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Abstract

Let X : [0, T] x 2 —> R be a bounded cadlag process with positive jumps defined on the canonical
space of continuous paths (2. We consider the problem of optimal stopping the process X under a nonlinear
expectation operator £ defined as the supremum of expectations over a weakly compact but nondominated
family of probability measures. We introduce the corresponding nonlinear Snell envelope. Our main
objective is to extend the Snell envelope characterization to the present context. Namely, we prove that
the nonlinear Snell envelope is an £-supermartingale, and an £-martingale up to its first hitting time of the
obstacle X. This result is obtained under an additional uniform continuity property of X. We also extend
the result in the context of a random horizon optimal stopping problem.

This result is crucial for the newly developed theory of viscosity solutions of path-dependent PDEs as
introduced in Ekren et al. (2014), in the semilinear case, and extended to the fully nonlinear case in the
accompanying papers (Ekren et al., 0000, 0000).
© 2014 Published by Elsevier B.V.

MSC: 35D40; 35K10; 60H10; 60H30
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1. Introduction

On the canonical space of continuous paths {2, we consider a bounded cadlag process
X :[0,T] x 2 — R, with positive jumps, and satisfying some uniform continuity condition.
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2 L. Ekren et al. / Stochastic Processes and their Applications xx (Xxxx) Xxx—xxx

Let Hy be the first exit time of the canonical process from some convex domain, and H := Hg A fy
for some 79 > 0. This paper focuses on the problem

sup E[X¢aAul, where £[] := sup EP[],

el PeP
7T is the collection of all stopping times, relative to the natural filtration of the canonical process,
and P is a weakly compact non-dominated family of probability measures.

Our main result is the following. Similar to the standard theory of optimal stopping, we
introduce the corresponding nonlinear Snell envelope Y, and we show that the classical Snell
envelope characterization holds true in the present context. More precisely, we prove that the
Snell envelope Y is an £-supermartingale, and an £-martingale up to its first hitting time t* of
the obstacle. Consequently, 7* is an optimal stopping time for our problem of optimal stopping
under nonlinear expectation.

This result is proved by adapting the classical arguments available in the context of the
standard optimal stopping problem under linear expectation. However, such an extension turns
out to be highly technical. The first step is to derive the dynamic programming principle in the
present context, implying the £-supermartingale property of the Snell envelope Y. To establish
the £-martingale property on [0, 7], we need to use some limiting argument for a sequence Y7,
where 7,,’s are stopping times increasing to t*. However, we face one major difficulty related
to the fact that in a nonlinear expectation framework the dominated convergence theorem fails
in general. It was observed in Denis, Hu and Peng [3] that the monotone convergence theorem
holds in this framework if the decreasing sequence of random variables are quasi-continuous.
Therefore, one main contribution of this paper is to construct convenient quasi-continuous
approximations of the sequence Y, . This allows us to apply the arguments in [3] on Y7, , which is
decreasing under expectation (but not pointwise!) due to the supermartingale property. The weak
compactness of the class P is crucial for the limiting arguments.

We note that in an one dimensional Markov model with uniformly non-degenerate diffusion,
Krylov [10] studied a similar optimal stopping problem in the language of stochastic control
(instead of nonlinear expectation). However, his approach relies heavily on the smoothness of
the (deterministic) value function, which we do not have here. Indeed, one of the main technical
difficulties in our situation is to obtain the locally uniform regularity of the value process.

Our interest in this problem is motivated from the recent notion of viscosity solutions of path-
dependent partial differential equations, as developed in [5] and the accompanying papers [6,7].
Our definition is in the spirit of Crandall, Ishii and Lions [2], see also Fleming and Soner [9], but
avoids the difficulties related to the fact that our canonical space fails to be locally compact. The
key point is that the pointwise maximality condition, in the standard theory of viscosity solution,
is replaced by a problem of optimal stopping under nonlinear expectation.

Our previous paper [5] was restricted to the context of semilinear path-dependent partial
differential equations. In this special case, our definition of viscosity solutions can be restricted
to the context where P consists of equivalent measures on the canonical space (and hence P
has dominating measures). Consequently, the Snell envelope characterization of the optimal
stopping problem under nonlinear expectation is available in the existing literature on reflected
backward stochastic differential equations, see e.g. El Karoui et al. [8], Bayraktar, Karatzas and
Yao [1]. However, the extension of our definition to the fully nonlinear case requires to consider
a nondominated family of measures.

The paper is organized as follows. Section 2 introduces the probabilistic framework. Section 3
formulates the problem of optimal stopping under nonlinear expectation, and contains the
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statement of our main results. The proof of the Snell envelope characterization in the deter-
ministic maturity case is reported in Section 4. The more involved case of a random maturity is
addressed in Section 5. Finally, in the Appendix we present some additional results.

2. Nondominated family of measures on the canonical space
2.1. The canonical spaces

Let 2 .= {w e C([0, T], Rd) Two = 0}, the set of continuous paths starting from the origin,
B the canonical process, F = {F;}o<;<r the natural filtration generated by B, Py the Wiener
measure, 7 the set of F-stopping times, and A := [0, T'] x {2. Moreover, for any sub-o-field
G c Fr, let L%G) denote the set of G-measurable random variables, and HO(F) the set of
F-progressively measurable processes. Here and in the sequel, for notational simplicity, we use
0 to denote vectors or matrices with appropriate dimensions whose components are all equal to
0. We define a seminorm on {2 and a pseudometric on A as follows: for any (¢, w), (', »’) € A,

ol = sup logl,  doo((t, @), (¢, &) =1t — 1| + |@ps — || - 2.1)
0<s<t
Then ({2, || - |I7) is a Banach space and (A, doo) is a complete pseudometric space. In fact, the

subspace {(t, w.»;) : (t, w) € A} is a complete metric space under deo.
We next introduce the shifted spaces. Let0 <s <t <T.

— Let 2" == {w € C([t, T1,RY) : & = 0} be the shifted canonical space; B’ the shifted canon-
ical process on £2'; " the shifted filtration generated by B’, IP{, the Wiener measure on 2, 7'
the set of F’-stopping times, and A’ := [z, T] x £2!. Moreover, for any G C F~., Lo(g) and
HO(F?) are the corresponding sets of measurable random variables and processes, respectively.

— Forw € 2% and o’ € 2, define the concatenation path w ®; @’ € 2° by:

(0 ®; &) (r) = w150 (r) + (wr + @)1 7y(r), forallr € [s, T].
—Let0 <s <t <Tandw € ° Forany § € ]LO(J-'}) and X € HO(]FS) on (2°, define the
shifted "¢ € LO(FL) and X"® € HO(F) on £2' by:
(W) = E(0®; ), X)) = X(0®; o), foralle e 2.

2.2. Capacity and nonlinear expectation

A probability measure P on {2 is called a semimartingale measure if the canonical process
B is a semimartingale under P. For every constant L > 0, we denote by P’ the collection of
all continuous semimartingale measures P on {2 whose drift and diffusion characteristics are
bounded by L and +/2L, respectively. To be precise, let 2 = 3 be an enlarged canonical
space, B = (B, A, M) be the canonical processes, and @ = (w, a, m) € (2 be the paths. For any
P € PL, there exists an extension Q on 2 such that:

B =A+ M, Aisabsolutely continuous, M is a martingale,

1 dA
P 1 P2 p._ &0
o] <L, Sw(BH) <L, wherear = —%, Q-as. 2.2)

Similarly, for any ¢ € [0, T'), we may define ’P,L on ',
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Remark 2.1. Let Sff_ denote the set of d x d nonnegative definite matrices.

(i) In Q-a.s. sense, clearly ¥ € LO(F?) and then of € LOFE-M),
(i) We may also have the following equivalent characterization of . Consider the canonical

space 2 := 2% with canonical processes (B, B’). For any P € PL, there exist a probability
measure Q' and o € LO(FB-8' RY), pF ¢ LO(F5, Si) such that

1

P P\2 . .
lo| < L, FU(B)) =L, Qlge =P, Q’lfg = Wiener Mgastre; ,
dB; = o (B, B')dt + B (B)dB], Q-as.

(iii) For any deterministic measurable functions « : [0, T] — R4 and B:10,T] - Si satisfy-
ing x| < L, Lir (,32) < L, there exists unique P € PL such that of = o, ,BP = B, P-as.,
where of ﬂP can be understood in the sense of either (2.2) or (2.3). W

Throughout this paper, we shall consider a family {P;, ¢t € [0, T]} of semimartingale measures
on 27 satisfying:

(P1) there exists some Lq such that, for all t, Py is a weakly compact subset of P,L 0,

(P2) Forany0 <t < T,t € T',and P € P,, the regular conditional probability distribution
P"® € Pr(y) for P-a.e. w € 2.

(P3) Forany0 <s <t <T,PP e P, {E;,i > 1} C F} disjoint, and P e P, the following P is
also in Py:

i=1

o0
P=Pg, [Z P'1g, + Plage, E] (2.4)
Here (2.4) means, for any event E € ). and denoting E"“ = {0’ € ' 1 0 ®, 0’ € E}:

o

PIE] :=EF [Z PE B, (B)} +P[EN (N2, ED].
i=1

We refer to the seminal work of Stroock and Varadhan [18] for the introduction of regular

conditional probability distribution (r.c.p.d. for short). See also Appendix A.1, in particular (A.2)

below for the precise meaning of P%®.

Remark 2.2. (i) The weak compactness of (P1) is crucial for the existence of the optimal
stopping time. As explained in Introduction, the major technical difficulty we face is the
failure of the dominated convergence theorem in our nonlinear expectation framework. To
overcome this, we shall use the regularity of the processes and the weak compactness of the
classes P;. See e.g. Step 2 in Section 4.4.

(i1) The regular conditional probability distribution is a convenient tool for proving the dynamic
programming principle, see e.g. Soner, Touzi, and Zhang [16]. In particular, (P2) is used to
prove one inequality in the dynamic programming principle, see e.g. Step 1 in the proof of
Lemma4.1.

(iii) The concatenation Property (P3) is used to prove the opposite inequality in the dynamic pro-
gramming principle, see e.g. Step 2 in the proof of Lemma 4.1. We remark that this condition
can be weakened by using the more abstract framework in Nutz and van Handel [11]. W
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We first observe that

Lemma 2.3. Forall L > 0, the family {’PZL, t € [0, T} satisfies conditions (P1)—(P3).

The proof is quite straightforward, by using the definition of r.c.p.d. We nevertheless provide a
proof in the Appendix.

The following are some other typical examples of such a family {P;,t € [0, T]}. Their
Properties (P1)—(P3) can be checked similarly.

