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1. Introduction

We are interested in “stochastic”, scalar, degenerate parabolic–hyperbolic equations of the
form du +

N
i=1

∂xi F i (u) ◦ dzi
= div(A(u)Du)dt in RN

× (0, T ),

u = u0 on RN
× {0},

(1.1)

where

u0 ∈ (BV ∩ L∞)(RN ), z ∈ C0([0, T ]; RN ) and A ∈ L∞

loc(R; RN×N ). (1.2)

A particular example of the signal z is the N -dimensional (fractional) Brownian motion. The
Stratonovich notation ◦ in (1.1) is justified by showing that the pathwise entropy solution con-
structed in this paper is the limit of solutions u(l) to (1.1) with z replaced by smooth approxima-
tions z(l) converging to z.

Equations of the type (1.1) arise, for example, in the study of mean field games, see [24,31] for
details. In this case one typically has A(u) = Id. More generally, (1.1) describes the evolution of
a density subject to nonlinear diffusion and convected by a nonlinear, stochastic flux function. For
example, this models the diffusion of the temperature in an impure, turbulent fluid, loosely related
to the so-called Kraichnan models of turbulent mixing of passive scalars. For simplicity, a possi-
ble additional semilinear noise term is neglected in (1.1), see [22,27] for progress in this direction.

We assume that

A ∈ L∞

loc(R; S N ) is nonnegative, (1.3)

where S N is the space of symmetric N × N matrices, and

F ∈ C2
loc(R; RN ) with F ′(0) = 0. (1.4)

In this paper we introduce the notion of pathwise entropy solutions for (1.1) and prove that it is
well-posed. In the setting of stochastic scalar conservation laws, that is when A ≡ 0 in (1.1), the
notion of pathwise entropy solutions was introduced by Lions, Perthame and Souganidis [31],
while Chen and Perthame [10] studied the entropy solutions of the “deterministic” version of
(1.1), that is for z(t) = (t, . . . , t). We also refer to Perthame and Souganidis [42] who introduced
an equivalent solution in the deterministic case called dissipative solution and to Lions, Perthame
and Souganidis [33], Gess and Souganidis [24], Friz and Gess [20], Hofmanova [27] for
stochastic scalar conservation laws with A ≡ 0 allowing for spatially inhomogeneous flux and
semilinear noise. We note that, as compared to [24,27,31,33], the inclusion of the non-isotropic
parabolic part A in (1.1) leads to additional complications and additional approximation and
localization steps in the proof of well-posedness are needed.

As particular examples, (1.1) includes stochastic porous media equations, that is

du +

N
i=1

∂xi Fi (u) ◦ dzi
= 1u[m]dt in RN

× (0, T ) (1.5)

where m > 1 and u[m]
:= |u|

m−1u.
In this case our results extend previous work on stochastic porous media equations, based on

the variational approach to SPDE, which did not allow treatment of nonlinear transport noise as
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in (1.5). See, for example, Prévot and Röckner [43], Krylov and Rozovskiı̆ [29], Pardoux [40],
Barbu, Da Prato and Röckner [1–3] and the references therein. In addition, in contrast to previous
work, the pathwise approach to (1.1) developed in this paper immediately implies the existence
of a corresponding random dynamical system. This is of particular interest, since (1.1) contains
nonlinear multiplicative noise for which the existence of a random dynamical system is known
to be a difficult problem (see, for example, Mohammed, Zhang and Zhao [39], Flandoli [19] and
Gess [21]).

In the second part of the paper we study the long-time behavior and regularity properties of
(1.1) set on the torus TN and driven by Brownian motion, that is the initial value problemdu +

N
i=1

∂xi F i (u) ◦ dβ i
t = div(A(u)Du)dt in TN

× (0,∞),

u = u0 on TN
× {0},

(1.6)

with

A ∈ C(R; S N ) ∩ C1(R \ {0}; S N ),

|F ′′(ξ)| + |A′(ξ)| ≤ C(1 + |ξ |p1 + |ξ |p2)
(1.7)

for some C > 0, p1, p2 ∈ (−1,∞) and all ξ ∈ R \ {0},

β = (β1, . . . , βN ) is a standard two-sided Brownian motion, (1.8)

and

u0 ∈ L1(TN ). (1.9)

We prove that, under a genuine nonlinearity condition for F, A, the solutions to (1.6) converge
to their spatial average and we provide a rate of convergence. In the deterministic setting, that is
when z(t) = (t, . . . , t), Chen and Perthame [11] proved the convergence to the spatial average
by different methods and without an estimate on the rate of convergence. In the hyperbolic case,
that is when A ≡ 0 and restricted to one and two space dimensions respectively, Lax [30], E and
Engquist [17] provided estimates on the rate of convergence. Convergence to the spatial average
under weak conditions on the flux F has been shown by Dafermos [12]. A rate of convergence
in any dimension for both deterministic and stochastic scalar conservation laws (A ≡ 0) was
established by the authors in [25].

The third result presented here is a regularity estimate based on averaging techniques. This
extends the regularity results developed in [25] for the hyperbolic case and provides new
regularity estimates for stochastic porous media equations. Averaging lemmata for deterministic
parabolic–hyperbolic equations have been established by Tadmor and Tao [44].

Stochastic scalar conservation laws driven by multiplicative semilinear noise, that is,

du + divF(u)dt = g(u)dWt (1.10)

have been intensively studied in recent years; we refer to Holden and Risebro [28], Feng and
Nualart [18], Debussche and Vovelle [14], Chen, Ding and Karlsen [7], Bauzet, Vallet and
Wittbold [4], Hofmanova [26] and the references therein. In particular, Debussche, Hofmanova
and Vovelle [13] and Bauzet, Vallet and Wittbold [5] studied SPDE of the type (1.10) additionally
including a second order quasilinear term. Part of the results obtained in this paper is related to
questions of continuous dependence of solutions to quasilinear degenerate PDE with respect to
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the coefficients. For related results we refer to [8,9]. The long-time behavior of solutions to (1.10)
with additive noise has been analyzed by E, Khanin, Mazel and Sinai [16] and Debussche and
Vovelle [15].
Organization of the paper. In Section 2, we introduce the notion of pathwise entropy solutions
and state the results about its well-posedness for general continuous paths and the long time
behavior with rates as well as regularity in the stochastic case. The proofs are given in Sections
3, 4, 5, 6 respectively. Since some of the results are technical, we have chosen to present in the
first two appendices the proofs of the most technical estimates. Finally, for the convenience of
the reader we recall in Appendix D the definition [10, Definition 2.2] of the kinetic solution to
(1.1) for smooth driving signals.
Notation. We work in RN or on the torus TN , SN−1 is the unit sphere in RN , R+ := (0,∞)

and δ is the “Dirac” mass at the origin in R. For notational convenience, we write A . B if
A ≤ C B for some C > 0, and A ∼ B, if A . B and B . A. For a matrix A ∈ RN×N

we write A = (ai j )
N
i, j=1 and, given two matrices A, B, we set A : B :=

N
i, j=1 ai j bi j .

The subspace of L1-functions with bounded total variation is BV and its norm is ∥ · ∥BV . If
f ∈ BV , BV ( f ) is its total variation. We write δc for the “Dirac mass” measure in L1(TN )

charging the constant function c ∈ R and we set L1
c(TN ) := {u ∈ L1(TN ) : u has average c}.

We set C0([0, T ]; RN ) := {z ∈ C([0, T ]; RN ) : z(0) = 0}. For an open set O ⊆ RN ,
C1

c (O) is the space of all continuously differentiable functions with compact support in O. If
F : [0, T ] → R, F |

t
s := F(t) − F(s) for all s, t ∈ [0, T ]. In the second part of the paper, we

will omit, when it does not cause any confusion, the dependence in ω and we occasionally write
m(x, ξ, s)dxdξds instead of dm(x, ξ, s). The space of homogeneous Bessel potentials, W λ,p

for λ > 0, p ∈ [1,∞), is

W λ,p
:= { f ∈ L p(TN ) : (|n|

λ f̂ (n))∨ ∈ L p(TN )},

where f̂ is the discrete Fourier transform of f on TN and f ∨ is its inverse. The homogeneous
Bessel potential spaces coincide with the domains of the fractional Laplace operators (−∆)

λ
2 on

L p(TN ). For notational simplicity we set Hλ
:= W λ,2.

2. The main results

Pathwise entropy solutions. We introduce here the notion of pathwise entropy solutions to (1.1),
which is based on the kinetic formulation of (1.1) and on choosing test-functions transported
along the characteristics. For (hyperbolic) scalar conservation laws this was introduced in [31]
and it was motivated from the theory of stochastic viscosity solutions for fully nonlinear first-
and second-order PDE including stochastic Hamilton–Jacobi equations developed by Lions and
Souganidis (see [34–38]). The theory was extended to the spatially inhomogeneous case by
Lions, Perthame and Souganidis [33], Gess and Souganidis [25] and Hofmanova [27]. In view
of the parabolic part in (1.1), the kinetic formulation has to be appropriately adapted; in the
deterministic case this was done in [10].

For smooth driving paths z ∈ C1([0, T ]; RN ) the well-established theories of entropy
solutions and kinetic solutions apply to (1.1). In order to fix the ideas and the notation, it is
necessary to introduce the functions

χ(u, ξ) :=

+1 if 0 ≤ ξ ≤ u,
−1 if u ≤ ξ ≤ 0,
0 otherwise,

(2.1)
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and, given u : RN
× [0,∞) → R,

χ(x, ξ, t) := χ(u(x, t), ξ) (2.2)

and to observe that

∂ξχ(x, ξ) = δ(ξ)− δ(ξ − u).

Finally, to simplify the notation, we use the functions

fi (ξ, t) := (F ′)i (ξ)żi (t).

The kinetic form of (1.1) then is
∂tχ + f (ξ, t) · Dxχ −

d
i, j=1

ai j (ξ)∂
2
xi x j

χ = ∂ξ (m + n) in RN
× R × [0,∞),

χ(x, ξ, 0) = χ(u0(x), ξ),

(2.3)

where the entropy defect measure m and the parabolic dissipation measure n are nonnegative,
bounded measures in RN

× R × [0, T ] for each T > 0. In the sequel, when we do not need to
differentiate between m and n, we set q := m + n.

