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Abstract

For Gaussian random fields defined as additive processes based on standard Brownian motions and
Brownian bridges, we find their Karhunen–Loève expansions and make connections with related mean
centered processes in distribution. Moreover, Pythagorean type distribution identities are established for
additive Brownian motions and Brownian bridges. As applications, the corresponding Laplace transform
and small deviation estimates are given.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Let X j (t), 1 ≤ j ≤ d , be independent real-valued stochastic processes with index set E on
the same probability space. Define the associated (real-valued) additive process (field)

X(t) = X(t1, . . . , td) =

d
j=1

X j (t j ), t = (t1, . . . , td) ∈ Ed . (1.1)

There are various motivations for the study of the additive process X(t), t ∈ Ed , and it has been
actively investigated recently from different points of view. First of all, additive processes play a
role in the study of other more interesting multiparameter processes. For example, the Brownian
sheet (arguably the most fundamental multiparameter Gaussian process) is well-approximated
by additive Brownian motion locally and with time suitable rescaled; see [10,11,8,9]. In
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multiparameter potential theory, additive processes are connected with a natural class of energy
forms and their corresponding capacities, and thus provide useful links to the study of fractal
geometry of the associated processes; see [18,22,23,19–21] for detailed discussion and the bibli-
ography for further works in this area. Additive processes also arise in the theory of intersections
and self-intersections of Brownian processes; see [17,5,6]. From the functional analytic point
of view, spectral asymptotics for the associated compact self-adjoint operators of the additive
Gaussian process are considered by Karol et al. [16]. Moreover, recent progress has shown that
additive processes are more amenable to analysis, as we will also see in this paper.

The main objective of this paper is the study of Karhunen–Loève expansion for additive
Brownian motion

W(t) =W(t1, . . . , td) =

d
j=1

W j (t j ), t = (t1, . . . , td) ∈ [0, 1]d (1.2)

and the additive Brownian bridge

B(t) = B(t1, . . . , td) =

d
j=1

B j (t j ), t = (t1, . . . , td) ∈ [0, 1]d (1.3)

where Wi (t) and Bi (t) are independent standard Brownian motions and Brownian bridges,
respectively, throughout this paper. We also consider a more general case of additive mixtures
of Brownian motion and the Brownian bridge; see (3.1). Note that both additive Brownian
motion W and additive Brownian bridge B are Gaussian fields on [0, 1]d . The Karhunen–Loève
expansions of Gaussian fields are of significant interest in probability and statistics. However,
to our best knowledge, little is known for explicit expansion for non-tensored Gaussian fields
(covariance functions are not of the product form of lower dimensional covariance functions).
Thus it is natural to exam the additive Gaussian processes in order to gain insights on explicit
Karhunen–Loève expansions and relevant consequences.

Before we state our results based on the Karhunen–Loève expansions developed in Section 3,
we introduce the so called mean centered Brownian motion W and the mean centered Brownian
bridge B on interval [0, 1] defined by

W (t) = W (t)−
 1

0
W (t)dt, 0 ≤ t ≤ 1, (1.4)

with covariance function EW (t)W (s) = t ∧ s + (t2
+ s2)/2− t − s + 1/3, and

B(t) = B(t)−
 1

0
B(t)dt, 0 ≤ t ≤ 1, (1.5)

with covariance function EB(t)B(s) = t ∧ s − ts + (t2
+ s2
− t − s)/2+ 1/12.

Theorem 1.1. For additive Brownian motion W defined in (1.2), we have
[0,1]d

W2(t)dt law
=

 1

0
W

2
1(t)dt + · · · +

 1

0
W

2
d−1(t)dt +

 1

0
Y 2(t)dt

law
=

 1

0
B2

1 (t)dt + · · · +
 1

0
B2

d−1(t)dt +
 1

0
Y 2(t)dt
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where the mean zero Gaussian process Y is defined by

Y (t) = Wd(t)+ (
√

d − 1)

 1

0
Wd(s)ds, 0 ≤ t ≤ 1 (1.6)

with covariance function EY (t)Y (s) = t ∧ s− ts− (
√

d−1)(t2
+ s2
− t− s)/2+ (

√
d−1)2/12.

The process can also be replaced by Wd(t) − (
√

d + 1)
 1

0 Wd(t)dt . This follows from the
simple observation as following 1

0
(X (t)+ (b − 1)

 1

0
X (s)ds)2dt =

 1

0
(X (t)− (b + 1)

 1

0
X (s)ds)2dt

=

 1

0
X2(t)dt + (b2

− 1)

 1

0
X (t)dt

2

,

for any process X , and for any b ∈ R.
The process can also be replaced by Wd(t)+ (±

√
d − 1)tWd(1) which can be seen from the

stochastic Fubini’s theorem. See [15]. More precisely, for any C1 function f : [0, 1] → R, 1

0


W (t)−

 1

0
f ′(s)W (s)ds

2

dt
law
=

 1

0
(W (t)− (1− f (1)+ f (t))W (1))2 dt

law
=

 1

0
(W (t)− ( f (1− t)− f (1))W (1))2 dt.