Example 2.4. Let L, L, L, > 0 be some constants.

Wiener measure Pto = {PB} ={P:af =0, 8" = I}.

Finite variation PF¥ (L) .= {P : |«F| < L, p¥ = 0}.

Drifted Wiener measure P,O’HC(L) ={P: |(xP| <L, ,B]P = Iz}

Relaxed bounds P; (L1, Ly) .= {P: |&F] < L1,0 < ¥ < L, 1,).

Relaxed bounds, Uniformly elliptic PP® (L1, Ly, L) := {P: la®| < Ly, L1; < 8% < Lo1y).
Equivalent martingale measures Pf (L1, Ly, L) == {P € P;(Ly, Ly) : 3 Iyl < L, ol = pFyFY.

We denote by L' (F%., P;) the set of all £ € LO(F}) with suppep, EF[|€]] < oo. The set P;
induces the following capacity and nonlinear expectation:

C/[A] := sup P[A] forA e F., and &[£]:= sup IEP[E]
PeP; PeP;

for & € LY(FL, Py). (2.5)

When ¢t = 0, we shall omit ¢ and abbreviate them as P, C, £. Clearly £ is a G-expectation, in the
sense of Peng [13]. We remark that, when & satisfies certain regularity condition, then & [£"%]
can be viewed as the conditional G-expectation of &, and as a process it is the solution of a
Second Order BSDE, as introduced by Soner, Touzi and Zhang [15].

We remark that the last three families of measures in Example 2.4 are non-dominated, which
are most interesting to us. In particular, in these cases the dominated convergence theorem fails
under the corresponding nonlinear expectation as we see in the following simple example.

Example 2.5. Consider the relaxed bounds P; (L1, L) in Example 2.4 with d = 1. Let

§n 1= Liomyr<1ys

where (B) is the pathwise quadratic variation. Then &, | 0 for all w as n — oo, but &[&,] = 1
foralln > 7~ W

Given a family of probability measures P on {2, abusing the terminology of Denis and
Martini [4], we say that a property holds P-q.s. (quasi-surely) if it holds P-a.s. for all P € P.
Moreover, a random variable & : 2 — R is

e P-quasi-continuous if for any ¢ > 0, there exists a closed set {2, C {2 such that C({2) < ¢
and £ is continuous in {2,
e P-uniformly integrable if £[|&[]1j¢|>py —> 0, as n — o0.

Since P is weakly compact, by Denis, Hu and Peng [3, Lemma 4 and Theorems 22, 28], we have:
Proposition 2.6. (i) Let (2,),>1 be a sequence of open sets with (2, + (2. Then C(£2) | 0.

(i) Let (§,)n>1 be a sequence of P-quasi-continuous and P-uniformly integrable maps from {2

toR.If &, | &, P-q.s. then E[&,] | E[&].

Please cite this article in press as: I. Ekren, et al., Optimal stopping under nonlinear expectation, Stochastic Processes
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6 L. Ekren et al. / Stochastic Processes and their Applications xx (Xxxx) Xxx—xxx
We finally recall the notion of martingales under nonlinear expectation.

Definition 2.7. Let X € HO(F) such that X, € L'(F,, P) for all t € 7. We say that X is a
E-supermartingale (resp. submartingale, martingale) if, for any (r,w) € A and any 7 € 77,
EXL®] < (resp. >, =) X;(w) for P-q.s. w € £2.

We remark that we require the £-supermartingale property holds for stopping times. Under linear
expectation EF, this is equivalent to the P-supermartingale property for deterministic times, due
to the Doob’s optional sampling theorem. However, under nonlinear expectation, they are in
general not equivalent.

3. Optimal stopping under nonlinear expectations
We now fix a process X € H°(F).

Assumption 3.1. X is a bounded cadlag process with positive jumps, and there exists a modulus
of continuity function pg such that for any (¢, ), (/, ") € A:

Xt o) — X, o) < p0<doo((t, o), (7, w’))) whenever < ¢'. G.1)

Remark 3.2. There is some redundancy in the above assumption. Indeed, it is shown in the
Appendix that (3.1) implies that X has left-limits and X;— < X, for all t € (0, T]. Moreover,
the fact that X has only positive jumps is important to ensure that the random times 7* in (3.2),
7%in (3.5), and 7, in (4.7) and (5.15) are F-stopping times. W

We define the nonlinear Snell envelope and the corresponding obstacle first hitting time:

Y, (@) = sup &[XL®], and tF:=inf{t >0:Y, = X,}. (3.2)
teT!
Our first result is the following nonlinear Snell envelope characterization of the deterministic
maturity optimal stopping problem Yj.

Theorem 3.3 (Deterministic Maturity). Under Assumption 3.1, the process Y is an &-
supermartingale on [0, T, Yo+ = Xix, and Y. Ao+ is an E-martingale. Consequently, T* is an
optimal stopping time for the problem Y.

To prove the partial comparison principle for viscosity solutions of path-dependent partial dif-
ferential equations in our accompanying paper [7], we need to consider optimal stopping prob-
lems with random maturity time H € 7 of the form

H:=inf{t >0: B, € O} A 1o, (3.3)

for some 7y € (0, T] and some open convex set O C R4 containing the origin. We shall extend
the previous result to the following stopped process:

X% = X1y + Xu_lyon fors € [0, T]. (3.4)

The corresponding Snell envelope and obstacle first hitting time are denoted:

7@ = sup &[(R*)°], and T =inflr = 0: T = R, (3.5)
teT!

Please cite this article in press as: I. Ekren, et al., Optimal stopping under nonlinear expectation, Stochastic Processes
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Our second main result requires the following additional assumption.

Assumption 3.4. (i) For some L > 0,PfY (L) C P; for all + € [0, T], where Py (L) is
defined in Example 2.4.

(i) Forany 0 <7 <1+48 < T,Pr C Prys in the following sense: for any I’ € P; we have
P € P, s, where P is the probability measure on 2/ such that the P-distribution of B'+?
is equal to the P-distribution of {B;, t<s<T -4}

Remark 3.5. The above assumption is a technical condition used to prove the dynamic
programming principle in Section 5.1 below.

(1) All sets in Example 2.4 satisfy Assumption 3.4(ii), and the relaxed bounds P; (L1, L) sat-
isfies Assumption 3.4(i). We remark that, for the viscosity theory of path-dependent partial
differential equations in our accompanying papers [6,7], we shall use P, (L, v/2L) which
satisfies both (i) and (ii) of Assumption 3.4.

(i) By a little more involved arguments, we may prove the results in Section 5.1 by replacing
Assumption 3.4 (i) with: for P’F defined in Example 2.4,

for some constants L, L1, Lo, P,UE (Li,Ly, L)y CcP; forallt €[0,T], 3.6)

(iii) If P; is uniformly nondegenerate, namely

there exists ¢ > 0 such that ﬂp >cl; forallrand P € P, 3.7

then we shall use (3.6) instead of Assumption 3.4 (i). In this case, under the additional con-
dition that X is uniformly continuous in (¢, w), Y'" is left continuous at H and the arguments
for our main result Theorem 3.6 below can be simplified significantly, see Lemma A.1 and
Remark 5.10 below. W

Theorem 3.6 (Random Maturity). Under Assumptions 3.1 and 3.4, the process YH is an -
supermartingale on [0, H], Y5 = X2, and Y".. is an E-martingale. In particular, T is an
optimal stopping time for the problem Y.

Remark 3.7. The main idea for proving Theorem 3.6 is to show that £ [?;‘l] converges to £ [??Hk],
where T, is defined by (5.15) below and increases to T*. However, we face a major difficulty that
the dominated convergence theorem fails in our nonlinear expectation framework. Notice that Y
is an £-supermartingale and thus Y, are decreasing under expectation (but not pointwise!). We
shall extend the arguments of [3] for the monotone convergence theorem, Proposition 2.6, to our
case. For this purpose, we need to construct certain continuous approximations of the stopping
times 7,, and the requirement that the random maturity H is of the form (3.3) is crucial. We
remark that, in his Markov model, Krylov [10] also considers this type of hitting times. We also
remark that, in a special case, Song [17] proved that H is quasi-continuous. [l

4. Deterministic maturity optimal stopping

We now prove Theorem 3.3. Throughout this section, Assumption 3.1 is always in force, and
we consider the nonlinear Snell envelope Y together with the first obstacle hitting time t*, as
defined in (3.2). Assume | X| < Cop, and without loss of generality that py < 2Cj. It is obvious
that

Y| <Cy, Y>X, and Yr=Xr. 4.1

Please cite this article in press as: I. Ekren, et al., Optimal stopping under nonlinear expectation, Stochastic Processes
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Throughout this section, we shall use the following modulus of continuity function:

A0(8) = po(®) v [ po(65) + 67 ], 42)

and we shall use a generic constant C which depends only on Cy, T, d, and the L in Property
(P1), and it may vary from line to line.

4.1. Dynamic programming principle

Similar to the standard Snell envelope characterization under linear expectation, our first step
is to establish the dynamic programming principle. We start by the case of deterministic times.

Lemma 4.1. For each t, the random variable Y, is uniformly continuous in w, with the modulus
of continuity function po, and satisfies

V(@) = sup & [ X0 eary + Y[V 2| forall0<t < <T.0e 0. (43)
e

Proof. (i) First, for any ¢, any w, ' € 2, and any T € 77, by (3.1) we have
X540 — X5 = | X (¢(B"), 0@ B') — X((B), & & B")|
< po(doo((T(B), 0®; B, (x(BY), /&, BY) ) = po(lls — ).

Since 7 is arbitrary, this proves uniform continuity of ¥; in .
(i) When 1, = T, since Yr = X7 (4.3) coincides with the definition of Y. Without loss of
generality we assume (¢1, w) = (0,0) and ¢ := #, < T. Recall that we omit the subscript (.

Step 1. We first prove “<”. Forany t € 7 and P € P:
EP [X:]= EIP [Xrl{r<t} + E?[Xr]l{rzt}] .

By the definition of the regular conditional probability distribution, we have E?[X,](w) =
]EP"w[XtT’f;] < Y:(w) for P-a.e. w € {t > t}, where the inequality follows from Property (P2) of
the family {P;} that P":® € P;. Then:

E [X:] < EF [Xelr <y + Yilieog] -
By taking the sup over 7 and P, it follows that:
Yo = sup E[X¢] < sup g[Xrl{t<t} + Ytl{tzt}}
teT teT

Step 2. We next prove “>". Fix arbitrary t € 7 and P € P, we shall prove

EF[X:1lr<n + Yilir=n] < Yo 4.4)

Let ¢ > 0, and {E;};>1 be an F;-measurable partition of the event {t > t} € F; such that
lo —®]|; < e forall w,w € E;. For each i, fix an @' € E;, and by the definition of ¥ we have

Y, (@) < EF [X’t’[“’i] +¢& forsome (z/,P) e T" x P,.
By (3.1) and the uniform continuity of Y, proved in (i), we have

V(@) ~ V@) < pole). X5~ X" < pole), forall w € Er.

