-sided) strictly stationary and continuous in
probability 1-Fréchet process. Since ew(t)−t/2, t ≥ 0 is an exponential martingale, it is easy to
see that the marginal distributions of X are all the same. It is not trivial to show, however, that X
is stationary (see e.g. Proposition 4.2 below, [4], or p. 323 of [9]).

All kernels ft (u) = ewt (u)−t/2 have common supports and hence the X t ’s are dependent in t .
Perhaps contrary to intuition however, the process X is ergodic and in fact mixing. This follows
from Theorem 4.1 below, which applies to an even more general family of Fréchet processes.
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The process in (4.4) of Brown and Resnick can be obtained as a special case of doubly
stochastic Fréchet processes driven by a general infinitely divisible Lévy process with a finite
Laplace transform. Indeed, let Λ = {Λt }t≥0 be a continuous in probability process with stationary
and independent increments, i.e. a Lévy process, defined on the probability space (E, E, µ).
Suppose that the Laplace transform Eµe−αΛt < ∞ is finite for some α > 0. Thus, by the
independence and the stationarity of the increments, we have

Eµe−ξΛt = e−tφ(ξ) < ∞, for all ξ ∈ [0, α], (4.5)

where φ(ξ) is the Laplace exponent of the random variable Λ1. Notice that by the stationarity of
increments, we have Λ0 = 0, almost surely.

As in the the above example of Brown and Resnick, we let

ft := e−Λt +tφ(α)/α, t ≥ 0, (4.6)

so that Eµ f α
t < ∞. The independence and the stationarity of the increments of Λ, readily imply

that f α
t , t ∈ R is a martingale with respect to the natural filtration Ft := σ {Λs, 0 ≤ s ≤ t}.

Furthermore, for the doubly stochastic process X with kernels ft , we have the following result:

Proposition 4.2. Let Λ = {Λt }t≥0 be the Lévy process in (4.5) and let ft , t ≥ 0 be as in (4.6).
Then the α-Fréchet process X = {X t }t≥0 in (4.3) is one-sided strictly stationary and continuous
in probability.

Proof. Since Eµ f α
t < ∞, the process X is well-defined. To prove stationarity, let ti ≥ 0 and

xi > 0, i = 1, . . . , n be arbitrary. For any h > 0, we then have

P{X ti +h ≤ xi , i = 1, . . . , n} = P

{
n∨

i=1

x−1
i X ti +h ≤ 1

}

= exp

{
−

∫
E

( ∨
1≤i≤n

x−α
i f α

ti +h

)
dµ

}
.

Thus to establish the stationarity of X , it is enough to show that the integral∫
E (∨1≤i≤n x−α

i f α
ti +h)dµ does not depend on h > 0. We have that ∨i x−α

i f α
ti +h equals∨

i

x−α
i e−αΛti +h+(ti +h)φ(α)

= e−αΛh+hφ(α)
·

∨
i

x−α
i e−α(Λti +h−Λh)+ti φ(α). (4.7)

Since {Λt , t ≥ 0} is a Lévy process, the vector {Λti +h − Λh}
n
i=1 is independent from Λh and

equals {Λti }
n
i=1 in distribution. Thus, by taking expectation Eµ in Relation (4.7), we obtain:∫

E

∨
1≤i≤n

x−α
i f α

ti +hdµ = Eµ

(
e−αΛh+hφ(α)

)
Eµ

(∨
i

ai e
−α(Λti +h−Λh)+ti φ(α)

)

=

∫
E

∨
1≤i≤n

x−α
i f α

ti dµ.

This completes the proof of the stationarity of {X t , t ≥ 0}.
We now show that X is continuous in probability. By stationarity, it is enough to prove that

X t →
P X0, as t ↓ 0. Observe that, for all t ≥ 0,

ρα,M(X t , X0) = 2‖X t ∨ X0‖
α
α − ‖X t‖

α
α − ‖X0‖

α
α =

∫
E

| f α
t − f α

0 |dµ.
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The last integral equals

Eµ|e−αΛt +tφ(α)
− 1| =: Eµ|pt − p0|,

where pt ≥ 0 and p0 := 1 ≥ 0 can be viewed as probability densities with respect to the measure
µ, since Eµ pt = Eµe−αΛt +tφ(α)

= 1.
Now let tn ↓ 0, n → ∞. Since Λtn →

P 0, n → ∞, there exists a sub–sequence nk →

∞, k → ∞, such that Λtnk
→ 0, (µ-)almost everywhere, as k → ∞. Thus, ptnk

→ 1 = p0, (µ-)
almost everywhere, as k → ∞ and by Sheffé’s lemma (see e.g. Appendix II in [3]), we have

Eµ|e−αΛtnk
+tnk φ(α)

− 1| = Eµ|ptnk
− p0| −→ 0, as k → ∞.