The notion of kinetic solutions is not well defined for rough driving signals z that are merely
continuous, since the coefficients f (ξ, t) blow up with ż. On the other hand, following [25,31,
33] we observe that the linearity of (2.3) in χ suggests that we may use the characteristics of
(2.3) to derive a stable notion of solutions, which will be the pathwise entropy solutions.

We continue assuming z ∈ C1([0, T ]; RN ) and consider the transport equation
∂tϱ + f (ξ, t) · Dxϱ = 0 in RN

× R × [0, T ],

ϱ0 = ϱ0 on RN
× R × {0}.

(2.4)

For each (y, η) ∈ RN+1 and ϱ0
∈ C∞

c (RN
× R), ϱ = ϱ(x, y, ξ, η, t) is the solution to (2.4)

with

ϱ(·, y, ·, η, 0) = ϱ0(· − y, · − η) = ϱs,0(· − y)ϱv,0(· − η) (2.5)

and ϱs,0
∈ C∞

c (RN ), ϱv,0 ∈ C∞
c (R). Here, we use the superscripts s and v to emphasize that the

functions act on the space and velocity variables respectively.
The convolution along characteristics is then given by

ϱ ∗ χ(y, η, t) :=


ϱ(x, y, ξ, η, t)χ(x, ξ, t)dxdξ,

and it follows from Lemma 2.2 that, for all (y, η) ∈ RN+1 and in the sense of distributions in
t ∈ [0, T ],

∂tϱ ∗ χ(y, η, t) =

N
i, j=1


ai j (ξ)χ(x, ξ, t)∂2

xi x j
ϱ(x, y, ξ, η, t)dxdξ

−


∂ξϱ(x, y, ξ, η, t)q(x, ξ, t)dxdξ in RN

× R × (0, T ).

The solution of (2.4) can be expressed in terms of the associated (backward) characteristics.
Due to the spatial homogeneity of the flux f , the characteristics starting at (y, ξ) and the solution
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ϱ = ϱ(x, y, ξ, η, t) to (2.4) are given respectively by the explicit form

Y i
(y,η)(t) = y + f i (ξ)zi (t),

and

ϱ(x, y, ξ, η, t) = ϱs(x, y, ξ, t)ϱv,0(ξ − η) := ϱs,0(x − f (ξ)z(t)− y)ϱv,0(ξ − η). (2.6)

Note that, in contrast to (2.4), the characteristic equations are trivially well defined also for rough
driving signals z ∈ C0([0, T ]; RN ).

Since A(u) is a symmetric, nonnegative matrix, it has a square root, that is there exists σ(u) =

(σi j (u))N
i, j=1 := A(u)

1
2 ∈ L∞

loc(R; RN×N ), such that

ai j (u) =

N
k=1

σik(u)σ jk(u).

For notational convenience we write

β ′

ik(u) = σik(u).

Next we give the definition of pathwise entropy solutions.

Definition 2.1. Let u0 ∈ (L1
∩ L∞)(RN ) and T > 0. A function u ∈ C([0, T ]; L1(RN )) ∩

L∞(RN
× [0, T ]) is a pathwise entropy solution to (1.1), if

(i) for all k ∈ {1, . . . , N }

N
i=1

∂xiβik(u) ∈ L2(RN
× [0, T ]), (2.7)

(ii) for all (y, η) ∈ RN+1 and all k ∈ {1, . . . , N }

N
i=1


RN+1

χ(x, ξ, t)σik(ξ)∂xiϱ(x, y, ξ, η, t)dxdξ

= −

N
i=1


RN
∂xiβik(u(x, t))ϱ(x, y, u(x, t), η, t)dx, (2.8)

(iii) there exists a non-negative bounded measure m on RN
× R × [0, T ] such that, for all test

functions ϱ given by (2.4) with ϱ0
∈ C∞

c (RN+1) as in (2.5), for all (y, η) ∈ RN+1 and in
the sense of distributions in t ∈ [0, T ],

d

dt
(ϱ ∗ χ)(y, η, t) =

N
i, j=1


χ(x, ξ, t)ai j (ξ)∂

2
xi x j

ϱ(x, y, ξ, η, t)dxdξ

−


∂ξϱ(x, y, ξ, η, t)(m + n)(x, ξ, t)dxdξ, (2.9)

where n is the non-negative measure on RN
× R × [0, T ] given by

n(x, ξ, t) := δ(ξ − u(t, x))
N

k=1


N

i=1

∂xiβik(u(t, x))

2

. (2.10)

In the sequel, we refer to (2.7) and (2.8) as the regularity and chain rule properties respectively.
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When A ≡ 0, that is for the hyperbolic problem, (2.9) alone was used as the definition of a
pathwise entropy solution in [31]. In the presence of A it is, however, necessary to also include
the chain-rule (2.8) in the definition, a fact already observed in the deterministic case in [10].

The definition can be reformulated as follows: If u0,m and n are as in Definition 2.1, then
u ∈ C([0, T ]; L1(RN )) ∩ L∞([0, T ] × RN ) is a pathwise entropy solution to (1.1) if and only
if, instead of (2.9), for all (y, η) ∈ RN+1, s ≤ t and all test functions ϱ given by (2.4) with
ϱ0

∈ C∞
c (RN+1),
ϱ ∗ χ(y, η, t)− ϱ ∗ χ(y, η, s) =

N
i, j=1

 t

s


χ(x, ξ, r)ai j (ξ)∂

2
xi x j

ϱ(x, y, ξ, η, s)dξdxdr

−

 t

s


∂ξϱ(x, y, ξ, η, r)(m + n)(x, ξ, r)dxdξdr.

(2.11)

Next we show that, for smooth paths, the notions of kinetic and pathwise entropy solutions are
equivalent. For the convenience of the reader we recall from [10] the definition of the kinetic
solution in Appendix D.

Lemma 2.2. Assume that z ∈ C1
0([0, T ]; RN ) and u ∈ C([0, T ]; L1(RN ))∩ L∞([0, T ] × RN ).

Then u is a pathwise entropy solution to (1.1) if and only if it is a kinetic solution.

Proof. Let u be a kinetic solution to (1.1). Since u ∈ L∞([0, T ] × RN ), we may take ψ ≡ 1 in
(D.1) and ψ2 ≡ 1 in (D.2).

Then, for all ϕ ∈ C1
c (RN

× R × (0, T )), T

0


χ

∂tϕ + f (ξ, r) · Dxϕ +

N
i, j=1

ai j (ξ)∂
2
xi x j

ϕ


dξdxdr =

 T

0


q∂ξϕdξdxdr.

Since u ∈ C([0, T ]; L1(RN )) it follows that, for all s ≤ t and all ϕ ∈ C1
c (RN

× R × [0, T ]), t

s


χ(x, ξ, r)


∂tϕ(x, ξ, r)+ f (ξ, r) · Dxϕ(x, ξ, r)+

N
i, j=1

ai j (ξ)∂
2
xi x j

ϕ(x, ξ, r)


dξdxdr

−


χ(x, ξ, t)ϕ(x, ξ, t)dξdx +


χ(x, ξ, s)ϕ(x, ξ, s)dξdx =

 t

s


q∂ξϕdξdxdr.

Choosing ϕ = ϱ yields

−


χ(x, ξ, ·)ϱ(x, y, ξ, η, ·)dξdx

t
s

+

N
i, j=1

 t

s


χ(x, ξ, r)ai j (ξ)∂

2
xi x j

ϱ(x, y, ξ, η, s)dξdxdr

=

 t

s


q∂ξϱdξdxdr,

which in view of (2.11) implies that χ is pathwise entropy solution to (1.1).
Next we derive the chain-rule. It follows from (D.2) that, for all ψ ∈ C∞

c ,


ψ(u(x, t))

N
i=1

∂xiβik(u(x, t)) =

N
i=1

∂xiβ
ψ
ik(u(x, t)) a.e. in (t, x) (2.12)
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where

(β
ψ
ik)

′(u) = σik(u)

ψ(u), (2.13)

and thus

β
ψ
ik(u(x, t)) =


χ(x, ξ, t)σik(ξ)


ψ(ξ)dξ.

Choose
√
ψ(·) := ϱv,0(·−η)ϱδ(·− ξ) in (2.12), where ϱδ is a standard Dirac sequence, multiply

the resulting equation by ϱs(x, y, ξ, t) = ϱs,0(x − y + f (ξ)z(t)) and integrate in x and ξ to get

N
i=1


ϱv(u(x, t)− η)ϱδ(u(x, t)− ξ)∂xi


σik(τ )χ(x, τ, t)dτ


ϱs(x, y, ξ, t)dxdξ

=

N
i=1


∂xi


σik(τ )ϱ

v(τ − η)ϱδ(τ − ξ)χ(x, τ, t)dτ


ϱs(x, y, ξ, t)dxdξ

= −

N
i=1

 
σik(τ )ϱ

v(τ − η)ϱδ(τ − ξ)χ(x, τ, t)dτ


∂xiϱ

s(x, y, ξ, t)dxdξ.

Letting δ → 0 we obtain

N
i=1


ϱv(u(x, t)− η)∂xi


σik(τ )χ(x, τ, t)dτ


ϱs(x, y, u(x, t), t)dx

= −

N
i=1


σik(ξ)ϱ

v(ξ − η)χ(x, ξ, t)∂xiϱ
s(x, y, ξ, t)dxdξ,

and, thus,

N
i=1


∂xiβik(u(x, t))ϱ(x, y, u(x, t), η, t)dx

= −

N
i=1


σik(ξ)χ(x, ξ, t)∂xiϱ(x, y, ξ, η, t)dxdξ.

Let now u be a pathwise entropy solution to (1.1). It follows from [10] that there exists a ki-
netic solution ũ to (1.1), which, in view of the above, is also a pathwise entropy solution. Since,
by Theorem 2.3, pathwise entropy solutions are unique, it follows that u = ũ and hence u is a
kinetic solution. �

The well-posedness of pathwise entropy solutions. The first result here is the uniqueness and
stability of pathwise entropy solutions with respect to the initial condition and driving paths.