Ti

Please cite this article in press as: I. Ekren, et al., Optimal stopping under nonlinear expectation, Stochastic Processes
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Thus, for w € E;,
Vi) < Yi(@') + poe) < B [X57 ]+ e + pole) < EF [X5°] + & +2p0(e).  (4.5)

Thanks to Property (P3) of the family {P;}, we may define the following pair (¥, P) € 7 x P:

Ti=1payt+ =g Y 1t (B P=Pg, [Z 1P + 1{,<,}P} :

i>1 i>1

It is obvious that {t < ¢} = {T < t}. Then, by (4.5),

E [ X lran + Yilzn] = EY | Xelpan + ) Y,lE,}
i>1

< E'| Xelpan + ) E7 [Xi’,-']lg,} +& +2p0(e)
i>1

=E | Xelgay + ) XflE,} + &+ 2p0(e)

i>1

= EP[X:] + e +200(e) < Yo+ & + 2p0(e),
which provides (4.4) by sendinge — 0. W

We now derive the regularity of Y in .
Lemma 4.2. Foreachw € 2and0 <t <tp < T,

¥ (@) = Yo @) < Cho(dos (11, @), (12, ) ).

Proof. Denote § = doo((t1, w), (12, w)). If § > %, then clearly |Y;, (0) — Y, ()| < 2Cp <

Cpo(8). So we continue the proof assuming § < %. First, by setting T = #» in Lemma 4.1,
3Y = Yy, (0) — Yy, (@) < Yy, (@) — & [V]
< & [Ytz(w) — Y, (0 ®y Btl)]
< &ylro(doo((2, @), (22, 0 @1, BM)))]

En[po(8 + 1B ls45)]-
On the other hand, by the inequality X < Y, Lemma 4.1, and (3.1), we have

IA

_8Y _<_ Sup gt] I:[Xg’w + pO(doo((ta w®t| Bll)a (th w®t1 Btl)))]l{‘[<t2}
el

+ Yttzlywl{fztz}:l - le(w)

< gt] I:Y[tzl’w - Ytz(a)) + PO(doo((tlv (1)), (t2» a)®l‘1 Btl)))]

Please cite this article in press as: I. Ekren, et al., Optimal stopping under nonlinear expectation, Stochastic Processes
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10 1. Ekren et al. / Stochastic Processes and their Applications xx (Xxxx) Xxx—xxx
<& I:pO(doo((tZ» ), (12, 0 @ BM))) + po(doo (11, @), (12, © ®;, B" )))]

< 26, [p0(8 + 1B Iy +5) ]

Hence

31
1 83
18Y] < 2&,[po(8 + 1B [l1,+5)] < & |:,O0 (5 + 433> + 2C01{”Btl ||,1+s>ia5}] )

Since § + %8% < 8% foré < %, this provides:

1 2 1 2 B
8Y] < po(8%) + Co3E [IB" 12 45] = po8h) + €5738 < Cja(8). M (4.6)

We are now ready to prove the dynamic programming principle for stopping times.

Theorem 4.3. For any (t,w) € Aand t € T', we have

Yi(w) = sup & I:th7w1{f<r} + Yrt’wl{fzﬂ].
TeT!

Consequently, Y is an E-supermartingale on [0, T1].

Proof. First, follow the arguments in Lemma 4.1(ii) Step 1 and note that Property (P2) of the
family {7, } holds for stopping times, one can prove straightforwardly that

Vi) < sup & [XE“N oy + Y0y .
TE

On the other hand, let t; | t such that t; takes only finitely many values. By Lemma 4.1 one

can easily show that Theorem 4.3 holds for 7. Then for any P € P; and ¥ € 7', by denoting
T = [T+ %] A T we have

EP[XI;’mwl{fm«k} + Y,’k’wl{fmzrk}] < Yi(w).

Sending k — 00, by Lemma 4.2 and the dominated convergence theorem (under IP):
EP[XE1 5, z0) + YN0 | = Vi@),

Since the process X is right continuous in #, we obtain by sending m — oo:
Yi(w) > EP[th’wl{fq} + Yrt’wl{fzr}],

which provides the required result by the arbitrariness of Pand 7. W

4.2. Preparation for the €-martingale property

If Yy = X, then t* = 0 and obviously all the statements of Theorem 3.3 hold true. Therefore,
we focus on the non-trivial case Yy > Xj.

We continue following the proof of the Snell envelope characterization in the standard linear
expectation context. Let

1
T, = inf{t >0:Y —X, < —} AT, forn> (Yo— Xo)~ " 4.7)
n

Please cite this article in press as: I. Ekren, et al., Optimal stopping under nonlinear expectation, Stochastic Processes
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Lemma 4.4. The process Y is an E-martingale on [0, t,].

Proof. By the dynamic programming principle of Theorem 4.3,

Yo = sup 5[Xrl{r<r,,} + anl{fzfn}:l'
el

For any ¢ > 0, there exist 7, € 7 and P, € P such that

1
Yo < ]EPE I:th 1{r8<rn} + anl{rgztn}:l +e=< EPS I:Yrg/\t,l - ;1{r5<r,,}i| + ¢, 4.8)

where we used the fact that ¥, — X; > % for t < t,, by the definition of 7,. On the other

hand, it follows from the £-supermartingale property of ¥ in Theorem 4.3 that EP [Y,S MH] <
EYr, Az, ] < Yo, which implies by (4.8) that P¢[t, < 7,] < ne. We then get from (4.8) that:
Yo = E¥*[(Xe, = Yo liry<my) + Yo, | 6 < CPelte < 7l +E[Yy, ] 4+ 6
= g[an] + (Cn + De.

Since ¢ is arbitrary, we obtain Yy < £[Y7, ]. Similarly one can prove Y is an £-submartingale on
[0, 7,]. By the £-supermartingale property of Y established in Theorem 4.3, this implies that ¥
is an £-martingale on [0, 7,]. W

By Lemma 4.2 we have
Yo — ElYer] = €LY, ] - EYe] = CE[ o (oo (. 0, (%, ) . (4.9)

Clearly, 7, /' t*, and pg (doo((rn, w), (%, a)))) \u 0. However, in general the stopping times
7,, T* are not P-quasi-continuous, so we cannot apply Proposition 2.6(ii) to conclude Yy <
E[Y¢+]. To overcome this difficulty, we need to approximate 7,, by continuous random variables.

4.3. Continuous approximation

The following lemma is crucial for us.

Lemmad.5. Let0 <0 < 0 be random variables on 2, with values in a compact interval I C R,
such that for some {2y C {2 and § > 0:

O(w) <) <0() forallwe A and |w—o'|| <S8.

Then for any € > 0, there exists a uniformly continuous function 6:02 — Iandan open subset
(2. C {2 such that

Cl[O)<e and 6—e<0<0+einQ N

Proof. If [ is a single point set, then 6 is a constant and the result is obviously true. Thus
at below we assume the length [/| > 0. Let {w;};j>1 be a dense sequence in {2. Denote
O ={we :||o—-w;| < %} and 2, = U?:] O;. Itis clear that {2, is open and 2, 1 2 as
n — o0. Let f, : [0, 00) — [0, 1] be defined as follows: f,(x) = lfor x € [0, 3], f,(x) = =

n2|1|

Please cite this article in press as: I. Ekren, et al., Optimal stopping under nonlinear expectation, Stochastic Processes
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for x > §, and f, is linear in [%, 8]. Define

On(@) = Gu(@) Y 0(@))gn j (@) where g, (@) = fu(llo — w;)
j=1

-1
n

and ¢, = (Z(p,,,j) .
Jj=1

Then clearly 6, is uniformly continuous and takes values in /. For each w € {2, N {2, the set
o) ={1<j=<n:|w—wj|l <8 #0and ¢,(w) < 1. Then, by our assumption,

On(@) — 0() =¢n(w>< Y 10() = 0@)gn (@) + Y [9(@,»)—5(:»)1%,,-@))

jedn(w) J€dn (@)
1 1
S h@) Y Ulpnj@) < n(@) Y —<-

J¢In(@) J¢n(@)

Similarly one can show that 6 — % < 6, in §2, N (2. Finally, since {2, 1 {2 asn — 00, it follows
from Proposition 2.6(i) that lim, . C[{25]=0. W

4.4. Proof of Theorem 3.3

We proceed in two steps.
Step 1. For each n, let 8, > 0 be such that 3C py(8,) < W
Now for any w and «’ such that ||w — «'||7 < &, by (3.1), the uniform continuity of ¥ in

Lemma 4.1, and the fact that pg < pg, we have

for the constant C in Lemma 4.2.

1 1
Py Sy

(Y = X)) (@) < (¥ = X)) (@) +3Cp0(8,) <

Then 7,(«') < Tpp1(w). Since 3Cpy(5,) < m < m similarly we have 7,_ () <

7, (). We may then apply Lemma 4.5 with 6 = 7,_1,0 = 1,,0 = 7,41, and {2y = 2. Thus,
there exist an open set {2, C {2 and a continuous random variable 7, valued in [0, 7] such that

C[.Q,f] <2™ and T, —27" <% < tyr1 +27" in ).
Step 2. By Lemma 4.4, for each n large, there exists IP,, € P such that
Yo = E[Yy,] < B[y, ] 427"

By Property (P1), P is weakly compact. Then, there exists a subsequence {n;} and P* € P such
that IP,; converges weakly to P*. Now for any n large and any n; > n, note that 7,; > 7,. Since
Y is an £-supermartingale and thus a P, -supermartingale, we have

o P, . P,. Py Py .
Yo=2"" <E™" [Y,nj] <E"i[Y,]| <E"i[Ys | +E"i[|Yz, — Y] (4.10)
By the boundedness of Y in (4.1) and the uniform continuity of ¥ in Lemma 4.2, we have
[Ye, = Yo, = Co(doo((Fas ), (7, )

C o (doo((Fa: @), (7, @) )1, 00,0, + Clox 0

n+1"

IA
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Notice that 7,1 — 2! < 7, < Ty41 + 277" on 2,_1 N 241. Then
¥, = Yol = Cho(doo((Gas ), (Bt =27, 0) )10, 00
+ C o (doo((Fas @), (uet + 2717, 0) )10, 00, + Clos o
< Cho(doo (B, @), (Fr1 = 2' 7", )

+ Co(doo (B @), Gt 2717, @) ) + Clge o

n+1"

+1

Then (4.10) together with the estimate C[{25] < 27" lead to
Yo—27 = B [¥5, ] + CE™ [ 5o (oo (s @), (Bt — 2!, )|
+CE™ [50 (doo((fn, ®), (Fps1 +27171, a))))] +co
Notice that Y and 7,1, T, Ty+1 are continuous. Send j — o0, we obtain
Yo = B [¥s,] + CEY [ 5o (Ao ((Bas @), (Bt 2!, ) )|
+ CE [ (oo (s @), (B =271 ")) | + €277, @.11)

Since ), P*[|fn — 1, > 2_”] <>, C[|fn — 1, > 2_”] <> ,27" <ooand 1, 1 ¥ by the
Borel-Cantelli lemma under P* we see that 7, — 7*, P*-a.s. Send n — oo in (4.11) and apply
the dominated convergence theorem under P*, we obtain

Yo < BV [Yee] < EYerl.
Similarly Yy (w) < 5,[YTZ;“’] for t < t*(w). By the £-supermartingale property of Y established
in Theorem 4.3, this implies that Y is an £-martingale on [0, 7*]. W

5. Random maturity optimal stopping

In tﬁis section, we prove Theorem 3.6. The main idea follows that of Theorem 3.3. However,
since Xy is not continuous in w, the estimates become much more involved.

