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Abstract

Exact sampling of the first passage event (FPE) of a Lévy process with infinite Lévy measure is
challenging due to lack of analytic formulas. We present an approach to the sampling for processes with
bounded variation. The idea is to embed a process for which we wish to sample the FPE into another process
whose FPE can be sampled based on analytic formulas, and once the latter FPE is sampled, extract from it
the part belonging to the former process. We obtain general procedures to sample the FPE across a regular
nonincreasing boundary or out of an interval. Concrete algorithms are given for two important classes of
Lévy processes. The approach is based on distributional results that appear to be new.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The first passage event (FPE) of a Lévy process is an important subject in applied probabil-
ity [2–4,14–16,23,25,34]. In many cases, it is crucial to sample the FPE as completely as possible,
in particular, to sample the first passage time (FPT) and the values of the process just before and
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at the FPT ([35]; unless otherwise mentioned, by sampling we mean exact sampling). For pro-
cesses with infinite Lévy measures, except for a few, the distribution of the FPE is unavailable
analytically, which poses a serious hurdle to the sampling. In practice, there are various methods
to sample the FPE approximately [19] or to evaluate some of its parameters [36,37]. However, it
remains challenging and tantalizing to sample the FPE exactly.

This paper presents an approach to sampling the FPE for a rather wide range of real-valued
Lévy processes with infinite Lévy measure and bounded variation. Each such process is the dif-
ference of two independent subordinators, i.e., nondecreasing Lévy processes, which also have
bounded variation. Both types of processes are important in theory and application [3,13,21,24,
30,32,35]. The approach allows one to sample (1) the FPE of a subordinator across a nonincreas-
ing boundary that has certain regularity, (2) the FPE of a process with nonpositive drift across a
positive constant level, and (3) the first exit event (FEE) of a process with no drift out of a closed
interval that has 0 in its interior. A useful by-product of the approach is a sampling method for
infinitely divisible (ID) random variables alternative to the one in [8].

It should be noted that the approach as presented is not very practical due to its high com-
putational complexity; see however [35] for an efficient application of its simplified version to
real data. Rather, the motivation to attack the sampling issue at a conceptual level is to gain in-
sights into the distributional properties and structure of the FPE, which would help develop more
practical algorithms. The work is therefore more about theory than about application.

In Section 2, general procedures to sample the FPE or FEE in several scenarios are presented.
The main idea is “embed and extract”. That is, given a process for which we wish to sample
the FPE, embed it into another process whose FPE can be sampled based on analytic formulas,
and once the FPE of the latter process is sampled, conditional on the event, sample its part that
belongs to the former process. The validity of the procedures is established in Section 4 by
considering the distribution of the triple (τ, X (τ−), X (τ )), where X = (X1, . . . , Xk), with X i
being independent subordinators, and τ is certain FPT of X1 + · · · + Xk . The results are related
to [23], which however does not consider τ and the case of creeping; also see [3,4,13,14,16,30].
In Section 3, after a brief general discussion, the procedures are applied to two important types of
Lévy measures of the form ϕ(x) dx+χ(dx), with ϕ a Lévy density and χ a finite Lévy measure.
The first type has

ϕ(x) = 1{0<x≤r}e
−qxγ x−1−α, with q ≥ 0, γ > 0, r > 0, α ∈ (0, 1), (1.1)

which will be referred to as an exponentially tilted upper truncated stable Lévy density. This type
coincides with the one that has ϕ(x) = (γ + O(x))x−α−1 as x → 0+, and gives rise to many
interesting processes [6,26–29,31], e.g. Lamperti-stable that has ϕ(x) = 1{x>0}eβx (ex

− 1)−α−1

with β < α + 1 and χ = 0. For this particular process, we can set r = ∞ in (1.1). However, in
general, r is finite. The second type has

ϕ(x) = 1{0<x≤r}γ e−qx x−1, with q > 0, γ > 0, r > 0, (1.2)

which will be referred to as an upper truncated Gamma Lévy density. This type coincides with
the one that has ϕ(x) = (γ + O(x))x−1 as x → 0+. The famous Vervaat perpetuity is of this
type [11,18]. More importantly, subordinators with this type of Lévy measures play a prominent
role in Bayesian survival analysis that uses F(t) = 1 − e−Z(t) as a prior on the distribution
function of failure time, with Z a nondecreasing additive process [12,17,21,35]. To estimate
the main parameters of a survival model, multiple failure times need be sampled from F . In the
standard inversion method, F is fully specified and failure times are sampled as inf{t : F(t) ≥ ui }

with u1, . . . , un i.i.d. uniformly distributed on (0, 1) [10]. However, for Z with an infinite Lévy
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measure, F cannot be fully specified as it has infinitely many random jumps in every interval
in (0,∞). Instead, one need first draw all of u1, . . . , un and then, given their values, sample
ti = inf{t : Z(t) ≥ ai } for a single path of Z , where ai = − ln(1 − ui ). To do so, start with
ai = min a j and sample ti and Z(ti ). For the rest a j ’s, let t j = ti if a j ≤ Z(ti ). Next, find the
smallest a j greater than Z(ti ), use the renewal property of Z to sample t j and Z(t j ), and so on,
until no a j is left (cf. [35]). Due to the jumps in Z , the probability to have equal t j ’s is positive,
a property very useful for modeling data that have tied failure times. The application in survival
analysis highlights the importance of exact sampling of the FPE and strongly motivates the paper.

1.1. Notation and preliminaries

We will consider the FPE across a boundary that has certain regularity. A function c on (0,∞)
is said to be regular if it is absolutely continuous and nonincreasing with c(0+) > 0, and is
differentiable on (0,∞) \ F , with F a closed set of Lebesgue measure 0. If c is regular, then for
any constant a > 0, c ∧ a is also regular.

For a Lévy process X , denote X ∼ BV(Π , d) if it has Lévy measure Π , drift d , and
bounded variation, i.e.,


(|x | ∧ 1)Π (dx) < ∞ and X has no Brownian component. Denote

by ID(Π , d) the distribution of X (1). If d = 0, then write BV(Π ) and ID(Π ) for brevity.
Denote by |Π | the total mass of Π . For x = (x1, . . . , xk) ∈ Rk , denote ∥x∥ =


|xi |. Define

inf∅ = ∞. A probability density function with respect to the Lebesgue measure will be simply
referred to as a pdf. For a, b > 0, denote by Gamma(a, b) and Beta(a, b) the distributions
with pdfs 1{x>0}xa−1e−x/b/[baΓ (a)] and 1{0<x<1}xa−1(1− x)b−1/B(a, b), respectively, where
B(a, b) = Γ (a)Γ (b)/Γ (a+b). Denote Exp(b) = Gamma(1, b). Denote by U (0, 1) the uniform
distribution on (0, 1) and δ the probability measure concentrated at 0. For k > 1, the Dirichlet
distribution Di(a1, . . . , ak) with parameters ai > 0 is a distribution on Rk , such that for any
Borel function g ≥ 0 on Rk and ω ∼ Di(a1, . . . , ak),

E[g(ω)] =
Γ (a1 + · · · + ak)

Γ (a1) · · ·Γ (ak)


1{allxi≥0}g(x)

k
i=1

xai−1
i dx1 · · · dxk−1,

where in the integral x = (x1, . . . , xk) with xk ≡ 1 −
k−1

i=1 xi . Its pdf with respect to the

measure σk(dx) = 1{all xi≥0}dx1 · · · dxk−1 δ(dxk−1+
k−1

i=1 xi ) is Γ (a1+· · ·+ak)
k

i=1 xai−1
i /k

i=1 Γ (ai ), and will be referred to as its pdf. If k = 1, then for a > 0, define Di(a) = δ(dx −1)
and its pdf (with respect to σ1(dx) = δ(dx − 1)) to be constant 1.

Let ν = ID(Λ) with Λ concentrated on (0,∞). Given q > 0, Λq(dx) = e−qxΛ(dx) is called
an exponentially tilted version of Λ. If νq = ID(Λq), then νq(dx) ∝ e−qxν(dx) [1,3,5,22] and
can be sampled by rejection sampling [10,19]. In general, if ν̃ and ν are two probability mea-
sures satisfying dν̃/dν ∝ ϱ ≤ C , with ϱ ≥ 0 a function and C > 0 a constant, then the rejection
sampling of ν̃ proceeds by keeping sampling ξ ∼ ν and U ∼ U (0, 1) (independently) until
CU ≤ ϱ(ξ).

2. Sampling of FPE and FEE

2.1. FPE of subordinator

Let Z ∼ BV(Π , d) be a subordinator with |Π | = ∞ and c a regular function. The FPE
of Z across c is characterized by the FPT τ Z

c = {t > 0 : Z(t) > c(t)} as well as Z(τ Z
c −) and
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Fig. 1. Sampling the FPE of a subordinator by embedding.