Theorem 2.3. Assume (1.3) and (1.4) and let u(1), u(2) ∈ L∞([0, T ]; BV (RN )) be two pathwise
entropy solutions to (1.1) with driving signals z(1), z(2) ∈ C0([0, T ]; RN ) and initial values
u1

0, u2
0 ∈ (L∞

∩ BV )(RN ). Then, for all s ≤ t ∈ [0, T ], there exists C > 0, which may depend
on ∥u(1)∥L∞([s,t];(L∞∩BV )(RN )) and ∥u(2)∥L∞([s,t];(L∞∩BV )(RN )), such that

∥u(1)(t)−u(2)(t)∥L1(RN ) ≤ ∥u(1)(s)− u(2)(s)∥L1(RN ) + C∥z(1) − z(2)∥1/2
C([s,t];RN )

+ C∥z(1) − z(2)∥C([s,t];RN ).
(2.14)
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The next result is about the existence of pathwise entropy solutions, which, in view of Theo-
rem 2.3, are unique.

Theorem 2.4. (i) Assume (1.3) and (1.4) and let u0 ∈ (L∞
∩ BV )(RN ) and z ∈ C0([0, T ]; RN ).

Then there exists a pathwise entropy solution u to (1.1) satisfying, for all p ∈ [1,∞],

∥u∥L∞([0,T ];L p(RN )) ≤ ∥u0∥p, (2.15)

∥u∥L∞([0,T ];BV (RN )) ≤ ∥u0∥BV , (2.16)

and 
RN ×R×R+

m(x, ξ, t)dxdξdt +


RN ×R+

N
k=1


N

i=1

∂xiβik(u)

2

dxdt ≤
1
2
∥u0∥

2
2. (2.17)

Moreover, for p ∈ (−1,∞) and t ≥ 0,

∥u(·, t)∥p+2
p+2 + (p + 2)(p + 1)

 t

0


RN ×R

|ξ |pd(m + n)(x, ξ, s) = ∥u0∥
p+2
p+2. (2.18)

(ii) Assume (1.3) and (1.4) and let u0 ∈ (L∞
∩ L1)(RN ) and z ∈ C0([0, T ]; RN ). Then there

exists a pathwise entropy solution u to (1.1) satisfying (2.15) for all p ∈ [1,∞], (2.17) and
(2.18) for p ∈ (−1,∞) and t ≥ 0.

It follows easily from the arguments leading to Theorem 2.4 that the well-posedness theory
for (1.1) extends to (1.1) set on the torus TN .

Proposition 2.5. Assume (1.3) and (1.4) and let u0 ∈ (L∞
∩ BV )(TN ) and z ∈ C0([0, T ]; RN ).

Then, there exists a unique pathwise entropy solution u ∈ C

[0,∞); L1(TN )


∩ L∞([0, T ];

(L∞
∩ BV )(TN )), for all T > 0, and the solution operator is an L1-contraction and, hence, is

defined on L1(TN ).

The long time behavior and regularity. Here we assume that z is a Brownian motion. We start
by considering the long time behavior of (1.6). The claim is that, under a genuine nonlinearity
assumption for F and A (see (2.20)), as t → ∞ and almost surely (a.s. for short) in ω,

u(·, t;ω, u0) → ū0 :=


TN

u0(x)dx .

Moreover, we provide an estimate for the rate of convergence, we show that δū0 is the unique,
strongly mixing invariant measure of the associated Markov semigroup and that ū0 is the random
attractor of the associated random dynamical system (see Theorem 2.6).

Without loss of generality we consider the filtered probability space (Ω ,F , (Ft )t∈R+
,P) with

the canonical realization of the two-sided Brownian motion on Ω = C0(R; RN ) := {b ∈

C(R; RN ) and b(0) = 0}, and P, E, Ft and F̄t respectively the two-sided standard Gaussian
measure on Ω , the expectation with respect to P, the canonical, uncompleted filtration and its
completion.

A measurable map m : Ω → M, where M is the space of nonnegative bounded measures on
TN

× R × [0, T ], is a kinetic measure, if the process t → m(., [0, t]) with values in the space of
nonnegative bounded measures on TN

× R is Ft -adapted.
A map u : TN

× [0,∞)× Ω → R is called a (stochastic) pathwise entropy solution to (1.6)
if, for all ω ∈ Ω , u(·, ω) is a pathwise entropy solution to (1.6), n,m are kinetic measures and
t → u(·, t) is an Ft -adapted process in L1(TN ).
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Since the entropy solution to (1.6) is constructed in a pathwise manner, for each u0 ∈ L1(TN )

and t ≥ 0, the map

ϕ(t, ω)u0 := u(·, t;ω, u0) (2.19)

defines a continuous random dynamical system (RDS) on L1(TN ). For some background on
RDS we refer to [25, Appendix A].

The associated Markovian semigroup (Pt )t≥0 is given, for each bounded measurable function
f on L1(TN ), u0 ∈ L1(TN ) and t ≥ 0, by

Pt f (u0) := E f (u(·, t; ·, u0)) = E f (ϕ(t, ·)u0).

As usual, by duality we may consider the action of (Pt )t≥0 on the space M1 of probability
measures on L1(TN ), that is, for each µ ∈ M1, we define

P∗
t µ( f ) :=


L1

Pt f (x)dµ(x).

A probability measure µ is an invariant measure for (Pt )t≥0 if, for all t ≥ 0,

P∗
t µ = µ,

and µ is said to be strongly mixing if, for each ν ∈ M1 and as t → ∞,

P∗
t ν ⇀ µ weak ⋆ in M1.

The study of the long time behavior of the stochastic entropy solutions is based on a new stochas-
tic averaging-type lemma (Theorem 2.7) which holds true under the following genuine nonlin-
earity condition:

there exist θ ∈ (0, 1] and C > 0 such that, for all σ ∈ SN−1, z ∈ RN and ε > 0,

|{ξ ∈ R : | f (ξ)σ − z|2 + σ A(ξ)σ ≤ ε}| ≤ Cε
θ
2 ,

(2.20)

where the product of the two vectors f (ξ)σ is defined by ( f (ξ)σ )i := f i (ξ)σ i and σ A(ξ)σ :=
i, j ai j (ξ)σiσ j . We choose the scaling θ

2 on the right hand side in order to be consistent with
our previous work [25].

Also note that in the corresponding deterministic case, that is (1.6) with z(t) = (t, . . . , t), the
expectation is that the non-degeneracy condition should be (see Tadmor and Tao [44])

|{ξ ∈ R : | f (ξ) · σ − z| + σ A(ξ)σ ≤ ε}| . ε
θ
2 . (2.21)

In (2.21) the hyperbolic and parabolic parts | f (ξ) ·σ − z| and σ A(ξ)σ scale respectively linearly
and quadratically in σ . In contrast, in the stochastic case both the hyperbolic and parabolic parts
scale quadratically in σ . This change in the scaling of the hyperbolic part in (2.20) is due to the
quadratic scaling of Brownian motion. The fact that both the hyperbolic and the parabolic part
of (1.6) are scaled quadratically is crucial for the proof of the averaging lemma and allows a
significantly simpler treatment than in [44].

For notational simplicity we set

p0 := 0 ∨ p1 ∨ p2.
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Theorem 2.6. Assume (1.7)–(1.9) and (2.20). Then, as t → ∞

u(·, t; ·, u0) → ū0 in L1(Ω; L1(TN )) and P-a.s. in L1(TN ). (2.22)

Moreover, for t ≥ 1 and u0 ∈ L2+p0(TN ),

E∥u(·, t; ·, u0)− ū0∥1 ≤ t−
θ

4+θ


∥u0∥

2+p0
2+p0

+ 1

.

In particular, δū0 is the unique invariant measure for (Pt )t≥0 on L1
ū0
(TN ) and is strongly mixing.

Restricted to L1
ū0
(TN ) the random dynamical system ϕ has ū0 as a forward and pullback random

attractor.

Note that, if u0 ∈ L∞(TN ), then the convergence in (2.22) holds in L p(Ω; L p(TN )) and P-a.s. in
L p(TN ) for all p ∈ [1,∞), since ∥u(·, t; ·, u0)∥∞ ≤ ∥u0∥∞ (see Theorem 2.4).

Using essentially the same estimates leading to Theorem 2.6 we also prove a new regularity
result, which extends the estimates obtained in [25,32] for the hyperbolic case, that is, when
A ≡ 0 and in [44] for the deterministic problem.

Theorem 2.7. Assume (1.7), (1.8), (1.9), (2.20) and let u0 ∈ L2+p0(TN ). Then, for all λ ∈

(0, 2θ
θ+4 ), δ > 0 and T > 0,

E
 T

0
∥u(t)∥Wλ,1dt . (1 + ∥u0∥

2+p0
2+p0

) and sup
t≥δ

E∥u(t)∥Wλ,1 < ∞.

3. The stability of pathwise entropy solutions

We present the proof of Theorem 2.3. Since it is rather long, we have divided it into several
parts and we have chosen to present some technical arguments in Appendix A. To help the reader,
in the first part of this section we present an informal overview of the arguments and the main
ideas and then we continue with the actual proof.

Informal arguments and main ideas. We present an informal overview of the proof of unique-
ness of pathwise entropy solutions. While several of the arguments presented next need further
justification, all the main steps of the rigorous proof are included. In order to make everything
rigorous, it is necessary to introduce appropriate smoothing/mollifications and doubling of vari-
ables. All these create significant technical difficulties since it is necessary to estimate the errors,
etc.

Step 1: Transformation. The definition of a pathwise entropy solution corresponds to the trans-
formation

χ̃(x, ξ, t) := χ(x + f (ξ)zt , ξ, t),

with χ̃ solving, informally,

∂t χ̃(x, ξ, t) = ∂t (χ(x + f (ξ)zt , ξ, t))

= Dxχ(x + f (ξ)zt , ξ, t) · f (ξ)żt + ∂tχ(x + f (ξ)zt , ξ, t)

=


i, j

ai j (ξ)∂
2
i j χ̃(x, ξ, t)+ (∂ξq)(x + f (ξ)zt , ξ, t). (3.1)

As noted earlier, the point of this transformation is that the derivative of z does not appear in
(3.1). As compared to the usual proof of the stability of kinetic solutions in the deterministic
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case (see, for example, [41]) additional complications appear since the right hand side is not
anymore the derivative of a measure.