In particular, for a ∈ R, take f (t) = at , we obtain 1

0
(W (t)− atW (1))2dt

law
=

 1

0
(W (t)− a

 1

0
W (s)ds)2dt.

The two Gaussian processes

Y±b(t) = W (t)+ (±b − 1)

 1

0
W (s)ds (1.7)

are the same under the L2-norm, but the two are not the same Gaussian process for b ≠ 0 since

E Y±b(t)Y±b(s) = t ∧ s + (1∓ b)(t2/2+ s2/2− t − s)+ (1∓ b)2/3. (1.8)

Unlike Y±b, the two Gaussian processes W (t) + (±b − 1)tW (1) are the same process since
for each b ∈ R

{W (t)− (b + 1)tW (1) : 0 ≤ t ≤ 1}
law
= {W (t)+ (b − 1)tW (1) : 0 ≤ t ≤ 1}

law
= {B(t)± btW (1) : 0 ≤ t ≤ 1} (1.9)

where W (t) is a standard Brownian motion, and the Brownian bridge B(t) is independent of
W (1). One can easily check (1.9) by computing covariance for each of the Gaussian processes
involved or using the well known representation between a Brownian motion and a Brownian
bridge, B(t) = W (t)− tW (1), 0 ≤ t ≤ 1, independent of W (1).
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Theorem 1.2. For additive Brownian bridge B defined in (1.3), we have
[0,1]d

B2(t)dt law
=

 1

0
B

2
1(t)dt + · · · +

 1

0
B

2
d−1(t)dt +

 1

0
Z2(t)dt

where the mean zero Gaussian process Z is defined by

Z(t) = Bd(t)+ (
√

d − 1)

 1

0
Bd(s)ds, 0 ≤ t ≤ 1 (1.10)

with covariance function EZ(t)Z(s) = t ∧ s− ts− (
√

d−1)(t2
+ s2
− t− s)/2+ (

√
d−1)2/12.

Similar to the remark after Theorem 1.1, the process Z(t) in (1.10) can be replaced by
Bd(t)− (

√
d + 1)

 1
0 Bd(s)ds. For each b ∈ R, let us denote Z±b as the Gaussian process

Z±b(t) := B(t)+ (±b − 1)

 1

0
B(s)ds, 0 ≤ t ≤ 1, (1.11)

with the covariance function

E Z±b(t)Z±b(s) = t ∧ s − ts + (1∓ b)(t2
+ s2
− t − s)/2+ (1∓ b)2/12. (1.12)

It is worth pointing out that both Theorems 1.1 and 1.2 are Pythagorean type theorems (sums
of independent terms involving integrated squares) and it is natural to looking for direct proofs.
However, it is not clear to us at this time why this is the case. One can easily rewrite for any
additive process defined in (1.1),

[0,1]d
X2(t)dt =

d−1
i=1

 1

0
X

2
i (t)dt +

 1

0


Xd(t)+

d−1
i=1

 1

0
X i (t)dt

2

dt (1.13)

where X i (t) = X i (t)−
 1

0 X i (t)dt is the associated mean centered process. However, the process

Xd(t) +
d−1

i=1

 1
0 X i (t)dt in the last term is not independent of the other terms. And so it is

somewhat surprising that we indeed have the distribution identities in Theorems 1.1 and 1.2. Of
course, one could try the well developed stochastic Fubini approach in [14], but we seem missing
some ingredients; see Section 3 for more detailed discussion.

The remaining of the paper is organized as follows. Section 2 contains a short overview
of Karhunen–Loève expansions, including some well-known ones such as the mean centered
Brownian motion and Brownian bridge. Various distribution identities related to them are also
discussed. We then provide KL expansions for processes Y (t) and Z(t) defined in (1.6) and
(1.10). In Section 3, we obtain Karhunen–Loève expansions for additive processes associated
with Brownian motions and Brownian bridges. The proof we present is much simpler than our
original one and somehow it is strictly based on one dimensional structure. Section 4 establishes,
as an application of Karhunen–Loève expansion, the small deviation estimates for the additive
processes discussed.

2. The KL expansions for Y and Z in (1.6)–(1.10)

We start with a short overview of the Karhunen–Loève expansions and various known results
needed including the mean centered Brownian motion and Brownian bridge and their associated
distribution identities.
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Let {X (t)} denote a centered Gaussian processes defined on [0, 1]d with d ≥ 1. For
convenience, we set t = (t1, . . . , td) ∈ Rd and s = (s1, . . . , sd) ∈ Rd , and denote the covariance
function of X by

K (t, s) = E(X (t)X (s)), for t, s ∈ [0, 1]d ,

which is a positive definite function. Assuming K (t, s) is continuous on [0, 1]d × [0, 1]d , then
by Mercer’s theorem,

K (t, s) =

i≥1

λi ei (t)ei (s) (2.1)

where {λi , i ≥ 1} and {ei (t), i ≥ 1} are the set of eigenvalues and normalized eigenvectors of
the integral operator corresponding to the covariance function in the sense of

λ f (t) =

[0,1]d

K (t, s) f (s)ds, t ∈ [0, 1]d . (2.2)

Note that λi ≥ 0 and the convergence in (2.1) is absolute and uniform. The well-known
Karhunen–Loève (KL) expansion for Gaussian process X (t) on [0, 1]d is

X (t) =

i≥1

ξi


λi ei (t),

where {ξi , i ≥ 1} is a sequence of i.i.d. standard normal random variables. Note that {ei (t), i ≥ 1}
forms an orthogonal base in L2([0, 1]d) and thus a natural consequence of the KL expansion is
the distributional identity

[0,1]d
X2(t)dt law

=


i≥1

λiξ
2
i . (2.3)

Karhunen–Loève expansion of a Gaussian process is a favor subject of study in probability and
statistics, and plays important role in various applications. For d = 1, the KL expansions have
been computed explicitly for many Gaussian processes related to Brownian motion or Brownian
bridge; see for example, [1–3,12,13] and the references cited therein. For the mean centered
Brownian motion W (t) defined in (1.4), we know from [3] 1

0
W

2
(t)dt

law
=

 1

0
B2(t)dt

law
=


i≥1

1

π2i2 ξ2
i .

