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Abstract

The paper studies the rate of convergence of the weak Euler approximation for solutions to SDEs driven
by Lévy processes, with Hölder-continuous coefficients. It investigates the dependence of the rate on the
regularity of coefficients and driving processes. The equation considered has a nondegenerate main part
driven by a spherically symmetric stable process.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The paper studies the weak Euler approximation for solutions to SDEs driven by Lévy
processes with a nondegenerate main part. The goal is to investigate the dependence of the
convergence rate on the regularity of coefficients and driving processes.

1.1. Nondegenerate SDEs driven by Lévy processes

Let (Ω , F , P) be a complete probability space with a filtration F = {Ft }t∈[0,T ] of σ -algebras
satisfying the usual conditions and α ∈ (0, 2] be fixed. Consider the following model in Rd :

X t = X0 +

∫ t

0
a(Xs)ds +

∫ t

0
b(Xs−)dUα

s +

∫ t

0
G(Xs−)dZs, t ∈ [0, T ], (1)
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where a(x) = (ai (x))1≤i≤d , b(x) = (bi j (x))1≤i, j≤d , G(x) = (Gi j (x))1≤i≤d,1≤ j≤m, x ∈ Rd are
measurable and bounded, with a = 0 if α ∈ (0, 1) and b being nondegenerate. The main part
of the equation is driven by Uα

= {Uα
t }t∈[0,T ], a standard d-dimensional spherically symmetric

α-stable process:

Uα
t =

∫ t

0

∫
(1 − χ̄α(y))yp0(ds, dy) +

∫ t

0

∫
χ̄α(y)yq0(ds, dy), α ∈ (0, 2),

where χ̄α(y) = 1{α∈(1,2)} + 1{α=1}χ{|y|≤1} and p0(dt, dy) is a Poisson point measure on
[0, ∞) × Rd

0 (Rd
0 = Rd

\ {0}) with

E[p0(dt, dy)] =
dtdy

|y|d+α
, q0(dt, dy) = p0(dt, dy) −

dtdy

|y|d+α
.

If α = 2, Uα is the standard Wiener process in Rd . The last term is driven by Z = {Z t }t∈[0,T ],
an m-dimensional Lévy process whose characteristic function is exp {tη(ξ)} with

η(ξ) =

∫
Rm

0


ei(ξ,y)

− 1 − i(ξ, y)χ{|y|≤1}1{α∈(1,2]}


π(dy).

Hence,

Z t =

∫ t

0

∫
(1 − χα(y))yp(ds, dy) +

∫ t

0

∫
χα(y)yq(ds, dy),

where χα(y) = 1{α∈(1,2]}χ{|y|≤1}, p(dt, dy) is a Poisson point measure on [0, ∞) × Rm
0 with

E[p(dt, dy)] = π(dy)dt , and q(dt, dy) = p(dt, dy)−π(dy)dt is the centered Poisson measure.
It is assumed that∫

(|y|
α

∧ 1)π(dy) < ∞.

1.2. Motivation

The process defined in (1) is used as a mathematical model for random dynamic phenomena
in applications arising from fields such as finance and insurance, to capture continuous and
discontinuous uncertainty. For many applications, the practical computation of functionals of
the type F = E[g(XT )] and F = E

 T
0 f (Xs)ds


plays an important role. For instance in

finance, derivative prices can be expressed in terms of such functionals. However in reality, a
stochastic differential equation does not always have a closed-form solution. In such cases, in
order to evaluate F , an alternative option is to numerically approximate the Itô process X by a
discrete-time Monte Carlo simulation, an approach which has been widely applied. The simplest
and the most commonly used scheme is the weak Euler approximation.

Let the time discretization {τi , i = 0, . . . , nT } of the interval [0, T ] with maximum step
size δ ∈ (0, 1) be a partition of [0, T ] such that 0 = τ0 < τ1 < · · · < τnT = T
and maxi (τi − τi−1) ≤ δ. The Euler approximation of X is an F-adapted stochastic process
Y = {Yt }t∈[0,T ] defined by the stochastic equation

Yt = X0 +

∫ t

0
a(Yτis

)ds +

∫ t

0
b(Yτis

)dUα
s +

∫ t

0
G(Yτis

)dZs, t ∈ [0, T ], (2)
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where τis = τi if s ∈ [τi , τi+1), i = 0, . . . , nT − 1. In contrast to those in (1), the coefficients in
(2) are piecewise constants in each time interval of [τi , τi+1).

The weak Euler approximation Y is said to converge with order κ > 0 if for each bounded
smooth function g with bounded derivatives, there exists a constant C , depending only on g, such
that

|E[g(YT )] − E[g(XT )]| ≤ Cδκ ,

where δ > 0 is the maximum step size of the time discretization.
In the literature, the weak Euler approximation of stochastic differential equations with

smooth coefficients has been consistently studied. For diffusion processes (α = 2), Milstein
was one of the first to investigate the order of weak convergence and derived κ = 1 [13,14].
Talay considered a class of the second-order approximations for diffusion processes [18,19]. For
Itô processes with jump components, Mikulevičius & Platen showed the first-order convergence
in the case in which the coefficient functions possess fourth-order continuous derivatives [7].
Platen, and Kloeden & Platen studied not only Euler approximation but also higher order ap-
proximations [4,15]. Protter & Talay analyzed the weak Euler approximation for

X t = X0 +

∫ t

0
G(Xs−)dZs, t ∈ [0, T ], (3)

where Z t = (Z1
t , . . . , Zm

t ) is a Lévy process and G = (Gi j )1≤i≤d,1≤ j≤m is a measurable and
bounded function [17]. They showed the order of convergence κ = 1, provided that G and g
are smooth and the Lévy measure of Z has finite moments of sufficiently high order. Because of
this, the main theorems in [17] do not apply to (1). On the other hand, (1) with a nondegenerate
matrix b does not cover (3), which can degenerate completely.

In general, the coefficients and the test function g do not always have the smoothness proper-
ties assumed in the papers cited above. Mikulevičius & Platen proved that there still exists some
order of convergence of the weak Euler approximation for nondegenerate diffusion processes
under Hölder conditions on the coefficients and g [8]. Kubilius & Platen, and Platen & Bruti-
Liberati considered a weak Euler approximation in the case of a nondegenerate diffusion process
with a finite number of jumps in finite time intervals [6,16].

In this paper, we investigate the dependence of the rate of convergence on the Hölder regularity
of coefficients and the driving processes. For a driving process, the variation of the process can be
regarded as a part of its regularity. In this sense, the Wiener process is the worse, most “chaotic”,
among α-stable processes. Also, as pointed out in [17], the tails of Lévy processes influence the
convergence rate as well.

1.3. Examples

For β > 0, denote as Cβ(Rd) the Hölder–Zygmund space (see Section 3.1.1 for a definition).
Let us look at two examples.

Example 1 (See Corollary 4). Assume that β < α, β ∉ N, the coefficients ai , bi j
∈

Cβ(Rd), Gi j
∈ C

β
α∧1 (Rd), infx | det B(x)| > 0, and∫

Rm
|y|

απ(dy) < ∞,
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where π is the Lévy measure of the driving process Z . Then it holds that

|E[g(YT )] − E[g(XT )]| ≤ C |g|α+βδ
β
α ,E

∫ T

0
f (Yτis

)ds


− E

∫ T

0
f (Xs)ds

 ≤ C | f |βδ
β
α .

Example 2 (See Corollary 5). Consider the jump-diffusion case (α = 2)

X t = X0 +

∫ t

0
a(Xs)ds +

∫ t

0
b(Xs)dWs +

∫ t

0
G(Xs−)dZs, t ∈ [0, T ],

where W = {Wt }t∈[0,T ] is a standard Wiener process. Assume that β ∉ N, a, bi j
∈ Cβ(Rd),

infx | det b(x)| > 0, and there exists µ ∈ (0, 2] such that∫
|y|≤1

|y|
2π(dy) +

∫
|y|>1

|y|
µπ(dy) < ∞.

Let Gi j be Lipschitz if β = µ < 1 and suppose that Gi j
∈ C

β
µ∧1 (Rd) otherwise. Then it holds

that

|E[g(YT )] − E[g(XT )]| ≤ C |g|α+βδ
β∧µ

2 ,E
∫ T

0
f (Yτis

)ds


− E

∫ T

0
f (Xs)ds

 ≤ C | f |βδ
β∧µ

2 .

If µ > 2 and β > 2, the order of convergence is 1. The assumption that Gi j
∈ C

β
µ∧1 (Rd) shows

that if µ < 1, the heavy tail of π can be balanced by a higher regularity of Gi j .

As in [8], this paper employs the idea of Talay (see [18]) and uses the solution to the backward
Kolmogorov equation associated with X t , Itô’s formula, and one-step estimates (see Section 2.2
for the outline of the proof).

The paper is organized as follows. In Section 2, the main result is stated and the proof is
outlined. In Section 3, we present the essential technical results, and these are followed by the
proof of the main theorem in Section 4.

2. Notation and the main result

2.1. The main result and notation

The main result of this paper is the following statement.