We have thus shown that for any tn ↓ 0, n → ∞, there exists a sub–sequence nk → ∞, such
that ρα,M(X tnk

, X0) → 0, as k → ∞. This, since ρα,M metrizes the convergence in probability

(Proposition 2.1), implies that X t →
P X0, as t ↓ 0, which completes the proof of the proposition.

�

Under some minor additional conditions on the Laplace transform of Λ, one can also show
that the process X is exponentially mixing:

Theorem 4.1. Let α > 0 and Eµe−αΛt = e−tφ(α) < ∞. If for some ξ > 0, Eµe−ξΛt =

e−tφ(ξ) < ∞ and φ(ξ)/ξ > φ(α)/α, then the process X in (4.5) is mixing. In fact,

dα(Xτ , X0) = Eµ(e−αΛτ +τφ(α)
∧ 1) ≤ 2e−cτ , (4.8)

for some c > 0 and all τ > 0.

Proof. The process X is continuous in probability (Proposition 4.2) and in view of Theorem 3.4,
to prove that X is mixing, it is enough to show that (4.8) holds. Let δ > 0 and observe that for
any p, 0 < p ≤ max{1, ξ/α},

Eµ(e−αΛt +tφ(α)
∧ 1) ≤ µ{αΛt ≤ t (φ(α) + δ)} + Eµe−αΛt +tφ(α)1{αΛt >t (φ(α)+δ)}

≤ Eµe(−αΛt +t (φ(α)+δ))p
+ e−δt

= e−tφ(αp)+tp(φ(α)+δ)
+ e−δt , (4.9)

where in the last relation we used that Eµe−αpΛt = e−tφ(αp) < ∞, for all 0 < p ≤ max{1, ξ/α}.
Let now p := ξ/α, and observe that the first term on the right-hand side of (4.9) equals

e−t (φ(αp)−pφ(α)−pδ)
= e−tξ(φ(ξ)/ξ−φ(α)/α−δ/α).

Since φ(ξ)/ξ − φ(α)/α > 0 by choosing δ > 0 sufficiently small, one can make the argument
of the last exponent negative. This, in view of (4.9) implies (4.8) and completes the proof of the
theorem. �

The conditions in the last result are easy to verify for the process of Brown and Resnick.
Indeed, since Eµe−ξwt = etξ2/2 < ∞, for all t ≥ 0 and ξ ∈ R. We thus have φ(ξ)/ξ = −ξ/2,
which is a monotone decreasing function and hence the condition φ(ξ)/ξ > φ(α)/α of
Theorem 4.1 holds, for any ξ < α. Moreover, the conditions of Theorem 4.1 always hold when
the process Λt is non-negative, that is, when Λ = {Λt }t≥0 is a Lévy subordinator.

Corollary 4.1. Let Λ := {Λt , t ≥ 0} be an arbitrary Lévy subordinator. Then, for any α > 0
the one-sided stationary α-Fréchet process X in (4.5) is well-defined and exponentially mixing
in the sense of (4.8).
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Proof. Observe that Ee−ξΛt = e−tφ(ξ) < ∞ for all ξ ≥ 0, since Λt ≥ 0, almost surely. Thus, it
suffices to show that, for any α > 0, there exists ξ > 0, such that

φ(ξ)/ξ > φ(α)/α. (4.10)

The Laplace transform of the Lévy subordinator Λt , however, can be conveniently expressed
through its corresponding Lévy measure Π . By Ch. III.1, page 72 in [2], we have

φ(ξ)/ξ = d +

∫
∞

0
e−ξ tΠ (t, ∞)dt, (4.11)

where Π (t, ∞) denotes the tail of the Lévy measure Π and where d ∈ R stands for the drift of
the subordinator {Λt , t ≥ 0}. Relation (4.11) readily implies that the function φ(ξ)/ξ is strictly
monotone decreasing in ξ and hence any ξ < α satisfies (4.10). This completes the proof of the
corollary. �

• Random fields
Theorem 3.2 can be readily applied to random fields. Namely, let d ∈ N, d > 1 and define

X t = X t1,...,td =

∫
E

Ut ( f )Mα(du), t ∈ Rd , (4.12)

where Mα, α > 0 is an α-Fréchet sup-measure with control measure µ defined on the measure
space (E, E, µ) and where f ∈ Lα

+(µ). Here the Ut : Lα
+(µ) → Lα

+(µ) are max-linear
isometries, which form a group parameterized by t ∈ Rd with respect to the composition:
Ut+s ≡ Ut ◦ Us , with UE0 ≡ id.

It can be shown that the α-Fréchet field {X t }t∈Rd is strictly stationary. Its ergodicity properties
along any direction θ ∈ Rd

\ {E0} can be determined by using Theorem 3.2. It may turn out that
the field X t is ergodic along some directions and non-ergodic along others.

For example, let d = 2 and consider the random field

X t1,t2 :=

∫
R×[0,2π ]

f (t1 − u) sin2(t2 − v)Mα(du, dv), (4.13)

where f (u) ∈ Lα
+(du) and Mα(du, dv) is defined on R × [0, 2π ], with the Lebesgue control

measure du dv.
The field X t is stationary and it has the representation (4.12). It is a mixed moving maxima

process along the direction θ = (1 0)′ ∈ Rd , and hence it is mixing and in particular ergodic
(Proposition 4.1). Along the direction θ = (0 1)′, however, X t is non-ergodic. Indeed, let

Yτ := X0,τ =

∫
R×[0,2π ]

f (−u) sin2(τ − v)Mα(du, dv), τ ∈ R,

and observe that

dα(Yτ , Y0) =

∫
R

f α(u)du
∫ 2π

0
| sin(τ − v)|2α

∧ | sin(−v)|2αdv.

The periodicity of the sine function implies that the function dα(τ ) = dα(Yτ , Y0) is 2π -periodic.
It is positive and therefore its Cesaro limit T −1

∫ T
0 dα(τ )dτ cannot be zero, as T → ∞. This, in

view of Theorem 3.2, implies that {Yτ }τ∈R is non-ergodic.
It is interesting to note that the non-ergodicity of X t1,t2 in (4.13) is an unstable property. That

is, the field X is ergodic along any direction other than (0 1)′. Indeed
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Proposition 4.3. The process Yτ := Xτθ1,τθ2 , τ ∈ R is mixing (and hence ergodic), for all
θ1 6= 0, θ2 ∈ R.

Proof. For the dependence function of Y = {Yτ }τ∈R, we have

dα(τ ) = dα(Yτ , Y0) =

∫
R

∫ 2π

0
f α(τθ1 − u)| sin(τθ1 − v)|2α

∧ f α(−u)| sin(−v)|2αdudv.

Note that (a1b1) ∧ (a2b2) ≤ (a1 ∧ a2)(b1 ∨ b2), for all ai , bi ≥ 0, i = 1, 2. Thus, with
a1 := f α(τθ1 − u), a2 := f α(−u) and b1 := | sin(τθ1 − v)|2α, b2 := | sin(−v)|2α , we obtain:

dα(τ ) ≤

∫
R

f α(τθ1 − u) ∧ f α(−u)du
∫ 2π

0
| sin(τθ1 − v)|2α

∨ | sin(−v)|2αdv

≤ 2π

∫
R

f α(τθ1 + u) ∧ f α(u)du.

As in the proof of Proposition 4.1, the last integral can be shown to vanish, as τ → ∞, for all
θ1 6= 0. This, in view of Theorem 3.4, implies that Y is mixing. �

By using the extremal stochastic integrals of suitably chosen kernels, one can construct many
other interesting examples of random fields. These fields can be chosen to be ergodic or non-
ergodic in various directions, not necessarily along the standard coordinates in Rd .

4.2. On the estimation of the dependence function

Our goal here is to estimate the dependence function

dα(τ ) := dα(Xτ , X0) =

∫
E

f α
τ ∧ f α

0 dµ (4.14)

of a stationary and ergodic α-Fréchet process X as in (3.1). The dependence function dα(τ ) of the
Fréchet process X can be viewed as the counterpart of the auto-covariance function for Gaussian
processes. Therefore its estimation is of practical interest.