For the mean centered Brownian bridge B(t) defined in (1.5), we know from [30,28] 1

0
B

2
(t)dt

law
=

1
4

 1

0
B2

1 (t)dt +
 1

0
B2

2 (t)dt


law
=


i≥1

1

4π2i2 ξ2
1,i +


i≥1

1

4π2i2 ξ2
2,i

where an elementary explanation of the first identity in law is given by Shi and Yor [27].
Pycke [26] gives a short proof based on the decomposition of an arbitrary function and the
stochastic Fubini’s theorem.
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The KL expansion for d ≥ 2 is much harder in general, unless we are dealing with the so-
called tensored Gaussian fields with covariance function

K (t, s) =
d

j=1

K j (t j , s j ),

where K j (t, s) are covariance functions on [0, 1] × [0, 1] with known KL expansions. More
precisely, assuming

K j (t, s) =

i≥1

λ
( j)
i e( j)

i (t)e( j)
i (s), 1 ≤ j ≤ d,

we have the representation

K (t, s) =


i1≥1,...,id≥1

d
j=1

λ
( j)
i j

e( j)
i j

(t j )e
( j)
i j

(s j ),

and the KL expansion

X (t) =


i1≥1,...,id≥1

ξ(i1,...,id )

d
j=1


λ

( j)
i j

e( j)
i j

(t j ),

where {ξ(i1,...,id )} is a sequence of d-index i.i.d. N (0, 1) random variables. Thus we have the
distributional identity

[0,1]d
X2(t)dt law

=


i1≥1,...,id≥1

ξ2
(i1,...,id )

d
j=1

λ
( j)
i j

.

For non-tensored Gaussian fields (covariance functions are not of the product form of lower
dimensional covariance functions), very little is known for explicit KL expansion. As far as we
know, the additive Gaussian processes we considered in this paper are the first family of nontrivial
examples.

Next we consider the KL expansions for Y (t) and Z(t) in (1.6), (1.10) and their extensions in
(1.7) and (1.11).

Proposition 2.1. Let Yb(t) be defined by (1.7) with covariance function (1.8), and let the process
Ỹb(t) be defined by

Ỹb(t) = W (t)+ (b − 1)tW (1), 0 ≤ t ≤ 1.

with covariance function

E Ỹb(t)Ỹb(s) = t ∧ s + (b2
− 1)ts.

Then  1

0
Y 2

b (t)dt
law
=

 1

0
Ỹ 2

b (t)
law
=


i≥1

λiξ
2
i (2.4)

where ξi are i.i.d standard normal r.v’s and the eigenvalues λi are solutions of the equation

(b2
− 1)
√

λ sin(1/
√

λ)− b2 cos(1/
√

λ) = 0. (2.5)
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In addition, we have

E exp


−

θ2

2

 1

0
Y 2

b (t)dt


=


b2 cosh θ − (b2

− 1)θ−1 sinh θ
−1/2

. (2.6)

Proof. For the covariance function (1.8), we need to compute the integral equation

λ f (t) =
 1

0
(t ∧ s + (1− b)(t2/2+ s2/2− t − s)+ (1− b)2/3) f (s)ds, 0 ≤ t ≤ 1.

Taking derivatives, we obtain

λ f ′(t) =
 1

t
f (s)ds + (1− b)(t − 1)

 1

0
f (s)ds,

λ f ′′(t) = − f (t)+ (1− b)

 1

0
f (s)ds.

Then the general solutions are

f (t) = c1 cos(t/
√

λ)+ c2 sin(t/
√

λ)+ c3 (2.7)

where c1, c2, c3 are constants with c3 = (1 − b)
 1

0 f (s)ds. Substitute (2.7) into the expression
of c3, then we see that

(1− b)
√

λ sin(1/
√

λ)c1 + (1− b)
√

λ(1− cos(1/
√

λ))c2 − bc3 = 0. (2.8)

Notice that

λ f ′(1) = 0,

which implies

(1− b)
√

λ sin(1/
√

λ)c1 + (1− b)
√

λ(1− cos(1/
√

λ))c2 − bc3 = 0. (2.9)

We also have

(1− b)λ f ′(0) = b(1− b)

 1

0
f (s)ds = bc3,

we can see that this is just the linear combination of (2.8) and (2.9).
Thus we need one more boundary condition. Note that

λ f (0) =

 1

0
[(1− b)(s2/2− s)+ (1− b)2/3] f (s)ds, (2.10)

while  1

0
(s2/2− s) f ′′(s)ds =

 1

0
(s2/2− s)d f ′(s)

= − f ′(1)/2−
 1

0
(s − 1) f ′(s)ds

= −

 1

0
(s − 1)d f (s)

= − f (0)+

 1

0
f (s)ds,
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on the other hand, from the differential equation associated with f ′′(t), we see that

λ

 1

0
(s2/2− s) f ′′(s)ds

= −

 1

0
(s2/2− s) f (s)ds + (1− b)

 1

0
(s2/2− s)ds

 1

0
f (s)ds

= −

 1

0
(s2/2− s) f (s)ds −

1− b

3

 1

0
f (s)ds.

From (2.10), and together with the above two equations, we see that

−(1− b)λ f (0)+ (1− b)λ

 1

0
f (s)ds

= −(1− b)

 1

0
(s2/2− s) f (s)ds −

(1− b)2

3

 1

0
f (s)ds

= −λ f (0),

which implies b f (0)+ c3 = 0, i.e.

bc1 + (1+ b)c3 = 0. (2.11)

To find nontrivial ci , we need the determinant of the matrix corresponding to Eqs. (2.8), (2.9)
and (2.11) to be zero. Calculating the determinant, we obtain (2.5).

As we point out, the first identity of (2.4) can be derived by Donati-Martin and Yor [15]. Here
we can also show the identity by KL expansions.

We start with the integral equation

λ f (t) =
 1

0
(t ∧ s + (b2

− 1)ts) f (s)ds, 0 ≤ t ≤ 1.