Z(τ Z
c ). By the transformations Z(t)→ Z(t)− dt and c(t)→ c(t)− dt , assume without loss of

generality that d = 0. The main assumption here is

Π (dx) = e−qx 1{x≤r}Λ(dx)+ χ(dx), q ≥ 0, 0 < r ≤ ∞, |χ | <∞, (2.1)

such that, letting S ∼ BV(Λ), the FPE of S across any regular function can be sampled. As
seen later, this is the case if e−qx 1{x≤r}Λ(dx) = ϕ(x) dx , with ϕ as in (1.1) or (1.2). Let
X1 ∼ BV(e−qx 1{x≤r}Λ(dx)), X2 ∼ BV(1{0<x≤r}(1 − e−qx )Λ(dx)), X3 ∼ BV(1{x>r}Λ(dx)),
and Q ∼ ID(χ) be independent. All the processes are subordinators, and all but X1 are
compound Poisson (CP). Since X1 + Q ∼ BV(Π ), we identify it with Z .

We first explain the scheme informally. For now let us ignore the CP process Q by assuming
χ = 0, so that Z = X1. As said in Section 1, the scheme is “embed and extract”. Indeed,
by Z + X2 + X3 ∼ BV(Λ), S is identified with Z + X2 + X3. In this sense, Z is embedded
in S. As for the “extract” part, let b(t) = c(t) ∧ r be the “target boundary” for S to cross and
τ = τ S

b ; see Fig. 1. By assumption, we can sample (τ, S(τ−), S(τ )). Clearly, S(τ−) ≤ b(τ ) ≤ r .
Given τ = t and S(τ−) = s ≤ r , we need to sample Z(τ−). If q = 0, then X2 ≡ 0 and
so Z(τ−) = s. If q > 0, the sampling is possible for three reasons. First, the conditional
distribution of Z(τ−) is the same as that of Z(t) given S(t) = s, as if t is fixed beforehand.
Second, the following simple but crucial fact holds: since X3 only has jumps greater than r ,
S(t) = s ⇐⇒ Z(t) + X2(t) = s. Third, by using properties of exponential tilting for ID
distributions, Z(t) can be sampled conditional on Z(t) + X2(t) = s. In Fig. 1(a), we have
Z(τ−) < S(τ−). However, as X2 is CP, we may have Z(τ−) = S(τ−). Next, we need to
sample Z(τ ). The jump of S at τ is ∆S = S(τ ) − S(τ−). By independence, only one of Z ,
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Table 1

Sampling of (τ, Z(τ−),∆Z (τ )), where τ = τ Z
c ∧ K , c is regular or∞, 0 < K ≤ ∞ (finite if c ≡ ∞). To start with,

T = H = D = 0, A = K .

1. If D = 0, then sample (D, J ) ∼ (τ̃ ∧ A,∆Q(τ̃ ∧ A)) with τ̃ = inf{t : Q(t) ≠ 0}.
2. Set b = c ∧ r . Sample t1 ∼ τ

S
b and set t = t1 ∧ D.

3. If t = t1 < D, then sample (s, v) ∼ (S(t−),∆S(t)) conditional on τ S
b = t .

4. If t = D < t1, then sample s ∼ S(t) conditional on S(t) < b(t) and set v = 0.
5. Sample x ∼ X1(t) conditional on S(t) = s.
6. If v > 0, then sample U ∼ U (0, 1) and reset v← v1

{v≤r,U≤e−qv}.
7. Update T ← T + t . Set ∆ = v + 1{t=D} J , z = x +∆, and update H ← H + z.
8. If z < c(t) and t < A, then update A← A − t , D← D − t , c(·)← c(· + t)− z, and go back to step 1; else output
(T, H −∆,∆) and stop.

X2 and X3 can jump at τ , so ∆Z ∈ {0,∆S}. Fig. 1 illustrates two scenarios. If ∆S > r , then it
must belong to X3, giving ∆Z = 0. If ∆S ≤ r , then by comparing the Lévy measures of Z and
X2, with probability e−q∆S (resp. 1 − e−q∆S ), ∆S belongs to Z (resp. X2), giving ∆Z = ∆S
(resp. ∆Z = 0). This gives Z(τ ) = Z(τ−) + ∆Z . If Z(τ ) < c(τ ), then by strong Markov
property, the procedure is renewed for S with starting point (t0, S0) = (τ, Z(τ )). The procedure
eventually stops, yielding a sample of (τ Z

c , Z(τ Z
c −), Z(τ Z

c )).
Note that, if c is decreasing, then S may creep across c, i.e., ∆S = 0, as marked by ⋆ in panel

(c). In this case, ∆Z = 0 and moreover, if q > 0, we may have Z(τ ) < S(τ ) and the procedure
has to continue; see the scenario marked by B in (c). The characterization of creeping across a
linear boundary is known [3,20]. Here, as c may be nonlinear, we need further results on this
regard.

To implement the scheme, one may first sample τ , then (S(τ−), S(τ )) conditional on τ , and
finally (Z(τ−), Z(τ )) conditional on (τ, S(τ−), S(τ )). The sampling of τ is the simplest. The
sampling of the rest will require several distributional properties of the FPE obtained in Section 4.

Formal procedure. Denote τ S
c = inf{t > 0 : S(t) > c(t)} and ∆Q the jump process of

Q. In the formal procedure in Table 1, the jumps in Q are taken into account in steps 1 and
7. In addition, a terminal point 0 < K ≤ ∞ is introduced so that the final output is a sam-
ple of (τ, Z(τ−),∆Z (τ )), where τ = τ Z

c ∧ K . In particular, if c = ∞ and K = 1, then
Z(1−)+∆Z (1) ∼ ID(Π ).

Theorem 2.1. Let c be a regular function. The procedure in Table 1 stops w.p. 1, and its random
output follows the distribution of (τ, Z(τ−), ∆Z (τ )). The claim still holds if c ≡ ∞ and
K <∞.

2.2. Extensions to Lévy processes with bounded variation

Let Z ∼ BV(Π , d) take values in R with |Π | = ∞ and d ≤ 0. Then Z = Z+ − Z−,
where Z+ ∼ BV(Π+) and Z− ∼ BV(Π−,−d) are independent subordinators with Π±(dx) =
Π (±dx). Suppose that for σ = ±,

Π σ (dx) = exp(−qσ x)1{x≤rσ }Λσ (dx)+ χσ (dx), qσ ≥ 0, 0 < rσ ≤ ∞, |χσ | <∞,
(2.2)

such that, letting Sσ ∼ BV(Λσ ), the FPE of Sσ across any positive constant level can be sampled.
Note that at most one Zσ is CP. If, say Z+ is CP, the set S+ ≡ 0, so that the FPT of S+ across
any positive boundary is∞.
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Fig. 2. Sampling the FPE of Z across a > 0.

We consider the sampling of the FPE of Z across a constant level a > 0 and, assuming
d = 0, the FEE of Z out of an interval I = [−a−, a+] with constants a± > 0. Denote
τ Z

a = inf{t > 0 : Z(t) > a} and τ Z
I = inf{t > 0 : Z(t) ∉ I }.

As in the subordinator case, we first give an informal description for the sampling schemes.
The scheme for the FPE of Z across a > 0 can be presented in a more general setting. As Fig. 2
shows, it can be thought of as having Z+ to “catch up” with a + Z−. To start with, let a be
the target boundary for Z+ to cross and τ = τ1 the corresponding FPT. It is evident that before
τ , Z+ stays below a + Z−. However, at τ , since Z+ has a jump, it is possible for Z+ to pass
a + Z−. We can use the procedure in Section 2.1 to sample Z+(τ−) and Z+(τ ). Meanwhile,
as Z− is independent of τ , we can also use the procedure to sample Z−(τ−) = Z−(τ ). If
a+ Z−(τ ) < Z+(τ ), then τ = τ Z

a . Otherwise, set a+ Z−(τ ) as the new target boundary for Z+

to cross, with starting time point and value (t0, Z+0 ) = (τ, Z+(τ )). As long as limt→∞ Z(t) = ∞
w.p. 1, the procedure eventually stops. For the scheme, the assumption that Z has d ≤ 0 is
necessary, as otherwise Z+ can creep across a + Z− with positive probability. If this happens,
the FPTs τ1, τ2, . . . of Z+ shown in Fig. 2 will converge to but never reach τ Z

a , causing the
procedure to go on forever.

To sample the FEE of Z out of I , a modified version of the scheme in Section 2.1 can be used.
It is convenient to use the “phase plot” of the Lévy process W = (Z−, Z+), which shows the
trajectory of W on the plane. The FEE of Z out of I can be depicted as the FEE of W out of the
band {(x, y) : −a− ≤ y−x ≤ a+}. To start with, let b− = a−∧r−, b+ = a+∧r+, and set the top
and right sides of the rectangle [0, b−]× [0, b+] to be the target boundary. In Fig. 3(a), r− > a−

and r+ < a+, resulting in the rectangle as shown. Now sample the FPE of S = (S−, S+) across
the target boundary. First, independently sample the FPTs of S± across b±. If, as shown in
panel (a), S− makes a crossing at time τ before S+, then sample (S−(τ−), S−(τ )), and sample
S+(τ−) = S+(τ ) conditional on S+(τ ) < b+. We next can use the scheme in Section 2.1 to
recover Z±(τ ). In the scenario shown in Fig. 3, since the jump of S− at τ is greater than r−, it is
not part of Z−, so we end up with W (τ ) as in panel (b). The procedure is then renewed. As long
as Z ≢ 0, the procedure stops eventually and produces a sample FEE of Z .