Indeed

(∂ξq)(x + f (ξ)zt , ξ, t) = ∂ξ (q(x + f (ξ)zt , ξ, t))− Dx q(x + f (ξ)zt , ξ, t) · ḟ (ξ)zt (3.2)

and the second term causes additional difficulties.
Making use of the special properties of the function χ , we find that

∥u(1)(t)− u(2)(t)∥L1(RN ) =


(χ (1)(x, ξ, t)− χ (2)(x, ξ, t))2dxdξ

=


|χ (1)(x, ξ, t)| + |χ (2)(x, ξ, t)| − 2χ (1)(x, ξ, t)χ (2)(x, ξ, t)dxdξ.

(3.3)

The first step is to rewrite (3.3) in terms of χ̃ . Obviously,
|χ (1)(x, ξ, t)| + |χ (2)(x, ξ, t)|dxdξ =


|χ̃ (1)(x, ξ, t)| + |χ̃ (2)(x, ξ, t)|dxdξ.

For the third term in (3.3), it is easy to see that χ (1)(x, ξ, t)χ (2)(x, ξ, t)dxdξ −


χ̃ (1)(x, ξ, t)χ̃ (2)(x, ξ, t)dxdξ


. ∥u(2)∥L∞([0,T ];(L∞∩BV )(RN ))|z

(1)
t − z(2)t |,

and, hence, for some C > 0,

∥u(1)(·)− u(2)(·)∥L1(RN )

t
s

≤


(χ̃ (1)(x, ξ, ·)− χ̃ (2)(x, ξ, ·))2dxdξ

t
s

+ C∥u(2)∥L∞([0,T ];(L∞∩BV )(RN ))∥z(1) − z(2)∥C([s,t];RN ).

Therefore, it is enough to estimate

∂t


(χ̃ (1)(x, ξ, t)− χ̃ (2)(x, ξ, t))2dxdξ

= ∂t

 
|χ̃ (1)(x, ξ, t)| + |χ̃ (2)(x, ξ, t)| − 2χ̃ (1)(x, ξ, t)χ̃ (2)(x, ξ, t)


dxdξ,

the advantage being that here we may use (3.1) which makes sense also for non-smooth z.
Step 2: The product term. Next we note that

− 2
d

dt


χ̃ (1)(x, ξ, t)χ̃ (2)(x, ξ, t)dxdξ

= −2


[χ̃ (1)(x, ξ, t)∂t χ̃
(2)(x, ξ, t)+ ∂t χ̃

(1)(x, ξ, t)χ̃ (2)(x, ξ, t)]dxdξ

= −2

i, j


[χ̃ (1)(x, ξ, t)ai j (ξ)∂

2
i j χ̃

(2)(x, ξ, t)

+ ai j (ξ)∂
2
i j χ̃

(1)(x, ξ, t)χ̃ (2)(x, ξ, t)]dxdξ

+ 2


[χ̃ (1)(x, ξ, t)(∂ξq(2))(x + f (ξ)z(2)t , ξ, t)

+ (∂ξq(1))(x + f (ξ)z(1)t , ξ, t)χ̃ (2)(x, ξ, t)]dxdξ (3.4)
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and

2


[χ̃ (1)(x, ξ, t)(∂ξq(2))(x + f (ξ)z(2)t , ξ, t)

+ (∂ξq(1))(x + f (ξ)z(1)t , ξ, t)χ̃ (2)(x, ξ, t)]dxdξ

= 2


[χ (1)(x + f (ξ)(z(1)t − z(2)t ), ξ, t)∂ξq(2)(x, ξ, t)

+ ∂ξq(1)(x, ξ, t)χ (2)(x + f (ξ)(z(2)t − z(1)t ), ξ, t)]dxdξ

= 2


[(∂ξχ
(1))(x + f (ξ)(z(1)t − z(2)t ), ξ, t)q(2)(x, ξ, t)

+ q(1)(x, ξ, t)(∂ξχ
(2))(x + f (ξ)(z(2)t − z(1)t ), ξ, t)]dxdξ + Err(1,2).

The error term Err(1,2), which is a consequence of the defect identified in (3.2), is given by

Err(1,2)(t) := 2
 

f ′(ξ)(z(1)t − z(2)t )

Dxχ

(1)(x + f (ξ)(z(1)t − z(2)t ), ξ, t)q(2)(x, ξ, t)

− q(1)(x, ξ, t)Dxχ
(2)(x + f (ξ)(z(2)t − z(1)t ), ξ, t)


dxdξ.

We set

q̃(i)(x, ξ, t) := q(i)(x + f (ξ)zt , ξ, t) and ũ(i)(x, ξ, t) := u(i)(x + f (ξ)z(i)t , t),

and observe that

2
 

(∂ξχ
(1))(x + f (ξ)(z(1)t − z(2)t ), ξ, t)q(2)(x, ξ, t)

+ q(1)(x, ξ, t)(∂ξχ
(2))(x + f (ξ)(z(2)t − z(1)t ), ξ, t)


dxdξ

= 2
 

(∂ξχ
(1))(x + f (ξ)z(1)t , ξ, t)q̃(2)(x, ξ, t)

+ q̃(1)(x, ξ, t)(∂ξχ
(2))(x + f (ξ)z(2)t , ξ, t)


dxdξ

= 2
 

(δ(ξ)− δ(ξ − ũ(1)(x, ξ, t)))q̃(2)(x, ξ, t)

+ q̃(1)(x, ξ, t)(δ(ξ)− δ(ξ − ũ(2)(x, ξ, t)))


dxdξ

≤ −2
 

δ(ξ − ũ(1)(x, ξ, t))ñ(2)(x, ξ, t)+ ñ(1)(x, ξ, t)δ(ξ − ũ(2)(x, ξ, t))


dxdξ

+ 2

(q(2)(x, 0, t)+ q(1)(x, 0, t))dx .

The key difference with the purely hyperbolic case is that here we do not drop the terms contain-
ing the parabolic dissipation measures ñ(1) and ñ(2). Instead, we will use them to compensate the
additional parabolic terms appearing in (3.4).

In conclusion, we have

− 2
d

dt


χ̃ (1)(x, ξ, t)χ̃ (2)(x, ξ, t)dxdξ ≤ I par(t)+ I hyp(t)+ Err(1,2)(t),
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where

I par(t) := −2

i, j

 
χ̃ (1)(x, ξ, t)ai j (ξ)∂

2
i j χ̃

(2)(x, ξ, t)

+ ai j (ξ)∂
2
i j χ̃

(1)(x, ξ, t)χ̃ (2)(x, ξ, t)

dxdξ

− 2
 

ñ(1)(x, ξ, t)δ(ξ − ũ(2)(x, ξ, t))+ δ(ξ − ũ(1)(x, ξ, t))ñ(2)(x, ξ, t)

dxdξ

and

I hyp(t) := 2
 

q(2)(x, 0, t)+ q(1)(x, 0, t)

dx .

Step 3: The hyperbolic term I hyp.
Multiplying (3.1) by sgn(ξ) and integrating yields

d

dt


|χ̃(x, ξ, t)|dxdξ =

d

dt


sgn(ξ)χ̃(x, ξ, t)dxdξ

=


i, j


sgn(ξ)ai j (ξ)∂

2
i j χ̃(x, ξ, t)dxdξ

+


sgn(ξ)(∂ξq)(x + f (ξ)zt , ξ, t)dxdξ

= −2


q(x, 0, t)dx,

and thus

I hyp
= −

d

dt


|χ̃1

|dxdξ −
d

dt


|χ̃2

|dxdξ.

Step 4: The parabolic term I par. Using integration by parts, we observe

−2

i, j

 
χ̃ (1)(x, ξ, t)ai j (ξ)∂

2
i j χ̃

(2)(x, ξ, t)+ ai j (ξ)∂
2
i j χ̃

(1)(x, ξ, t)χ̃ (2)(x, ξ, t)

dxdξ

= 4

i, j


ai j (ξ)∂ j χ̃

(1)(x, ξ, t)∂i χ̃
(2)(x, ξ, t)dxdξ

= 4

i, j


k


σik(ξ)σk j (ξ)∂ j χ̃

(1)(x, ξ, t)∂i χ̃
(2)(x, ξ, t)dxdξ

and informally (this is where the chain-rule will be required in the rigorous proof)
i, j


σik(ξ)σk j (ξ)∂ j χ̃

(1)(x, ξ, t)∂i χ̃
(2)(x, ξ, t)dxdξ

=


i, j


σk j (ξ)∂ j ũ

(1)(x, ξ, t)δ(ξ − ũ(1)(x, ξ, t))

× σik(ξ)∂i ũ
(2)(x, ξ, t)δ(ξ − ũ(2)(x, ξ, t))dxdξ

=


i, j


∂ jβk j (ũ

(1)(x, ξ, t))δ(ξ − ũ(1)(x, ξ, t))∂iβik(ũ
(2)(x, ξ, t))

× δ(ξ − ũ(2)(x, ξ, t))dxdξ.
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Hence,

−2

i, j

 
χ̃ (1)(x, ξ, t)ai j (ξ)∂

2
i j χ̃

(2)(x, ξ, t)+ ai j (ξ)∂
2
i j χ̃

(1)(x, ξ, t)χ̃ (2)(x, ξ, t)

dxdξ

= 4

i, j


k


∂ jβk j (ũ

(1)(x, ξ, t))δ(ξ − ũ(1)(x, ξ, t))

× ∂iβik(ũ
(2)(x, ξ, t))δ(ξ − ũ(2)(x, ξ, t))dxdξ.

Since
i

∂iβik(ũ
(1)(x, t))

2

+


j

∂ jβ jk(ũ
(2)(x, t))

2

≥ 2

i, j

∂iβik(ũ
(1)(x, t))2∂ jβ jk(ũ

(2)(x, t)),

using (2.10) we find

−


ñ(1)(x, ξ, t)δ(ξ − ũ(2)(x, t))+ δ(ξ − ũ(1)(x, t))ñ(2)(x, ξ, t)dxdξ

≤ −2


k


i, j


δ(ξ − ũ(1)(x, ξ, t))δ(ξ − ũ(2)(x, ξ, t))

× ∂iβik(ũ
(1)(x, ξ, t))∂ jβ jk(ũ

(2)(x, ξ, t))dxdξ,

and, in conclusion,

I par
≤ 0.