Taking derivatives, we obtain

λ f ′(t) =
 1

t
f (s)ds + (b2

− 1)

 1

0
s f (s)ds, and λ f ′′(t)+ f (t) = 0 (2.12)

with boundary conditions

f (0) = 0 and (b2
− 1) f (1) = b2 f ′(1).

The general solution for the second equation in (2.12) is

f (t) = c1 cos(t/
√

λ)+ c2 sin(t/
√

λ)

for some constants c1, c2. The boundary condition f (0) = 0 implies c1 = 0, and we need c2 ≠ 0.
From the boundary condition (b2

−1) f (1) = b2 f ′(1), we obtain (2.5). Hence we obtain the first
identity of (2.4).

Equality (2.6) follows from the general fact that

E exp


−

θ2

2

 1

0
Y 2

b (t)dt


= E exp


−

θ2

2

∞
i=1

λiξ
2
i



=

∞
i=1

(1+ λiθ
2)−1/2

= (D(−θ2))−1/2.
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Here from (2.5) the Fredholm determinant D(λ) can be written as

D(λ) = −(b2
− 1)λ−1/2 sin

√
λ+ b2 cos

√
λ, (2.13)

with D(0) = 1; see [29] for a similar argument. In particular, one needs the Taylor expansions
of the sin and cos functions to ensure D(0) = 1.

The Laplace transform (2.6) agrees with the results given by Chan et al. [4] and Donati-Martin
and Yor [15]. �

Note that we have from (1.9) and (2.6)

E exp


−

θ2

2

 1

0
(B(t)+ btW (1))2dt


=


b2 cosh θ − (b2

− 1)θ−1 sinh θ
−1/2

. (2.14)

We can see the above Laplace transform from a different point of view. Since B(t) and W (1) are
independent, by conditioning on W (1), the Laplace transform (2.14) can be obtained from the
following identity observing


∞

−∞
e−x2/2dx =

√
2π .

E exp


−

θ2

2

 1

0
(B(t)+ bt)2dt


=


θ

sinh θ
exp


−

1
2

b2
[θ coth θ − 1]


. (2.15)

Naturally, we can obtain (2.15) by using the formula about the Laplace transform of the quadratic
functional of the Brownian bridge given by Chiang et al. [7]. Here more simply, the expression
(2.15) can be viewed as a direct consequence of the following equality which is known in [24]

E


exp


−

θ2

2

 1

0
W 2(t)dt

 W (1) = b


=


θ

sinh θ
exp


−

1
2

b2
[θ coth θ − 1]


.

Proposition 2.2. Let Zb(t) be defined by (1.11) with covariance function (1.12), then 1

0
Z2

b(t)dt
law
=


i≥1

1

4π2i2 ξ2
1,i +

1
4


i≥1

λiξ
2
2,i

law
=

1
4

 1

0
B2(t)dt +

1
4

 1

0
Y 2

b (t)dt

law
=

1
4

 1

0
B2(t)dt +

1
4

 1

0
Ỹ 2

b (t)dt (2.16)

where ξ1,i , ξ2,i are i.i.d standard normal r.v’s and the eigenvalues λi are solutions of Eq. (2.5).
In addition, we have

E exp


−

θ2

2

 1

0
Z2

b(t)dt


= θ


b2θ sinh θ + 2(b2

− 1)(1− cosh θ)
−1/2

. (2.17)

Proof. For the covariance function (1.12), we need to compute the integral equation

λ f (t) =
 1

0
(t ∧ s − ts + (1− b)(t2

+ s2
− t − s)/2+ (1− b)2/12) f (s)ds,

0 ≤ t ≤ 1. (2.18)
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Taking derivatives, we obtain

λ f ′(t) =
 1

t
f (s)ds −

 1

0
s f (s)ds +

1− b

2
(2t − 1)

 1

0
f (s)ds, (2.19)

λ f ′′(t) = − f (t)+ (1− b)

 1

0
f (s)ds. (2.20)

Then the general solutions are

f (t) = c1 cos(t/
√

λ)+ c2 sin(t/
√

λ)+ c3, (2.21)

where c1, c2, c3 are constants with c3 = (1 − b)
 1

0 f (s)ds. Substitute (2.7) into the expression
of c3, then we see that

(1− b)
√

λ sin(1/
√

λ)c1 + (1− b)
√

λ(1− cos(1/
√

λ))c2 − bc3 = 0. (2.22)

Notice that from (2.18) and (2.19),

λ f (0) =

 1

0
(−(b − 1)(s2

− s)/2+ (b − 1)2/12) f (s)ds;

λ f (1) =

 1

0
(−(b − 1)(s2

− s)/2+ (b − 1)2/12) f (s)ds;

λ f ′(0) =
1+ b

2

 1

0
f (s)ds −

 1

0
s f (s)ds;

λ f ′(1) =
1− b

2

 1

0
f (s)ds −

 1

0
s f (s)ds.

We obtain the boundary condition

f (0) = f (1),

which implies

c1(1− cos(1/
√

λ))− c2 sin(1/
√

λ) = 0. (2.23)

We can also obtain the boundary condition

(1− b)λ( f ′(0)− f ′(1)) = b(1− b)

 1

0
f (s)ds = bc3,

which is equivalent to the condition (2.22). On the other hand, we have

λ


1− b

2
f ′(0)−

1+ b

2
f ′(1)


= b

 1

0
s f (s)ds. (2.24)

Substitute f (s) with (2.21) into the right hand side of (2.24), then we can see that the condition
is a linear combination of (2.22) and (2.23).

So one more condition is still needed. First we can check that 1

0
(s2
− s) f ′′(s)ds =

 1

0
(s2
− s)d f ′(s)

= −

 1

0
(2s − 1) f ′(s)ds
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= −

 1

0
(2s − 1)d f (s)

= −( f (1)+ f (0))+ 2
 1

0
f (s)ds,

on the other hand, from the differential equation associated with f ′′(t), we see that

λ

 1

0
(s2
− s) f ′′(s)ds = −

 1

0
(s2
− s) f (s)ds + (1− b)

 1

0
(s2
− s)ds

 1

0
f (s)ds

= −

 1

0
(s2
− s) f (s)ds −

1− b

6

 1

0
f (s)ds.