Theorem 3. Suppose that β ∈ (0, 3), β ∉ N, 0 < β ≤ µ < α + β, and∫
|y|≤1

|y|
απ(dy) +

∫
|y|>1

|y|
µπ(dy) < ∞.

Assume that infx | det b(x)| > 0 and ai , bi j
∈ Cβ(Rd). Let Gi j be Lipschitz if β = µ < 1

and suppose that Gi j
∈ C

β
µ∧1 (Rd) otherwise. Then there exists a constant C such that for all
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g ∈ Cα+β(Rd), f ∈ Cβ(Rd),

|E[g(YT )] − E[g(XT )]| ≤ C |g|α+βδκ(α,β),E
∫ T

0
f (Yτis

)ds


− E

∫ T

0
f (Xs)ds

 ≤ C | f |βδκ(α,β),

where

κ(α, β) =


β

α
, β < α,

1, β > α.

Applying Theorem 3 to the case α = µ and the case of heavier tails results in Corollaries 4
and 5, respectively.

Corollary 4. Suppose that β ∈ (0, 3), β ∉ N, β < α, and∫
|y|

απ(dy) < ∞.

Assume that ai , bi j
∈ Cβ(Rd), Gi j

∈ C
β

α∧1 (Rd), and infx | det B(x)| > 0. Then there exists a
constant C such that for all g ∈ Cα+β(Rd), f ∈ Cβ(Rd),

|E[g(YT )] − E[g(XT )]| ≤ C |g|α+βδ
β
α ,E

∫ T

0
f (Yτis

)ds


− E

∫ T

0
f (Xs)ds

 ≤ C | f |βδ
β
α .

Corollary 5. Suppose that β ∈ (0, 3), β ∉ N, 0 < β ≤ µ < α, and∫
|y|≤1

|y|
απ(dy) +

∫
|y|>1

|y|
µπ(dy) < ∞.

Suppose that infx | det b(x)| > 0, ai , bi j
∈ Cβ(Rd). Assume that Gi j is Lipschitz if β = µ < 1

and suppose that Gi j
∈ C

β
µ∧1 (Rd) otherwise. Then there exists a constant C such that for all

g ∈ Cα+β(Rd), f ∈ Cβ(Rd),

|E[g(YT )] − E[g(XT )]| ≤ C |g|α+βδ
β∧µ

α ,E
∫ T

0
f (Yτis

)ds


− E

∫ T

0
f (Xs)ds

 ≤ C | f |βδ
β∧µ

α
.

Define H = [0, T ] × Rd , N = {0, 1, 2, . . .}, Rd
0 = Rd

\ {0}. For x, y ∈ Rd , write

(x, y) =
∑d

i=1 xi yi . For (t, x) ∈ H , the multi-index γ ∈ Nd with Dγ
=

∂ |γ |

∂x
γ1
1 ...∂x

γd
d

, and

i, j = 1, . . . , d , define

∂t u(t, x) =
∂

∂t
u(t, x), Dku(t, x) =


Dγ u(t, x)


|γ |=k, k ∈ N,

∂i u(t, x) = uxi (t, x) =
∂

∂xi
u(t, x), ∂2

i j u(t, x) = uxi x j (t, x) =
∂2

∂xi x j
u(t, x),
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∂x u(t, x) = ∇u(t, x) =

∂1u(t, x), . . . , ∂du(t, x)


,

∂2u(t, x) = ∆u(t, x) =

d−
i=1

∂2
i i u(t, x).

C = C(·, . . . , ·) denotes constants depending only on quantities appearing in parentheses. In
a given context the same letter is (generally) used to denote different constants depending on the
same set of arguments.

2.2. An outline of the proof

Due to the lack of regularity, standard techniques such as the stochastic flows method cannot
be applied to prove Theorem 3. Instead, as in [8], the solution to the backward Kolmogorov
equation associated with X t is used. In the following, the operators of the Kolmogorov equation
associated with X t are first defined.

For u ∈ Cα+β(H), define

Azu(t, x) = 1{α=1}(a(z), ∇x u(t, x)) + 1{α=2}

d−
i, j=1

Di j (z)∂2
i j u(t, x)

+ 1{α∈(0,2)}

∫
[u(t, x + b(z)y) − u(t, x) − (∇u(t, x), b(z)y)χα(y)]

dy

|y|d+α
,

Au(t, x) = Ax u(t, x) = Azu(t, x)|z=x ,

with χα(y) = 1{α∈(1,2)} + 1{α=1}χ{|y|≤1}, D = b∗b, and

Bzu(t, x) = 1{α∈(1,2]}(a(z), ∇x u(t, x)) +

∫
Rm

0


u(t, x + G(z)y) − u(t, x)

− 1{α∈(1,2]}1{|y|≤1}(∇x u(t, x), G(z)y)

π(dy),

Bu(t, x) = Bx u(t, x) = Bzu(t, x)|z=x .

Applying Itô’s formula to X t and u ∈ C∞

0 (Rd), we find that

u(X t ) −

∫ t

0
Au(Xs)ds −

∫ t

0
Bu(Xs)ds, t ∈ [0, T ]

is a martingale.

Remark 6. More precisely, under the assumptions of Theorem 3, there exists a unique weak
solution to Eq. (1) and the stochastic process

u(X t ) −

∫ t

0
(A + B)u(Xs)ds, ∀u ∈ Cα+β(Rd)

is a martingale [10]. The operator L = A + B is the generator of X t defined in (1); A is the
principal part of L and B is the lower order or subordinate part of L.

If v(t, x), (t, x) ∈ H satisfies the backward Kolmogorov equation
∂t + A + B


v(t, x) = 0, 0 ≤ t ≤ T,

v(T, x) = g(x),
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then as interpreted in Section 4, by Itô’s formula

E[g(YT )] − E[g(XT )] = E[v(T, YT ) − v(0, Y0)] = E

∫ T

0
(∂t + LYτis

)v(s, Ys)ds


.

The regularity of v determines the one-step estimate and the rate of convergence of the approx-
imation. For β ∈ (0, 1), the results for the Kolmogorov equation in Hölder classes are available
[9,11]. In a standard way the results can be extended to the case β > 1. The main difficulty is
deriving the one-step estimates (see Lemma 15).

3. The backward Kolmogorov equation

In Hölder–Zygmund spaces, consider the backward Kolmogorov equation associated with X t :
∂t + A + B


v(t, x) = f (t, x), (4)

v(T, x) = 0.

The regularity of its solution is essential for the one-step estimate which determines the rate of
convergence.

Definition 7. Let f be a measurable and bounded function on Rd . We say that u ∈ Cα+β(H) is
a solution to (4) if

u(t, x) =

∫ T

t


Lu(s, x) − f (s, x)


ds, ∀(t, x) ∈ H. (5)

The following theorem is the main result of this section.

Theorem 8. Suppose that β ∈ (0, 3), β ∉ N, 0 < β ≤ µ < α + β, and∫
|y|≤1

|y|
απ(dy) +

∫
|y|>1

|y|
µπ(dy) < ∞.

Assume that ai , bi j
∈ Cβ(Rd), infx | det b(x)| > 0. Let Gi j be Lipschitz if β = µ < 1 and

suppose that Gi j
∈ C

β
µ∧1 (Rd) otherwise. Then for each f ∈ Cβ(Rd), there exist a unique

solution v ∈ Cα+β(H) to (4) and a constant C independent of f such that |u|α+β ≤ C | f |β .

An immediate consequence of Theorem 8 is the following statement.

Corollary 9. Suppose that β ∈ (0, 3), β ∉ N, 0 < β ≤ µ < α + β, and∫
|y|≤1

|y|
απ(dy) +

∫
|y|>1

|y|
µπ(dy) < ∞.

Assume that ai , bi j
∈ Cβ(Rd), infx | det b(x)| > 0. Let Gi j be Lipschitz if β = µ < 1 and

suppose that Gi j
∈ C

β
µ∧1 (Rd) otherwise. Then for each f ∈ Cβ(Rd) and g ∈ Cα+β(Rd), there

exists a unique solution v ∈ Cα+β(H) to the Cauchy problem
∂t + A + B


v(t, x) = f (x), (6)

v(T, x) = g(x)

and |v|α+β ≤ C(| f |β + |g|α+β) with a constant C independent of f and g.
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To prove Theorem 8 and Corollary 9, in a standard way, the equation with constant coefficients
is first solved. Then variable coefficients are handled by using a partition of unity and deriving
a priori Schauder estimates in Hölder–Zygmund spaces. Finally, the continuation by parameter
method is applied to extend the solvability of an equation with constant coefficients to (4).

3.1. The Kolmogorov equation with constant coefficients

It is convenient to rewrite the principal operator A by changing the variable of integration in
the integral part:

Azu(t, x) = 1{α=1}(a(z), ∇x u(t, x)) + 1{α=2}

d−
i, j=1

Di j (z)∂2
i j u(t, x)

+ 1{α∈(0,2)}

∫
[u(t, x + y) − u(t, x) − (∇u(t, x), y)χα(y)]m(z, y)

dy

|y|d+α
,

where D = b∗b,

m(z, y) =
1

| det b(z)|

1b(z)−1 y
|y|

d+α
, α ∈ (0, 2). (7)

Obviously,∫
Sd−1

ym(·, y)µd−1(dy) = 0. (8)

Here Sd−1 is the unit sphere in Rd and µd−1 is the Lebesgue measure.
For z0 ∈ Rd , define A0u(x) = Az0u(x). Consider a backward Kolmogorov equation with

constant coefficients and λ ≥ 0,
∂t + A0

− λ

v(t, x) = f (x), (9)

v(T, x) = 0.