Step 5: Combining the previous steps we find

d

dt


[|χ̃1

| − 2χ̃ (1)(x, ξ, t)χ̃ (2)(x, ξ, t)+ |χ̃2
|]dxdξ ≤ Err(1,2)(t).

Thus, it remains to estimate Err(1,2). For this we approximate χ (i) by convolution with parameter
ε, that is, roughly speaking, we replace χ (i) by a smooth χ (i),ε. Since χ (i) has bounded variation,
this introduces an error of order ε, while the gradient Dxχ

(i),ε blows up like 1
ε

as ε → 0. This
leads to the estimate

Err(1,2)(t) .
|z(1)t − z(2)t |

ε
+ ε.

Thus, choosing ε = |z(1)t − z(2)t |
1/2, we obtain the bound

Err(1,2)(t) ≤ |z(1)t − z(2)t |
1/2,

which allows to conclude the proof.

The rigorous proof of Theorem 2.3. We start with the observation

∥u(1)(t)− u(2)(t)∥L1(RN ) =


(χ (1)(x, ξ, t)− χ (2)(x, ξ, t))2dxdξ

=

 
|χ (1)(x, ξ, t)| + |χ (2)(x, ξ, t)| − 2χ (1)(x, ξ, t)χ (2)(x, ξ, t)


dxdξ,
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where, for i = 1, 2, χ (i) is related to u(i) by (2.2). To prove (2.14) we want to estimate the time
derivative of the right hand side of the above equality. In order to be able to use the solution
property, following [24,31,33], we replace χ (1), χ (2) by ϱ ∗ χ (1), ϱ ∗ χ (2) for suitable choices of
ϱ. Then it is possible to differentiate with respect to t at the expense of creating several additional
terms that need to be estimated.
Step 1: Approximation. We perform three approximations. Firstly we consider the convolutions
along characteristics in the space variable, secondly we localize the space and velocity variable
and thirdly we regularize in the velocity variable. All these are explained next.

Given t ∈ [0, T ] define

G(t) :=


(χ (1)(y, η, t)− χ (2)(y, η, t))2dydη,

and let ϱs
ε, ϱ

v
δ be standard smooth mollifiers, that is approximations of Dirac masses, and for

i = 1, 2 we consider

ϱs,(i)
ε (x, y, ξ, t) := ϱs

ε(x − f (ξ)z(i)(t)− y)

and

ϱ
(i)
ε,δ(x, y, ξ, η, t) := ϱs,(i)

ε (x, y, ξ, t)ϱvδ (ξ − η),

that is ϱs,(i)
ε is the solution to (2.4) with z = z(i) and initial condition ϱs,(i)

ε (·, y, ξ, 0) = ϱs
ε(·− y).

Although we can start from the beginning with the ϱ(i)ε,δ’s, in order to keep the presentation simpler

and, in view of the different role played by ε and δ, we work first with the ϱs,(i)
ε ’s.

We then define

Gε(t) := −2
 

χ (1) ∗ ϱs,(1)
ε


(y, η, t)


χ (2) ∗ ϱs,(2)

ε


(y, η, t)dydη

+


sgn(η)(χ (1) ∗ ϱs,(1)

ε )(y, η, t)dydη +


sgn(η)(χ (2) ∗ ϱs,(2)

ε )(y, η, t)dydη.

Lemma A.3 in Appendix A yields

|Gε(t)− G(t)| ≤


ε + ∥ f (u(1)(t))∥L∞(RN )|z

(1)(t)− z(2)(t)|


×

BV (u(1)(t))+ BV (u(2)(t))


.

Hence,

G(t)− G(s) ≤ Gε(t)− Gε(s)+ 2

ε + ∥ f (u(1))∥L∞(RN ×[s,t])∥z(1) − z(2)∥C([s,t];RN )


× (∥u(1)∥L∞([s,t];BV (RN )) + ∥u(2)∥L∞([s,t];BV (RN ))), (3.5)

and to conclude it is enough to derive an appropriate bound on Gε(t)− Gε(s).
We show, and this will be the main part of the proof, that

Gε(t)− Gε(s) . ε−1
∥z(1) − z(2)∥C([s,t];RN ), (3.6)

and combining (3.5) and (3.6) we find

G(t)− G(s) . ε−1
∥z(1) − z(2)∥C([s,t];RN )

+ 2

ε + ∥ f (u(1))∥L∞(RN ×[s,t])∥z(1) − z(2)∥C([s,t];RN )


× (∥u(1)∥L∞([s,t];BV (RN )) + ∥u(2)∥L∞([s,t];BV (RN ))).

The conclusion follows by choosing ε2
= ∥z(1) − z(2)∥C([s,t];RN ). It thus remains to prove (3.6).
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Step 2: The product term. We note that, while χ (i) ∗ ϱ
s,(i)
ε is smooth in y, in order to apply

Definition 2.1 we still need to mollify with respect to η, that is to consider χ (i) ∗ ϱ
(i)
ε,δ and, in the

end, take δ → 0. For this mollification to converge, we first need to localize in y and η, a fast
which requires yet another layer of approximation.

Therefore, for every ψ ∈ C∞
c (RN+1) with ∥ψ∥C(RN ) ≤ 1, we introduce

Gε,ψ,δ(t) := −2

ψ(y, η)


χ (1) ∗ ϱ

(1)
ε,δ


(y, η, t)


χ (2) ∗ ϱ

(2)
ε,δ


(y, η, t)dydη

+


ψ(y, η)(sgn ∗ ϱvδ )(η)(χ

(1)
∗ ϱ

(1)
ε,δ)(y, η, t)dydη

+


ψ(y, η)(sgn ∗ ϱvδ )(η)(χ

(2)
∗ ϱ

(2)
ε,δ)(y, η, t)dydη.

To simplify the notation we suppress the ε, ψ, δ-dependence in the next few steps. We have:

− 2
d

dt


ψ(y, η)


χ (1) ∗ ϱ(1)

 
χ (2) ∗ ϱ(2)


dydη

= −2
 

ψ(y, η)

χ (1) ∗ ϱ(1)

 d

dt


χ (2) ∗ ϱ(2)


+ ψ(y, η)


χ (2) ∗ ϱ(2)

 d

dt


χ (1) ∗ ϱ(1)


dydη

= −2
N

i, j=1


[ψ(y, η)χ (1)(x, ξ, t)ϱ(1)(x, y, ξ, η, t)

× χ (2)(x ′, ξ ′, t)ai j (ξ
′)∂2

xi x j
ϱ(2)(x ′, y, ξ ′, η, t)

+ ψ(y, η)χ (2)(x ′, ξ ′, t)ϱ(2)(x ′, y, ξ ′, η, t)χ (1)(x, ξ, t)ai j (ξ)

× ∂2
xi x j

ϱ(1)(x, y, ξ, η, t)]dxdξdx ′dξ ′dydη

− 2


[ψ(y, η)χ (1)(x, ξ, t)ϱ(1)(x, y, ξ, η, t)

× ϱ(2)(x ′, y, ξ ′, η, t)∂ξ ′q(2)(x ′, ξ ′, t)

+ ψ(y, η)χ (2)(x ′, ξ ′, t)ϱ(2)(x ′, y, ξ ′, η, t)

× ϱ(1)(x, y, ξ, η, t)∂ξq(1)(x, ξ, t)]dxdξdx ′dξ ′dydη.

We first consider the last two terms on the right hand side. As in the hyperbolic case we note

−2
 
ψ(y, η)χ (1)(x, ξ, t)ϱ(1)(x, y, ξ, η, t)ϱ(2)(x ′, y, ξ ′, η, t)∂ξ ′q(2)(x ′, ξ ′, t)

+ψ(y, η)χ (2)(x ′, ξ ′, t)ϱ(2)(x ′, y, ξ ′, η, t)
× ϱ(1)(x, y, ξ, η, t)∂ξq(1)(x, ξ, t)


dxdξdx ′dξ ′dydη

= −2
 
ψ(y, η)χ (1)(x, ξ, t)∂ξϱ

(1)(x, y, ξ, η, t)

× ϱ(2)(x ′, y, ξ ′, η, t)q(2)(x ′, ξ ′, t)
+ψ(y, η)χ (2)(x ′, ξ ′, t)∂ξ ′ϱ(2)(x ′, y, ξ ′, η, t)

× ϱ(1)(x, y, ξ, η, t)q(1)(x, ξ, t)

dxdξdx ′dξ ′dydη

+ Err(1,2)(t),
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where
Err(1,2)(t) := 2


ψ(y, η)


χ (1)(x, ξ, t)q(2)(x ′, ξ ′, t)+ χ (2)(x ′, ξ ′, t)q(1)(x, ξ, t)


× (ϱ(1)(x, y, ξ, η, t)∂ξ ′ϱ(2)(x ′, y, ξ ′, η, t)
+ ∂ξϱ

(1)(x, y, ξ, η, t)ϱ(2)(x ′, y, ξ ′, η, t))dydηdx ′dξ ′dxdξ.