Formal procedures. As in the subordinator case, let 0 < K ≤ ∞ be a terminal point. First, let
τ = τ Z

a ∧ K . If τ Z
a < ∞, then Z makes a positive jump at τ Z

a [3, Exercise VI.9]. On the other
hand, Z makes no jump at K . Therefore the only possible jump that Z can make at τ is positive,
giving ∆Z (τ ) = ∆Z+(τ ), Z+(τ ) = Z+(τ−) + ∆Z (τ ), and Z−(τ−) = Z−(τ ). A procedure
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Fig. 3. Sampling the FEE of Z out of [−a−, a+] with a± > 0.

Table 2

(a) Sampling of (τ, Z+(τ−), Z−(τ ),∆Z (τ )), where τ = τ Z
a ∧ K . To start with, T = H+ = H− = 0, A = K , b = a.

1. Sample (t, z+, v) ∼ (τ+, Z+(τ+−),∆Z+ (τ
+)), where τ+ = τ Z+

b ∧ A. Set x = z+ + v.
2. Sample z− ∼ Z−(t).
3. Update T ← T + t , H+ ← H+ + x , H− ← H− + z−.
4. If x − z− < b and t < A, then update A← A − t , b← b + z− − x , and go back to step 1; else output
(T, H+ − v, H−, v) and stop.

(b) Sampling of (τ, Z+(τ−), Z−(τ−),∆Z+ (τ ),∆Z− (τ )), where τ = τ Z
I ∧ K . To start with,

T = H+ = H− = D = 0, A = K , b+ = a+, b− = a−.

1. If D = 0, then sample (D, J ) ∼ (τ̃ ∧ A,∆Q(τ̃ ∧ A)), with τ̃ = inf{t : Q(t) ≠ 0}, and set J± = (±J ) ∨ 0.
2. For σ = ±, sample tσ ∼ τ S

b∧r (σ ). Set t = t+∧t−∧D. (Note: w.p. 1, t+, t−, and D are different from each other.)
3. For σ = ±, sample (xσ , vσ ) ∼ (Xσ1 (t−),∆Xσ1

(t)) conditional on τ+ ∧ τ− ∧ D = t , by applying steps 3–6 in

Table 1 to Xσ .
4. Update T ← T + t . For σ = ±, set ∆σ

= vσ + 1{t=D} J
σ , zσ = xσ +∆σ , and update Hσ

← Hσ
+ zσ .

5. If z+ − z− ∈ (−b−, b+) and t < A, then update A← A − t , D← D − t , b+ ← b+ + z− − z+,
b− ← b− + z+ − z−, and go back to step 1; else output (T, H+ −∆+, H− −∆−,∆+,∆−) and stop.

to jointly sample τ , Z+(τ−), Z−(τ ), and ∆Z (τ ) is presented in Table 2(a). By assumption,
Z± cannot be both CP. If Π+ (resp. Π−) can be decomposed as in (2.1), then the procedure in
Table 1 can be called in step 1 (resp. 2) in Table 2. On the other hand, if one of Z± is CP, the
corresponding step is straightforward.

Theorem 2.2. Suppose limt→∞ Z(t) = ∞ w.p. 1 or K <∞. The procedure in Table 2(a) stops
w.p. 1, and its random output follows the distribution of (τ, Z+(τ−), Z−(τ ),∆Z (τ )).

Now let τ = τ Z
I ∧K and suppose Z has no drift. Then Z± have no drift, so Z makes a positive

jump if it first exits I at a+, and a negative jump if it first exists I at −a−. Thus τ , Z±(τ−),
and ∆Z±(τ ) characterize the FEE. A procedure to sample the random variables is shown in
Table 2(b). In it, for σ = ±, Xσi are defined by the same rule in Section 2.1, Q ∼ BV(χ++χ−),
and all the processes are independent. In each iteration, for σ = ±, we have to monitor when
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Sσ = Xσ1 + Xσ2 + Xσ3 crosses bσ ∧ rσ , where bσ is a constant obtained from aσ . For brevity,
denote by τ S

b∧r (σ ) the FPT of Sσ across bσ ∧ rσ .

Theorem 2.3. Suppose Z ≢ 0 and 0 < a± <∞. The procedure in Table 2(b) stops w.p. 1, and
its random output follows the distribution of (τ, Z+(τ−), Z−(τ−),∆Z+(τ ),∆Z−(τ )).

3. Examples

3.1. Sampling issues involved

For the procedures in Section 2, the main task is to sample random variables of the following
types:

(1) the first jump of Q ∼ BV(χ) with 0 < |χ | <∞;
(2) τ S

c = inf{t : S(t) > c(t)} with c being regular;
(3) (S(t−),∆S(t)), conditional on τ S

c = t ;
(4) S(t), conditional on S(t) < c(t); and
(5) X1(t), conditional on S(t) = s ≤ r .

For (1), the time and size of the first jump of Q are independent following Exp(1/|χ |)
and χ/|χ |, respectively [3,34]. If |χ | is unavailable or χ/|χ | cannot be directly sampled, the
following rejection sampling known as thinning can be used. Let µ be a finite Lévy measure
such that dχ = ϱ dµ for some function ϱ ≤ 1. To start with, set t = 0.

1. Sample s ∼ Exp(1/|µ|) and x ∼ µ/|µ|. Update t ← t + s.
2. Sample U ∼ U (0, 1). If U ≤ ϱ(x), then stop and output (t, x); else go back to step 1.

For (2), since S is strictly increasing w.p. 1 and c is nonincreasing,

Pr{τ S
c ≤ t} = Pr{S(t) ≥ c(t)}, (3.1)

which is continuous and strictly increasing in t > 0. If the distribution of S(t) is analytically
available for each t > 0, then τ S

c may be sampled by the inversion method. Alternatively, if
S has scaling property, it can be utilized to sample τ S

c . Both possibilities will be demonstrated
later. The sampling for (3) heavily relies on the distributional properties of the FPE obtained in
Section 4. The sampling for (4) has a generic solution, which is to keep sampling x ∼ S(t) until
x ≤ a. However, by utilizing the structure of S(t), it is possible to make the sampling more
efficient.

Finally, for (5), in the nontrivial case q > 0, if S(t) has a bounded pdf gt , then in principle
rejection sampling can be used. Indeed, as X1(t)+X2(t) ∼ BV(ν) and X1(t) ∼ BV(e−qxν(dx))
with ν(dx) = t1{x≤r}Λ(dx), Pr{X1(t) ∈ dx} ∝ e−qx Pr{X1(t)+ X2(t) ∈ dx}. On the other hand,
for x ∈ (0, r ], Pr{S(t) ∈ dx} = Pr{X3(t) = 0}Pr{X1(t) + X2(t) ∈ dx} as X3(t) is either 0 or
>r . Then X1(t) has a pdf on (0, r ] which is in proportion to e−qx gt (x), giving

Pr{X1(t) ∈ dx | S(t) = s} ∝ e−qx gt (x)Pr {s − X2(t) ∈ dx} , s ∈ (0, r ]. (3.2)

Thus, we may keep sampling x ∼ s − X2(t) and U ∼ U (0, 1) until U ≤ e−qx gt (x)/ sup gt and
then output x . Since X2(t) is CP, its sampling is standard. However, gt can be hard to evaluate.
To get around the problem, the structure of S(t) may be exploited.



1132 Z. Chi / Stochastic Processes and their Applications 126 (2016) 1124–1144

3.2. Exponentially tilted upper truncated stable Lévy density

Let Z ∼ BV(ϕ(x) dx + χ(dx)) with ϕ as in (1.1). We next apply Table 1 to devise an
algorithm to sample the FPE of Z across a regular boundary c. Using Table 2, an algorithm
can be devised to sample the FPE of a process with nonpositive drift across a constant
level, or the FEE of a process with no drift out of an interval, when the Lévy measure is
1{0<x≤r+}γ

+e−q+x x−1−α+ dx + 1{−r−≤x<0}γ
−e−q−x

|x |−1−α− dx + χ(dx) with α± ∈ (0, 1).
The details are omitted for brevity. The algorithm can be extended to finite mixtures of upper
truncated stable Lévy densities as well; see [9] for details.

To start with, S = X1+X2+X3 is stable with E[e−λS(t)
] = exp{−tγΓ (1−α)α−1λα}, λ ≥ 0.

By scaling t , assume γ = α/Γ (1− α). Then the pdf of S(1) is

f (x) =
α

(1− α)π

 π

0
h(x, θ) dθ (3.3)

where for θ ∈ (0, π) and x > 0, letting h0(θ) = sin[(1 − α)θ ][sin(αθ)]α/(1−α)(sin θ)−1/(1−α),
h(x, θ) = 1{x>0}h0(θ) x−1/(1−α) exp{−h0(θ) x−α/(1−α)}. The sampling of S(1) is well
known [7,10,38]. Define ψ(x) = 1{x≠0}x−1(1 − e−x ) + 1{x=0} and Mα = (1 −
α)1−1/αα−1−1/αe−1/α . Given 0 < K ≤ ∞, the following algorithm samples τ = τ Z

c ∧ K ,
Z(τ−), and ∆Z (τ ) jointly. To begin with, set T = H = D = 0, A = K .