Throughout this section, let X, H, O, 1, X = S(\H, Y := Y", and T* be as in Theorem 3.6.
Assumptions 3.1 and 3.4 will always be in force. We shall emphasize when the additional
Assumption 3.4 is needed, and we fix the constant L as in Assumption 3.4 (i). Assume |X| < Cy,
and without loss of generality that pg < 2Cp and L < 1. It is clear that

Y| <Co,X <Y, and Yy=Xy= Xu_. 5.1
By (3.1) and the fact that X has positive jumps, one can check straightforwardly that,

X(t,w) — X(1', @) < po(deo((t, ), (¢, @) fort <1, t <H(w), I’ <H@) (52)
except the case t = ' = H(e') < H(w) < 1.

In particular,

X(t,0) — X(t', ®) < po(doo((1, ®), (', ®)))  whenevert <1’ < H(w). (5.3)
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14 1. Ekren et al. / Stochastic Processes and their Applications xx (Xxxx) Xxx—xxx

Moreover, we define

p1®) = @) v [po((LT'D) 53] p2(®) = 1) + 61V [p1(65) + 811, (54

and in this section, the generic constant C may depend on L as well.
5.1. Dynamic programming principle
We start with the regularity in w.

Lemma 5.1. For any t < H(w) A H(o') we have:

1Y (@) — V()] < Cpi(lw — o'|I;).

To motivate our proof, we first follow the arguments in Lemma 4.1(i) and see why it does not
work here. Indeed, note that

Yi(@) = Y,() < sup sup EF|X

- /
X" ]
Tt PeP;

[ r/\H“"_ TAHNY

Since we do not have H"® < H"® | we cannot apply (5.2) to obtain the required estimate.

Proof. Lett € 7" and P € P;. Denote § := %Ha)—a)’ll,, ts == [t +8] At and BY = B§+6 Bfa
for s > t. Set /(B") := [t(B"%) + 8] A o, then T/ € T*. Moreover, by Assumption 3.4 and
Property (P3), we may choose P’ € P; defined as follows: o = %(wt —w)), BY :=0on [z, 15],
and the P'-distribution of B’ is equal to the P-distribution of B'. We claim that

EF (X"

t/\I-I“"] o/ AHE-@

1 :=EP[X' 1 < Cpi(L8). (5.5)

Then EF[X b B Y, (o) < EF[X MH,w] —EF[X’ ] < Cp1(L$), and it follows from the

arbitrariness of P € P, and 7 € 7 that Yl (w) — Y, (o) < Cp1(L8). By exchanging the roles of
o and ', we obtain the required estimate.
It remains to prove (5.5). Denote

/thz)

@, = w10 (s) + [ + o (s — DIy 79(s).

Since r < H(w) A H(w'), we have w;, w, € O. By the convexity of O, this implies that
@, € O fors € [t, t5], and thus H'“ (B') = (H"(B") + 8) A to, P'-a.s. Therefore,

Y[R 1 =B [X (78 An (B, of @ B')|
= BY[R(1r(B™) + 81 A 1 (B%) + 81 A 10, & @, B, )|
= B[R (Ir(B) + 81 A 1 (B") + 8] Ato, & @, BL) |, (5.6)
while

B (XL 0] = B [X(c(B) Ane (B, 08, B') |

Notice that, whenever 7(B?) A H'?(B') = [t(B") + §] A [H"®(B") + 8] A t9, we have
7(B") A H?(B") = 1. This excludes the exceptional case in (5.2). Then it follows from (5.6)
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and (5.2) that
1= E”[0(5+ 1@®: B ey — @ @15 BLg). atesn oo sinnll) |-
Note that, denoting 6 := t(B") A H"?(B"),

(0 ®; B"). ar(BrynntoBry — (@ @5 BI_g) A[r(B)+51a[10 (B )+5110 110
< lo®: B' =& ®; B sl + sup [(w®; B )g1r — (@@ B)g

0<r<é

< [lo =/l ] v [ sup lon+ Bl = a{1] v [ sup lon+ Bl —af, — BLy]

t<s<ts t5<s<to

+ sup [(@®; B)gtr — (0 ®; B )]

0<r<é

<2LS+|B'll;;+ sup |B{— Bi_s|+ sup |Bj,, — Bl

15 <s=<1t9 0<r<é
Since L < 1, we have
P t t t t t
[<E [p0(35 + 1B, + sup |B — B! |+ sup |BY,, — Be|)].
ts <s<tp 0<r<é

If§ > %, then I < 2Cy < Cp1(L$). We then continue assuming § < %, and thus 36 + %8% < S%.

Therefore,
1 L1
1= po6%)+CB(|IB'll, + sup |B—Bis|+ sup |Bf,, — Byl = 5%)
15 <s=<tg 0<r<é

1 _8
< po(83) +C8 sIEP[||B’||2+ sup | By — B{_s|° + sup |Bé+r—Bé|8]

1s<s=<to 0<r<é

1 4 _8 P t t 8
< po(83) 4+ C83 + C573E"| sup |B;— Bi_4|°|.

s <s <to

Setts =s9 <---<s, =tgsuchthatd <s;; 1 —s; <28,i =0,...,n—1.Then

BF[ sup B — Bl =B max swp |BI— B[]

t5<s<to 0<i<n—1g;<s<s;i
n—1
= Y EF[ sup (1B~ BL_sl+ By — B 1]
i=0 S SS=Si+1
n—1
<CD sip—si+8 <cslst =8
i=0

Thus I < po(83) 4+ C83 + C87383 < po(83) + C83 < Cpy(L3), proving (5.5) and hence the
lemma. W

We next show that the dynamic programming principle holds along deterministic times.
Lemma 5.2. Let t; < H(w) and tp € [t1, ty]. We have:

~ - pos
Yy (w) = sup &, [th c:;t1ﬂ>1{rA1{'lv”’<tz} +7Y, wl{rAH’l~‘”2t2}]'

A
e
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Proof. When r, = 1y, the lemma coincides with the definition of Y. Without loss of generality
we assume (1, ) = (0,0) and ¢ := » < 1y. First, follow the arguments in Lemma 4.1(ii) Step 1,
one can easily prove

YO = sup 5[ tanl{zan<r) + Ytl{IAH>t}] 5.7
el

To show that equality holds in the above inequality, fix arbitrary P € P and t € 7 satisfying
T < H (otherwise reset T as T A H), we shall prove

IEIPI:S(\tl{r<t} + ’Y\tl{rzt}] = ’Y\O
Since ?H =X u, this amounts to show that:

EPI:S(\II{I<[}U{H§I} + i;tl{rzt,l-bz}] < Y. (5.8)

We adapt the arguments in Lemma 4.1(ii) Step 2 to the present situation. Fix 0 < § <ty —z. Let
{Ei}i>1 be an F; measurable partition of the event {t > 7, H > t} € F; such that | — ol < Lé
for all w, @ € E;. Fix an @' € E; for each i. By the definition of Y we have

Y(a))<EP[ ]—+—8 for some (¢!, P') € T! x P;. (5.9)

i AHT of

Asin LemmaS 1, wesetts :=t+8 < to, BY = B§+5 B fors > t,and FI(B") .= [t!(B") +
8] Ato. Then ' € 7. Moreover by Assumptron 34 and Property (P3), for each w € E;, we may
define P € P, as follows: o =5 (a)t — wy), ¥ := 0 on [, 15), and the P*-distribution
of B% is equal to the P! -drstrrbutron of B'. By (5.5), we have

EF X ) EPXLe

LN

Then by Lemma 5.1 and (5.9), (5.10) we have

1 < Cpi1(L$). (5.10)

TiAHH@

V(@) < V(@) + Cor(L8) <EF“[X5  1+68+Cpi(LS), forallwe E;.  (5.11)

t/\Htw

We next define:

T = Lz <jupu=<n T + Zlgifi(Bl), andthen {t <t}U{H<t}={T <t} U{H <t}

i>1

Since 7 < H, we see that {tr < 1} U{H <1} = {r <1} U{r = H = r}, and thus it is clear that
T € 7. Moreover, we claim that there exists P € P such that

P=Pon F; and the regular conditional probability distribution (5.12)
g p y

(P)-? =P forP-ae.w € Ej,i > 1,

By-© =P for P-ae.w € {t <1} U{H <1}

Then, by (5.11) we have

Y, (w) < E(P)’"’[ (MH),Q] +8+Cp1(LS), P-ae.we{t>tH>t} (5.13)
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and therefore:

EP[)?rl{Kt}u{ng} + ?;1{rzt,H>t}] < EHB[)A(%AHI{Kz}u{HSr} + )Aff/\nl{rzt,}m}]
+6+ Cp1(LJ)
= EF[Renn] + 8+ Cor(L8) = Vo + 8+ Cor(L),
which implies (5.8) by sending § — 0. Then the reverse inequality of (5.7) follows from the

arbitrariness of P and .
It remains to prove (5.12). For any ¢ > 0 and each i > 1, there exists a partition {E ; j=1}

of E; such that o — «'||; < & for any o, ' € E; Fix an '/ € E; for each (i, j). By Property
(P3) we may define P? € P by:

P =P, [Z > oPpeh gt Pl{m}U{HS,}} .

izl j=1

By Property (P1), P is weakly compact. Then P¢ has a weak limit P € P as ¢ — 0. We now
show that P satisfies all the requirements in (5.12). Indeed, for any partition 0 = 59 < -+ <
Sm =1 < Syl < - < Sy =1ty < Sy41 < -+ < sy = T and any bounded and uniformly
continuous function ¢ : RV*? — R, let & := ¢(By, — By, ..., By, — Bsy_,). Then, denoting
As = Sk41 — Sk, Awyg = wy, — wy,_,, We see that

i, . i,wij i 7
EFE ) = ni(w),  EFT [N = Y (w),
where:

— wy

) = B [o((Aorztzm, &

! (@)

(As)my1<k<m, (Bs—s — Bsk,l—a)M+15k5N>];

i wt — a)ij
=E" |:‘P<(Aa)k)1§k§ma L (Asp)mt1<k<ms (Bs—5 — Bsk_l—(S)M-kafN)]-

8

Let p denote the modulus of continuity function of ¢. Then

B g1~ BRI < pee) forallw € B,

and thus
EY [£]~EF [snm}umq} +y n;'lE,}
i>1
P ]P)i.a)ij - P ;
= |E [Z EF (g7 ]1E;} —E [Z nm;”
i,j>1 i,j>1
il i,
<EF [E™ g1 - BT [g'>']|1E,}
L;l !
< IEP 1. | < .
< [i;lp(e) EJ} < p(e)

Please cite this article in press as: I. Ekren, et al., Optimal stopping under nonlinear expectation, Stochastic Processes
and their Applications (2014), http://dx.doi.org/10.1016/j.spa.2014.04.006

20

21

22

23

27



20

21

22

23

24

25

26

27

28

29

30
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By sending & — 0, we obtain EF[£] = EP[€1(z <nyuiu=r) + X ;=1 ni1E |, which proves (5.12)
by the arbitrariness of . W

We now prove the regularity in the z-variable. Recall the p, defined in (5.4).
Lemma 5.3. Let 0 <1 < H(a)l), 0<n< H(a)z), and t| < tp. Then we have:

@) = Tp@d < C[1+ Jo2(ae (1, 01, 12, 0%) ).

1
d(w}, 0°)

Proof. Without loss of generality we assume f; < f. Also, in view of the uniform continuity in
o of Lemma 5.1, it suffices to prove the lemma in the case ol = 0? = w.
Denote § = doo ((t1, w), (12, ®)) and & := d(wy,, O°). For§ > 1 wehave |Y;, (@)~ Y, ()]

2Cy < Cs‘l,oz (8). So we assume in the rest of this proof that § < %.

IA

First, by Assumption 3.4, we may consider the measure P € P, such that a? =0, ,BJP
0,t € [t1, 2]. Then, by setting T = fy in Lemma 5.2, we see that ¥;, (w) > &, [f’\fz"w] >
EP[Y.}*”] = Y, (@.nr,). Note that H(.x;,) = to > t5. Thus, by Lemma 5.1,

P (@) = 7, (@) = Cp1 (dos (12, @), (12, ) ) = Cp1(8) = Cpa8). (5.14)
Next, for arbitrary t € 71, noting that X < Y we have

I(T) = gtl _321‘1,&) l{r/\Ht' ® <1y} + 1{TAHt| w>t2}] - /Y\tz (Cl))

TAH®

= 511 Xt] 1{‘[<H[1 Ny, + XH’] wl{Htl @<ty H'1- @<} + 1{‘[/\]-[’1 w>t2}] — Yt2 ((1))

IA
gq

_(X_tflaa) _ Xl|,w )1{1<H’1’w/\t2} + Yt| RO} ] . le(w)

H1C AL H'T“Ary

A
£

(R = R0, Wieawrony ]|+ E[ 1T = T @ 1giro-y
+C_ Cy[H" < 1]
By (5.3) and Lemma 5.1 we have
1) = & po(dool(tr, @), 2. 0, BN ]+ CE [ o1 (0 — 0@y, B 1) ]
+CC[IB" |1, = €]
< &, [ P00 + 18" 1) | + €&, [ o1 (6 + 1B 1) | + o', [ 1B I,
< Cll+e 18, [,01 (5 + | B" ||t2)].

Since § < ¢ followmg the proof of (4.6) we have

I(t) < C1+ s*‘][pl(aé) n 5?] < Cl + ¢ " 1p(8).

By the arbitrariness of t and the dynamic programming principle of Theorem 5.4, we obtain
Yt1 (w) — Yzz (w) <C s_lpz (8), and the proof is complete by (5.14). B

Applying Lemmas 5.1-5.3, and following the same arguments as those of Theorem 4.3, we
establish the dynamic programming principle in the present context.
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Theorem 5.4. Let t < H(w) and © € T'. Then
$% >t 5%
Yi(w) = sup & I:Xf/L\UHt.wl{fAH”“’<T} + Yt wl{f/\H’»wzr}]-
TeT!
Consequently, Y is a E-supermartingale on [0, H].
By Lemma 5.3, Y is continuous for ¢ € [0, H). Moreover, since Y isan £-supermartingale, we

see that Yy_ exists. However, Example A.2 below shows that in general ¥ may be discontinuous
at H. This issue is crucial for our purpose, and we will discuss more in Section 5.4 below.

5.2. Continuous approximation of the hitting times

Similar to the proof of Theorem 3.3, we need to apply some limiting arguments. We therefore
assume without loss of generality that Yo > X, o and introduce the stopping times: for any m > 1
and n > (Yo — Xo) L

1 1
Hy = inf{t > 0:d(wy, 09 < —] A <t0— —)’
lm mn (5.15)
T ZZin{fEOIi;;—S(\t = —}~

Here we abuse the notation slightly by using the same notation 7,, as in (4.7). Our main task in
this subsection is to build an approximation of H,, and t, by continuous random variables. This
will be obtained by a repeated use of Lemma 4.5.

We start by a continuous approximation of the sequence (H,;),>1 defined in (5.15).

Lemma 5.5. Forallm > 2:

. 1
() Hp—1(®) < Hp (@) < Hpy1(w), whenever ||o — ||, < ESL
(i) there exists an open subset §}" C §2, and a uniformly continuous A, such that
C[(Qg’)c] <2™ and Hyu_ 1 —2"" <A, <Hpy +27" on 0,

iii) there exist 8,, > 0 such that |, (w) — (@] < 27™ whenever ||w — &' ||z, < 8, and:
0

ClE ) =27™ where O = {w € Q' : d(w, [20']) > ).

Proof. Notice that (ii) is a direct consequence of (i) obtained by applying Lemma 4.5 with

e =27 To prove (i), we observe that for || — &'|l;, < m and ¢ < H,, ('), we have

d(w;, 0°) > d(w], 0O°) ! ! ! !
wy, > d(w,, - > — = = .
! ! mm+1) m mm+1) m+1

This shows that H,, (@) < Hp1(w) whenever o — o'[l;, < m Similarly, Hy,—(w) <
Hy (o) whenever || — ||, < ﬁ, and the inequality (i) follows.

It remains to prove (iii). The first claim follows from the uniform continuity of fi,,. For each
8§ > 0, define hs : [0, 0c0) — [0, 1] as follows:

hs(x) =1 forx <39, hs(x) =0 forx > 24, and hs is linear on [§, 26].  (5.16)
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Then the map @ +—— V¥5(w) = hs(d(w, [{2']°)) is continuous, and V5 | l[gén]c as 8 | 0.
Applying Proposition 2.6(ii) we have

811_1)1%)5[1//3] = 8[1(931)4 = C[(Q(’)")C] <27,
By definition of f?m notice that 1 (e < s, . Then C[(Q(’)")C ] < &y, ], and (iii) holds true
for sufficiently small §,,. W
We next derive a continuous approximation of the sequences
=1, A Hp, (5.17)

where 7, and f,, are defined in (5.15) and Lemma 5.5(ii), respectively.

Lemma 5.6. Forallm > 2,n > (?0 — 5(\0)_1, there exists an open subset (2] C (2 and a
uniformly continuous map t)" such that

1— - A 1— -
m_1_2 m_2 nS rrlnS n+1+2 m+2 n
on (AZ(;” NneY, and C[(Qm c] <27
Proof. Fix m, and recall the modulus of continuity p1 introduced in (5.4). For each n, let 0 <

8t < 8™ such that (pg + Cp1)(8)) where C is the constant in Lemma 5.1. We shall
prove

) — n(n+1) ’

(Ta—1 A Fi) (@) — 217 < (5 A ) (@) < (Tusgt A i) (@) + 217"
whenever w € .QO y o — o, <8 (5.18)

Then the required statement follows from Lemma 4.5 with ¢ = 27".
We shall prove only the right inequality of (5.18). The left one can be proved similarly. Let
w, @ be as in (5.18). First, by Lemma 5.5(iii) we have

o' € and Ay () < Hyp(w)+27". (5.19)
We now prove the right inequality of (5.18) in three cases.
Case 1. if 7,11 () > Hy (@) —27™, then A,, (@) < (Tpy1 A Hp) (@) + 27 and thus the result
is true.

Case 2. If t,41(w) = H(w), then by Lemma 5.5(ii) we have A, (@) < Hpyi1(w) +27™ <
Tpy1 (@) +27", and thus f,, (@) < A,y (0) +27" < 7,41 (w) +2'™. This, together with (5.19),
proves the desired inequality.

Case 3. We now assume 7,1 (@) < Hy, (') —27™ and 1,, 1 (0) < H(w). By Lemma 5.5(ii) we
have 7,41 (@) < Hpy+1(w), and thus 7,41 (@) < H(w'). Then it follows from Lemma 5.1 that

1 1 1
Y= X110 (@) = (¥ = XD, 0)(@) + (00 + Cp1)(8,) < par il h D

That is, 7, (@) < t,+1(w). This, together with (5.19), proves the desired inequality. W

For our final approximation result, we introduce the notations:

- A — — —k A
Ty=T AHy,  OF =100 =23 g =it ol (5.20)
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and
* . on—1 n—1 Hn+1 n+1
Q=0 nar T ingett ool (5.21)

Lemma 5.7. For all n > (?0 — 5(\0)’1 V2,07, 5: are uniformly continuous, and 87 < 7, < 5:
on (2.

Proof. This is a direct combination of Lemmas 5.5 and 5.6.
5.3. Proof of Theorem 3.6
We first prove the £-martingale property under an additional condition.

Lemma 5.8. Let t € 7 such that T < t* and E[Y,_] = E[Y,] (in particular if T < H). Then Y
is an €-martingale on [0, t].