Proposition 10. Suppose that β > 0, β ∉ N, and f ∈ Cβ(Rd). Assume that there are constants
c1, K > 0 such that for all z ∈ Rd ,

| det b(z)| ≥ c1, 1{α=1}|a(z)| + |b(z)| ≤ K .

Then there exists a unique solution u ∈ Cα+β(H) to (9) and

|u|α+β ⩽ C | f |β , (10)

where the constant C depends only on α, β, T, d, c1, K . Moreover,

|u|β ≤ C(α, d)(λ−1
∧ T )| f |β (11)

and there exists a constant C such that for all s ≤ t ≤ T ,

|u(t, ·) − u(s, ·)| α
2 +β ≤ C(t − s)

1
2 | f |β . (12)

To derive Proposition 10, some auxiliary results are presented first.
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3.1.1. Continuity of the operator A0 in Hölder–Zygmund spaces

To show that operator A0 is continuous in Hölder–Zygmund spaces Cβ(Rd), first recall their
definition.

For β = [β]
−

+ {β}
+ > 0, where [β]

−
∈ N and {β}

+
∈ (0, 1], let Cβ(H) denote the space

of measurable functions u on H such that the norm

|u|β =

−
|γ |≤[β]−

sup
(t,x)∈H

|Dγ
x u(t, x)| + 1{{β}+<1} sup

|γ |=[β]−,
t,x≠x̃

|Dγ
x u(t, x) − Dγ

x u(t, x̃)|

|x − x̃ |{β}+

+ 1{{β}+=1} sup
|γ |=[β]−,

t,x,h≠0

|Dγ
x u(t, x + h) + Dγ

x u(t, x − h) − 2Dγ
x u(t, x)|

|h|{β}+

is finite. Accordingly, Cβ(Rd) denotes the corresponding space of functions on Rd . The classes
Cβ coincide with Hölder spaces if β ∉ N (see 1.2.2 of [20]).

For v ∈ Cβ(Rd) with β ∈ (0, 1), define

|v|0 = sup
x

|v(x)|, [v]β = sup
x≠y

|v(x) − v(y)|

|x − y|β
.

For α ∈ (0, 2), define for v ∈ Cα+β(Rd) the fractional Laplacian

∂αv(x) =

∫
[v(x + y) − v(x) − (∇v(x), y) χα(y)]

dy

|y|d+α
, x ∈ Rd . (13)

For various estimates, the following representation of the difference is useful.

Lemma 11 (Lemma 2.1 in [5]). For δ ∈ (0, 1) and u ∈ C∞

0 (Rd),

u

x + y


− u(x) = K

∫
k(δ)(y, z)∂δu(x − z)dz,

where K = K (δ, d) is a constant,

k(δ)(y, z) = |z + y|
−d+δ

− |z|−d+δ,

and there exists a constant C such that∫
|k(δ)(y, z)|dz ≤ C |y|

δ, ∀y ∈ Rd .

On taking the pointwise limit (∂δ is defined by (13)) and applying the dominated convergence
theorem, the statement can be extended to u ∈ Cδ(Rd).

Let m(y) be a measurable and bounded function on Rd . Define

Lmu(x) =

∫
Rd

[u(x + y) − u(x) − (∇u(x), y)χα(y)] m(y)
dy

|y|d+α
, u ∈ Cα+β .

The following statement is proved in [12] for β ∈ (0, 1). It is presented here for the sake of
completeness and is extended to any β > 0, β ∉ N.



R. Mikulevičius, C. Zhang / Stochastic Processes and their Applications 121 (2011) 1720–1748 1729

Lemma 12. Suppose that α ∈ (0, 2), β > 0, β ∉ N, u ∈ Cα+β(Rd), and |m| ≤ K . Assume that
if α = 1,∫

r<|y|≤1
ym(y)

dy

|y|d+1 = 0, ∀r ∈ (0, 1). (14)

Then there exists a constant C independent of u such that

|Lmu|β ≤ C K |u|α+β .

Proof. Define L = Lm . For β ∈ (0, 1), consider three cases.
Case I: α ∈ (0, 1). For u ∈ Cα+β(Rd), let β ′

∈ (0, 1) be such that α + β ′ < 1. Then

sup
x

|Lmu(x)| ≤ C K |u|a+β ′

∫
(|y|

α+β ′

∧ 1)
dy

|y|d+α
≤ C K |u|α+β .

Suppose that x, x̄ ∈ Rd and a = |x − x̄ |. Write

Lu(x) − Lu(x̄) =

∫
|y|≤a

· · · +

∫
|y|>a

· · · = I1 + I2.

Let β ′
∈ (0, β) be such that α + β ′ < 1 and β − β ′ < 1. Then by Lemma 11,

|I1| ≤ K
∫

|y|≤a
|∂α+β ′

u(x − z) − ∂α+β ′

u(x̄ − z)| |k(α+β ′)(y, z)|
dy

|y|d+α

≤ C K |u|α+βaβ−β ′

∫
|y|≤a

|y|
α+β ′ dy

|y|d+α
= C K aβ−β ′

aβ ′

= C K aβ .

Let α′ < α be such that β + α − α′ < 1. By Lemma 11,

|I2| ≤ K
∫

|y|>a
|∂α′

u(x − z) − ∂α′

u(x̄ − z)| |k(α′)(y, z)|
dy

|y|d+α

≤ C K |u|α+βaα+β−α′

∫
|y|>a

|y|
α′ dy

|y|d+α
= C K |u|α+βaβ .

Case II: α = 1. For u ∈ C1+β(Rd),

Lu(x) =

∫
|y|≤1

[u(x + y) − u(x) − (∇u(x), y)] m(y)
dy

|y|d+1

+

∫
|y|>1

[u(x + y) − u(x)] m(y)
dy

|y|d+1

= L1u(x) + L2u(x).

Since

L1u(x) =

∫
|y|≤1

∫ 1

0


∇u(x + sy) − ∇u(x), y


m(y)

dy

|y|d+1 , (15)

it follows that

sup
x

|L1u(x)| ≤ C K |u|1+β

∫
|y|≤1

|y|
1+β dy

|y|d+1 < ∞.
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Suppose that x, x̄ ∈ Rd and a = |x − x̄ |. Write

L1u(x) − L1u(x̄) =

∫
|y|≤a

· · · +

∫
|y|>a

· · · = B1 + B2.

By (15),

|B1| ≤ C K |u|1+β

∫
|y|≤a

|y|
1+β dy

|y|d+1 = C K |u|1+βaβ .

Let α′ < 1 be such that α + β − α′ < 1. By Lemma 11 and (14),

|B2| ≤ K
∫

|y|>a

∫
|∂α′

u(x − z) − ∂α′

u(x̄ − z)| |k(α′)(y, z)|dz
dy

|y|d+1

≤ C K |u|α+βaα+β−α′

∫
|y|>a

|y|
α′ dy

|y|d+α
= C K |u|α+βaα+β−α′

aα′
−α

= C K |u|α+βaβ .

The estimates of L2u are obvious.
Case III: α ∈ (1, 2). For u ∈ Cα+β(Rd),

Lu(x) =

∫∫ 1

0


∇u(x + sy) − ∇u(x), y


m(y)

dy

|y|d+α
.

Let β ′ < 1 be such that α + β ′ < 2 and 0 < β − β ′ < 1. By Lemma 11,

sup
x

|Lu(x)| ≤ C K |u|α+β ′

∫
|y|≤1

|y|
α+β ′

−1
|y|

dy

|y|d+α
+ sup

x
|∇u(x)|K

∫
|y|>1

|y|
dy

|y|d+α

≤ C K |u|α+β ′ .

Carry out the splitting

Lu(x) =

∫
|y|≤a

∫ 1

0


∇u(x + sy) − ∇u(x), y


m(y)

dsdy

|y|d+α

+

∫
|y|>a

∫ 1

0


∇u(x + sy) − ∇u(x), y


m(y)

dsdy

|y|d+α

= L1u(x) + L2u(x).

Let x, x̄ ∈ Rd , a = |x − x̄ |, and β ′ < 1 be such that α + β ′ < 2 and 0 ≤ β − β ′ < 1. By
Lemma 11,

|L1u(x) − L1(x̄)| ≤ K
∫

|y|≤a

∫ 1

0

∫
|∂α+β ′

−1
∇u(x − z) − ∂α+β ′

−1
∇u(x − z)|

× |k(α+β ′
−1)(sy, z)| |y|

dsdzdy

|y|d+α

≤ C K |u|α+βaβ−β ′

∫
|y|≤a

|y|
α+β ′ dy

|y|d+α
= C K |u|α+βaβ .