(3.7)

We next use the nonnegativity of the Dirac masses δ to observe that

− 2


[ψ(y, η)χ (1)(x, ξ, t)∂ξϱ
(1)(x, y, ξ, η, t)ϱ(2)(x ′, y, ξ ′, η, t)q(2)(x ′, ξ ′, t)

+ ψ(y, η)χ (2)(x ′, ξ ′, t)∂ξ ′ϱ(2)(x ′, y, ξ ′, η, t)

× ϱ(1)(x, y, ξ, η, t)q(1)(x, ξ, t)]dxdξdx ′dξ ′dydη

= 2
 

ψ(y, η)

δ(ξ)− δ(ξ − u(1)(x, t))


ϱ(1)(x, y, ξ, η, t)

× ϱ(2)(x ′, y, ξ ′, η, t)q(2)(x ′, ξ ′, t)

+ ψ(y, η)

δ(ξ ′)− δ(ξ ′

− u(2)(x ′, t))


× ϱ(2)(x ′, y, ξ ′, η, t)ϱ(1)(x, y, ξ, η, t)q(1)(x, ξ, t)


dxdξdx ′dξ ′dydη

≤ −2


[ψ(y, η)δ(ξ − u(1)(x, t))ϱ(1)(x, y, ξ, η, t)ϱ(2)(x ′, y, ξ ′, η, t)n(2)(x ′, ξ ′, t)

+ ψ(y, η)δ(ξ ′
− u(2)(x ′, t))ϱ(2)(x ′, y, ξ ′, η, t)

× ϱ(1)(x, y, ξ, η, t)n(1)(x, ξ, t)]dxdξdx ′dξ ′dydη

+ 2

ψ(y, η)ϱ(1)(x, y, 0, η, t)ϱ(2)(x ′, y, ξ ′, η, t)q(2)(x ′, ξ ′, t)dxdx ′dξ ′dydη

+ 2

ψ(y, η)ϱ(1)(x, y, ξ, η, t)ϱ(2)(x ′, y, 0, η, t)q(1)(x, ξ, t)dxdξdx ′dydη, (3.8)

and, hence,

−2
d

dt


ψ(y, η)


χ (1) ∗ ϱ(1)

 
χ (2) ∗ ϱ(2)


dydη ≤ I par(t)+ I hyp(t)+ Err(1,2)(t),

with I par and I hyp denoting respectively the parabolic and hyperbolic terms, that is

I par(t) := −2
N

i, j=1

 
ψ(y, η)χ (1)(x, ξ, t)ϱ(1)(x, y, ξ, η, t)χ (2)(x ′, ξ ′, r)ai j (ξ

′)

× ∂x ′
i x ′

j
ϱ(2)(x ′, y, ξ ′, η, s)

+ψ(y, η)χ (2)(x ′, ξ ′, t)ϱ(2)(x ′, y, ξ ′, η, t)χ (1)(x, ξ, r)ai j (ξ)

× ∂2
xi x j

ϱ(1)(x, y, ξ, η, s)

dxdξdx ′dξ ′dydη

− 2
 
ψ(y, η)δ(ξ − u(1)(x, t))ϱ(1)(x, y, ξ, η, t)

× ϱ(2)(x ′, y, ξ ′, η, t)n(2)(x ′, ξ ′, t)
+ψ(y, η)δ(ξ ′

− u(2)(x ′, t))ϱ(2)(x ′, y, ξ ′, η, t)
× ϱ(1)(x, y, ξ, η, t)n(1)(x, ξ, t)


dxdξdx ′dξ ′dydη,
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and

I hyp(t) := 2

ψ(y, η)ϱ(1)(x, y, 0, η, t)ϱ(2)(x ′, y, ξ ′, η, t)q(2)(x ′, ξ ′, t)dxdx ′dξ ′dydη

+ 2

ψ(y, η)ϱ(1)(x, y, ξ, η, t)ϱ(2)(x ′, y, 0, η, t)q(1)(x, ξ, t)dxdξdx ′dydη;

note that we call the above expression a hyperbolic term in spite of the occurrence of the parabolic
dissipation measures n(1) and n(2), because they have the same structure as and are treated
similarly to the hyperbolic case.

Step 3: The hyperbolic terms. Since both terms in I hyp are treated similarly, we provide details
only for the first one. We have

2
 t

s


ψ(y, η)ϱ(1)(x, y, 0, η, r)ϱ(2)(x ′, y, ξ ′, η, r)q(2)(x ′, ξ ′, r)dxdx ′dξ ′dydηdr

=

 t

s


ψ(y, η)∂ξ sgn(ξ)ϱ(1)(x, y, ξ, η, r)

× ϱ(2)(x ′, y, ξ ′, η, r)q(2)(x ′, ξ ′, r)dxdξdx ′dξ ′dydηdr

= −

 t

s


ψ(y, η)sgn(ξ)∂ξϱ(1)(x, y, ξ, η, r)ϱ(2)(x ′, y, ξ ′, η, r)

× q(2)(x ′, ξ ′, r)dxdξdx ′dξ ′dydηdr

=

 t

s


ψ(y, η)


sgn(ξ)ϱ(1)(x, y, ξ, η, r)dxdξ


×


∂ξ ′ϱ(2)(x ′, y, ξ ′, η, r)q(2)(x ′, ξ ′, r)dx ′dξ ′


dydηdr +

 t

s
Err(1)(r)dr,

with

Err(1)(r) := −


ψ(y, η)sgn(ξ)


∂ξϱ

(1)(x, y, ξ, η, r)ϱ(2)(x ′, y, ξ ′, η, r)

+ ϱ(1)(x, y, ξ, η, r)∂ξ ′ϱ(2)(x ′, y, ξ ′, η, r)


q(2)(x ′, ξ ′, r)dxdξdx ′dξ ′dydη.

Using the solution property (2.9) for χ (2) and
sgn(ξ)ϱ(1)(x, y, ξ, η, r)dxdξ = (sgn ∗ ϱv)(η)

we find

2
 t

s


ψ(y, η)ϱ(1)(x, y, 0, η, r)ϱ(2)(x ′, y, ξ ′, η, r)q(2)(x ′, ξ ′, r)dxdξ ′dx ′dydηdr

=

 t

s


ψ(y, η)(sgn ∗ ϱv)(η)


∂ξ ′ϱ(2)(x ′, y, ξ ′, η, r)q(2)(x ′, ξ ′, r)dx ′dξ ′


dydηdr

+

 t

s
Err(1)(r)dr

= −


ψ(y, η)(sgn ∗ ϱv)(η)(χ (2) ∗ ϱ(2))(y, η, ·)|tsdydη +

 t

s


(sgn ∗ ϱv)(η)

×


ψ(y, η)

N
i, j=1


χ (2)(x ′, ξ ′, t)ai j (ξ

′)∂x ′
i x ′

j
ϱ(2)(x ′, y, ξ ′, η, t)dx ′dξ ′


dydηdr

+

 t

s
Err(1)(r)dr.
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Since

∂xiϱ
(i)(x, y, ξ, η, t) = −∂yiϱ

(i)(x, y, ξ, η, t)

∂2
xi x j

ϱ(i)(x, y, ξ, η, t) = ∂2
yi y j
ϱ(i)(x, y, ξ, η, t) (3.9)

we have t

s


(sgn ∗ ϱv)(η)ψ(y, η)

×

N
i, j=1


χ (2)(x ′, ξ ′, t)ai j (ξ

′)∂x ′
i x ′

j
ϱ(2)(x ′, y, ξ ′, η, t)dx ′dξ ′dydηdr

=

 t

s


(sgn ∗ ϱv)(η)∂yiψ(y, η)

×

N
i, j=1


χ (2)(x ′, ξ ′, t)ai j (ξ

′)∂x ′
j
ϱ(2)(x ′, y, ξ ′, η, t)dx ′dξ ′dydηdr

=:

 t

s
Errloc,(1)(r)dr.

In conclusion, t

s
I hyp(r)dr = −


ψ(y, η)(sgn ∗ ϱv)(η)(χ (1) ∗ ϱ(1))(y, η, ·)|tsdydη

−


ψ(y, η)(sgn ∗ ϱv)(η)(χ (2) ∗ ϱ(2))(y, η, ·)|tsdydη

+

 t

s
Err(1)(r)+ Err(2)(r)dr +

 t

s
Errloc,(1)(r)+ Errloc,(2)(r)dr,

with Err(2), Errloc,(2) defined analogously to Err(1), Errloc,(1) respectively.
Step 4: The parabolic terms. Using (3.9) we get

N
i, j=1


ψ(y, η)χ (1)(x, ξ, t)ϱ(1)(x, y, ξ, η, t)χ (2)(x ′, ξ ′, t)ai j (ξ

′)

× ∂x ′
i x ′

j
ϱ(2)(x ′, y, ξ ′, η, t)dxdξdx ′dξ ′dydη

= −

N
i, j=1


ψ(y, η)χ (1)(x, ξ, t)χ (2)(x ′, ξ ′, t)ai j (ξ

′)

× ∂xiϱ
(1)(x, y, ξ, η, t)∂x ′

j
ϱ(2)(x ′, y, ξ ′, η, t)dxdξdx ′dξ ′dydη + Errloc,(3),

where

Errloc,(3)
:= −

N
i, j=1


∂yiψ(y, η)χ

(1)(x, ξ, t)χ (2)(x ′, ξ ′, t)ai j (ξ
′)

× ϱ(1)(x, y, ξ, η, t)∂x ′
j
ϱ(2)(x ′, y, ξ ′, η, t)dxdξdx ′dξ ′dydη.