From the condition of f (0), and together with the above two equations, we see

−
1− b

2
λ( f (1)+ f (0))+ (1− b)λ

 1

0
f (s)ds

= −
1− b

2

 1

0
(s2
− s) f (s)ds −

(b − 1)2

12

 1

0
f (s)ds

= −λ f (0)+
(b − 1)2

12

 1

0
f (s)ds −

(b − 1)2

12

 1

0
f (s)ds,

which implies

−
1− b

2
( f (0)+ f (1))+ c3 + f (0) = 0;

In other words

(1+ b − (1− b) cos(1/
√

λ))c1 − (1− b) sin(1/
√

λ)c2 + 2(1+ b)c3 = 0. (2.25)

To find nontrivial ci , we need the determinant of the matrix corresponding to Eqs. (2.22),
(2.23) and (2.25) to be zero. Calculating the determinant, we obtain

2(b2
− 1)
√

λ(1− cos(1/
√

λ))− b2 sin(1/
√

λ) = 0

simplifying

sin(1/(2
√

λ))


2(b2
− 1)
√

λ sin(1/(2
√

λ))− b2 cos(1/(2
√

λ))

= 0,

hence we can obtain (2.16).
The Laplace transform follows from similar arguments as Proposition 2.1.
The Laplace transform (2.17) agrees with the results given by Chan et al. [4]. �

At last, let us take a sight into the last term on the right hand side of (1.13). The process
Wd(t) +

d−1
i=1

 1
0 Wi (t)dt is a centered Gaussian process with covariance function t ∧ s +

(d−1)/3. The process Bd(t)+
d−1

i=1

 1
0 Bi (t)dt is a centered Gaussian process with covariance

function t∧s− ts+(d−1)/12. More generally, let Ma(t) denotes the centered Gaussian process
with covariance function t ∧ s + a2, and let Na(t) denotes the centered Gaussian process with
covariance function t ∧ s − ts + a2 for a ∈ R. We give the following results without proof.
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Proposition 2.3. We have 1

0
M2

a (t)dt
law
=


i≥1

λiξ
2
i

where ξi are i.i.d standard normal r.v’s and the eigenvalues λi are solutions of the equation

a2 sin(1/
√

λ)−
√

λ cos(1/
√

λ) = 0. (2.26)

In addition, we have

E exp


−

θ2

2

 1

0
M2

a (t)dt


=


cosh θ + a2θ sinh θ

−1/2
.

Proposition 2.4. We have 1

0
N 2

a (t)dt
law
=


i≥1

1

4π2i2 ξ2
1,i +

1
4


i≥1

λiξ
2
2,i

law
=

1
4

 1

0
B2(t)dt +

1
4

 1

0
M2

2a(t)dt (2.27)

where ξi are i.i.d standard normal r.v’s and the eigenvalues λi are solutions of Eq. (2.26).
In addition, we have

E exp


−

θ2

2

 1

0
N 2

a (t)dt


=


θ−1 sinh θ − 2a2(1− cosh θ)

−1/2
.

3. The KL expansions for mixed additive processes

Consider a more general case of additive mixtures of Brownian motions and Brownian bridges

Xm,d(t) :=
m

i=1

Wi (ti )+
d

i=m+1

Bi (ti ), t = (t1, . . . , td) ∈ [0, 1]d (3.1)

for 0 ≤ m ≤ d . Clearly, we have the additive Brownian motion in (1.2) for m = d and the
additive Brownian bridge in (1.3) for m = 0. The mixed additive process Xm,d is a centered
Gaussian process with the covariance function

K (t, s) =
m

i=1

ti ∧ si +

d
i=m+1

[ti ∧ si − ti si ]. (3.2)

Theorem 3.1. For m ≥ 1, we have the distributional identity
[0,1]d

X2
m,d(t)dt law

=


1≤ j≤m−1


i≥1

1

π2i2 ξ2
j,i +


1≤ j≤2(d−m)


i≥1

1

4π2i2 ξ̃2
j,i +


i≥1

λiξ
∗

i
2
;
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where {ξ j,i , ξ̃ j,i , ξ
∗

i } are independent i.i.d N (0, 1) r.v’s; the eigenvalues λi are solutions of the
equation

(d − 1)
√

λ sin(1/
√

λ)− m cos(1/
√

λ)− (d − m)(1+ cos(1/
√

λ))/2 = 0. (3.3)

While for m = 0 (the additive Brownian bridge), we have the distributional identity in Theo-
rem 1.2.

In addition, we have for 0 ≤ m ≤ d

E exp


−

θ2

2


[0,1]d

X2
m,d (t)dt



=


(sinh θ)m−1(sinh(θ/2))2(d−m)(−(d − 1)θ−1 sinh θ + cosh θ(d + m)/2+ (d − m)/2)

2−2(d−m)θ2d−m−1

−1/2

. (3.4)

Proof. For the covariance function (3.2) of Xm,d , we need to compute the integral equation

λ f (t1, . . . , td) =

 1

0
· · ·

 1

0


m

i=1

ti ∧ si +

d
i=m+1

[ti ∧ si − ti si ]


f (s)ds, 0 ≤ ti ≤ 1.

It is straightforward to claim that the function f has the form:

f (t1, . . . , td) =

d
i=1

fi (ti ).