Proof. If ?0 = 5(\0, then T* = 0 and obviously the statement is true. We then assume 170 > )?0,
and prove the lemma in several steps.
Step 1. Let n be sufficiently large so that % < Yo — Xg. Follow the same arguments as that of

Lemma 4.4, one can easily prove:
Y is an E-martingale on [0, 7, ]. (5.22)

Step 2. Recall the sequence of stopping times (7,),>1 introduced in (5.20). By Step 1 we have
?0 = E[f/;n]. Then for any ¢ > 0, there exists P, € P such that ?0 —¢ < EBn [?fn]. Since P
is weakly compact, there exists subsequence {n;} and P* € P such that P, converges weakly
to IP*. Now for any n and n; > n, since Y is a supermartingale under each P, i and (T,)n>1 18
increasing, we have
Yo—e <E™i[V; | <E™[Y:]. (5.23)
J

Our next objective is to send j 7 oo, for fixed n, and use the weak convergence of P/ towards
IP*. To do this, we need to approximate Yz, with continuous random variables. Denote

Y (@) :=h,,( inf d(w,,OC))

0<t<0, ()
with 2, (x) = 1A [+ 3+ DHx — (n +3)]7. (5.24)
Then v, is continuous in w, and
X 1 _
W > 0} C { inf  d(w, 0°) > —} C (O] < Hpua). (5.25)
0=t <7 () n+4

In particular, this implies that ?Q; Y, and ?5* Y, are continuous in w. We now decompose the
right hand-side term of (5.23) into:

—~ Pn. o~ —~~ —~~ o~ o~
Yo—e<E" [[Yg;; + (Yz, = Yo )lgs (W + (1 — ¥)) + (Yz, — Yor) L (pyc -
Note that 67 < 7, < 5: on (2%. Then

To—e <E™ (Vo + sup_ (% = Fap) )] + CCly < 11+ CC[(2)°]

* =k
0,<1<0,
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Send j — oo, we obtain

To—e < B [yuTy | +EV [vn sup (i = Tap| + €Ol < 11+ CCL2A(5.26)

05<t<0,
Step 3. In this step we show that
nmEWWnmm(ﬁ—%ﬂ=1mcwh<u=nmcmmﬂ=a (5.27)
n—oo = n—o00 n—o00

* =k
0y<t<0,

(i) First, by the definition of {2 in (5.21) together with Lemmas 5.5(iii) and 5.6, it follows that
C[(2)] < c27" — Oasn — oo.
(i) Next, notice that

. I _
Wﬁ<U={iﬁ d@hw)<——}cw:>mﬁy
0<1<8 (o) n+3

Moreover, by (5.20) and Lemma 5.7,
O =t 217 =0 o+ 27 < T2 + 227 SHp2 + 277, on 07,
Then

(Y <1} C (27 5)° U{Hup3 < Hypo +2°7"}

1
C (2%, )°U { sup |B; — By, |z—]_
e Hy2<t<H,ip+22" ' e (n+2)(n+3)

Then one can easily see that C[y,, < 1] — O asn — 00,
(iii) Finally, it is clear that 0 — T, 9: T*. Recall that Y?«_ exists. By (5.25), we see that
Yy SUPg: <, < (Y[ YQ:;) — 0, P*-a.s. as n — oo. Then by applying the dominated conver-

gence theorem under P* we obtain the first convergence in (5.27).

Step 4. By the dominated convergence theorem under P* we obtain lim,_, o EP*[wn /Y\Q;«] =
EF [??k,]. This, together with (5.26) and (5.27), implies that

Yo <EY [Vor_]+e.
Note that ¥ is an P*- supermartingale and t < T*, then
Yo <EV[Y._]1+e.

Since ¢ is arbitrary, we obtain ?0 < &[Y. [ —], and thus by the assumption ElY [ =& [?r] we
have Yo <& [Y J. This, together with the fact that Yisaé&- -supermartingale, implies that

Yo = S[YT]. (5.28)
Similarly, one can prove ?,(w) = 5,[?;;?2] for t < 7(w), and thus ?.M is a &-martingale. W

In light of Lemma 5.8, the following result is obviously important for us.

Proposition 5.9. It holds that £ [?'T\s_] =£ [?fﬁ].

We recall again that Yoo = f’\;w whenever 7% < H. So the only possible discontinuity is at H.
The proof of Proposition 5.9 is reported in Section 5.4 below. Let us first show how it allows to
complete the
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Proof of Theorem 3.6. By Lemma 5.8 and Proposition 5.9, Y is an E-martingale on [0, T*].
Moreover, since X7+ = Y7+, then Yy = E[X#+] and thus T* is an optimal stopping time. =~ H

Remark 5.10. Assume Assumption 3.4(ii) and the conditions of Lemma A.1 below hold, by
Remark 3.5(iii) and Lemma A.1 we see that Proposition 5.9 and hence Theorem 3.6 hold. That
is, in this case the Section 5.4 below is not needed. WM

5.4. E-continuity of Y at the random maturity

This subsection is dedicated to the proof of Proposition 5.9. We first reformulate some path-
wise properties established in previous subsections. For that purpose, we introduce the following
additional notation: forany P € P,t € 7,and E € F;

PP, 1, E) = {IP’/ eP:P =P [Pl + ]P’lEc]}, PP, t):=PMP, 1, 2). (529

That is, P’ € P(P, t, E) means P’ = P on F; and (P)>® = P"“ for P-a.e. w € E°.
The first result corresponds to Theorem 5.4.

Lemma5.11. Let P € P, 11,10 € T, and E € Fy,. Assume 11 < 70 < H,and 1y < Hon E.
Then for any ¢ > 0, there exist P, € P(P, 11, E) and 1. € T with values in [11, 12], s.t.

EP[’Y\HIE] < EPSI:[)’(\TEI{T5<Q} + ?‘521{1'5:‘[2}]115] + e.

Proof. Let 7{ be a sequence of stopping times such that ;' | 7 and each z{ takes only finitely
many values. Applying Lemma 5.3 together with the dominated convergence theorem under P,

we see that lim;,_, » I[4]IP7[|ff\r]rr/\,2 — ?fl |] = 0. Fix n such that

= - e
IE]P’[IYt;IM2 - Yy l] =5 (5.30)
Assume tl” takes values {t;,i = 1, ..., m}, and for each i, denote E; := E N {rf’ =t <1n}E

Fi;. By (5.13), there exists 7; € 7 and ]f"l- € P(P, t;) such that 7; > t; on E; and

-~

Y, <E [X;MH] + % P-as. on E;. (5.31)

Here EE" [[]:= IEHBI' [-|F 1 denotes the conditional expectation. Define

m m
=l gy <y + ) TilE;, Pi=Plpeyi<ey + _ Pilk,. (5.32)

i=1 i=1
Then one can check straightforwardly that
Te€7 and 7T>1nAT; (5.33)
andP € P(P, 1o A 7', E) C P(P, 71, E). Moreover, by (5.31) and (5.32),

~ m
EP[erATf'lE] = E |:|:Y121{f2§f1"} + Z YfflE,-:| 1E:|

i=1

5T ~ e
=< EP [[erl{rzftl"} + (Xf/\H + E) 1{r{1<t2}] lE] .
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This, together with (5.30) and (5.33), leads to
Eﬂa[(?n ~ Xiljiar) — ?rzl{fzzz})lE]
<e+ Eﬂa[(ﬁzl{fﬁfiz} + )?fAHl{-ril<-L-2} — )?fl{f<rg} - ?rzl{fzrz})lE]
= e+ B[ (Renn — Po) i corzey e
=c+ EP[(EE;[?‘E/\H] - ?rz)l{rfazgf}lE] <e,

where the last inequality follows from the definition of Y. Then, by setting 7, = T A T2 We prove
the result. M

Next result corresponds to Lemma 5.8.

Lemma 5.12. Let P € P,t € T, and E € F; such that Tt <7T* on E. Then for all ¢ > 0:
EP[IE?,] < EPE[IE?'\*_] +¢& forsomeP, € P(P, 1, E).

Proof. We proceed in three steps.

Step 1. We first assume T = ¢ < T* on E. We shall prove the result following the arguments in
Lemma 5.8. Recall the notations in Section 5.2 and the v, defined in (5.24), and let p,, denote
the modulus of continuity functions of 67, 5:, and V.

Denote 7, :== 0 forn < (?0 — )?0)_1. For any n and § > 0, let {E?’a,i > 1} C Fibea
partition of E N {f,—1 < ¢ < 7,} such that || — &'|; < § for any w, @’ € El”‘S For each

(n, 1), fix @™ = "% € El’“S By Lemma 5.8, /Y\lE."“S is an £-martingale on [¢, T,]. Then
Y, (™) = 5,[?:“:;2 ], and thus there exists IP’:-”S € P, such that
Ty
o~ . WO~ n,i
7 (") < P! [Yf;‘in,i] te (5.34)
T

Note that U _| Ui El.m’a = EN{t < 7,}. Set

n
P = P, [Z Zp;"ﬁlEim,a + IP1E¢-U{IZT"}} e P, ¢, E). (5.35)

m=1i>1

Recall the &5 defined by (5.16). We claim that, for any N > n,

o~ N,§ ~
EF[Y1g] = EF 7 [Y,ve: ¥ale]

< Cné'[pz (5 + pu(8) + 212 (5))] 4 Cpn(8) + 64 C27" + CC(Yn < 1)

+2EPN’5[ sup |7 — ?Q;;Wnl,;] n Cé’[h(;(d(a), (Q,T)“))], (5.36)
0% <s<0,
where 1, (8) = sup |B;, — By, |.