Observe first that for an α-Fréchet variable X , we have EX p < ∞, for all p ∈ (0, α). More
precisely,

EX p
= ‖X‖

p
α

∫
∞

0
x pde−x−α

= Γ (1 − p/α)‖X‖
p
α ,

where 0(a) =
∫

∞

0 xa−1e−x dx, a > 0 is the Gamma function.
If X is ergodic, then the moments EX p

0 and E(Xτ ∨ X0)
p can be estimated consistently by

their sample counterparts. Thus, for a given sample Xk, k = 1, . . . , n, we define

d̂α,p,n(τ ) := 2cp,α

(
1
n

n∑
k=1

X p
k

)α/p

− cp,α

(
1

n − τ

n−τ∑
k=1

X p
k+τ ∨ X p

k

)α/p

, τ ∈ N,(4.15)

where cp,α := 0(1 − p/α)−α/p. This discussion and Birkhoff’s ergodicity theorem imply the
following result.

Proposition 4.4. Let Xk, k = 1, . . . , n be a sample from a stationary ergodic α-Fréchet process.
Then, for all p ∈ (0, α) and τ ∈ N, we have

d̂α,p,n(τ )
a.s.
−→ dα(τ ), as n → ∞, (4.16)
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where d̂α,p,n(τ ) and dα(τ ) are as in (4.14) and (4.15), respectively. In addition, for all γ ∈ (0, 1),
we have

E|d̂α,p,n(τ ) − dα(τ )|γ −→ 0, as n → 0. (4.17)

Proof. Birkhoff’s ergodicity theorem implies the convergence in (4.16) (since X is ergodic). To
show (4.17), observe that for all γ ∈ (0, 1),

|d̂α,p,n(τ ) − dα(τ )|γ ≤ |d̂α,p,n(τ )|γ + |dα(τ )|γ .

Thus, if the random variables {|d̂α,p,n(τ )|γ , n ∈ N} are uniformly integrable, then so are
{|d̂α,p,n(τ ) − dα(τ )|γ , n ∈ N}. Since uniform integrability and convergence in probability are
equivalent to a convergence in mean, by Relation (4.16), it is enough to establish the uniform
integrability of {|d̂α,p,n(τ )|γ , n ∈ N}. Since |a − b|

δ
≤ |a|

δ
+ |b|

δ , for all a, b ∈ R, δ ∈ (0, 1),
by (4.15), we have

E|d̂α,p,n(τ )|δ ≤ 2δcδ
p,αE

(
1
n

n∑
k=1

X p
k

)δα/p

+ cδ
p,αE

(
1

n − τ

n−τ∑
k=1

X p
k+τ ∨ X p

k

)δα/p

=: 2δcδ
p,αEAδα/p

n + cδ
p,αEBδα/p

n . (4.18)

Let now γ < δ < 1, be such that also δ > p/α. By applying the Minkowski inequality with
q := δα/p ≥ 1 to the term An in the last relation, we obtain:

(EAq
n)1/q

=

(
E

∣∣∣∣∣1n
n∑

k=1

X p
k

∣∣∣∣∣
q)1/q

≤
1
n

n∑
k=1

(EX pq
k )1/q

= (EX δα
1 )1/q < ∞.

In the last relation, we used the stationarity of the Xk’s and the fact that EX δα
1 < ∞, ∀δ ∈ (0, 1).

Similarly, we bound above the term (EBq
n )1/q in (4.18) and obtain:

E|d̂α,p,n(τ )|δ ≤ C < ∞, uniformly in n ∈ N,

for some δ > γ and C > 0. This implies the uniform integrability of |d̂α,p,n(τ )|γ in n ∈ N and
completes the proof of the proposition. �

Remarks.
1. The convergence in (4.17) is not valid for γ ≥ 1, since the d̂α,p,n(τ )’s have infinite means.

When γ ∈ (0, 1), Relation (4.17) provides additional insight to the convergence of the
estimators d̂α,p,n(τ ).

2. The moving maxima and mixed moving maxima processes are mixing (Proposition 4.1).
Thus, by Proposition 4.4, the estimator d̂α,p,n(τ ) of the dependence function dα(τ ) is strongly
consistent, for all mixed moving maxima, and for the moving maxima in particular.