By differentiating both sides of the integral equation (3.4) with respect to ti , we have for
1 ≤ i ≤ m

λ f ′i (ti ) =
 1

0
· · ·

 1

ti
· · ·

 1

0
f (s1, . . . , sd)ds1 · · · dsd , ; (3.5)

and for m + 1 ≤ i ≤ d ,

λ f ′(ti ) =
 1

0
· · ·

 1

ti
· · ·

 1

0
f (s)ds−

 1

0
· · ·

 1

0
si f (s)ds. (3.6)

Differentiating again with respect to ti in d Eqs. (3.5) and (3.6), we have

λ f ′′i (ti ) = −
 1

0
· · ·

 1

0
f (s1, . . . , si−1, ti , si+1, . . . , sd)ds1 · · · dsi−1dsi+1 · · · dsd

= − fi (ti )−

j≠i

 1

0
f j (s)ds, 1 ≤ i ≤ d.

Then the general solutions for the above equations are

fi (t) = c2i−1 cos(t/
√

λ)+ c2i sin(t/
√

λ)−


1≤ j≠i≤d

 1

0
f j (s)ds, 1 ≤ i ≤ d (3.7)

for some constants ci , 1 ≤ i ≤ 2d .
From the original integral equation (3.4) we have the boundary condition

f1(0)+ · · · + fd(0) = 0. (3.8)
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So if ci = 0 for all 1 ≤ i ≤ 2d, then all the functions fi in (3.7) are constants, which yields
f (t1, . . . , td) =

d
i=1 fi (ti ) ≡ 0. This forces us to find nontrivial ci such that

2d
i=1 c2

i > 0.
From (3.5) and (3.6) we have the boundary conditions

f ′i (1) = 0, 1 ≤ i ≤ m; (3.9)

fi (0) = fi (1), m + 1 ≤ i ≤ d; (3.10)

f ′1(0)− f ′1(1) = · · · = f ′d(0)− f ′d(1). (3.11)

Note that by integrating both sides of (3.7), we have a sequence of conditions which are equiva-
lent to (3.11).

The boundary conditions (3.8)–(3.11) imply

c1 + c3 + · · · + c2d−1 − (d − 1)


c1
√

λ sin(1/
√

λ)− c2
√

λ[cos(1/
√

λ)− 1]

= 0;

(3.12)

−c2i−1 sin(1/
√

λ)+ c2i cos(1/
√

λ) = 0, 1 ≤ i ≤ m; (3.13)

c2i−1(1− cos(1/
√

λ))− c2i sin(1/
√

λ) = 0, m + 1 ≤ i ≤ d; (3.14)

c1 sin(1/
√

λ)− c2[cos(1/
√

λ)− 1] = · · · = c2d−1 sin(1/
√

λ)− c2d [cos(1/
√

λ)− 1].

(3.15)

To find nontrivial ci , 1 ≤ i ≤ 2d, we need the determinant of the following matrix to be zero.



1− (d − 1)
√

λ sin (d − 1)
√

λ(cos−1) 1 0 · · · 1 0 1 0 · · · 1 0

− sin cos 0 0 · · · 0 0 0 0 · · · 0 0

· · ·

0 0 0 0 · · · − sin cos 0 0 · · · 0 0

0 0 0 0 · · · 0 0 cos−1 sin · · · 0 0

· · ·

0 0 0 0 · · · 0 0 0 0 · · · cos−1 sin

sin 1− cos − sin cos−1 · · · 0 0 0 0 · · · 0 0

· · ·

sin 1− cos 0 0 · · · 0 0 0 0 · · · − sin cos−1



.

Let us denote the above matrix as ∆ = (δi, j ). Here for convenience, we write shortly cos (sin)
to mean cos(1/

√
λ) (sin(1/

√
λ)). To obtain det(∆), we expand the matrix by the elements of the

first row through

δk =


δ1,2k−1 δ1,2k

δk+1,2k−1 δk+1,2k


for 1 ≤ k ≤ d. We denote the matrices left as ∆k . From the matrix theory, we know

det(∆) =


(−1)1+(2k−1)+(k+1)+2k det(δk) det(∆k) =


(−1)k+1 det(δk) det(∆k).

For the 2× 2 matrices δk , we see

det(δk) =

cos−(d − 1)
√

λ sin, k = 1;
cos, 2 ≤ k ≤ m;
sin, m + 1 ≤ k ≤ d.
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Now let us study the matrices ∆k . First we see

∆1 =



− sin cos · · · 0 0 0 0 · · · 0 0
· · ·

0 0 · · · − sin cos 0 0 · · · 0 0
0 0 · · · 0 0 cos−1 sin · · · 0 0
· · ·

0 0 · · · 0 0 0 0 · · · cos−1 sin
− sin cos−1 · · · 0 0 0 0 · · · 0 0
· · ·

0 0 · · · 0 0 0 0 · · · − sin cos−1


.

Each row has only two non zero elements, the first (m − 1) rows have the two non zero elements
(− sin, cos), the following (d − m) rows have the two non zero elements (cos−1, sin), and the
last (d − 1) rows have the two non zero elements (− sin, cos−1). More generally, let ∆x,y be
a 2(x + y) × 2(x + y) matrix similar as ∆1, in which the first x rows have the two non zero
elements (− sin, cos), while the following y rows have the two non zero elements (cos−1, sin),
and the last (x + y) rows have the two non zero elements (− sin, cos−1). Notice that

det

− sin cos
− sin cos−1


= sin,

and

det


cos−1 sin
− sin cos−1


= 2− 2 cos,

we obtain the determinant:

det(∆x,y) = sinx (2− 2 cos)y .

In fact, the determinant is actually ±1 times of what we just obtained. Due to the form of the
matrix, the constant ±1 only depends on l + k, thus we can omit the constant in our problem.