1<51<82<10,52—51=<pn(3)
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Moreover, one can easily find J;-measurable continuous random variables ¢ such that |g;| < 1
and limg_, oo EF[|1g — @k|] = 0. Then

EF (Y151 — EX (Vvgs vngn]
< CnE[2(5+ pa(®) +200(8)) | + Con(®) + & + €27 + CCY < )

+CE sup 1% = Vg lune ]| + CE[hs(d (@, ()| + CEP[11E — gl

—%
*
0,<s<0,

Send § — 0. First note that [ + p,,(8) + 21,(6)] | 0 and hs | 1o}, then by Proposition 2.6(ii)
we have

lim 5[,02 (5 + pu(8) + 21, (3))] —0:

5—0

lim £ (d (. (27)°)) | = C[d(w. (@) = 0] = cLr1 = c27.
Moreover, for each N, by the weak compactness assumption (P1) we see that PV-® has a weak
lli\mit PN e P.1tis straightfogyvard | to check that PN e PP, t, E). Note that the random variables
YNQ;; Y and SUpgs« - g* 1¥s — YQ;; |V @k are continuous. Then

~ N o~
EF[Y gl — EY [Yivgr Vo]
<e+C2" 4+ CCYm < 1)+ CEPN[ sup ¥, — ?Qzlwnwk] + CEP[|1g — el

* —%
03<s=0,

Again by the weak compactness assumption (P1), PV has a weak limit P* € P(P,t, E) as
N — oo. Now send N — 00, by the continuity of the random variables we obtain

EF[Yi1g] — EX (Vv Vaor]
<6+ C2 4 CC <D +HCEF | sup (7, = Tos g | + CEFILE — il

0% <s<0,
Send k — oo and recall that P* = P on F;, we have
EF[Yi1g] — EX [Yver Yin 1]
< e+ C2 "4+ CCWm < 1) + 21E]P’*[ sup |Ys — ?Q;wnlE].

* —%
0y <s<0,

Finally send n — o0, by (5.27) and applying the dominated convergence theorem under P and
P* we have

EF[¥,1g] — EF [Yo 1] <e.
That is, P, := P* satisfies the requirement in the case t =7 < 7" on E.

Step 2. We now prove Claim (5.36). Indeed, for any m < n and any w € E:"’S, by Lemma 5.1
we have

~ m,s
V) — BN [ ]

o~ o~ . o~ . m,8 M~ m,i m,8 M~ m,i ~
= V(@) — V(™) + ¥, (™) — EF: [Y”“’ ]+EP1~ [Yt"” —Yf;f;i]

—t, @Ml —t, @Ml
‘[n ‘[n n
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P ,
ECPI(5)+8+E ! |:|Y, mi —Im|1(Q*)tw’”‘m(Q*)tu}wtw w;lwil
M, . . m,s m,i
+C]P’l'.”’3[[(!2,’f)’*“’ U [(!2,’,‘)”“’]‘] + CEPi [1 — g™ gy 1//,’;“’]. (537)
Note that

o R T - B B O

m,i

IA

B on " e ut@pter] = 2 fieer]

+ P 1@ " e n @]

IA

2P (20K (538)

+P[0 < (0 B (25 < 3]

IA

o[ er ]
LR [h,; (d(w®; B, (Q:)C))]'

Moreover, on (2)"¢"" 0 (2552 0 (Y5 = 0} N (¥4 > 0}, by Lemma 5.7 and (5.25) we
have

t, m,i -1, m,i — t m,i t,(z)m’i_ ¢ -1, 1
@) < < @) < @D < T < @) < HLY,.

Then
St _ yto o™i _ yto
| _L—_nt,wm ) Y t @ | — | (0*)7 Ml Y(Q:)t”“ |
+ .Sup . |/\st’wm‘l - ,\(téz)),:wm,i | + Sup |/Y\St’w - ,Y\(té?;))lw|
@™ <s< @™ - @)@ <s<(@)he
— 7 TR L +2 s EC G
(Qn*)t'me (Q,,)" | (9*)t,w<sg(§*)t,w | s @n" |
+ .Sup . |’Y\j‘t’me - ,Y\(téiu),:wm,i | - Sup |’Y\St’w - ,Y\(té%))IW|
@™ <s< @)™ - @)@ <s<(@)he
Applying Lemma 5.3 we get
Sim m,i St m,i ;
Pt = Vil = Cnoa(doe (@) o™ @0 BY. (0. 0, B))
< Cnpa(5 -+ pa(®) +2 sup B = By vl

@)1 —pn(8)<s=<(O)"“+pn(8)

= Cnpa(8+ pa(®) +218))),
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and, similarly,
At,a)m'[ ’\t,wm'i At’w Stw
sup | s - (9*),#,”1,1' | - sup |Y§‘ - Y(Q,,)“”'
Zn

@™ <s =@ @) 0=s =@

Feo m,i ~ m,i
S . Sup ) |Y;’w - Y&z))nwm,i |
@™t <s<@r™ vt "
o™ Pt S, yit.o
T I el A ER VA 7
(Q;S;)t,m’”v’ \/(Q:)t,mSSS@:)t,me A(@ﬁ)hw Zn
At’wm,i Al,a)m’i Al’wm,i /\tyw
+ sup |Y_s (EZ)t*wm’i | | (@Z)fvwm’i (5:)1‘1(0'

@) A@) e <s= @

< Crpa(8+ pa(®) +21(8) ) + Cp1(8) = Crpa (8 + pa®) +21(5) ).
Then

[Poo = P50] < Cupa (54 pu(® +2m®) +2. sup [T = T2,

f;;'wm,l (Q;,*)WSSS(?Z)"”’ @
Plug this and (5.38) into (5.37), for w € E;""S we obtain
o~ m,s m,s
V) —BR[750] < OB [ (8 4+ 00 0) + 210®) | + Cont®) +

m,s o~ o~
eoui I AR

ONH2=s=(@,)"
+cP [ r]
+ CEF 1= g 4+ CE [y (d (w0 B, (2))]:
Then by (5.35) we have, for any N > n,
EF[Y1z] — EPN’S[?M"IE] - EP"’ [[?t - ?fn]lEﬂ{t<fn}]
< CnE" [ 02(8 4 pu(8) + 21 (®) | + Coa(®) + & + PV 1271
+CceP"’ [1 — wn]

+ 2B sup |7 = Tyglte] + CEF [s(d (o, (2]

* —%
05<s<0,

< Cné‘[pz (6 + pn(8) + 210 (8))] F Con(8) + 64 C27" + CC(Yn < 1)

+2B7 [ sup (¥, = Tyl | + CE[hs(d (o, (2)) . (5.39)

=k
*
0,=s<6,
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Similarly we have
EP"’ [[?zvf,, - ?tvg,’; 1Pn]lE]
< C2 4 CCn < )+ B [[Tivs, = Ty Mo v |

<C2" - CC(W < 1) + 2JEPN'5[ sup |¥y — ?Q;w/nl,;].

05 <s <9

==

This, together with (5.39), implies (5.36).

Step 3. Finally we prove the lemma for general stopping time 7. We follow the arguments in
Lemma 5.11. Let " be a sequence of stopping times such that t” | t and each 7" takes only
finitely many values. By applying the dominated convergence theorem under P, we may fix n
such that

e

EP||Fonner — Telle] < 5.

Assume t”" takes values {t;,i =1, ..., m}, andeor eachi,denote E; = EN{t" =t <T*} €
Fi;. Then {E;, 1 <i < m} form a partition of E := E N{t" < T*}. For each i, by Step 1 there
exists P' € P(P, t;, E;) such that

E¥ [?filEi] = EF [??*—IE:'] + zi

Now define P, := > /L 1]P”IE +P1; € P(P, ", E) C P(P, t, E). Recall that E € F,» and
note that Yw < wa,, thanks to the supermartingale property of Y. Then

EP[?AE] _EP [?/,»_1,;] §+E [ " n B ]—IEPE [??F_l,;]

& ~ ~
= +EP| Pl | - BR[|

m
3 (] - )
i=1

IA

IA

The proof is complete now. W

We need one more lemma.

Lemma 5.13. Let P € P,t € T, and E € F; such that T < Hon E. For any ¢ > 0, there exists
P, € P(P, t, E) such that

1
H§t+zd(a)r,06)+38+ sup |w; — w¢|, Pe-as.onE.

T<t<t+¢

Proof. First, there exists T € 7 such that t < T < t + ¢ and 7T takes only finitely many values
0<t <--- <ty =t9.Denote E; .= EN{T =1 <H} € F;;. Then {E;, 1 <i < n}isa
partition of E N {T < H} and

H<T<t+e& onEN{T=>H]} (5.40)
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For any i, there exists a partition (Ej-)jzl of E; such that |oy —a);il < Leforany o, ' € E;
For each (i, j), fix an @'/ € E’ and a unit vector &/ pointing to the direction from w; to O°.
Now for any w € E‘}, define P/ € P, as follows:

B=0, o= E[w;,] — @ g 1i4e) (1) + La' L1671 (2).
We see that
Hi® — [,i e+ Zd(a);if, 06)] Aty, P"/“-as.on E;

Similar to the proof of (5.12), there exists IP’E' € PP, t,E) C P(]_P’, 7, E) such that the regular
conditional probability distribution P¥*“ = P%J-@ for P-a.e. w € E ‘/ Then

1 1
H<t1+2+ Z[d(w’f’ O)+Le]l <t+3e+ Z[d(wr, 0°) + |, —wril]

IA

1 , )
T+ 3¢+ Z[d(a)r, 0+ sup |y — a),|], Pg-a.s. on Ej

T<t<t+e¢

This, together with (5.40), proves the lemma. W
We are now ready to complete the

Proof of Proposition 5.9. The inequality & [f/}»] < & [f’\?x,] is a direct consequence of the
lc”\ -supermartingale property of Y established in Theorem 5.4. As for the reverse inequality, since
Y is continuous on [0, H) and H, 1 H with H, < H, it suffices to show that, for any P € P and
any ¢ > 0

I, = EP[??«AH,,] — 5[?;&] < Se  for sufficiently large n. 5.41)
Letd >0,n > Lla Sett, =1ty — %, 0 =7* A H,, and PO .= P. We proceed in two steps.
Step 1. Apply Lemma 5.11 with PY, £0 7* and (2, there exist P11 € P(IF’O, 70, {2) and a stop-
ping time 7! taking values in [t?, T*], such that

E]P’O[’Y':TO] < ]E]Pl.l I:)?fll{f]<?\<} + ?ﬁl{f]=ﬁ}] + €.

Denote E; = {t! <1,} € F;1. By (5.3) and following the same argument as for the estimate in
(4.6), we have: Pl-l-as. on E{ N {7! < 7%},

~
Xz

A

X — B [Xer] + B [Ver]
1.1 1 -1 L1~ _ L1~
< EL [ﬂo (—+||Br ||f1+1)}+E§’1 [Y2] < Cpo(n™") + B, [Yae].
n n
Then, denoting E> := E1 N {fl <T¥} e Fi1, we get:

0~ L= = v
EP [Yro] <EF [XfllEz + Xzl penzi <pny + Y?*l{flz?*}] e

< P [)?fll,;z + %1@] + Cho(n™YPULES] + . (5.42)
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Next, set § == [§259(38)] A §. Apply Lemma 5.13 on P11, 71, E;, and §, there exists P! ¢
PPV, 1, E,) such that

1 . -
H<il4 Fd(z1, 0% + 6+ lof N5 P"2-as. on Ea.