Fig. 1 illustrates the performance of the estimator d̂α,p,n(τ ) for one moving maxima time
series. Observe that the estimate d̂α,p,n(τ ) tracks relatively well the theoretical value of dα(τ ). We
chose a ‘non-standard’ randomly generated and irregular spectral function f . Our experiments
(not shown here) indicate that the estimator d̂α,p,n(τ ) continues to perform well for many other
choices of the spectral function f , and it can be successfully used in practice.

Another important problem is to recover the kernel (i.e. the spectral function) f of the moving
maxima process X t :=

∫e
R f (t − u)Mα(du) from data. This cannot be always done by using the

dependence function dα . When f is one-sided and monotone, however, the relationship between
dα and f is simple.
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Fig. 1. Top panel: Part of a moving maxima α-Fréchet (α = 1) time series of length n = 215 with spectral function
f given in the bottom right panel. Bottom left panel: The estimate d̂α,p,n(τ ) with p = 1/4 (solid line) and the true
dependence function dα(τ ) (broken line). Observe the close agreement between the estimate and the true function dα(τ )

for a wide range of lags 0 ≤ τ ≤ 20.

Proposition 4.5. Let f (u) = 0, u < 0, f (u1) ≥ f (u2), ∀0 ≤ u1 ≤ u2, and
∫
R f α(u)du < ∞.

Then, for τ > 0,

dα(τ ) =

∫
∞

τ

f (u)αdu and hence f (τ ) = −
d

dτ
dα(τ ).

Proof. The result follows from the fact that for all τ > 0, dα(τ ) equals:∫
R

f (τ − u)α ∧ f (−u)αdu =

∫ 0

−∞

f (τ − u)α ∧ f (−u)αdu

=

∫ 0

−∞

f (τ − u)αdu =

∫
∞

τ

f (v)αdv.

This is because f (τ − u)α ∧ f (−u)α = f (τ − u)α1{u≤0}, for all τ > 0, by monotonicity. �

This result suggests an estimate of monotone, one-sided f ’s based on finite differences of
d̂α,p,n(τ ). In general, however, the function f is hard to identify from the dependence function
dα . One possible approach is to use M-estimation. That is, one can choose f from a parametric
family of functions f (x) = f (x; θ) by minimizing the integrated error∫ T

0
|d̂α,p,n(τ ) − dα(τ ; θ)|pdτ,

for some p > 0, where dα(τ ; θ) =
∫
R | f (τ − u; θ) ∧ f (−u; θ)|αdu. This, however, leads to

non-regular and computationally demanding optimization problems which are beyond the scope
of this paper.
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5. On the mixing conditions of Weintraub

Weintraub [26] proposed several mixing conditions based on the de Haan’s spectral
representation of min-stable processes. They apply, by duality, to the max-stable setting.
Although these conditions are quite natural, their connection to the ergodic and mixing properties
of the processes was not shown. In this section, we fill this gap by proving in particular that
the ‘0-mixing’ stationary processes in the sense of Weintraub are necessarily mixing and hence
ergodic.

Let X = {X t }t∈R be a strictly stationary 1-Fréchet process with the de Haan spectral
representation:

X t =

∨
j∈N

ft (U j )

Y j
, t ∈ R,

where {(U j , Y j )} j∈N is a homogeneous Poisson process on R×R+ with unit intensity, and where
ft (u) ∈ L1

+(R, du), t ∈ R. Then, by Proposition 3.1 in [23], one also has

{X t }t∈R
d
=

{∫e
R

ft (u)M1(du)

}
, (5.1)

where M1(du) is 1-Fréchet sup-measure on R with the Lebesgue control measure.
Weintraub [26] (Section 3 therein) deals with the min-stable process X̃ t := 1/X t , t ∈ R,

which has Exponential marginal distributions, and proposes mixing conditions based on the
following measure of dependence:

q(X̃ t , X̃s) :=

∫
∞

−∞

(∫
∞

−∞

ft (v)

ft (u)
∨

fs(v)

fs(u)
dv

)−1

du. (5.2)

The process X̃ is deemed to be 0-mixing, if

q(X̃ t , X̃ t+s) = q(X̃0, X̃s) −→ 0, as s → ∞. (5.3)

We will also say that X is 0-mixing if its corresponding min-stable process X̃ is 0-mixing. Notice
that X̃ = {X̃ t }t∈R is ergodic/mixing if and only if X is ergodic/mixing.