Finally, let 1 < α′ < α be such that α − α′
+ β < 1. By Lemma 11,

|L2u(x) − L2(x̄)|
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=


∫

|y|>a

∫ 1

0

∫
[∂α′

−1
∇u(x − z) − ∂α′

−1
∇u(x̄ − z)]k(α′

−1)(sy, z)ym(y)
dzdsdy

|y|d+α


≤ C K aα+β−α′

∫
|y|>a

|y|
α′ dzdsdy

|y|d+α
= C K aβ .

Therefore, the result holds for β ∈ (0, 1). If β > 0, β ∉ N, and u ∈ Cα+β(Rd), then for any
multi-index |γ | = [β], Dγ u ∈ Cα+β−[β], and

|Dγ

Lmu


|β−[β] = |Lm Dγ u


|β−[β] ≤ C K |Dγ u|α+β−[β].

The statement follows. �

3.1.2. Proof of Proposition 10
The statement is proved by induction. Given α ∈ (0, 2] and f ∈ Cβ(H), for β ∈ (0, 1),

there exists a unique solution u ∈ Cα+β(H) to the Kolmogorov equation (9) such that (10)–(12)
hold [11].

Assume that the result holds for β ∈
n−1

l=0 (l, l +1), n ∈ N. Suppose that β ∈ (n, n +1), β̃ =

β − 1, and f ∈ Cβ(H). Then β̃ ∈ (n − 1, n), f ∈ C β̃(H), and there exists a unique solution
v ∈ Cα+β̃(H), α ∈ (0, 2] to the Cauchy problem such that (10)–(12) hold for v with β̃. For
h ∈ R and k = 1, . . . , d , define

vh
k (t, x) =

v(t, x + hek) − v(t, x)

h
,

where {ek, k = 1, . . . , d} is the canonical basis in Rd . Obviously, vh
k ∈ Cα+β̃(H) and

∂t + A0
− λ


vh

k (t, x) = f h
k (x), x ∈ Rd , (16)

vh
k (T, x) = 0.

Since f ∈ Cβ(H) and

f h
k (t, x) =

∫ 1

0
∂k f (t, x + heks)ds, ∀h ≠ 0,

then

| f h
k |β̃ ≤ C |∇ f |β−1 ≤ C | f |β (17)

with a constant C independent of h. Since v ∈ Cα+β̃(H), then vh
k ∈ Cα+β̃(H). By (17) and

the induction assumption, the estimates (10)–(12) hold for vh
k with a constant independent of h.

Hence vh
k (t, x) are equicontinuous in (t, x). By the Arzelà–Ascoli theorem, for each hn → 0,

there exist a subsequence {hn j } and continuous functions vk(t, x), (t, x) ∈ H, k = 1, . . . , d,

such that v
hn j
k (t, x) → vk(t, x) uniformly on compact subsets of H as j → ∞. Therefore,

vk ∈ Cα+β̃ and |vk |α+β̃ ≤ C | f |β , k = 1, . . . , d.
It then follows from passing to the limit in the integral form of (16) (see (5)) and the dominated

convergence theorem that uk is the unique solution to
∂t + A0

− λ

vk(t, x) = ∂k f (t, x),

vk(T, x) = 0, k = 1, . . . , d
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and so v
hn
k (t, x) → vk(t, x), ∀hn → 0. Hence,

vk(t, x) = lim
h→0

vh
k (t, x) = lim

h→0

v(t, x + hek) − v(t, x)

h
= ∂kv(t, x),

∂kv ∈ Cα+β̃(H), k = 1, . . . , d, and |∇v|α+β̃ ≤ C | f |β . Therefore, v ∈ Cα+β(H) and the
statement follows.

3.2. The Kolmogorov equation with variable coefficients

In this section, an estimate is derived to show that Bu is a lower order operator, which is
essential in deriving Schauder estimates in the case of variable coefficients. To prove Theorem 8,
in a standard way we use a partition of unity and the estimates for constant coefficients, which
allow us to obtain a priori estimates. Then the continuation by parameter method is applied to
transfer from constant to variable coefficients.

3.2.1. Estimates of B f, f ∈ Cα+β

Proposition 13. Suppose that β ∈ (0, 3), β ∉ N, 0 < β ≤ µ < α + β, and∫
|y|≤1

|y|
απ(dy) +

∫
|y|>1

|y|
µπ(dy) < ∞.

Assume that a ∈ Cβ(Rd). Let Gi j be Lipschitz if β = µ < 1 and suppose that Gi j
∈ C

β
µ∧1 (Rd)

otherwise. Then for each ε > 0, there exists a constant Cε such that

|B f |β ≤ ε| f |α+β + Cε| f |0, f ∈ Cα+β(Rd).

Proof. Since the estimates involving the term with a(x) are obvious, in the following estimates,
assume a = 0.

Case I: β ∈ (0, 1), β ≤ µ < α + β. In what follows, |G|1 is G Lipschitz constant. Carry out
the splitting

Bz f (x) =

∫ 
f (x + G(z)y) − f (x) − 1{α∈(1,2]}(∇ f (x), G(z)y)χ{|y|≤1}


π(dy)

=

∫
|y|≤δ

· · · +

∫
|y|>δ

· · · = B1
z f (x) + B2

z f (x)

and B2
z f (x) = −B21

z f (x) + B22
z f (x) with

B21
z f (x) = f (x)

∫
|y|>δ

π(dy) + 1{α∈(1,2]}


∇ f (x),

∫
δ<|y|≤1

G(z)yπ(dy)


,

B22
z f (x) =

∫
|y|>δ

f (x + G(z)y)π(dy).

It follows by the assumptions that there exists β ′ such that µ < α + β ′ < α + β and

|B21
z f (·) |β + |B22

z f (·) |β ≤ C[| f |β + 1{α∈(1,2]}|∇ f |β ], z ∈ Rd , (18)

|B21
· f (x)|β ≤ C1{α∈(1,2]}|∇ f |0|G|β ,

|B22
· f (x)|β ≤ C

∫
|y|≥δ

|y|
µπ(dy)| f |α+β ′ |G| β

µ∧1
, x ∈ Rd .
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Consider different scenarios for values of α to show that

|B1
z f (·)|β ≤ C | f |α+β

∫
|y|≤δ

|y|
αdπ, z ∈ Rd . (19)

For α ∈ (0, 1], by Lemma 11,

B1
z f (x) =

∫
|y|≤δ

∫
∂α f (x − z)k(α)(C(z)y, z)dzπ(dy) if α < 1,

B1
z f (x) =

∫
|y|≤δ

∫ 1

0
(∇ f (x + sC(z)y), y)dsπ(dy) if α = 1.

Hence, (19) follows.
For α = 2, (19) follows since

B1
z f (x) =

∫
|y|≤δ

∫ 1

0


D2 f (x + sC(z)y)C(z)y, C(z)y


(1 − s)ds


if α = 2.

For α ∈ (1, 2), (19) follows since by Lemma 11

B1
z f (x) =

∫
|y|≤δ

∫ 1

0


∇ f (x + sC(z)y) − ∇ f (x), C(z)y


ds


dπ

=

∫
|y|≤δ

∫ 1

0

∫
∂α−1

∇ f (x − t)k(α−1)(sC(z)y, t)dt, C(z)y


ds


dπ.

Similarly, to estimate |B1
· f (x)|β , consider different scenarios for values of α.

For α ∈ (0, 1),

|B1
· f (x)|β ≤ | f |(α+β)

∫
|y|≤δ

|y|
απ(dy)|G| β

µ∧1
, x ∈ Rd . (20)

For α ∈ [1, 2], suppose that β ≤ µ < α + β ′ < α + β.
If α ∈ (1, 2], for |y| ≤ 1, z, z̄ ∈ Rd ,

|[ f (x + G(z)y) − f (x) − (∇ f (x), G(z)y)]

− [ f (x + G(z̄)y) − f (x) − (∇ f (x), C(z̄)y)] |

= |[ f (x + G(z)y) − f (x + G(z̄)y) − (∇ f (x), (G(z) − G(z̄))y)]|

≤

∫ 1

0
| (∇ f (x + (1 − s)G(z̄)y + sG(z)y) − ∇ f (x), G(z)y − G(z̄)y) ds|

≤ | f |α


|G|

α−1
0 |y|

α−1
+ |G(z̄) − G(z)|α−1

|y|
α−1


|G(z) − G(z̄)| |y|

≤ C | f |α|G|
α−1
0 |G(z̄) − G(z)| |y|

α

and if α = 1,

|[ f (x + G(z)y) − f (x)] − [ f (x + G(z̄)y) − f (x)] |

≤

∫ 1

0
| (∇ f (x + (1 − s)G(z̄)y + sG(z)y), G(z)y − G(z̄)y) ds|

≤ |∇ f |0|G(z) − G(z̄)| |y|.
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It then follows that

|B1
· f (x)|β ≤ C | f |(α+β ′)|G|

α
β , x ∈ Rd . (21)

By (18)–(21), for each ε > 0 there exists a constant Cε such that

|B f |β ≤ ε| f |α+β + Cε| f |0. (22)

Case II: β ∈ (1, 2), β ≤ µ < α + β. Note that

∂ j (B f (x)) =


∂

∂z j

Bz f (x)


z=x

+ Bz fx j |z=x =


∂

∂z j

Bz f (x)


z=x

+ B fx j .