1

Since 7' < T* < H, we have

1

R
Bl
IA

35, P'"2-as.on By N{d(ws1, 0°) < L8} N {|o’ | < 6.

145
Then, by (5.3) and (4.6) again we have: P!-2-a.s. on E> N {d(wz1, O°) < L6} € Fr,

~

o < BN (%o 1+ EL [0 (4o (', B), %, B)) )|

= B [Rer ]+ EL [ o0(do (G B) G B)) )1 gy gy +1

{\|Bf‘||fl+g>5}]]
51

48
12 = 1,2 =1 _ 1,2
< 5 %ol + B [o0(38 + 1B 21439 | + COEL BT 2,5

P2 CS pl-2
< EL[Xe] 4+ Cho38) + =5 = EE [ ] 4 Cho(30).
Note that n~! < L8 < 38. Thus, denoting E3 = Er,N{d(wz1, O°) > L8} € F;1,(5.42) leads to:
EF [ 0] <EP"” [f(fll& + ?%»15;-] + CoBOPY2(ES) +e. (5.43)

Moreover, apply Lemma 5.12 with P12, 71 E3, and e, there exists P13 € P(PL2, 71, E3)
such that

B [Raite,| < B [Votp, | < BP [t ] + e

Define ! = inf{r > 7! : d(w,, 0°) < 1} A T*. Note that ' < H on E3 and Y is a P13.
supermartingale. Then

EP" [%J&] < g [21153].
Thus
EP (Rt | < B [Vodp ] +e
Plug this into (5.43), we obtain
B[ Voo | < B [ Frrtey + Podg | + CAoGOIP (ES) + 2.
We now denote P! := P13 ¢ P(P?, 79, 2), and
Dy =Esn{t! <) = (#! <1, AT} N {d(w;1, 0°) > LS} N {t! < T*)} € F.1.(5.44)
Then

EF’ [?,0] <EP [?Tl 1p, + Va1 Df] + Cho(38)P!(DS) + 2. (5.45)
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Step 3: Iterating the arguments of Step 1, we may define (7", t™, P", D;;)m>1 such that:
Pt e PP, T, D), " < T <7
) 1
o inf{t > 7" d(wy, O°) < —} ATH
n
Dyi1 = Dy N {7 < 1, AT} N {d(wzms1, OF) > L8} N {z™ T < 7%}
and

m | = m+1[ =~ ~
B [Fentp, | < B [Ponii1n,,, + Polp

T

05, |+ CAOGOP (DY 01 D5 )
+217mg,
By induction, for any m > 1 we have

B (Vo] < B [Ponlp,, + Perlg, | + CooGoP™ (D5) + 4e
< EF"[Vor] + 2CoP" [ D] + Co(36) + de. (5.46)
Note that

1 1
P"[D,,] < P’”[m;?;][mf,» —B.|>L5— ;} n {|B,l- _B.|> L6 —}]

ri-1
n

m 1 2
2 2
S I[Dm [;['Bi” - B.L.i—ll + |B.[i - Bfil ] 2 2m <L8 - ;) ]
B | Y UBs — Bt P+ By — Ba] | < —————.
om (L8~ 1) = 2m (L6~ 1)

Then, (5.46) leads to

IA

c ]
Iy < ——————— + Co(35) +4e,
om (16— 1)

which implies, by sending m — oo that
I, < Cpo(36) + 4e.

Hence, by choosing § small enough such that pyp(35) < ¢, we see that (5.41) holds true for
n > LLB |
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Appendix
A.l. Regular conditional probability distribution

We first recall the definition of r.c.p.d. from Stroock—Varadhan [18]. Let ({2, 7, P) be a
probability space, G C F is a sub-o-field. An r.c.p.d. {Pg, w € {2} is a family of probability
measures on F satisfying the following requirements:

e For all E € F, the mapping v — IP’g(E ) is G-measurable;

e For all £ € IL°°(F), the conditional expectation EF¢ [£] = E[£|G](w), for P-a.e. w;
e For any w € 2, P} (Q“)) = 1, where (Z‘” =N{EeG:weE}

We note that en r.c.p.d. exists whenever G is countably generated.
In the special case that 2 := {w € C([0, T], R?) : wy = 0} is our canonical space and
G = F; for some t € 7T, it holds that

0% = {0 € 2:70) =1 and 0}, = wrr} = {0 @ 00 € Q’(“’)}. (A.D
Then, as in [16], we define for all w € {2 a probability measure P™* on f;(w) by:
P(E) = P2 ({a) Rrwy @ 0 € E}) VE e Fi©), (A2)

and still call it an r.c.p.d. of P> conditional on F;. One may easily check that & —> EF™“[£7:¢]
is F,-measurable, for all & € L°°(Fr), and EF™* [S”"] = E[¢|F;](w), for P-a.e. w and for all
& e L°(F).

A.2. Proof of Lemma 2.3

Recall the notations in the beginning of Section 2.2. Let F := FB and 7 := 75 be the natural
filtrations on {2 agd {2, respectively. Moreover, we may identify [F with the filtration F2 on 2
generated by B: F2 = (E x 2% : E € FB}.

(1) First, it follows from standard arguments, see e.g. Zheng [19, Theorem 3], that PtL is weakly
compact. Then Property (P1) holds.

(ii) We next check without loss of generality Property (P2) only at = 0. Lett € 7 and P € PL
with corresponding Q as in (2.2). Define 7 (@) := () for @ := (v, a, m) € 2, then clearly
7 is an F8 -stopping time, hence also an FF- stopping time. By Stroock—Varadhan [18], the
r.c.p.d. (@‘” exists. Note that @ — Q“’ (E)is fB—measurable forany E € Fr, it follows

that @‘} 5 depends only on w and thus we may denote it as Q“’j_ 5
Recall the shifted spaces 2/, 2/, F’, and F’. We now define the following probability
measure on the shifted space £27(“):

QIE) = O (5)‘ Ry @10 € 2,0% € E) VE e FL), )
PP°[E] := QU[E x (27@)?], VE e Fi.

It is straightforward to check that P** is an r.c.p.d. of P conditional on 77, and Q™ is the
required extension on 27 satisfying (2.2) for P-a.e. w. This verifies (P2).
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(iii) It remains to check Property (P3). Assume Q and Q' are the corresponding extensions of P
and P!. Define

o
Q:=0Q®&: |:Z Q’IE,-x(m)Z + lef’Cl(E;'xmx)z)} :
i=1

Following similar arguments as in (ii) one can show that @ satisfies (2.2). It is clear that
P(E) = Q(E x (£2%)?) forall E € Fr.ThenP e ’PSL and thus (P3) holds. W

A.3. Some additional results

In this subsection we provide some results which are interesting for our discussion, although
they are technically not used in the paper.

Proof of Remark 3.2. Fix w € {2, and let {#,} and {s,,} be two sequences such that 7, 1 7,5, 1 7,
and X, (w) —> limgp Xs(w), Xy, (@) —> li_mYTtX s(w). Here and in the sequel, in limgy,
we take the notational convention that s < r. Without loss of generality, we may assume
th < Sp < tyy forn =1,2,.... Then for the py defined in (3.1) we have
0 < lim X, (o) — lim X;(0) = lim X, () — lim Xj, (@)
st st n—00 n—oo
< 1im po(doc((ta, @), (50, @) ) =0,

n—>oo
This implies the existence of X;_ (w). Moreover,
Xi- (@) = X1(@) = lim X, (@) = X;(@) =1limp(d((s, @), (1, @) ) =0,
ste stt
completing the proof. W

Lemma A.1. Let the nondegeneracy condition (3.7) hold and X be bounded and uniformly
continuous in (t, w) under doo. Then Y™ defined in (3.5) is left continuous at H.

Proof. We first claim that, for any w € 2 and ¢ > 0

lim C[H"? > t+¢]=0. (A4)
11H(w)
Indeed, let H correspond to O and fy as in (3.3). If H(w) = 19, since H"® < 19, (A.4) is obvious.
We now assume #| := H(w) < fp and thus w,, € O°. Note thatt < H(w) implies w; € O. Denote
8 :=d(w;, 0°),then0 < § < |, — wy,|. Let n be a unit vector pointing to the direction from w;
to O°€. Since O is convex, we see that

forany x € R, x - > 68 implies x + oy € OF. (A.5)

Since we will send ¢ 1 #1, we may assume § < ¢. Then, for any P € P, with corresponding «, S,
and W, we have

IP’(H”“’ >t +e) < P(H“‘“ >t +5) < IP’( sup (B! -n) < 8) < IP’( sup M < C8>

1<s<t+38 t<s<t+3§

where M = fts B-dW, - nis a scalar P-martingale. Denote A = fts |8,n|2dr and introduce the
time change: 7, = inf{s >t : A; > r —t} and N, := M.,. Then N is a P-Brownian motion.
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Since B > cly, then C2(‘L'r — 1) <r —t,and thus

]P’(H”“’ >t +£> < ]P( sup M < C5) < IP’( sup N, < C(S) = C\/g,
1<s<t+3 t<r<t+c2$
where C is independent of P. Then C;[H"® > 1 + ¢] < C+/§ for § < . Now send ¢ 1 H(w), we
have § — 0 and thus (A.4) holds.
We now prove the lemma. Let p denote the modulus of continuity function of X. Note that
in this case X" = Xpyn.. Fixw € 2. Fort < 11 := H(w) and ¢ > 0, denoting E := {H"® <
t+ e} N {I1B |14 < €7}, we have

7(@) = TH@)] = sup &[IXE000 — Xu(@)]
teT!
< CGLE T+ sup &|p(doo((z A B, 0@, BY), (1, )1

teT!
< CCIH™® > t+ &1+ CCIIB |14 > &3]
+ & | (doo (B, 0, BY), (1,0)) 4 doc (1, ), (11, 0)) ) 1 |
< CCH" > 1 +¢e]+ CeT + ,0(8 + 63 4 doo((t, ), (1, a)))).
Then, by (A.4) we have

im Y (w) — Y (o)| < Ces + ,0(8 + e%)
1 H(w)

Since ¢ is arbitrary, we prove the result. W

However, in the degenerate case in general Y™ may be discontinuous at H.

Example A.2. Set X;(w) := ¢ and let H correspond to O and #. Clearly X" = X, ?,? = H and
Y (@) < fy. However, for any < H(w), set T := fp and P € P; such that of =0, ﬂP =0, we

see that ¥ () > EP[X(H(w @1 B, 0 ®, Bf)] — X(H(w.n). @.0) = H(w.ny) = to. That is,

Y (w) = to. Thus Y™ is discontinuous at H whenever H(w) < 9. W
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