1. Sample (D, J ) as in step 1 in Table 1.
2. Set b = c ∧ r . Sample S(1). Set t1 such that t1/α

1 S(1) = b(t1), t = t1 ∧ D, and z = b(t).
3. If t = t1 < D, then set w0 = −b′(t), w1 = γ z1−α/[α(1 − α)], and do the following steps.

(Note: w.p. 1, b is differentiable at t with a nonpositive derivative.)
(a) Sample ϑ ∼ U (0, π) and ι ∈ {0, 1} with Pr{ι = i} = wi/(w0 + w1). If ι = 0, then

set s = z, v = 0; else sample β1 ∼ Beta(1, 1 − α), β2 ∼ Beta(α, 1), and set s = β1z,
v = (z − s)/β2.

(b) Sample U ∼ U (0, 1). If U > h(t−1/αs, ϑ)/Mα , then go back to step 3(a).
4. If t = D < t1, then sample S(t) conditional on S(t) ≤ z. Set s = S(t) and v = 0.
5. Set m = s1−αtγ qΓ (1− α), dk = k!Γ (1+ k(1− α)), Ck = mk/dk , and C =


∞

k=0 Ck , and
do the following steps.
(a) Sample ϑ ∼ U (0, π) and κ ∈ {0, 1, 2 . . .}, such that Pr{κ = k} = Ck/C .
(b) If κ = 0, set x = s, ϱ = 1; else sample β ∼ Beta(1, k(1 − α)) and (ω1, . . . , ωκ) ∼

Di(1− α, . . . , 1− α), and set x = sβ, ϱ =


i ψ(q(s − x)ωi ).
(c) Sample U ∼ U (0, 1). If MαU > ϱe−qx h(t−1/αx, ϑ), then go back to step 5(a); else go

to the next step.
6. The rest is the same as steps 6–8 in Table 1.

The steps of the algorithm correspond one-to-one to those in Table 1. Only the details of
steps 2, 3 and 5 need to be verified. With t1 being the unique solution to t1/αS(1) = b(t), from
(3.1) and the scaling property of S, Pr{τ S

b ≤ t} = Pr{t1/αS(1) ≥ b(t)} = Pr{t1 ≤ t}. Thus the
(t1, t, z) in step 2 is a sample of (τ S

b , τ
∗, b(τ ∗)), where τ ∗ = τ S

b ∧ D. Given τ S
b = t1 and τ ∗ = t ,

by step 3 in Table 1, if t = t1 < D, then we need to sample (S(t−),∆S(t)) conditional on τ S
b = t .

From Theorem 4.4 in the next section, letting z = b(t), w0 = |b′(t)|, w1 = γ z1−α/[α(1− α)],

Pr{S(t−) ∈ ds, ∆S(t) ∈ dv | τ S
b = t} ∝ gt (s) [w0δ(ds − z) δ(dv)+ w1ρ(s, v) ds dv],

where ρ(s, v) = 1{0≤z−s<v}α(1 − α)z−1+αv−1−α is a pdf. Define (ι, ζ, V ) such that Pr{ι =
0} = 1 − Pr{ι = 1} = w0/(w0 + w1), Pr{ζ = z, V = 0 | ι = 0} = 1, and
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Pr{ζ ∈ ds, V ∈ dv | ι = 1} = ρ(s, v) ds dv. Let ϑ ∼ U (0, π) be independent of (ι, ζ, V ).
Then by gt (s) = t−1/α f (t−1/αs),

Pr{S(t−) ∈ ds, ∆S(t) ∈ dv | τ S
b = t}

∝


h(t−1/αs, θ)Pr{ϑ ∈ dθ, ι ∈ di, ζ ∈ ds, V ∈ dv}, (3.4)

with θ and i being integrated. Step 3(a) samples (ϑ, ι, ζ, V ). To see this, note that (ζ, V ) ∼ ρ

if ζ = (1 − U 1/(1−α)
1 )z and V = (z − ζ )U−1/α

2 , with Ui i.i.d. ∼ U (0, 1). Next, for x > 0 and
θ ∈ (0, π),

h(x, θ) ≤ sup
θ∈(0,π)


h0(θ)× sup

z>0
(z1/αe−h0(θ)z)


= α−1/αe−1/α sup

θ∈(0,π)
h0(θ)

1−1/α.

By sin(tθ)/ sin(θ) ≥ t for θ ∈ (0, π) and t ∈ (0, 1), h0(θ) ≥ (1−α)αα/(1−α), so h(x, θ) ≤ Mα .
Thus step 3 is rejection sampling of the distribution in proportion to h(t−1/αs, θ)Pr{ϑ ∈ dθ, ι ∈
di, ζ ∈ ds, V ∈ dv}, so by (3.4), (s, v) is a sample of (S(t−),∆S(t)) conditional on τ S

b = t .
By step 5 in Table 1, given (τ ∗, S(τ ∗−)) = (t, s) with s ∈ (0, r ], we need to sample X1(t)

conditional on S(t) = s. To this end we shall use (3.2). Since X2(t) is CP with Lévy density
λ(x) = 1{0<x≤r}tγ (1− e−qx )x−1−α ,

Pr {X2(t) ∈ s − dx} ∝ 1{0≤x≤s}


δ(dx − s)+

∞
k=1

λ∗k(s − x) dx

k!


,

where λ∗k is the k-fold convolution of λ. For w > 0 and k ≥ 1, λ∗k(w) =

wk−1k

i=1 λ(wvi ) σk(dv) with σk the measure specified in Section 1.1. Since 0 ≤ w ≤ s ≤ r , by
definition of ψ and Dirichlet distribution, for any v = (v1, . . . , vk) with vi ≥ 0 and ∥v∥ = 1,

wk−1
k

i=1

λ(wvi ) = w
k−1(tγ )k

k
i=1

1− e−qwvi

(wvi )1+α
= wk(1−α)−1(tγ )kqk

k
i=1

ψ(qwvi )

k
i=1

1
vαi

= wk(1−α)−1 [tγ qΓ (1− α)]k

Γ (k(1− α))
fk(v)

k
i=1

ψ(qwvi ),

with fk the pdf of Di(1 − α, . . . , 1 − α). Let ωk ∼ fk . For x ∈ [0, s] and w = (w1, w2, . . .) ∈

∪ j≥1 R j , define ϱ(x, w) =
k

i=1 ψ(q(s − x)wi ), with k the dimension of w. Then

λ∗k(s − x) = (s − x)k(1−α)−1
×
[tγ qΓ (1− α)]k

Γ (k(1− α))
E[ϱ(x, ωk)].

Since 1{0≤x≤s}k(1−α)(s−x)k(1−α)−1/sk(1−α) is the pdf of sβk with βk ∼ Beta(1, k(1−α)), then
λ∗k(s − x) dx = k!Ck Pr{sβk ∈ dx}E[ϱ(x, ωk)], where Ck is as in the algorithm. This combined
with (3.2) and (3.3) yields

Pr{X1(t) ∈ dx | X1(t)+ X2(t) = s}

∝

 π

0
e−qx h(t−1/αx, θ) dθ


δ(dx − s)+

∞
k=1

Ck Pr{sβk ∈ dx}E[ϱ(x, ωk)]


.

Now the treatment is similar to step 3. Define random vector (κ, ζ, ω), such that κ ∈ {0, 1, 2, . . .}
with Pr{κ = k} ∝ Ck , conditional on κ = 0, ζ = s, ω = 0, and conditional on κ = k ≥ 1,



1134 Z. Chi / Stochastic Processes and their Applications 126 (2016) 1124–1144

ζ ∼ sβk and ω ∼ ωk are independent. Finally, let ϑ ∼ U (0, π) be independent from (κ, ζ, ω).
Then

Pr{X1(t) ∈ dx | X1(t)+ X2(t) = s}

∝


e−qx h(t−1/αx, θ)ϱ(x, w)Pr{ϑ ∈ dθ, κ ∈ dk, ζ ∈ dx, ω ∈ dw},

with θ , k, and w being integrated. It is then seen step 5 is rejection sampling of X1(t) conditional
on X1(t)+ X2(t) = s.

3.3. Upper truncated Gamma Lévy density

Let Z ∼ BV(Π ) be a subordinator with Π (dx) = 1{0<x≤r}e−x x−1 dx + χ(dx) and c be
regular. For Lévy measures Π̃ (dx) = ϕ(x) dx + χ̃(dx) with ϕ(x) = 1{0<x≤r̃}γ e−qx x−1, q > 0,
γ > 0, the sampling of the FPE can be reduced to that for Π . Indeed, if Z̃ ∼ BV(Π̃ ), then letting
r = qr̃ and χ(dx) = χ̃(dx/q), Z(t) = q Z̃(t/γ ) ∼ BV(Π ) and so the FPE of Z̃ across c can be
obtained from that of Z across qc(t/γ ).

The sampling here is somewhat simpler than the one in Section 3.2, as exponential tilting
itself is part of the Gamma Lévy measure. Let X1 ∼ BV(1{0<x≤r}e−x x−1 dx), X2 ∼

BV(1{x>r}e−x x−1 dx), and Q ∼ BV(χ) be independent. Then S = X1 + X2 is a Gamma
process with S(1) ∼ Exp(1). Given 0 < K ≤ ∞, an algorithm to sample τ = τ Z

c ∧ K , Z(τ−),
and ∆Z (τ ) jointly is as follows. To begin with, set T = H = D = 0, A = K .