For k ≥ 2,

∆k =



− sin cos 0 0 · · · 0 0 0 0 · · · 0 0

· · ·

0 0 0 0 · · · − sin cos 0 0 · · · 0 0

0 0 0 0 · · · 0 0 cos−1 sin · · · 0 0

· · ·

0 0 0 0 · · · 0 0 0 0 · · · cos−1 sin

sin 1− cos − sin cos−1 · · · 0 0 0 0 · · · 0 0

· · ·

sin 1− cos 0 0 · · · 0 0 0 0 · · · 0 0

· · ·

sin 1− cos 0 0 · · · 0 0 0 0 · · · − sin cos−1



.

The first d − 1 rows still have only two non zero elements. It is slightly different for the last
d − 1 rows with ∆1, each row has four non zero elements except the (d − 1 + k − 1) row. All
the last d − 1 rows have the same first two elements (sin, 1 − cos), then let us take elementary
row transformations

rd−1+i ← rd−1+i − rd−1+k−1, for 1 ≤ i ≤ d − 1, i ≠ k − 1.
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rd−1+k−1 ← (−1)rd−1+k−1.

And move the d − 1+ k − 1-th row to the d-th row, which means the original d − 1+ i-th row
now become the new d + i-th row, for 1 ≤ i ≤ k − 2. We see

det(∆k) =


∆m−1,d−m, k = 1;
(−1)(−1)k−2∆m−1,d−m, 2 ≤ k ≤ m;
(−1)(−1)k−2∆m,d−m−1, m + 1 ≤ k ≤ d.

which implies

det(∆k) =


(−1)k+1 sinm−1(2− 2 cos)d−m, 1 ≤ k ≤ m;
(−1)k+1 sinm(2− 2 cos)d−m−1, m + 1 ≤ k ≤ d.

Combining det(δk) and det(∆k), we now see that

det(∆) =


(−1)k+1 det(δk) det(∆k) = (cos−(d − 1)
√

λ sin)(sin)m−1(2− 2 cos)d−m

+ (m − 1) cos(sin)m−1(2− 2 cos)d−m
+ (d − m) sin(sin)m(2− 2 cos)d−m−1

= sinm−1(2− 2 cos)d−m

−(d − 1)

√
λ sin+m cos(1/

√
λ)+ (d − m)(1+ cos)/2


.

Hence the eigenvalues are the solutions of the equation

(sin(1/
√

λ))m−1(1− cos(1/
√

λ))d−m

×


(d − 1)

√
λ sin(1/

√
λ)− m cos(1/

√
λ)− (d − m)(1+ cos(1/

√
λ))/2


= 0. (3.16)

It is remarkable that for m = 0, the form we obtain is

(1− cos(1/
√

λ))d−1

(d − 1)

√
λ(1− cos(1/

√
λ))− d sin(1/

√
λ)/2


= 0,

simplifying

(1− cos(1/
√

λ))d−1 sin(1/(2
√

λ))

(d − 1)

√
λ sin(1/(2

√
λ))− d cos(1/(2

√
λ))/2


= 0,

which is the same as (3.16) if we omit the confusion of (sin(1/
√

λ))−1. Since we cannot claim
an eigenvalue with multiplicity −1, we need to state the case m = 0 separately.

From the equations above, we obtain the distributional identities.
The Laplace transform follows from similar arguments as Proposition 2.1.
Due to the KL expansion for Xm,d (specially, take m = 0 or m = d), the KL expansions for

the Brownian bridge, mean centered Brownian motion, the mean centered Brownian bridge, and
the KL expansions for Y , Z , we can complete the proof of Theorems 1.1 and 1.2. �

4. Applications

In this section, we study the small deviation estimates of the additive process we discussed.
In the small deviation estimates, we choose to provide a less precise description of several

constants involved since they do not play a significant role in applications. We use the notation
K > 0 to denote the constant involved which may change from line to line.

From formula (3.4) of [25], ∀a > −1, there exists a constant K > 0, such that as ε→ 0

P


i≥1

(i + a)−2ξ2
i ≤ επ2


= (1+ o(1))K ε−a exp


−

1
8ε


. (4.1)
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We have the small deviation corresponding to Brownian motion

P

 1

0
W 2(t)dt ≤ ε


= P


i≥1

1

π2(i − 1/2)2 ξ2
i ≤ ε


= (1+ o(1))K ε1/2 exp


−

1
8ε


,

the small deviation corresponding to Brownian bridge (mean centered Brownian motion)

P


i≥1

1

π2i2 ξ2
i ≤ ε


= (1+ o(1))K exp


−

1
8ε


,

and the small deviation corresponding to the mean centered Brownian bridge

P


i≥1

1

4π2i2 ξ2
1,i +


i≥1

1

4π2i2 ξ2
2,i ≤ ε


= (1+ o(1))K ε−1/2 exp


−

1
8ε


.

Now let us first discuss the small deviations of the process Yb(t) = W (t)+ (b−1)
 1

0 W (s)ds

and the process Zb(t) = B(t)+ (b − 1)
 1

0 B(s)ds, for b ∈ R.

Proposition 4.1. For b ≠ 0, there exists some constant K > 0, such that as ε→ 0,

P

 1

0
Y 2

b (t)dt ≤ ε


= (K + o(1))ε1/2 exp


−

1
8ε


.

For b = 0, the process Yb(t) is in fact the mean centered Brownian motion.

Proposition 4.2. For b ≠ 0, there exists some constant K > 0, such that as ε→ 0,

P

 1

0
Z2

b(t)dt ≤ ε


= (K + o(1)) exp


−

1
8ε


.

For b = 0, the process Zb(t) is in fact the mean centered Brownian bridge.

Proof. We only need to show Proposition 4.1. Since the case b = 0 is trivial, we assume b ≠ 0
here. The starting point is Theorem 2 of [25] that we recall here. Given any two sequences ai > 0
and bi > 0 with

i≥1

ai <∞,

i≥1

bi <∞,

i≥1

|1− ai/bi | <∞,

we have, as ε→ 0,

P


i≥1

aiξ
2
i ≤ ε


= (1+ o(1))


i≥1

bi/ai

1/2

P


i≥1

biξ
2
i ≤ ε


.