The following result relates Weintraub’s measure of dependence q in (5.2) to the measure of
dependence dα in Theorem 3.4.

Proposition 5.1. Let X be as in (5.1). Then, for all t, s ∈ R, we have

1
2

d1(X t/σt , Xs/σs) ≤ q(X̃ t , X̃s) ≤ 2d1(X t/σt , Xs/σs), (5.4)

where στ = ‖Xτ‖1, τ ∈ R.

Proof. Since X is stationary, without loss of generality we suppose that ‖X t‖1 = ‖Xs‖1 =∫
R f0(u)du = 1. By using the inequality (a ∨ b)−1

≤ 2/(a + b), we obtain(∫
∞

−∞

ft (v)

ft (u)
∨

fs(v)

fs(u)
dv

)−1

≤ 2
(

1
ft (u)

∫
R

ft (v)dv +
1

fs(u)

∫
R

fs(v)dv

)−1

=
2 ft (u) fs(u)

ft (u) + fs(u)
.
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Similarly, since (a + b)−1
≤ (a ∨ b)−1, we get

ft (u) fs(u)

ft (u) + fs(u)
≤

(∫
∞

−∞

ft (v)

ft (u)
∨

fs(v)

fs(u)
dv

)−1

≤
2 ft (u) fs(u)

ft (u) + fs(u)
. (5.5)

Now, by applying the inequality

x ∧ y

2
≤

xy

x + y
≤ x ∧ y, with x := ft (u) and y := fs(u),

to (5.5) and integrating, we obtain

1
2

∫
R

ft (u) ∧ fs(u)du ≤ q(X̃ t , X̃s) ≤ 2
∫
R

ft (u) ∧ fs(u)du,

which is (5.4). �

Proposition 5.1 and Theorem 3.4 imply that the process X in (5.1) is 0-mixing (in the sense of
Weintraub) if and only if it is mixing. It provides a more complete picture of the intuition behind
the mixing conditions of Weintraub, which relate the degree of dependence of the process X to
its Poisson point process representation.

Appendix A

In the proof of Proposition 2.3 below, we use the following elementary result.

Lemma A.1. For any two functions f and g : E → R, we have

| f (x) − g(x)| = | f+(x) − g+(x)| + | f−(x) − g−(x)|, for all x ∈ E,

where f±(x) = max{± f (x), 0}.

Proof. Consider the following cases: If f (x) > 0, then f+(x) = f (x), f−(x) = 0 and

| f+(x) − g+(x)| + | f−(x) − g−(x)| = | f (x) − g+(x)| + |g−(x)|.

If g(x) < 0, then the last equals | f (x)| + |g(x)| = | f (x) − g(x)|. Otherwise, if g(x) ≥ 0, we
have | f (x) − g+(x)| + |g−(x)| = | f (x) − g(x)| since g−(x) = 0 and g(x) = g+(x). The other
cases can be treated similarly. �

Proof of Proposition 2.3. Let first G be a max-linear isometry. Define G̃, such that G̃(a1A) :=

G(a1A) = aG(1A), for any A ∈ E and a ≥ 0 and such that for any simple function
f (x) =

∑n
j=1 a j 1A j (x) ∈ Lα

+(µ) with disjoint A j ’s,

G̃( f ) :=

n∑
j=1

a j G̃(1A j ).

That is, G̃ is defined first on the set of indicator functions, and then extended by linearity.
We will now show that G̃( f ) = G( f ), for all simple functions f . Indeed, for disjoint A and

B in E , by the isometry of G, we get∫
F

|G(1A)α(u) − G(1B)α(u)|ν(du)

= 2
∫

F
G(1A)α(u) ∨ G(1B)α(u)ν(du) −

∫
F

G(1A)α(u)ν(du) −

∫
F

G(1B)α(u)ν(du)
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= 2
∫

E
1A(v) ∨ 1B(v)µ(dv) −

∫
E

1A(v)µ(dv) −

∫
E

1B(v)µ(dv)

=

∫
E

|1A(v) − 1B(v)|µ(dv) = µ(A) + µ(B).

Thus, by setting g(u) := G(1A)α(u) and h(u) = G(1B)α(u), we obtain∫
F

|g(u) − h(u)|ν(du) = µ(A) + µ(B) =

∫
F

g(u)ν(du) +

∫
F

h(u)ν(du), (A.1)

since
∫

F G(1A)α(u)ν(du) = µ(A), and
∫

F G(1B)α(u)ν(du) = µ(B). Since g(u), h(u) ≥ 0,
ν-almost everywhere, Relation (A.1) is valid if and only if g(u)h(u) = 0 ν-almost everywhere.