1. Sample (D, J ) as in step 1 in Table 1.
2. Set b = c∧r . Sample U ∼ U (0, 1). Set t1 such that


∞

b(t1)
x t1−1e−x dx/Γ (t1) = U , t = t1∧D,

and z = b(t).
3. If t = t1 < D, then set w0 = −b′(t), w1 = 2B(t, 1/2)z/e, w2 = 1/t ,

h1(x, v) = 1{0≤z−x<v≤z}e
1+z−x−v(1− x/z)1/2 ln[(1− x/z)−1

]/2,

h2(x, v) = 1{0≤z−x<z<v}ze−x/v,

and do the following steps.
(a) Sample ι ∈ {0, 1}, such that Pr{ι = i} = wi/(w0 + w1 + w2). If ι = 0, then set x = z,

v = 0, η = 1; if ι = 1, then sample β ∼ Beta(t, 1/2), ξ ∼ U (0, 1), and set x = zβ,
v = z(1 − β)ξ , η = h1(x, v); if ι = 2, then sample β ∼ Beta(t, 1), ξ ∼ Exp(1), and set
x = zβ, v = z + ξ , η = h2(x, v).

(b) Sample U ∼ U (0, 1). If U > η, then go back to step 3(a).

4. If t = D < t1, then sample γ ∼ Gamma(D, 1) conditional on γ ≤ z. Set x = γ , v = 0.
5. The rest is the same as steps 6–8 in Table 1.

To verify the algorithm, from (3.1) and S(t) ∼ Gamma(t, 1),

Pr{τ S
b ≤ t} = Pr{S(t) ≥ b(t)} =

1
Γ (t)


∞

b(t)
x t−1e−x dx,

which is continuous and strictly increasing in t . Thus step 2 uses the inversion method to sample
τ S

b and the (t1, t, z) it generates is a sample of (τ S
b , τ

∗, b(τ ∗)), where τ ∗ := τ S
b ∧ D. Given

τ S
b = t1 and τ ∗ = t , by step 3 in Table 1, if t = t1 < D, then we need to sample (S(t−),∆S(t))
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conditional on τ S
b = t . Let gt denote the pdf of Gamma(t, 1). From Theorem 4.4, for x, v > 0,

Pr{S(t−) ∈ dx, ∆S(t) ∈ dv | τ S
b = t} ∝ |b′(t)|gt (z)δ(dx − z)δ(dv)

+ 1{0≤z−x<v}gt (x)v
−1e−v dx dv

∝ |b′(t)|δ(dx − z)δ(dv)
+ q1(x, v) dx dv + q2(x, v) dx dv,

where, letting q(x, v) = gt (x)e−v/[vgt (z)],

q1(x, v) = 1{0≤z−x<v≤z}q(x, v), q2(x, v) = 1{0≤z−x<z<v}q(x, v).

Now q(x, v) = (x/z)t−1ez−x−v/v. Let

ρ1(x, v) = 1{0≤z−x<v≤z}
(x/z)t−1(1− x/z)−1/2

B(t, 1/2)z
1

v ln[(1− x/z)−1]
,

ρ2(x, v) = 1{0≤z−x<z<v}t (x/z)
t−1ez−v/z.

For i = 1, 2, ρi (x, v) is a pdf and qi (x, v) = wi hi (x, v)ρi (x, v), where wi and hi are defined in
the algorithm. It is easy to check hi (x, v) ≤ 1 for i = 1, 2. Define h0(x, v) ≡ 1. Define (ι, ζ, V )
such that ι ∈ {0, 1, 2} with Pr{ι = i} = wi/(w0 + w1 + w2), conditional on ι = 0, ζ = z and
V = 0, and conditional on ι = i ∈ {1, 2}, (ζ, V ) has pdf ρi . Then

Pr{S(t−) ∈ dx, ∆S(t) ∈ dv | τ S
b = t} =


hi (x, v)Pr{ι ∈ di, ζ ∈ dx, V ∈ dv},

with only i being integrated. It is easy to check that (zβt , z(1 − βt )
U ) has pdf ρ1, with βt ∼

Beta(t, 1/2) and U ∼ U (0, 1) independent, and (zβ ′t , z+ξ) has pdf ρ2, with β ′t ∼ Beta(t, 1) and
ξ ∼ Exp(1) independent. Then step 3 in the algorithm is rejection sampling of (S(t−),∆S(t))
conditional on τ S

b = t . Since S(t−) sampled by step 3 or 4 is exactly X1(t−), there is no need
for a step like step 5 in Table 1. We can directly proceed to steps 6–8 in Table 1.

4. Distributions of the FPE

4.1. Main results and the proof of Theorem 2.1

Consider the following general setting. Let X ∼ BV(Π ) take values in [0,∞)k and
∆X be its jump process. Then S = ∥X∥ ∼ BV(ΠS) is a subordinator with ΠS(ds) =
1{s>0}


1{∥x∥∈ds}Π (dx) and ∆S = ∥∆X∥. Denote Π S(s) = ΠS(s,∞).

Theorem 4.1. Suppose |Π | = ∞. Fix a nonincreasing function c ∈ C(0,∞) with c(0+) > 0
and put τ = τ S

c . Then (1) for t > 0, u ∈ [0,∞)k , and 0 ≠ v ∈ [0,∞)k ,

Pr {τ ∈ dt, X (τ−) ∈ du, ∆X (τ ) ∈ dv} = 1{0≤c(t)−∥u∥<∥v∥}dt Pr {X (t) ∈ du}Π (dv)
(4.1)

and

Pr {τ ∈ dt, X (τ−) ∈ du, ∆X (τ ) = 0}

= Pr {τ ∈ dt, S(τ ) = c(τ )}Pr {X (t) ∈ du | S(t) = c(t)} ; (4.2)

and (2) for t > 0, s ∈ [0, c(t)], z > c(t)− s, u ∈ [0,∞)k , and 0 ≠ v ∈ [0,∞)k ,

Pr {X (τ−) ∈ du, ∆X (τ ) ∈ dv | τ = t, S(τ−) = s, ∆S(τ ) = z}

= Pr {X (t) ∈ du | S(t) = s}Πz(dv) (4.3)
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and

Pr {X (τ−) ∈ du | τ = t, ∆S(τ ) = 0} = Pr {X (t) ∈ du | S(t) = c(t)} , (4.4)

where Πz(dv) = Pr{V ∈ dv | ∥V ∥ = z} with V following the normalization of (∥v∥∧ 1)Π (dv).

We next obtain the pdf of τ S
c at the event that S creeps across a differentiable segment of c. For

linear c, the pdf is already obtained in [20]. We need the following condition on the distribution
of S, which is satisfied by both stable and Gamma processes.

Definition 4.2. S is said to satisfy the continuous density condition, if S(t) has a pdf gt on (0,∞)
for each t > 0 and the mapping (t, x)→ gt (x) is continuous on (0,∞)× (0,∞).

Proposition 4.3. Let c ∈ C(0,∞) be nonincreasing with c(0+) > 0 and differentiable on an
open nonempty G ⊂ (0,∞). Put τ = τ S

c . If S satisfies the continuous density condition, then
for t ∈ G

Pr {τ ∈ dt, S(τ ) = c(τ )} = −c′(t)gt (c(t)) dt. (4.5)

Theorem 4.4. Let c be regular. Fix a closed set F with ℓ(F) = 0 such that c is differentiable on
(0,∞)\F. Put τ = τ S

c . Then under the continuous density condition on S, w.p. 1, τ ∈ (0,∞)\F
and for u ∈ [0,∞)k and 0 ≠ v ∈ [0,∞)k ,

Pr {X (τ−) ∈ du, ∆X (τ ) ∈ dv | τ } = Z(τ )−1µτ (du, dv), (4.6)

Pr {X (τ−) ∈ du, ∆X (τ ) = 0 | τ } = Z(τ )−1ντ (du), (4.7)

where for t ∈ (0,∞) \ F, letting c̃(t) = −c′(t)gt (c(t)),

Z(t) = c̃(t)+
 c(t)

0
Π S(c(t)− s)Pr{S(t) ∈ ds},

µt (du, dv) = 1{0≤c(t)−∥u∥<∥v∥} Pr{X (t) ∈ du}Π (dv), and νt (du) = c̃(t)Pr{X (t) ∈ du | S(t) =
c(t)}.

Based on the above results, we are ready to give

Proof of Theorem 2.1. We only deal with the case where c is a regular function. The case where
c ≡ ∞ and K < ∞ is similar. Let Z , S, X1, X2, X3, and Q be defined as in Section 2.1. Put
X = (X1, X2, X3). Then S = ∥X∥.

Consider the first iteration in Table 1. As A = K , D = τ̃ ∧ K . For t < D, Z(t) = X1(t).
Note that b = c ∧ r is regular. In step 2, t1 is a sample of τ S

b and t that of τ ∗ := τ S
b ∧ τ̃ ∧ K .