Hence,

− 2
N

i, j=1


[ψ(y, η)χ (1)(x, ξ, t)ϱ(1)(x, y, ξ, η, t)

× χ (2)(x ′, ξ ′, t)ai j (ξ
′)∂x ′

i x ′
j
ϱ(2)(x ′, y, ξ ′, η, t)
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+ ψ(y, η)χ (2)(x ′, ξ ′, t)ϱ(2)(x ′, y, ξ ′, η, t)χ (1)(x, ξ, t)ai j (ξ)

× ∂2
xi x j

ϱ(1)(x, y, ξ, η, t)]dxdξdx ′dξ ′dydη

= 4
N

i, j=1

N
k=1


[ψ(y, η)χ (1)(x, ξ, t)χ (2)(x ′, ξ ′, t)σik(ξ)σk j (ξ

′)

× ∂xiϱ
(1)(x, y, ξ, η, t)∂x ′

j
ϱ(2)(x ′, y, ξ ′, η, t)]dxdξdx ′dξ ′dydη

+ Errpar
+ Errloc,(3)

+ Errloc,(4), (3.10)

with

Errpar
:= 2

N
i, j=1


ψ(y, η)χ (1)(x, ξ, t)χ (2)(x ′, ξ ′, t)

×


ai j (ξ)− 2

N
k=1

σik(ξ)σk j (ξ
′)+ ai j (ξ

′)


× ∂xiϱ

(1)(x, y, ξ, η, t)∂x ′
j
ϱ(2)(x ′, y, ξ ′, η, t)dxdξdx ′dξ ′dydη

and Errloc,(4) defined analogously to Errloc,(3).
We now use the chain rule (2.8) and get

N
i, j=1


ψ(y, η)χ (1)(x, ξ, t)χ (2)(x ′, ξ ′, t)σik(ξ)σk j (ξ

′)

× ∂xiϱ
(1)(x, y, ξ, η, t)∂x ′

j
ϱ(2)(x ′, y, ξ ′, η, t)dxdξdx ′dξ ′dydη

=


ψ(y, η)


N

i=1


χ (1)(x, ξ, t)σik(ξ)∂xiϱ

(1)(x, y, ξ, η, t)dxdξ



×


N

j=1


χ (2)(x ′, ξ ′, t)σk j (ξ

′)∂x ′
j
ϱ(2)(x ′, y, ξ ′, η, t)dx ′dξ ′


dydη

=


ψ(y, η)


N

i=1


∂xiβik(u

(1)(x, t))ϱ(1)(x, y, u(1)(x, t), η, t)dx



×


N

j=1


∂x ′

j
βk j (u

(2)(x ′, t))ϱ(2)(x ′, y, u(2)(x ′, t), η, t)dx ′


dydη,

and, therefore,

− 2
N

i, j=1

 
ψ(y, η)χ (1)(x, ξ, t)ϱ(1)(x, y, ξ, η, t)χ (2)(x ′, ξ ′, t)

× ai j (ξ
′)∂2

xi x j
ϱ(2)(x ′, y, ξ ′, η, t)

+ ψ(y, η)χ (2)(x ′, ξ ′, t)ϱ(2)(x ′, y, ξ ′, η, t)

× χ (1)(x, ξ, t)ai j (ξ)∂
2
xi x j

ϱ(1)(x, y, ξ, η, t)

dxdξdx ′dξ ′dydη

= 4
N

i, j=1

N
k=1


ψ(y, η)


∂xiβik(u

(1)(x, t))ϱ(1)(x, y, u(1)(x, t), η, t)
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× ∂x jβk j (u
(2)(x ′, t))ϱ(2)(x ′, y, u(2)(x ′, t), η, t)dxdx ′


dydη

+ Errpar
+ Errloc,(3)

+ Errloc,(4).

Using (2.10) we analyze next the last two terms in I par. We have:
ψ(y, η)δ(ξ − u(1)(x, t))ϱ(1)(x, y, ξ, η, t)

× ϱ(2)(x ′, y, ξ ′, η, t)n(2)(x ′, ξ ′, t)dxdξdx ′dξ ′dydη

+


ψ(y, η)δ(ξ ′

− u(2)(x ′, t))ϱ(2)(x ′, y, ξ ′, η, t)

× ϱ(1)(x, y, ξ, η, t)n(1)(x, ξ, t)dxdξdx ′dξ ′dydη

=


ψ(y, η)ϱ(1)(x, y, u(1)(x, t), η, t)ϱ(2)(x ′, y, ξ ′, η, t)n(2)(x ′, ξ ′, t)dxdx ′dξ ′dydη

+


ψ(y, η)ϱ(2)(x ′, y, u(2)(x ′, t), η, t)ϱ(1)(x, y, ξ, η, t)n(1)(x, ξ, t)dxdξdx ′dydη

=


ψ(y, η)ϱ(1)(x, y, u(1)(x, t), η, t)ϱ(2)(x ′, y, u(2)(t, x ′), η, t)

×

N
k=1


N

i=1

∂x ′
i
βik(u

(2)(t, x ′))

2

dxdx ′dydη

+


ψ(y, η)ϱ(2)(x ′, y, u(2)(x ′, t), η, t)ϱ(1)(x, y, u(1)(t, x), η, t)

×

N
k=1


N

i=1

∂xiβik(u
(1)(t, x))

2

dxdx ′dydη.

Since 
N

i=1

∂xiβik(u
(1)(t, x))

2

+


N

i=1

∂xiβik(u
(2)(t, x ′))

2

≥ 2
N

i, j=1

∂xiβik(u
(1)(t, x))∂x ′

j
βk j (u

(2)(t, x ′)),

we obtain

− 2

ψ(y, η)δ(ξ − u(1)(x, t))ϱ(1)(x, y, ξ, η, t)

× ϱ(2)(x ′, y, ξ ′, η, t)n(2)(x ′, ξ ′, t)dxdξdx ′dξ ′dydη

+


ψ(y, η)δ(ξ ′

− u(2)(x ′, t))ϱ(2)(x ′, y, ξ ′, η, t)

× ϱ(1)(x, y, ξ, η, t)n(1)(x, ξ, t)dxdξdx ′dξ ′dydη

≤ −4

ψ(y, η)ϱ(1)(x, y, u(1)(x, t), η, t)ϱ(2)(x ′, y, u(2)(t, x ′), η, t)

×

N
k=1


N

i, j=1

∂xiβik(u
(1)(t, x))∂x ′

j
β jk(u

(2)(t, x ′))


dxdx ′dydη,



B. Gess, P.E. Souganidis / Stochastic Processes and their Applications ( ) – 23

and, then, t

s
I par(r)dr ≤

 t

s
Errpar(r)+ Errloc,(3)(r)+ Errloc,(4)(r)dr.

Step 5: The end of the proof. Combining the estimates in the last two steps we find, now
explicitly writing the ε, ψ, δ-dependence,

− 2

ψ(y, η)(χ (1) ∗ ϱ

(1)
ε,δ)(y, η, ·)(χ

(2)
∗ ϱ

(2)
ε,δ)(y, η, ·)dydη

t
s

≤ −


ψ(y, η)(sgn ∗ ϱvδ )(η)(χ

(1)
∗ ϱ

(1)
ε,δ)(y, η, ·)|

t
sdydη

−


ψ(y, η)(sgn ∗ ϱvδ )(η)(χ

(2)
∗ ϱ

(2)
ε,δ)(y, η, ·)|

t
sdydη

+

 t

s


Err(1)ε,ψ,δ(r)+ Err(2)ε,ψ,δ(r)+ Err(1,2)ε,ψ,δ(r)+ Errpar

ε,ψ,δ(r)


dr

+

 t

s


Errloc,(1)

ε,ψ,δ (r)+ Errloc,(2)
ε,ψ,δ (r)+ Errloc,(3)

ε,ψ,δ (r)+ Errloc,(4)
ε,ψ,δ (r)


dr, (3.11)

that is

Gε,ψ,δ(t)− Gε,ψ,δ(s) ≤

 t

s


Err(1)ε,ψ,δ(r)+ Err(2)ε,ψ,δ(r)+ Err(1,2)ε,ψ,δ(r)+ Errpar

ε,ψ,δ(r)


dr

+

 t

s


Errloc,(1)

ε,ψ,δ (r)+ Errloc,(2)
ε,ψ,δ (r)+ Errloc,(3)

ε,ψ,δ (r)+ Errloc,(4)
ε,ψ,δ (r)


dr.

It follows from (A.2), (A.4), Lemma A.4 and Lemma A.5 in Appendix A that, for ψ ∈ C∞
c

(RN+1) and ε > 0 fixed,

lim
δ→0

Gε,ψ,δ(t)− lim
δ→0

Gε,ψ,δ(s)

.
 t

s


∥∂ηψ(·, ξ)∥C(RN )(q

(1)
+ q(2))(x, ξ, r)dxdξdr + ε−1

∥z(1) − z(2)∥C([s,t];RN )

+

 t

s


Errloc,(1)

ε,ψ (r)+ Errloc,(2)
ε,ψ (r)+ Errloc,(3)

ε,ψ (r)+ Errloc,(4)
ε,ψ (r)


dr. (3.12)

Choosing ψR ∈ C∞
c (RN+1) such that

ψR(y, η) =


1, if |(y, η)| ≤ R
0, if |(y, η)| > R + 1,

and ∥DψR∥ ≤ 1, (3.13)

yields

lim
R→∞


∥∂ηψR(·, ξ)∥C(RN )(q

(1)
+ q(2))(x, ξ, t)dxdξ = 0.

In view of Lemma A.6 we also have

lim
R→∞

 t

s


Errloc,(1)

ε,ψR
(r)+ Errloc,(2)

ε,ψR
(r)+ Errloc,(3)

ε,ψR
(r)+ Errloc,(4)

ε,ψR
(r)


dr = 0

and it is easy to see that

lim
R→∞

lim
δ→0

Gε,ψR ,δ(t) = Gε(t).
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Hence, letting R → ∞ in (3.12) yield

Gε(t)− Gε(s) ≤ ε−1
∥z(1) − z(2)∥C([s,t];RN ), (3.14)

which finishes the proof by step one.

4. The existence of pathwise entropy solutions

We prove the existence of pathwise entropy solutions to (1.1) and establish the a priori esti-
mates stated in Theorem 2.4. The solution is found as a limit of solutions of a three-step approx-
imation procedure. In the first step, the initial condition u0 ∈ (BV ∩ L∞)(RN ) is approximated
by smooth functions uδ0 ∈ C∞

c (RN ) such that ∥uδ0∥2 ≤ ∥u0∥2. In the second step, the driving
signal z is approximated by smooth driving signals z(l). In the third step, A is approximated by
Aε + ε I , where I is the N × N identity matrix and Aε(ξ) := A ∗ ϕε(ξ) with ϕε being a standard
Dirac family.

In conclusion, we consider the smooth solution u(ε,δ,l) to
∂t u

(ε,δ,l)
+

N
i=1

∂xi F i (u(ε,δ,l))(ż(l))i = div(Aε(u(ε,δ,l))Du(ε,δ,l))+ ε1u(ε,δ,l) in RN
× (0, T ),

u(ε,δ,l) = uδ0 on RN
× {0}.

(4.1)

The existence and uniqueness of u(ε,δ,l) for each fixed ε, δ and l is classical; see, for example,
Volpert and Hudjaev [45]. The proof of the bounds in Theorem 2.4 is based on establishing
similar bounds for u(ε,δ,l) and then passing to the limit.

Proof of Theorem 2.4. Since the proof is long, we divide it into several steps.