For the second term, apply estimate (22) of Case I: fx j ∈ Cα+β−1, the tail moment is 1 and
β − 1 ≤ µ − 1 < α + β − 1. Also note that |G| β−1

(µ−1)∧1
≤ C |G|β < ∞. Hence,

|B fx j |β−1 ≤ ε| fx j |α+β−1 + Cε| fx j |0.

Only the first term needs to be estimated:

B j
z f (x) =

∂

∂z j
Bz f (x)

=

∫ 
∇ f (x + G(z)y)Gz j (z)y − 1{α∈(1,2]}∇ f (x)Gz j (z)yχ{|y|≤1}


dπ. (23)

Suppose that B j f (x) = B j
z f (x)|z=x , x ∈ Rd . Consider different scenarios for values of α

to show that for each ε > 0 there exists a constant Cε such that

|B j f |β−1 ≤ ε| f |α+β + Cε| f |0, f ∈ Cα+β(Rd). (24)

For α ∈ (0, 1], since

B j
z f (x) =

∫
∇ f (x + G(z)y)Gz j (z)ydπ,

then for µ < α + β ′ < α + β,

|B j
z f (·)|β−1 ≤ C |∇ f |β−1|Gz j |0, z ∈ Rd ,

[B j
· f (x)]β−1 ≤ C[|∇ f |0|Gz j |β−1 + | f |α+β ′ |Gz j |0|∇G|0], x ∈ Rd .

For α ∈ (1, 2], carry out the splitting

B j
z f (x) =

∫
|y|≤1

· · · +

∫
|y|>1

· · · = B j,1
z f (x) + B j,2

z f (x).

Since by Lemma 11

B j,1
z f (x) =

∫
|y|≤1

∫
∂α−1

∇ f (x − t)k(α−1)(G(z)y, t)Gz j (z)ydtdπ,

then |B j,1
z f (·)|β−1 ≤ C | f |α+β ′ |G|

α
β , z ∈ Rd .

For |y| ≤ 1, z, z̄ ∈ Rd ,

[∇ f (x + G(z)y) − ∇ f (x)]Gz j (z)y − [∇ f (x + G(z̄)y) − ∇ f (x)]Gz j (z̄)y

≤ |∇ f (x + G(z)y) − ∇ f (x + G(z̄)y)| |Gz j (z)y|
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+ |∇ f (x + G(z̄)y) − ∇ f (x)| |Gz j (z) − Gz j (z̄)| |y|

≤ |∂2 f |0|G|0|y|
2
|Gz j (z) − Gz j (z̄)|

and

[B j,1
· f ]β−1 ≤ C |D2 f |0|G|β |G0|.

Since

B j,2
z f (x) =

∫
|y|>1

∇ f (x + G(z)y)Gz j (z)ydπ,

then

|B j,2
z f (·)|β−1 ≤ C |∇ f |β−1|Gz j |0,

[B j,2
· f (x)]β−1 ≤ C |∇ f |0|Gz j |β−1 + C

∫
|y|>1

|y|
µdπ |D2 f |0|∇Gz j |

2
0.

It is hence proved that (24) holds.
Case III: β ∈ (2, 3), β ≤ µ < α + β. Since

∂ j (B f (x)) =


∂

∂z j

Bz f (x)


z=x

+ Bz fx j |z=x ,

then

∂2

∂xi∂x j
(B f (x)) = Bz fxi x j (x)|z=x +

∂

∂zi


Bz fx j


z=x

+
∂

∂z j

Bz fxi (x)


z=x

+
∂2

∂zi∂z j
Bz f (x)


z=x

= B∂2
i j f + Bi∂ j f + B j∂i f + Bi j f. (25)

The estimate (22) of Case I can be used for the first term (β − 2 ≤ µ − 2 < α + β − 2 with
β − 2 ∈ (0, 1)). For each ε′, there exists a constant Cε′ such that

|B fxi x j |β−2 ≤ ε′
|D2 f |α+β−2 + Cε′ |D2 f |0.

For the second and third terms in (25), estimate (24) of Case II is applied. Indeed, fx j ∈

Cα+β−1(Rd), β − 1 ∈ (1, 2), β − 1 ≤ µ − 1 < α + β − 1. Hence, for each ε′, there exists
a constant Cε′ such that

|Bi fx j |β−2 + |B j fxi |β−2 ≤ ε′
|∇ f |α+β−1 + Cε′ |∇ f |0.

Therefore, only the last term is new. By (23),

∂2

∂zi∂z j
Bz f (x) =

∫
(∂2 f (x + G(z)y)Gz j (z)y, Gzi (z)y)dπ

+ 1{α∈(0,1]}

∫
∇ f (x + G(z)y)Gzi z j (z)ydπ

+ 1{α∈(1,2]}

∫ 
∇ f (x + G(z)y) − ∇ f (x), Gzi z j (z)y


dπ

= Bi j,1
z f (x) + Bi j,2

z f (x) + Bi j,3
z f (x),
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and for α ∈ (1, 2],

Bi j,3
z f (x) =

∫ ∫ 1

0
(D2 f (x + sG(z)y)G(z)y, Gzi z j (z)y)dsdπ.

It then follows that for z ∈ Rd ,

|Bi j,1
z f (·)|β−2 ≤ |∂2 f |β−2|∇G|

2
0, |B

i j,2
z f (·)|β−2 ≤ |∇ f |β−2|∇G|0|∂

2G|0,

|Bi j,3
z f (·)|β−2 ≤ |D2 f |β−2|D

2G|0|G|0.

Suppose that β ≤ µ < α + β ′ < α + β. Then for x ∈ Rd ,

|Bi j,1
· f (x)|β−2 ≤ |D2 f |0|∇G|

2
β−2 + |D2 f |α+β ′ |∇G|

3
0

∫
|y|

µdπ,

|Bi j,2
· f (x)|β−2 ≤ C(|D2 f |0|G|

2
β + |∇ f |0|G|β),

|Bi j,3
· f (x)|β−2 ≤ |D3 f |0|G|

3
β + |D2 f |0|G|

2
β .

The statement follows. �

3.2.2. Proof of Theorem 8
The proof follows that of Theorem 5 in [11], with some simple changes.
It is well known that for an arbitrary but fixed δ > 0, there exist a family of cubes Dk ⊆ D̃k ⊆

Rd and a family of deterministic functions ηk ∈ C∞

0 (Rd) with the following properties:

1. For all k ≥ 1, Dk and D̃k have a common center xk , diam Dk ≤ δ, dist (Dk, Rd
\ D̃k) ≤ Cδ

for a constant C = C(d) > 0, ∪k Dk = Rd , and 1 ≤
∑

k 1D̃k
≤ 2d .

2. For all k, 0 ≤ ηk ≤ 1, ηk = 1 in Dk, ηk = 0 outside of D̃k and for all multi-indices γ with
|γ | ≤ 3,

|∂γ ηk | ≤ C(d)δ−|γ |.

For α ∈ (0, 2), λ ≥ 0, k ≥ 1, define

Au(t, x) = Ax u(t, x), Bu(t, x) = Bx u(t, x), Aku(t, x) = Axk u(t, x),

Eku(t, x) =

∫
[u(t, x + y) − u(t, x)][ηk(x + y) − ηk(x)]m(xk, y)

dy

|y|d+α
,

Ek,1u(t, x) =

∫
[u(t, x + y) − u(t, x)][ηk(x + y) − ηk(x)]

dy

|y|d+α
,

Fku(t, x) = u(t, x)Akηk(x), Fk,1u(t, x) = u(t, x)∂αηk(x).

By Lemma 24 in [11], for each ε > 0, there exists a constant Cε such that

sup
k


|E (α)

k u(t, ·)|β + |E (α)
k,1 u(t, ·)|β


≤ ε|∂αu|β + Cε|u|0

and there exists a constant C = C(α, β, d, δ, M (α)) such that

sup
k


|F (α)

k u(t, ·)|β + |F (α)
k,1 u(t, ·)|β


≤ C |u|β .
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As can be easily seen (see (50)–(51) in [11]), for any u ∈ Cα+β(Rd),

|u|0 ≤ sup
k

sup
x

|ηk(x)u(x)|,

|u|β ≤ sup
k

|ηku|β + C |u|0,

sup
k

|ηku|β ≤ |u|β + C |u|0,

and

|u|α+β ≤ C sup
k

|ηku|α+β . (26)

Let u ∈ Cα+β(H) be a solution to (4). Then ηku satisfies the equation

∂t (ηku) = Ak(ηku) − λ(ηku) + ηk[Au − Aku] + ηk Bu + ηk f + Fku + Eku, (27)

and by Proposition 10,

|ηku|α+β ≤ C[|ηk[Au − Aku]|β + |ηk Bu|β + |ηk f |β + |Fku|β + |Eku|β ].

Hence,

|u|α+β ≤ C[sup
k

|ηk f |β + I ], (28)

where

I ≤ C1 sup
k

[|ηk[Au − Aku]|β + |ηk Bu|β + |Fku|β + |Eku|β + |Fk,1u|β

+ |Ek,1u|β ] + C2|u|0.