By independence of S and Q, t1 ≠ D w.p. 1, so either t1 < D or t1 > D. Then the (s, v) in
steps 3–4 is a sample of (S(τ ∗−),∆S(τ

∗)) conditional on τ ∗ = t . For step 3, this is clear. As for
step 4, notice that if t1 > D, then w.p. 1, S(D−) = S(D) < b(D).

Given (τ ∗, S(τ ∗−),∆S(τ
∗)) = (t, s, v), steps 5–6 sample X1(τ

∗
−) and ∆1(τ

∗) :=

X1(τ
∗) − X1(τ

∗
−) from their joint conditional distribution. Indeed, if t = t1 < D, then

by Theorem 4.1(2), X1(τ
∗
−) and ∆1(τ

∗) are independent under the conditional distribution,
following the distribution of X1(t) conditional on S(t) = s and that of ∆1(t) conditional
on ∆S(t) = v, respectively. This is still true if t = D < t1, as X (D−) = X (D) and
∆1(D) = ∆S(D) = 0 w.p. 1. By s ≤ b(t) ≤ r , Pr{X1(t) ∈ dx | S(t) = s} = Pr{X1(t) ∈
dx | X1(t) + X2(t) = s}, hence the sampling of x in step 5. Clearly, ∆S(t) = 0 implies
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∆1(t) = 0. Suppose ∆S(t) = v > 0. The support of ΠX is within {(x1, x2, x3) : xi ≥

0, at most one is nonzero}, such that for y > 0, ΠX (dy × {0} × {0}) = e−qy1{y≤r}Λ(dy),
ΠX ({0} × dy × {0}) = (1 − e−qy)1{y≤r}Λ(dy), and ΠX ({0} × {0} × dy) = 1{y>r}Λ(dy). Then
by Theorem 4.1(2), Pr{∆1(t) ∈ dy | ∆S(t) = v} = Πv(dy × {0} × {0}) = 1{y=v≤r}e−qv , hence
the updating of v in step 6.

Put together, the (t, x, v) generated by the end of step 6 is a sample of (τ ∗, X1(τ
∗
−),∆1(τ

∗)).
It follows that the ∆ and z in step 7 are samples of ∆Z (τ

∗) = ∆1(τ
∗) + ∆Q(τ

∗) and
Z(τ ∗) = X1(τ

∗
−) + ∆Z (τ

∗), respectively. If the condition of termination is not satisfied, the
updating of A and b in step 8 renews the sampling. Note that D is the distance in time to the
current jump of Q. Once D becomes 0, the next jump of Q has to be sampled.

Let T0 = 0, and for n ≥ 1, (Tn, Hn,∆n) the value of (T, H,∆) obtained by the end
of the nth iteration. By induction, we can make the following conclusion. For n ≥ 1, if
Z(Tn−1) < c(Tn−1) and Tn−1 < K , then

Tn = inf{t > Tn−1 : S(t)− S(Tn−1) > [c(t)− Z(Tn−1)] ∧ r or ∆Q(t) > 0} ∧ K , (4.8)

Hn = Z(Tn) and ∆n = ∆Z (Tn). To show that the procedure stops w.p. 1 and returns a sample of
(τ, Z(τ−),∆Z (τ )), it suffices to show Pr{Tn = τ eventually } = 1. Clearly, T0 < τ . For n ≥ 1,
if Tn−1 < τ , then, since Z is strictly increasing w.p. 1, Z(Tn−1) < Z(τ−) ≤ c(τ ) ≤ c(Tn−1).
Then by (4.8), Tn > Tn−1. For t ∈ (Tn−1, Tn), since there are no jumps of Q in the interval,

Z(t)− Z(Tn−1) = X1(t)− X1(Tn−1) ≤ S(t)− S(Tn−1) ≤ c(t)− Z(Tn−1),

with the last inequality due to (4.8). Then Z(t) ≤ c(t) and hence Tn ≤ τ . Assume that Tn ≠ τ

for all n ≥ 1. Then T1 < T2 < · · · < τ ≤ K . Let θ = lim Tn . Then θ ≤ τ < ∞. By quasi-
left-continuity of Lévy processes [3, Proposition I.7], (X (Tn), Q(Tn)) → (X (θ), Q(θ)). Then
Z(Tn) − Z(Tn−1) → 0. Meanwhile, since the CP processes X2, X3 and Q only have a finite
number of jumps in (0, θ), eventually they have no jumps in (Tn, θ). It follows that for n ≫ 1,

r > Z(Tn+1)− Z(Tn) = S(Tn+1)− S(Tn) ≥ [c(Tn+1)− Z(Tn)] ∧ r.

It is easy to see that the inequalities imply Z(Tn+1) ≥ c(Tn+1) and hence Tn+1 ≥ τ . The
contradiction shows that w.p. 1, Tn = τ for some n. �

4.2. Proofs of Theorems 2.2 and 2.3

Proposition 4.5. Let X ∈ BV(Π , d) take values in R with |Π | = ∞ and d ≤ 0. Then

Pr {∃t > 0 s.t. X (s) < X (t) = a for all s < t} = 0, a > 0.

Proof. Given a > 0, let τ ∗ = inf{t : X (s) < X (t) = a for all s < t}. It suffices to
show Pr{τ ∗ < ∞} = 0. By τ ∗ ≤ τ := τ X

a , Pr{τ ∗ < ∞} = Pr{τ ∗ = τ < ∞} +

Pr{τ ∗ < τ } ≤ Pr{X (τ ) = a} + Pr{τ ∗ < τ }. Since X is not CP, by the argument for
Proposition III.2 in [3], Pr{X (τ ) = a, ∆X (τ ) ≠ 0} = 0. Meanwhile, since X has bounded
variation and nonpositive drift, Pr{X (τ ) = a, ∆X (τ ) = 0} = 0 [3, Exercise VI.9]. Then
Pr{X (τ ) = a} = 0. Assume Pr {τ ∗ < τ } > 0. Let η ∼ Exp(1) be independent of X . Then
Pr {τ ∗ < η < τ } > 0 and hence Pr{X(η) = a} > 0, where X(t) = sup{X (s) : 0 ≤ s ≤ t}.
From the fluctuation identity [3, Theorem VI.5], X(η) is either constant 0 or ID with Lévy
measure ν(dx) = 1{x>0}


∞

0 t−1e−t Pr {X (t) ∈ dx} dt . In the latter case, the potential measure
U (dx) =


∞

0 e−t Pr{X (t) ∈ dx} dt is diffuse [3, Proposition I.15], so ν is also diffuse, implying
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the distribution of X(η) is continuous on (0,∞) [34, Remark 27.3 and Theorem 27.4]. As a
result, Pr{X(η) = a} = 0. The contradiction completes the proof. �

Applying the result to X and −X respectively and using union-sum inequality, we get

Corollary 4.6. Let X ∈ BV(Π ) take values in R with |Π | = ∞. Then

Pr {∃t > 0 s.t. − b < X (s) < a for all s < t, X (t) = −b or a} = 0, a, b > 0.

Proof of Theorem 2.2. Let T0 = 0, H+0 = H− = 0, and for n ≥ 1, let (Tn, H+n , H−n , vn) be the
value of (T, H+, H−, v) at the end of the nth iteration. By induction, for n ≥ 1, the procedure
continues to the nth iteration if and only if Z(Tk) < a and Tk < K for 0 ≤ k < n, in which
case Tn = inf{t > Tn−1 : Z+(t) − Z+(Tn−1) > a − Z(Tn−1)} ∧ K > Tn−1, H+n = Z+(Tn),
H−n = Z−(Tn), and vn = ∆Z (Tn). Note that for n ≥ 1, if the procedure continues to the
nth iteration, then

Z(t) < a for all t < Tn . (4.9)

Indeed, for n = 1, since at least one of Z± is strictly increasing, for 0 ≤ t < T1, Z(t) =
Z+(t) − Z−(t) < Z+(T1−) ≤ a. On the other hand, for n ≥ 2, by renewal argument,
Z(t)− Z(Tn−1) < a − Z(Tn−1) for all Tn−1 ≤ t < Tn . Then by induction, (4.9) follows.