For our setting, since sin x/x ∼ 0 for large x , the solutions λi of Eq. (2.5) satisfy the approximate
relation

λ
−1/2
i ∼ (i − 1/2)π, (4.2)

for large i .
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We set ai = λi , let bi = l−2
i = (i − 1/2)−2π−2. Clearly, λ

−1/2
i → ∞ as i → ∞. Take

λ
−1/2
i = li + δi for large i , where δi → 0 as i →∞, we have the equality

(b2
− 1)

sin li cos δi + cos li sin δi

li + δi
− b2(cos li cos δi − sin li sin δi ) = 0,

from which we have δi = O(i−1); hence we have


i≥1 |1 − ai/bi | < ∞. Then there exists a
constant K such that as ε→ 0,

P


i≥1

λiξi
2
≤ ε


= (1+ o(1))KP


i≥1

biξ
2
i ≤ ε


= (K + o(1))ε1/2 exp


−

1
8ε


.

We now complete the proof. �

We next give the small deviations corresponding to the processes Ma(t) (the centered Gaus-
sian process with covariance function t ∧ s+a2), and Na(t) (the centered Gaussian process with
covariance function t ∧ s − ts + a2) directly without proof.

Proposition 4.3. For a > 0, there exists some constant K > 0, such that as ε→ 0,

P

 1

0
M2

a (t)dt ≤ ε


= (K + o(1)) exp


−

1
8ε


.

For a = 0, the process Ma(t) is in fact the Brownian motion.

Proposition 4.4. For a > 0, there exists some constant K > 0, such that as ε→ 0,

P

 1

0
N 2

a (t)dt ≤ ε


= (K + o(1))ε−1/2 exp


−

1
8ε


.

For a = 0, the process Na(t) is in fact the Brownian bridge.

At last, we show the small deviation of the mixed additive process Xm,d defined in (3.1) for
0 ≤ m ≤ d .

Proposition 4.5. For 0 ≤ m ≤ d, there exists some constant K > 0 such that as ε→ 0,

P

[0,1]d

X2
m,d(t)dt ≤ ε


= (K + o(1))ε1−(2d−m)/2 exp


−

d2

8ε


.

Proof. To prove the result, we only need to show the case m ≥ 1 since the case m = 0 follows
from similar arguments. The solutions λi of Eq. (3.3) satisfy the approximate relation

λ
−1/2
i ∼


(α + i − 1)π, i = 2k − 1;
(−α + i)π, i = 2k.

(4.3)

for large i , where 1/2 ≤ α ≤ 1 is the value such that (d +m) cos(απ)+ d −m = 0. For m = d ,
we have α = 1/2, while for m = 0, we have α = 1. Following similar arguments we can show
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that there exists a constant K such that as ε→ 0

P


i≥1

λiξi
2
≤ ε


= (1+ o(1))KP

 
i=2k−1

1

(α + i − 1)2π2 ξ2
i

+


i=2k

1

(−α + i)2π2 ξ2
i ≤ ε



= (1+ o(1))KP


1
4


k≥1

1

((α − 2)/2+ k)2π2 ξ2
2k−1

+
1
4


k≥1

1

(−α/2+ k)2π2 ξ2
2k ≤ ε



= (1+ o(1))K ε1/2 exp

−

1
8ε


, (4.4)

the last equality is ensured by Lemma 4.1 and the small deviation (4.1).
Together with the small deviations corresponding to Brownian bridge (mean centered

Brownian motion) and mean centered Brownian bridge, then from Lemma 4.2, we have

P

[0,1]d

X2
m,d(t)dt ≤ ε


= P

 
1≤ j≤m−1


i≥1

1

π2i2 ξ2
j,i +


1≤ j≤2(d−m)


i≥1

1

4π2i2 ξ̃2
j,i +


i≥1

λiξ
∗

i
2
≤ ε


= (1+ o(1))K εa exp(−S2ε−1), (4.5)

where a = 1/2 − (d − m)/2 − ({m − 1 + d − m + 1} − 1)/2 = 1 − (2d − m)/2,
S2
= ((m − 1+ d − m + 1)8−1/2)2

= d2/8, from which we can complete the proof. �

The following lemma which we need is due to Lifshits; see [3].

Lemma 4.1. Let V1, V2 > 0 be two independent random variables with known small deviation
behavior. Namely, assume that

P(V1 ≤ ε) ∼ c1ε
a1 exp(−b1ε

−r ),

and

P(V2 ≤ ε) ∼ c2ε
a2 exp(−b2ε

−r ),

as ε→ 0. Then the sum has the small deviation asymptotic behavior:

P(V1 + V2 ≤ ε) ∼ K εa1+a2−r/2 exp(−Sr+1ε−r ),

where

S = b1/(r+1)

1 + b1/(r+1)

2 and K = c1c2
2πr

r + 1
Sr/2−1/2−a1−a2b(2a1+1)/2(r+1)

1 b(2a2+1)/2(r+1)

2 .

Using induction by n, we have the following result.
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Lemma 4.2. Let V1, . . . , Vn > 0 be n independent random variables with known behavior of
small deviations. Namely, assume that

P(Vi ≤ ε) ∼ ciε
ai exp(−biε

−r ),

as ε→ 0. Then there exists some constant K > 0 such that as ϵ → 0, the sum has the following
small deviation asymptotic behavior:

P(V1 + · · · + Vn ≤ ε) ∼ K εa1+···+an−(n−1)r/2 exp(−Sr+1ε−r ),

where

S = b1/(r+1)

1 + · · · + b1/(r+1)
n .
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