We have thus shown that the functions g(u) = G(1A)α(u) and h(u) = G(1B)α(u) have
disjoint supports, for any two disjoint A and B in E . Since the max-linear combinations of non-
negative functions with disjoint supports coincide with their linear combinations, we have

G̃( f ) = G( f ), ν-a.e. for all simple functions f ∈ Lα
+(µ).

Thus G is a linear operator on the set of simple functions in (Lα
+(µ), ρα,µ), which are dense in

(Lα
+(µ), ρα,µ). Now, the fact that the operation addition is continuous in the metric ρα,µ (see

Lemma 2.3 in [23]) implies that the operator G : Lα
+(µ) → Lα

+(ν) is linear. It is an isometry
since it preserves the metrics ρα,µ and ρα,ν .

Conversely, if G : Lα
+(µ) → Lα

+(ν) is a linear isometry of metric spaces, by using a similar
argument, one can show that G(1A) and G(1B) have disjoint supports ν-a.e. if µ(A ∩ B) = 0.
One can therefore construct a max-linear operator G̃ which coincides with G on the set of simple
functions in Lα

+(µ). Using the continuity of the max operation with respect to ρα,µ and the
density of the simple functions implies that G is also a max-linear isometry.

We now prove the second statement. For any f ∈ Lα(µ), define G( f ) := G( f+) − G( f−).
This implies that G(a f ) = aG( f ), for any a ∈ R and f ∈ Lα(µ). Also, for any two simple
functions f and g, it is easy to show that G( f + g) = G( f ) + G(g). The simple functions are
dense in (Lα(µ), ρ̃α,µ), and thus the continuity of the addition implies the linearity of G. The
isometry property of G with respect to ρ̃α,µ follows from the isometry property of G with respect
to ρα,µ and ρα,ν .

To show (2.7), note that the metric ρ̃α,µ on Lα(µ) is defined as:

ρ̃α,µ( f, g) :=

∫
E

| f α
+ − gα

+|dµ +

∫
E

| f α
− − gα

−|dµ.

Thus, Lemma A.1, applied to the functions f 〈α〉 and g〈α〉, implies (2.7). �

In the next result we collect some elementary facts about Cesaro convergence for bounded
positive functions, as used in Section 3.2.

Lemma A.2. Let f : [0, ∞) → [0, ∞) be a non-negative, measurable and bounded function:
supτ≥0 f (τ ) ≤ M < ∞.

(i) If for some p > 0, T −1
∫ T

0 f (τ )pdτ → 0, as T → ∞, then, for all q > 0,

T −1
∫ T

0 f (τ )qdτ → 0, as T → ∞.

(ii) If f (τ ) → 0, as τ → ∞, then T −1
∫ T

0 f (τ )pdτ → 0, as T → ∞, for some (any) p > 0.
The converse is not always true.
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Proof. (i): If q < p, the result follows from the Hölder inequality. Indeed,∫ T

0
f (τ )qdτ ≤

(∫ T

0
f (τ )pdτ

)q/p (∫ T

0
1dτ

)1−q/p

,

and hence T −1
∫ T

0 f (τ )qdτ ≤ (T −1
∫ T

0 f (τ )pdτ)q/p
→ 0, as T → ∞.

If q > p, let A := {x ≥ 0 : f (x) > 1} and observe that f (τ )q
≤ Mq f (τ )p, τ ∈ A and

f (τ )q
≤ f (τ )p, τ 6∈ A. Thus,

1
T

∫ T

0
f (τ )qdτ ≤

Mq

T

∫
[0,T ]∩A

f (τ )pdτ +
1
T

∫
[0,T ]\A

f (τ )pdτ,

which vanishes as T → ∞.
(ii): The first statement is obvious. For the second, let f (τ ) =

∑
∞

n=1 1[n,n+1/n)(τ ). Observe
that

T −1
∫ T

0
f (τ )dτ ≤ T −1

∑
1≤n≤T +1

n−1
≤ T −1 log(T + 1) → 0, T → ∞,

whereas f (τ ) 6→ 0, τ → ∞. �
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