By Lemma 12,

|ηk[Au − Aku]|β ≤ C[Mβ(1 + |∇η|0δ
β)|u|

α+
β
2

+ δβ
|u|α+β ].

Therefore, for each ε > 0, there exists a constant Cε such that

|ηk[Au − Aku]|β ≤ ε|u|α+β + Cε|u|0.

By the estimates of Proposition 13 and Lemma 12, it follows that for each ε > 0, there exists a
constant Cε such that

I ≤ ε|u|α+β + Cε|u|0.

By (28),

|u|α,β;p ≤ C[| f |0,β;p + |u|0;p]. (29)

On the other hand, (27) holds and by Proposition 10,

|u|0 ≤ sup
k

|ηku|β

≤ µ(λ) sup
k

[| f |β + |ηk[Au − Ak]|β + |ηk Bu|β + |Fku|β + |Eku|β ],

where µ(λ) → 0 as λ → ∞. Thus,

|u|0 ≤ Cµ(λ)[| f |β + |u|α+β ]. (30)
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The inequalities (29) and (30) imply that there exist λ0 > 0 and a constant C independent of u
such that if λ ≥ λ0,

|u|α+β ≤ C | f |β . (31)

In a standard way (see [11]), it can be verified that (31) holds for all λ ≥ 0. Again by
Proposition 10 and (26), there exists a constant C such that for all s ≤ t ≤ T ,

|u(t, ·) − u(s, ·)| α
2 +β ≤ sup

k
|ηku(t, ·) − ηku(s, ·)| α

2 +β

≤ C(t − s)
1
2

| f |β + |u|α+β


.

Therefore there exists a constant C such that for all s ≤ t ≤ T ,

|u(t, ·) − u(s, ·)| α
2 +β ≤ C(t − s)

1
2 | f |β .

To finish the proof, apply the continuation by parameter argument. Suppose that τ ∈

[0, 1] , Lτ u = τ Lu + (1 − τ) ∂αu and introduce the space Ĉα+β(H) of functions u ∈ Cα+β(H)

such that for each (t, x) , u (t, x) =
 T

t F (s, x) ds, where F ∈ Cβ(H). It is a Banach space with
respect to the norm

|u|α,β = |u|α+β + |F |β .

Consider the mappings Tτ : Ĉα+β(H) → Cβ(H) defined by u (t, x) = −
 T

t F (s, x) ds −→

F + Lτ u. By Lemma 12 and Proposition 13, for some constant C independent of τ, |Tτ u|β ≤

C |u|α,β . On the other hand, there exists a constant C independent of τ such that for all

u ∈ Ĉα+β(H),

|u|α,β ≤ C |Tτ u|β . (32)

Indeed,

u (t, x) = −

∫ T

t
F (s, x) ds =

∫ T

t
(Lτ u − (F + Lτ u)) ds.

According to the estimate (31), there exists a constant C independent of τ such that

|u|α+β ≤ C |Tτ u|β = C |F + Lτ u|β . (33)

Hence, by Lemma 12, Proposition 13 and (33),

|u|α,β = |u|α+β + |F |β ≤ |u|α+β + |F + Lτ u|β + |Lτ u|β

≤ C(|u|α+β + |F + Lτ u|β) ≤ C |F + Lτ u|β = C |Tτ u|β ,

and (32) follows. Since T0 is an onto map, by Theorem 5.2 in [3], all the Tτ are onto maps and
the statement follows.

3.2.3. Proof of Corollary 9
By Lemma 12 and Proposition 13, for g ∈ Cα+β(Rd), |Ag|β ≤ C |g|α+β and |Bg|β ≤

C |g|α+β with a constant C independent of f and g. It then follows from (4) that there exists a
unique solution ṽ ∈ Cα+β(H) to the Cauchy problem

∂t + Ax + Bx

ṽ(t, x) = f (t, x) − Ax g(x) − Bx g(x), (34)

ṽ(T, x) = 0
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and |ṽ|α+β ≤ C

|g|α+β +| f |β


with C independent of f and g. Define v(t, x) = ṽ(t, x)+g(x),

where ṽ is the solution to problem (34). Then v is the unique solution to the Cauchy problem (6)
and |v|α+β ≤ C(|g|α+β + | f |β).

Remark 14. If the assumptions of Corollary 9 hold and v ∈ Cα+β(H) is the solution to (6), then
∂tv = f − Axv − Bxv, and by Lemma 12 and Proposition 13, |∂tv|β ≤ C(|g|α+β + | f |β).

4. The one-step estimate and proof of the main result

The following lemma provides a one-step estimate of the conditional expectation of an
increment of the Euler approximation.

Lemma 15. Suppose that β ∈ (0, 3), β ∉ N, 0 < β ≤ µ < α + β, and∫
|y|≤1

|y|
απ(dy) +

∫
|y|>1

|y|
µπ(dy) < ∞.

Assume that ai , bi j
∈ Cβ(Rd), and infx | det B(x)| > 0. Let Gi j be Lipschitz if β = µ < 1

and suppose that Gi j
∈ C

β
µ∧1 (Rd) otherwise. Then there exists a constant C such that for all

f ∈ Cβ(Rd),

|E[ f (Ys) − f (Yτis
)|F τis ]| ≤ C | f |βδκ(α,β), ∀s ∈ [0, T ],

where is = i if τi ≤ s < τi+1 and κ(α, β) is as defined in Theorem 3.

The proof of Lemma 15 is based on applying Itô’s formula to f (Ys) − f (Yτis
), f ∈ Cβ(Rd).

If β > α, by Remark 6 and Itô’s formula, the inequality holds. If β < α, f is first smoothed
by using w ∈ C∞

0 (Rd), a nonnegative smooth function with support on {|x | ≤ 1} such that
w(x) = w(|x |), x ∈ Rd , and


w(x)dx = 1 (see (8.1) in [2]). Note that, due to the symmetry,∫

Rd
x iw(x)dx = 0, i = 1, . . . , d. (35)

For x ∈ Rd and ε ∈ (0, 1), define wε(x) = ε−dw
 x

ε


and the convolution

f ε(x) =

∫
f (y)wε(x − y)dy =

∫
f (x − y)wε(y)dy, x ∈ Rd . (36)

4.1. Some auxiliary estimates

For the estimates of Az f ε, the following simple integral estimates are needed. Recall that
m(z, y) in the definition of operator Az (see (7)) is bounded, smooth, and 0-homogeneous and
symmetric in y.

Lemma 16. Suppose that v ∈ C∞

0 (Rd).

(i) For α ∈ (0, 2),∫
Rd

∫
Rd

0

|v(y + y′) − v(y) − χ (α)(y′)(∇v(y), y′)|
dydy′

|y′|d+α
< ∞,

where χ (α)(y) = 1{|y|≤1}1{α=1} + 1{α∈(1,2)};
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(ii) For β ∈ (0, 1), β < α, z ∈ Rd ,

sup
z

∫
Rd

|(Azw)(y)| |y|
βdy < ∞;

(iii) For 1 < β < α < 2,∫
Rd

∫
Rd

0

∫ 1

0
|w(y + sy′) − w(y)| |y|

β−1 dsdydy′

|y′|d+α−1 < ∞.

Proof. (i) Indeed,

|v(y + y′) − v(y) − χ (α)(y′)(∇v(y), y′)|

≤ 1{|y′|≤1}

∫ 1

0
[max

i, j
|∂2

i jv(y + sy′)| |y′
|
2
+ 1{α∈(0,1)}|∇v(y + sy′)| |y′

|]ds


+ 1{|y′|>1}


|v(y + y′)| + |v(y)| + 1{α∈(1,2)}|∇v(y)| |y′

|

, y, y′

∈ Rd .

The claim follows.
(ii) For β ∈ (0, 1), β < α, z ∈ Rd ,∫

Rd
|(Azw)(y)| |y|

βdy ≤

∫
Rd

∫
|y′|>1

|w(y + y′)| |y|
β dydy′

|y′|d+α

+

∫
Rd

∫
|y′|>1

|w(y)| |y|
β dydy′

|y′|d+α

+ max
i, j

∫
Rd

∫
|y′|≤1

∫ 1

0
|∂2

i jw(y + sy′)| |y′
|
2
|y|

β dsdy′dy

|y′|d+α

and ∫
Rd

∫
|y′|>1

|w(y + y′)| |y|
β dydy′

|y′|d+α
≤ C

∫
Rd

∫
|y′|>1

|w(y + y′)| |y + y′
|
β dydy′

|y′|d+α

+

∫
Rd

∫
|y′|>1

|w(y + y′)| |y′
|
β dydy′

|y′|d+α


.