By assumption, τ < ∞ w.p. 1. To finish the proof, it suffices to show w.p. 1, the procedure
stops eventually at the end of an iteration with Tn = τ . The compliment of the event consists
of two cases. The first one is that the procedure stops at the end of an iteration with Tn ≠ τ . In
this case, Tn < τ ≤ K , otherwise there would be τ < Tn ≤ K , which leads a contradiction
to (4.9). On the one hand, Tn < τ implies Z(Tn) ≤ a, on the other, Tn < K together with the
stopping rule of the procedure implies Z(Tn) ≥ a. Then Z(Tn) = a. By (4.9) and Proposition 4.5,
the chance of this is 0. The second case is that the procedure goes on forever. In this case,
as pointed out at the beginning, Tn is strictly increasing, Tn < K , and Z(Tn) < a. Then by
(4.9), Tn < τ , giving θ = lim Tn < ∞. For any t < θ , by (4.9), Z(t) < a. Meanwhile, by
Z+(Tn+1) − Z+(Tn) ≥ a − Z(Tn) > 0 and quasi-left-continuity of Lévy processes [3], letting
n→∞ yields Z(θ) = a. By Proposition 4.5, the chance for such θ to exist is also 0. �

Proof of Theorem 2.3. First, τ < ∞ w.p. 1 [3, Theorem VI.12]. Let T0 = 0, H+0 = H−0 = 0,
and for n ≥ 1, let (Tn, H+n , H−n ,∆

+
n ,∆

−
n ) be the value of (T, H+, H−,∆+,∆−) obtained by

the end of the nth iteration. By induction and the same argument as in the proof of Theorem 2.1,
for n ≥ 1, the procedure continues to the nth iteration if and only if Z(Tk) ∈ (−a−, a+) and
Tk < K for 0 ≤ k < n, and in this case,

Tn = inf{t > Tn−1 : S+(t)− S+(Tn−1) > a+ − Z(Tn−1),

S−(t)− S−(Tn−1) > a− + Z(Tn−1), or ∆Q(t) > 0} ∧ K > Tn−1,

H+n = Z+(Tn), H−n = Z−(Tn), ∆+n = ∆Z+(Tn), ∆−n = ∆Z−(Tn),

and, similar to (4.9), Z(t) ∈ (−a−, a+) for all t < Tn . The rest of the proof follows that of
Theorem 2.2, except Corollary 4.6 is used. �

4.3. Proof of Theorem 4.1

(1) It is clear that 0 < τ <∞ w.p. 1. To show (4.1), following the proof for Proposition III.2
in [3], let f ≥ 0 be an arbitrary Borel function on Ω := (0,∞)×[0,∞)k × ([0,∞)k \ {0}) such
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that f (t, u, v) = 0 when ∥v∥ = c(t)− ∥u∥. Then

f (τ, X (τ−),∆X (τ )) =


t
f (t, X (t−),∆X (t))1{0≤c(t)−S(t−)<∥∆X (t)∥}. (4.10)

For each t > 0, define function Ht (v) = f (t, X (t−), v)1{0≤c(t)−S(t−)<∥v∥} on [0,∞)k .
Since H = (Ht ) is a predictable process with respect to the filtration generated by ∆X , by
the compensation formula [3, p. 7]

E[ f (τ, X (τ−),∆X (τ ))] =


∞

0
dt E


f (t, X (t−), v)1{0≤c(t)−S(t−)<∥v∥}Π (dv)


(a)
=


∞

0
dt


f (t, u, v)1{0≤c(t)−∥u∥<∥v∥} Pr {X (t) ∈ du}Π (dv)

=


Ω

1{0≤c(t)−∥u∥<∥v∥} f (t, u, v) dt Pr {X (t) ∈ du}Π (dv),

with (a) due to X (t−) ∼ X (t). This shows (4.1) for (t, u, v) ∈ Ω with ∥v∥ ≠ c(t) − ∥u∥.
Now let (t, u, v) ∈ Ω with ∥v∥ = c(t) − ∥u∥. Then the RHS of (4.1) is 0. Letting f (t, u, v) =
1{v=c(t)−u>0}, by similar derivation as in the above display, but applied to S instead of X ,

Pr{S(τ−) < S(τ ) = c(τ )} =

∞

0
dt


Pr{S(t) ∈ du}ΠS({c(t)− u}).

For each t , there is only a countable set of u with ΠS({c(t) − u}) > 0. On the other hand,
by |ΠS| = |Π | = ∞, the distribution of S(t) is continuous, i.e., Pr{S(t) = u} = 0 for all u
[34, Theorem 27.4]. As a result,


Pr{S(t) ∈ du}ΠS({c(t) − u}) = 0 for all t > 0, and so the

multiple integral is 0. Finally, the proof of (4.1) is complete by

Pr {∆X (τ ) ≠ 0, S(τ ) = c(τ )} = Pr {S(τ−) < S(τ ) = c(τ )} = 0. (4.11)

Now consider (4.2). By |ΠS| = ∞, S is strictly increasing w.p. 1. Clearly, ∆X (τ ) = 0 implies
S(τ ) = c(τ ). Conversely, from (4.11), on the event S(τ ) = c(τ ), ∆X (τ ) = 0 w.p. 1. Define
τ ∗ = inf{t ≥ 0 : S(t) = c(t)}. Then w.p. 1,

{τ ∗ <∞} = {τ = τ ∗} = {S(τ ) = c(τ )}. (4.12)

Let f ≥ 0 be a Borel function on (0,∞)×[0,∞)k with bounded support. Then there are two
ways to express E[ f (τ, X (τ−))1{S(τ )=c(τ )}]. First, it equals

f (t, u)1{∥u∥=c(t)} Pr {τ ∈ dt, X (τ−) ∈ du, ∆X (τ ) = 0} . (4.13)

Second, from (4.12), it also equals

E[ f (τ, X (τ ))1{S(τ )=c(τ )}] = E[ f (τ ∗, X (τ ∗))1{τ∗<∞}]

=


E[ f (t, X (t)) | τ ∗ = t]Pr{τ ∗ ∈ dt}

=


f (t, u)Pr{X (t) ∈ du | τ ∗ = t}Pr{τ ∗ ∈ dt}.

From the definition of τ ∗ and (4.12), the last integral is equal to
f (t, u)Pr {τ ∈ dt, S(τ ) = c(τ )}Pr {X (t) ∈ du | S(t) = c(t)} . (4.14)



1140 Z. Chi / Stochastic Processes and their Applications 126 (2016) 1124–1144

Since f is arbitrary, comparing the integrals in (4.13) and (4.14) then yields

1{∥u∥=c(t)} Pr {τ ∈ dt, X (τ−) ∈ du, ∆X (τ ) = 0}

= Pr {τ ∈ dt, S(τ ) = c(τ )}Pr {X (t) ∈ du | S(t) = c(t)} .

The qualifier 1{∥u∥=c(t)} is redundant in the identity. Then (4.2) follows.
(2) Since (X, S) ∼ BV(Π̃ ), with Π̃ (dx, ds) = Π (dx) δ(ds − ∥x∥). By similar argument as

(1), for t > 0, s ≥ 0, z > 0, u ∈ [0,∞)k , and 0 ≠ v ∈ [0,∞)k ,

Pr {τ ∈ dt, X (τ−) ∈ du, S(τ−) ∈ ds, ∆X (τ ) ∈ dv, ∆S(τ ) ∈ dz}

= 1{0≤c(t)−s<z}dt Pr {X (t) ∈ du, S(t) ∈ ds}Π (dv) δ(dz − ∥v∥).

On the other hand, applying (4.1) directly to S,

Pr {τ ∈ dt, S(τ−) ∈ ds, ∆S(τ ) ∈ dz} = 1{0≤c(t)−s<z}dt Pr {S(t) ∈ ds}ΠS(dz).

In order to get (4.3), it then suffices to show Π (dv)δ(dz − ∥v∥) = Πz(dv)ΠS(dz) for 0 ≠
v ∈ [0,∞)k and z ∈ (0,∞). Put C =


(∥u∥ ∧ 1)Π (du), which is positive and finite. Then

Pr{V ∈ dv} = (∥v∥ ∧ 1)Π (dv)/C and Pr{∥V ∥ ∈ dz} = (z ∧ 1)ΠS(dz)/C . It follows that

Πz(dv)ΠS(dz) = C Pr{V ∈ dv | ∥V ∥ = z}Pr{∥V ∥ ∈ dz}/(z ∧ 1)

= C Pr{V ∈ dv, ∥V ∥ ∈ dz}/(z ∧ 1) = Cδ(dz − ∥v∥)Pr{V ∈ dv}/(z ∧ 1),

which yields the desired equality.

4.4. Proof of Theorem 4.4

We need a few auxiliary results. First, from Theorem 4.1 it is easy to get the following.

Corollary 4.7. For a > 0 and t > 0, define

ψa(t) =
 a

0
Π S(a − u)Pr {S(t) ∈ du} . (4.15)

Then, under the same assumption as Theorem 4.1,

Pr{τ ∈ dt, S(τ ) > c(τ )} = ψc(t)(t) dt. (4.16)

In particular, if c is constant a ∈ (0,∞), then τ has pdf ψa(t).

Proof. Apply (4.1) in Theorem 4.1 directly to S to get

Pr{τ ∈ dt, S(τ ) > c(τ )} = dt


1{0≤c(t)−u<v} Pr{S(t) ∈ du}ΠS(dv),

which is (4.16). If c ≡ a, then by Pr {S(τ ) > a} = 1 [3, Theorem III.4], Pr{τ ∈ dt} =
ψa(t) dt . �

The following two lemmas will be proved in Section 4.5.

Lemma 4.8. Under the continuous density condition on S, the mapping (a, t) → ψa(t) is
continuous on (0,∞)× (0,∞).

Lemma 4.9. Let c be continuous and nonincreasing on (0,∞) with c(0+) > 0. Put τ = τ S
c .

If S satisfies the continuous density condition, then Pr {τ ∈ A} = 0 for any A ⊂ (0,∞)
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with ℓ(A) = c(A) = 0, where c(A) is the absolute value of the Riemann–Stieltjes integral
1{x∈A} dc(x).

Proof of Proposition 4.3. It suffices to consider t ∈ G with c(t) > 0. Given such t , put a = c(t).
For ε > 0, let q(ε) = Pr {t − ε < τ ≤ t}. Then q(ε) = Pr {S(t − ε) < c(t − ε), S(t) ≥ a} =
q1(ε)+ q2(ε), where q1(ε) = Pr {S(t − ε) < a ≤ S(t)}, q2(ε) = Pr {a ≤ S(t − ε) < c(t − ε)}.
Then q1(ε) = Pr


t − ε < τ S

a ≤ t

. By Corollary 4.7 and Lemma 4.8, the distribution function

of τ S
a is differentiable with derivative ψa(t) at t . Then q1(ε)/ε → ψa(t) = ψc(t)(t) as ε ↓ 0.

On the other hand, q2(ε) =
 c(t−ε)−c(t)

0 gt−ε(a + x) dx . Since (t, x) → gt (x) is continuous on
(0,∞)× (0,∞) and c is differentiable at t , q2(ε)/ε→−c′(t)gt (c(t)) as ε ↓ 0. We thus get

lim
ε↓0

ε−1
[Pr {τ ≤ t} − Pr {τ ≤ t − ε}] = −c′(t)gt (c(t))+ ψc(t)(t).

Likewise, as ε ↓ 0, ε−1
[Pr {τ ≤ t + ε} − Pr {τ ≤ t}] converges to the same limit. Thus, the

distribution function of τ is differentiable everywhere in the open set {t ∈ G : c(t) > 0}, and so
−c′(t)gt (c(t)) + ψc(t)(t) is the pdf of τ on the set [33, Theorem 7.21]. Then by Corollary 4.7,
Pr {τ ∈ dt} = −c′(t)gt (c(t)) dt + Pr {τ ∈ dt, S(τ ) > c(τ )}, which yields (4.5). �

We are ready to complete the proof of Theorem 4.4. Since c is absolutely continuous,
c(F) = 0, so by Lemma 4.9, τ ∈ (0,∞) \ F w.p. 1. By Theorem 4.1 and Proposition 4.3,
for t ∈ (0,∞) \ F , u ∈ [0,∞)k , 0 ≠ v ∈ [0,∞)k ,

Pr {τ ∈ dt, X (τ−) ∈ du, ∆X (τ ) ∈ dv} = 1{0≤c(t)−∥u∥<∥v∥}dt Pr {X (t) ∈ du}Π (dv)

and

Pr {τ ∈ dt, X (τ−) ∈ du, ∆X (τ ) = 0} = −c′(t)gt (c(t)) dt Pr{X (t) ∈ du | S(t) = c(t)},

which, by definition, are dt µt (du, dv) and dt νt (du), respectively. Integrate over u and v to get
Pr{τ ∈ dt} = Z(t) dt . Then (4.6) and (4.7) follow.

4.5. Additional technical details

To prove Lemmas 4.8 and 4.9, we start with two more lemmas.

Lemma 4.10. For t > 0 and 0 < a < b <∞, let

L1(t, a, b) =
 a

0
[Π S(a − u)−Π S(b − u)]gt (u) du,

L2(t, a, b) =
 b

a
Π S(b − u)gt (u) du.

Then for any E = [t0, t1] ⊂ (0,∞) and I = [α, β] ⊂ (0,∞),

lim
r↓0

sup {L i (t, a, b) : t ∈ E, a ∈ I, a ≤ b ≤ a + r} = 0, i = 1, 2. (4.17)

Proof. For a ≤ b ≤ a + r , L1(t, a, b) ≤ L1(t, a, a + r). Given ε ∈ (0, α/2), L1(t, a, a + r) =
J1+ J2 with J1 =

 ε
0 h and J2 =

 a
ε

h, where h(u) = [Π S(a− u)−Π S(a+ r − u)]gt (u). Then

J1 ≤

 ε

0
Π S(a − u)gt (u) du ≤ Π S(a − ε)

 ε

0
gt (u) du

= Π S(α − ε)Pr {S(t) ≤ ε} ≤ Π S(α − ε)Pr {S(t0) ≤ ε}
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and letting M = sup{gt (u) : t ∈ E, ε ≤ u ≤ β},

J2 ≤ M
 a

ε

[Π S(a − u)−Π S(a − u + r)] du ≤ M
 β

0
[Π S(u)−Π S(u + r)] du.

By assumption on gt (x), M < ∞. Also,
 β

0 Π S(u) du =

∞

0 (v ∧ β)ΠS(dv) < ∞. Then by
monotone convergence, as r ↓ 0, J2 → 0 uniformly for (t, a) ∈ E × I , and so for L1, the limit
in (4.17) is at most Π S(α − ε)Pr {S(t0) ≤ ε}. Since Pr{S(t0) > 0} = 1 and ε is arbitrary, the
limit 0. Thus (4.17) holds for L1. Next, for t ∈ E , a ∈ I , and b ∈ [a, a + r ],

L2(t, a, b) =

∞

0
ΠS(dx)

 b

a∨(b−x)
gt ≤

 ε

0
ΠS(dx)

 b

b−x
gt +


∞

ε

ΠS(dx)
 b

a
gt

≤ M ′
 ε

0
xΠS(dx)+ rΠ S(ε)


,

where M ′ = sup{gt (u) : t ∈ E, α − ε ≤ u ≤ β}. Then, as r ↓ 0, the limit for L2 in (4.17) is at
most M ′

 ε
0 xΠS(dx). Since ε is arbitrary, the limit is 0. �

Lemma 4.11. Let h be a bounded function on (0,∞)× (0,∞). For a, t ∈ (0,∞), define

H(a, t) =


1{u≤a<x}h(u, x) Pr {S(t) ∈ du}ΠS(dx − u).

Then under the continuous density condition, H is continuous on (0,∞)× (0,∞).

Proof. Let |h(u, x)| ≤ 1. It suffices to show H ∈ C(R) for any R = [α, β] × [t0, t1] ⊂
(0,∞)× (0,∞). Let (a, s), (b, t) ∈ R. Then

|H(b, t)− H(a, s)| ≤ |H(b, t)− H(a, t)| + |H(a, t)− H(a, s)|.

Let L1 and L2 be as in Lemma 4.10. Let a′ = a ∧ b and b′ = a ∨ b. Then

|H(b, t)− H(a, t)| ≤

|1{u≤b<x} − 1{u≤a<x}| Pr {S(t) ∈ du}ΠS(dx − u)

≤

 
1{u≤a′<x≤b′} + 1{a′<u≤b′<x}


Pr {S(t) ∈ du}ΠS(dx − u)

= L1(t, a′, b′)+ L2(t, a′, b′).

Then by Lemma 4.10, as (b, t) → (a, s), H(b, t) − H(a, t) → 0. On the other hand, given
ε ∈ (0, α), let M = sup{gt (u) : u ∈ [α − ε, β], t ∈ [t0, t1]}. Then

|H(a, t)− H(a, s)| ≤


1{u≤a<x}|gt (u)− gs(u)|ΠS(dx − u) du

=


1{u≤a}|gt (u)− gs(u)|Π S(a − u) du.

Bounding the integral on [a − ε, a] and [0, a − ε] separately, we obtain

|H(a, t)− H(a, s)| ≤ 2M
 ε

0
Π S(u) du +Π S(ε)


|gt (u)− gs(u)| du.

Let t → s. Since point-wise convergence of gt to gs implies convergence in total variation,
lim |H(a, t) − H(a, s)| ≤ 2M

 ε
0 Π S(u) du < ∞. Letting ε → 0 gets H(a, t) − H(a, s) →

0. �
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Proof of Lemma 4.8. Apply (4.15) and Lemma 4.11, with h(a, t) ≡ 1 therein. �

Proof of Lemma 4.9. G := {t > 0 : c(t) > 0} is an open interval and Pr {τ ∈ G} = 1. To prove
the lemma, it suffices to show that for any I = [t0, t1] ⊂ G, Pr {τ ∈ A ∩ I } = 0. Let α = c(t1)
and β = c(t0). Given ε > 0, A ∩ I can be covered by at most countably many disjoint intervals
(ai , bi ) ⊂ (t0, t1) such that


(bi − ai ) < ε and


[c(ai )− c(bi )] < ε. For each i ,

Pr {τ ∈ (ai , bi )} ≤ Pr {S(ai ) ≤ c(ai ), S(bi ) > c(bi )}

≤ Pr {c(bi ) < S(ai ) ≤ c(ai )} + Pr {S(ai ) ≤ c(bi ) < S(bi )}

= Pr {c(bi ) < S(ai ) ≤ c(ai )} + Pr{τ S
c(bi )
∈ (ai , bi )}.

By the continuous density condition and Lemma 4.8, the RHS is at most M1[c(ai ) − c(bi )] +

M2(bi − ai ), where M1 = sup gt (x) and M2 = supψx (t) over (t, x) ∈ [t0, t1] × [α, β].
Therefore, Pr {τ ∈ A ∩ I } ≤


Pr {τ ∈ (ai , bi )} ≤ (M1 + M2)ε. Since ε is arbitrary, this yields

the proof. �
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[25] C. Klüppelberg, A.E. Kyprianou, R.A. Maller, Ruin probabilities and overshoots for general Lévy insurance risk
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