Part (ii) follows.
(iii) For 1 < β < α < 2,∫

Rd

∫
Rd

0

∫ 1

0
|w(y + sy′) − w(y)| |y|

β−1 dydy′ds

|y′|d+α−1

≤

∫
Rd

∫
|y′|>1

∫ 1

0
|w(y + sy′)| |y|

β−1 dydy′ds

|y′|d+α−1

+

∫
Rd

∫
|y′|>1

∫ 1

0
|w(y)| |y|

β−1 dydy′ds

|y′|d+α−1

+

∫
Rd

∫
|y′|≤1

∫ 1

0

∫ 1

0
|∇w(y + sτ y′)| |y|

β−1 dsdτdydy′

|y′|d+α−2 .
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Since ∫
Rd

∫
|y′|>1

∫ 1

0
|w(y + sy′)| |y|

β−1 dydy′ds

|y′|d+α−1

≤ C

∫
Rd

∫
|y′|>1

∫ 1

0
|w(y + sy′)| |y + sy′

|
β−1 dydy′ds

|y′|d+α−1

+

∫
Rd

∫
|y′|>1

∫ 1

0
|w(y + sy′)| |y′

|
β−1 dydy′ds

|y′|d+α−1


and similarly∫

Rd

∫
|y′|≤1

∫ 1

0

∫ 1

0
|∇w(y + sτ y′)| |y|

β−1 dsdτdydy′

|y′|d+α−2

≤ C

∫
Rd

∫
|y′|≤1

∫ 1

0

∫ 1

0
|∇w(y + sτ y′)| |y + sτ y′

|
β−1 dsdτdydy′

|y′|d+α−2

+

∫
Rd

∫
|y′|≤1

∫ 1

0

∫ 1

0
|∇w(y + sτ y′)| |y′

|
β−1 dsdτdydy′

|y′|d+α−2


are finite, part (iii) follows. �

Now we prove some estimates for A f ε and B f ε.

Lemma 17. Suppose that α ∈ (0, 2), β < α, β ≠ 1, and ε ∈ (0, 1). Then:

(i) there exists a constant C such that for all f ∈ Cβ(Rd), x ∈ Rd ,

| f ε(x) − f (x)| ≤ Cεβ
| f |β;

(ii) there exists a constant C such that for all z, x ∈ Rd ,

|Az f ε(x)| ≤ Cε−α+β
| f |β (37)

and in particular, for all f ∈ Cβ(Rd), z, x ∈ Rd ,

|∂α f ε(x)| ≤ Cε−α+β
| f |β; (38)

(iii) for k, l = 1, . . . , d, x ∈ Rd ,

|∂k f ε(x)| ≤ Cε−1+β
| f |β , if β < 1, (39)

| f ε
|1 ≤ C | f |1,

|∂2
kl f ε(x)| ≤ Cε−2+β

| f |β , if β < 2,

and

| f ε
|α ≤ Cε−α+β

| f |β , if β ∈ (0, 1], α ∈ (1, 2), (40)

|∂α−1
∇ f ε(x)| ≤ Cε−α+β

| f |β , if β ∈ (1, α), α ∈ (1, 2). (41)

Proof. (i) For β ∈ (1, 2), by (35),

f ε(x) − f (x) =

∫
[ f (x − y) − f (x)]wε(y)dy
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=

∫
[ f (x + y) − f (x) − (∇ f (x), y)]wε(y)dy

=

∫∫ 1

0
(∇ f (x + sy) − ∇ f (x), y)dswε(y)dy

and

| f ε(x) − f (x)| ≤ C |∇ f |β−1

∫
|y|

1+(β−1)wε(y)dy ≤ C | f |βεβ .

For β ∈ (0, 1],

f ε(x) − f (x) =

∫
[ f (x − y) − f (x)]wε(y)dy

=

∫
[ f (x + y) − f (x)]wε(y)dy

and

f ε(x) − f (x) =
1
2

∫
[ f (x + y) + f (x − y) − 2 f (x)]wε(y)dy.

Hence, for β ∈ (0, 1],

| f ε(x) − f (x)| ≤ C | f |βεβ .

(ii) For z, x ∈ Rd , by changing the variable of integration with ȳ =
y
ε

and using (8) for α = 1,

Azw
ε(x) = 1{α=1}(a1(z), ∇wε(x))

+

∫
[wε(x + y) − wε(x) − χ̄α(y)(∇wε(x), y)]m(z, y)

dy

|y|d+α

= ε−αε−d(Azw)
 x

ε


, (42)

where χ̄α(y) = 1{|y|≤1}1{α=1} + 1{α∈(1,2)}, y ∈ Rd . It follows from Lemma 16(i), the Fubini
theorem, and (42), changing the variable of integration with ȳ =

y
ε

as well, that

Az f ε(x) =

∫
Rd

ε−αε−d(Azw)


x − y

ε


f (y)dy

=

∫
ε−αε−d(Azw)

 y

ε


f (x − y)dy

=

∫
ε−α(Azw)(y) f (x − εy)dy, x, z ∈ Rd .

By Lemma 16(i) and the Fubini theorem,∫
Rd

Azw(y)dy = 0.

Hence, if β ∈ (0, 1), β < α,

Az f ε(x) =

∫
ε−α(Azw)(y) f (x − εy)dy

=

∫
ε−α(Azw)(y)[ f (x − εy) − f (x)]dy
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and

|Az f ε(x)| ≤ Cε−α+β
| f |β

∫
Rd

|(Azw)(y)| |y|
βdy.

(37) then follows in this case by Lemma 16(ii).
Assume that 1 < β < α < 2. By Theorem 2.27 in [2], differentiation and integration can be

switched:

Azw(y) =

∫
[w(y + y′) − w(y) − (∇w(y), y′)]m(z, y′)

dy′

|y′|d+α

=

∫∫ 1

0


∇yw(y + sy′) − ∇yw(y), y′


dsm(z, y′)

dy′

|y′|d+α

=

d−
i=1

∂

∂yi

∫ ∫ 1

0
[w(y + sy′) − w(y)]y′

i dsm(z, y′)
dy′

|y′|d+α
.

By integrating by parts,

Az f ε(x) =

∫
ε−α Azw(y) f (x − εy)dy

= ε−α+1
∫∫ 1

0
[w(y + sy′) − w(y)](∇ f (x − εy), y′)m(z, y′)

dsdydy′

|y′|d+α
, x ∈ Rd . (43)

Since ∫
Rd

0

∫
Rd

∫ 1

0
|w(y + sy′) − w(y)|

dsdydy′

|y′|d+α
< ∞,

the Fubini theorem applies and

[w(y + sy′) − w(y)]dy = 0. Rewrite (43) as

Az f ε(x) = ε−α+1
∫

Rd

∫
Rd

0

∫ 1

0
[w(y + sy′) − w(y)]

× (∇ f (x − εy) − ∇ f (x), y′)m(z, y′)
dsdydy′

|y′|d+α
, x, z ∈ Rd .

Hence,

|Az f ε(x)| ≤ Cε−α+1εβ−1
|∇ f |β−1

∫∫ ∫ 1

0
|w(y + sy′) − w(y)| |y|

β−1 dsdydy′

|y′|d+α−1

≤ Cε−α+β
| f |β , x, z ∈ Rd ,

and by Lemma 16(iii), (37) is proved. On taking m = 1, (38) follows. Finally, the case of
α ∈ (1, 2), β = 1 is obtained by interpolation.

Fix α ∈ (1, 2), z ∈ Rd . Let E be the Banach space of continuous bounded functions
on Rd with supremum norm. Consider the operator T ( f ) = Az f ε(x). We prove that T :

C1±
α−1

2 (Rd) → E is bounded:

|T ( f )| = sup
x

|Az f ε(x)| ≤ Cε−α+
3−α

2 | f | 3−α
2

= Cε
3
2 (1−α)

| f | 3−α
2

, f ∈ C
3−α

2 (Rd),

|T ( f )| = sup
x

|Az f ε(x)| ≤ Cε
1
2 (1−α)

| f | 1+α
2

, f ∈ C
1+α

2 (Rd).
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Therefore, by interpolation, T : C1(Rd) → E is bounded and

|T ( f )| = sup
x

|Az f ε(x)| ≤ Cε−α+1
| f |1, f ∈ C1(Rd).

(iii) If β < 1, by changing the variable of integration,

∂k f ε(x) = ε−1
∫

Rd
ε−d∂kw


x − y

ε


f (y)dy

= ε−1
∫

Rd
ε−d∂kw

 y

ε


f (x − y)dy

= ε−1
∫

Rd
∂kw(y)[ f (x − εy) − f (x)]dy.

If β = 1, then

f ε(x + h) + f ε(x − h) − 2 f ε(x)

=
1
2

∫
wε(y)[ f (x − y + h) + f (x − y − h) − 2 f (x − y)]dy

and | f ε
|1 ≤ | f |1. Also, since ∂2

klw(y) = ∂2
klw(−y), k, l = 1, . . . , d, y ∈ Rd ,

∂2
kl f ε(x) = ε−2

∫
Rd

ε−d∂2
klw


x − y

ε


f (y)dy

= ε−2
∫

Rd
ε−d∂2

klw
 y

ε


f (x − y)dy

= ε−2
∫

Rd
∂2

klw(y)[ f (x − εy) − f (x)]dy

=
1
2
ε−2

∫
Rd

∂2
klw(y)[ f (x + εy) + f (x − εy) − 2 f (x)]dy.

Thus, for all x ∈ Rd ,

|∂k f ε(x)| ≤ Cε−1+β
| f |β if β ∈ (0, 1),

|∂2
kl f ε(x)| ≤ Cε−2+β

| f |β if β ∈ (0, 1],

and

|∂2
kl f ε(x)| ≤ Cε−2+2

| f |2 = C | f |2 if β = 2.

Similarly, if 1 < β < 2,

∂k f ε(x) =

∫
ε−dw

 y

ε


∂k f (x − y)dy

=

∫
ε−dw


x − y

ε


∂k f (y)dy

and

∂2
kl f ε(x) = ε−1

∫
ε−d∂lw

 y

ε


∂k f (x − y)dy

= ε−1
∫

∂lw(y)[∂k f (x − εy) − ∂k f (x)]dy.
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Hence,

|∂2
kl f ε(x)| ≤ Cε−1εβ−1

| f |β .

To prove (40), apply (39) and the interpolation theorem. Suppose that β ∈ (0, 1]. Consider an
operator on Cβ defined by T ε( f ) = f ε. According to (39), T ε

: Cβ(Rd) → Ck(Rd), k = 1, 2,
is bounded,

|T ε( f )|k ≤ Cε−k+β
| f |β , k = 1, 2, f ∈ Cβ(Rd).

By Theorem 6.4.5 in [1], T ε
: Cβ(Rd) → Cα(Rd) is bounded and

|T ε( f )|α ≤ Cε(−1+β)(2−α)ε(−2+β)(α−1)
| f |β = Cε−α+β

| f |β , f ∈ Cβ(Rd).

If β ∈ (1, α), ∂α−1
∇ f ε

= ∂α−1 (∇ f )ε and by (38),

|∂α−1
∇ f ε(x)| = |∂α−1 (∇ f )ε (x)| ≤ Cε1−α+(β−1)

|∇ f |β−1 ≤ Cε−α+β
| f |β ,

(41) follows. �

Corollary 18. Assume that ε ∈ (0, 1), a(x) is bounded, and∫ 
|y|

α
∧ 1


π(dy) < ∞.

Then there exists a constant C such that for all z, x ∈ Rd , f ∈ Cβ(Rd),

|Bz f ε(x)| ≤ Cε−α+β
| f |β .

Proof. If β < α < 1, by Lemma 11,

f ε(x + y) − f ε(x) =

∫
k(α)(y, y′)∂α f ε(x − y′)dy′,

and by (38),

| f ε(x + y) − f ε(x)| ≤ Cε−α+β
| f |β(|y|

α
∧ 1), x, y ∈ Rd

and

| f ε(x + G(x)y) − f ε(x)| ≤ Cε−α+β
| f |β(|G(x)y|

α
∧ 1)

≤ Cε−α+β
| f |β


1{|y|≤1}|G(x)y|

α
+ 1{|y|>1}(|G(x)y|

α
∧ 1)


.

If β < α = 1, by Lemma 17(ii) and (39),

| f ε(x + y) − f ε(x)| ≤ C sup
x

[| f (x)| + |∇ f ε(x)|](|y| ∧ 1)

≤ Cε−1+β
| f |β(|y| ∧ 1), x, y ∈ Rd

and

| f ε(x + G(x)y) − f ε(x)| ≤ Cε−1+β
| f |β(|G(x)y| ∧ 1)

≤ Cε−1+β
| f |β [1|y|≤1|G(x)y| + 1|y|>1(|G(x)y| ∧ 1)].

Assume that α ∈ (1, 2); then for x, y ∈ Rd ,

f ε(x + y) − f ε(x) − (∇ f ε(x), y) =

∫ 1

0


∇ f ε(x + sy) − ∇ f ε(x), y


ds. (44)
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If β ∈ (1, α), by Lemmas 11 and 17 and (40), for x, y′
∈ Rd ,

|∇ f ε(x + y′) − ∇ f ε(x)| ≤ C sup
x

|∂α−1
∇ f ε(x)| |y′

|
α−1

≤ Cε−α+β
| f |β |y′

|
α−1. (45)

If β > α > 1, then directly

|∇ f ε(x + y′) − ∇ f ε(x)| ≤ C | f |β |y′
|
α−1.

If β ∈ (0, 1], α ∈ (1, 2), then by (41),

|∇ f ε(x + y′) − ∇ f ε(x)| ≤ Cε−α+β
|y′

|
α−1

| f |β . (46)

By applying (45), (46) to (44), it follows for x, y ∈ Rd that

| f ε(x + y) − f ε(x) − (∇ f ε(x), y)| ≤ Cε−α+β
|y|

α
| f |β .

Hence, for |y| ≤ 1,

| f ε(x + G(x)y) − f ε(x) − (∇ f ε(x), G(x)y)| ≤ Cε−α+β
|G(x)y|

α
| f |β .

Also, for α > 1, β ∈ (1, α), |y| > 1,

| f ε(x + G(x)y) − f ε(x)| ≤ C | f |β


|G(x)y| ∧ 1


.

Therefore, the statement follows by the assumptions and Lemma 17. �

4.2. Proof of Lemma 15

If β < α, define f ε by (36) for ε ∈ (0, 1) and apply Itô’s formula (see Remark 6): for
s ∈ [0, T ],

E[ f ε(Ys) − f ε(Yτis
)|Fτis

] = E

∫ s

τis


AYτis

f ε(Yr ) + BYτis
f ε(Yr )


dr |Fτis


.

Hence, by Lemma 17 and Corollary 18, for ε ∈ (0, 1),

|E[ f (Ys) − f (Yτis
)|Fτis

]| ≤ |E[( f − f ε)(Ys) − ( f − f ε)(Yτis
)|Fτis

]|

+ |E[ f ε(Ys) − f ε(Yτis
)|Fτis

]|

≤ C(εβ
+ δε−α+β)| f |β ,

with a constant C independent of ε, f . Minimizing εβ
+ δε−α+β in ε ∈ (0, 1), we obtain

|E[ f (Ys) − f (Yτis
)|Fτis

]| ≤ Cδ
β
α | f |β .

If β > α, apply Itô’s formula directly (see Remark 6):

E[ f (Ys) − f (Yτis
)|Fτis

] = E

∫ s

τis


A(α)

Yτis
f (Yr ) + B(α)

Yτis
f (Yr )


dr |Fτis


.

Hence, by Lemmas 12 and 17,

|E[ f (Ys) − f (Yτis
)|Fτis

]| ≤ Cδ| f |β .

The statement of Lemma 15 follows.
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4.3. Proof of Theorem 3

Let v ∈ Cα+β(H) be the unique solution to (6) (see Corollary 9). By Itô’s formula (see
Remark 6) and (6),

E[v(0, X0)] = E[v(T, XT )] − E

∫ T

0


∂tv(s, Xs) + AXs v(s, Xs) + BXs v(s, Xs)


ds



= E


g(XT ) −

∫ T

0
f (Xs)ds


and

E[v(0, X0)] = E[v(0, Y0)]. (47)

By Proposition 13, Corollary 9, Remark 14, and Lemma 12,

|Azv(s, ·)|β + |Bzv(s, ·)|β ≤ C |v|α+β ≤ C |g|α+β , (48)

|∂tv(s, ·)|β ≤ C |g|α+β , s ∈ [0, T ].

Then, by Itô’s formula (Remark 6) and Corollary 9, with (47) and (48), it follows that

E[g(YT )] − E[g(XT )] − E

∫ T

0
f (Yτis

)ds


+ E

∫ T

0
f (Xs)ds



= E[v(T, YT )] − E[v(0, Y0)] − E

∫ T

0
f (Yτis

)ds


+ E

∫ T

0
f (Xs)ds



= E

∫ T

0


∂tv(s, Ys) − ∂tv(s, Yτis

)

+

AYτis

v(s, Ys) − AYτis
v(s, Yτis

)


+

BYτis

v(s, Ys) − BYτis
v(s, Yτis

)


ds


.

Hence, by (48) and Lemma 15, there exists a constant C independent of g such that

|E[g(YT )] − E[g(XT )]| ≤ Cδκ(α,β)
|g|α+β .

The statement of Theorem 3 follows.

5. Conclusion

The paper studies weak Euler approximation of SDEs driven by Lévy processes. The
dependence of the rate of convergence on the regularity of coefficients and driving processes
is investigated under the assumption of β-Hölder continuity of the coefficients. It is assumed
that the main term of the SDE is driven by a spherically symmetric α-stable process and that the
tail of the Lévy measure of the lower order term has a µ-order finite moment (µ ∈ (0, 3)). The
resulting rate depends on β, α and µ. In order to estimate the rate of convergence, the existence
of a unique solution to the corresponding backward Kolmogorov equation in Hölder space is
first proved. The assumptions on the regularity of coefficients and test functions are different
than those in the existing literature.
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One possible improvement could be to consider the asymptotics of the tails at infinity instead
of the tail moment µ. Besides this, the stochastic differential equations considered so far are
associated with nondegenerate Lévy operators. A further step could be to study the case with
degenerate operators. That is, consider Eq. (1) without assuming det b ≠ 0. For example, suppose
that α ∈ [1, 2] and β ∈ (α, 2α]. Assume that the coefficients are in Cβ and∫

|y|≤1
|y|

αdπ +

∫
|y|>1

|y|
2αdπ < ∞.

In this case, a plausible convergence rate could be κ =
β
α

− 1. With det b = 0 being allowed, a
higher regularity of coefficients and lighter tails of π would be required.
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