Step 1: The approximating equation (4.1). The kinetic function χ (ε,δ,l)(x, ξ, t) := χ(u(ε,δ,l)

(x, t), ξ) solves
∂tχ

(ε,δ,l)
+ f (l)(ξ, t) · Dxχ

(ε,δ,l)
−

d
i, j=1

aεi j (ξ)∂
2
xi x j

χ (ε,δ,l) − ε1χ (ε,δ,l)

= ∂ξq(ε,δ,l) in RN
× R × (0, T ),

χ (ε,δ,l) = χ(uδ0(·), ·) on RN
× R × {0},

(4.2)

where

f (l)(ξ, t) := F ′(ξ)ż(l)(t)

and

q(ε,δ,l) = m(ε,δ,l)
+ n(ε,δ,l)

with the entropy dissipation and parabolic measures m(ε,δ,l) and n(ε,δ,l) given respectively by

m(ε,δ,l)(x, ξ, t) = δ(ξ − u(ε,δ,l))ε|Du(ε,δ,l)|2

and

n(ε,δ,l)(x, ξ, t) = δ(ξ − u(ε,δ,l))
N

k=1


N

i=1

∂xiβ
ε
ik(u

(ε,δ,l))

2

.
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Moreover, it is shown in [45] that, for all t ≥ 0 and p ∈ [1,∞], there exist constants C (l) > 0
such that

∥u(ε,δ,l)(t)∥L p ≤ ∥u0∥p, ∥Du(ε,δ,l)(t)∥L1 ≤ BV (u0) and ∥∂t u
(ε,δ,l)(t)∥L1 ≤ C (l).

(4.3)

Multiplying (4.2) by ξ and integrating yields


RN ×R×R+

m(ε,δ,l)(x, ξ, t)dxdξdt +


RN ×R+

N
k=1


N

i=1

∂xiβ
ε
ik(u

(ε,δ,l))

2

dxdt

≤
1
2
∥uδ0∥

2
2 ≤

1
2
∥u0∥

2
2. (4.4)

In view of Lemma 2.2, u(ε,δ,l) is a pathwise entropy solution, that is, in the sense of distributions
in t ,

d

dt
(ϱ(l) ∗ χ (ε,δ,l))(y, η, t) =

N
i, j=1


χ (ε,δ,l)(x, ξ, t)aεi j (ξ)∂

2
xi x j

ϱ(l)(x, y, ξ, η, t)dxdξ

+ ε


χ (ε,δ,l)(x, ξ, t)1ϱ(l)(x, y, ξ, η, t)dxdξ

−


∂ξϱ

(l)(x, y, ξ, η, t)q(ε,δ,l)(x, ξ, t)dxdξ. (4.5)

Elementary calculations also give

N
i=1


χ (ε,δ,l)(x, ξ, t)σ εik(ξ)∂xiϱ

(l)(x, y, ξ, η, t)dxdξ

= −

N
i=1


∂xiβ

ε
ik(u

(ε,δ,l)(x, t))ϱ(l)(x, y, u(ε,δ,l)(x, t), η, t)dx . (4.6)

Step 2: The singular degenerate limit ε → 0. In view of the estimates (4.3) and (4.4), there
exist subsequences, which we denote again by u(ε,δ,l),m(ε,δ,l) and n(ε,δ,l), such that, as ε → 0,

u(ε,δ,l) → u(δ,l) in C([0, T ]; L1(RN )),

m(ε,δ,l) ⇀ m(δ,l),

n(ε,δ,l) ⇀ n(δ,l) weak ⋆ ,
N

i=1

∂xiβ
ε
ik(u

(ε,δ,l)) ⇀

N
i=1

∂xiβik(u
(δ,l)) in L2([0, T ] × RN ),

and thus

n(ε,δ,l) ⇀ n(δ,l) = δ(ξ − u(δ,l))
N

k=1


N

i=1

∂xiβik(u
(δ,l))

2

.
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Passing to the limit in (4.5) and (4.6) yields respectively (2.9) for z = z(l) and

N
i=1


χ (δ,l)(x, ξ, t)σik(ξ)∂xiϱ

(l)(x, y, ξ, η, t)dxdξ

=

N
i=1


∂xiβik(u

(δ,l)(x, t))ϱ(l)(x, y, u(δ,l)(x, t), η, t)dx .

Using the lower semicontinuity with respect to weak convergence, we also get T

0


RN ×R

m(δ,l)(x, ξ, t)dxdξdt +

 T

0


RN

N
k=1


N

i=1

∂xiβik(u
(δ,l))

2

dxdt ≤
1
2
∥u0∥

2
2.

Step 3: The rough signal limit l → ∞ and initial condition δ → 0. Theorem 2.3 yields that,
as l,m → ∞,

∥u(δ,l) − u(δ,m)∥C([0,T ];L1(RN )) ≤ C∥z(l) − z(m)∥1/2
C([0,T ];RN )

→ 0,

that is, u(δ,l) is a Cauchy sequence in C([0, T ]; L1(RN )) and thus has, as l → ∞, a limit u(δ) in
C([0, T ]; L1(RN )).

We then argue as in Step 2 to obtain a pathwise entropy solution u(δ) to (1.1) with initial
condition uδ0. Again, Theorem 2.3 yields that, as δ1, δ2 → 0,

∥u(δ1) − u(δ1)∥C([0,T ];L1(RN )) ≤ C∥uδ1
0 − uδ2

0 ∥L1(RN )

and arguing as before we obtain a pathwise entropy solution u.

The bound (2.18) follows easily by testing with ξ [m+1]
= |ξ |mξ and a cut-off argument. Since

the argument is routine, we leave the details to the reader.

5. Long-time behavior—the proof of Theorem 2.6

The general approach is based on averaging techniques related to the classical averaging lem-
mata for scalar conservation laws. Typically, the proofs of averaging lemmata use Fourier trans-
forms in space and time. In the stochastic context this is not possible due to the time-dependence
of the flux. Therefore, we only use Fourier transforms in the spatial variable x . This technique
was developed by Bouchut and Desvillettes [6] and was used for semilinear stochastic scalar
conservation laws by Debussche and Vovelle in [15]. Although our proof follows the arguments
of [15] and more closely [25], new difficulties arise because of the second order term in (1.6).
In particular, we have to adapt the important technical result (Lemma 5.1), which relies on the
genuine nonlinearity condition (2.20). In what follows we are brief about parts similar to [25]
and we concentrate on the differences. Since the proof is rather long, we divide it in several sub-
sections. We also remark that we use properties of the Brownian paths and our approach does
not extend to general continuous time dependence.

Split-up of the solution. Without loss of generality, we restrict to initial conditions with zero
average, that is we assume that

u0(x)dx = 0; (5.1)

the case of non-zero spatial average can be easily reduced to this case. Moreover, in view of
(2.14) and the density of L∞(TN ) in L1(TN ), it is enough to consider u0 ∈ L∞(TN ).
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As a regularizing term we use the fractional Laplace operator (see [6,15] for similar types of
arguments)

B := (−∆)α + I d with α ∈ (0, 1]. (5.2)

Let SAγ (ξ)(s, t) denote the solution operator of

∂tv +


i

f i (ξ)β̇ i (t)∂xi v −

d
i, j=1

ai j (ξ)∂
2
xi x j

v + γ Bv = 0 in TN
× R × (s,∞). (5.3)

Since A(ξ) : D2
=
d

i, j=1 ai j (ξ)∂
2
xi x j

and B commute, it is immediate that, for all f in the
appropriate function space,

SAγ (ξ)(s, t) f (x) = (e−(t−s)(A(ξ):D2
+γ B) f ) (x − f (ξ)(β(t)− β(s))) ,

= (e−(t−s)A(ξ):D2
e−(t−s)γ B f ) (x − f (ξ)(β(t)− β(s))) , (5.4)

where et A denotes the solution semigroup to the operator A and

f (ξ)(β(t)− β(s)) = ( f 1(ξ)(β1(t)− β1(s)), . . . , f N (ξ)(βN (t)− βN (s))).

For n ∈ ZN , the Fourier transform of SAγ (ξ) corresponds to multiplication by

exp

−i f (ξ)(β(t)− β(s)) · n −


n A(ξ)n − γ (|n|

2α
+ 1)


(t − s)


.

It follows from the variation of constants formula that, for t ∈ [0, T ] and ϕ ∈ C∞(TN ),
TN
ϕ(x)u(x, t)dx =


TN ×R

ϕ(x)χ(x, ξ, t)dxdξ

=


TN ×R

ϕ(x)SAγ (ξ)(0, t)χ0(x, ξ)dxdξ

+

 t

0


TN ×R

γ B(S∗

Aγ (ξ)(s, t)ϕ)(x)χ(x, ξ, s)dxdξds

−

 t

0


TN ×R

∂ξ (S
∗

Aγ (ξ)(s, t)ϕ)(x)dq(x, ξ, s), (5.5)

where S∗

Aγ (ξ)
denotes the adjoint semigroup to SAγ (ξ) and for simplicity we set again q = m +n.

Noting that (2.18) implies q(TN
×{0}×R+) = 0 and that ξ → (S∗

Aγ (ξ)
(s, t)ϕ)(x) is continuously

differentiable on R\ {0}, (5.5) can be justified following the same arguments as in [25, Appendix
C] in combination with dominated convergence based on (2.18) and (1.7). We note that, in
comparison to [25], the additional parabolic term of (1.6) is represented in (5.5) via the parabolic
term in the semigroup SAγ (ξ).

Recall that, a.s. in ω, u ∈ C([0,∞); L1(TN )). Accordingly, in the sense of distributions in x ,
we have

u(t) = u0(t)+ u1(t)+ Q(t), (5.6)

where, for ϕ ∈ C∞(TN ),

⟨u0(t), ϕ ⟩ :=


TN ×R

ϕ(x)SAγ (ξ)(0, t)χ0(x, ξ)dxdξ, (5.7)
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⟨u1(t), ϕ ⟩ :=

 t

0


TN ×R

γ B(S∗

Aγ (ξ)(s, t)ϕ)(x)χ(x, ξ, s)dxdξds (5.8)

⟨Q(t), ϕ ⟩ := −

 t

0


TN ×R

∂ξ (S
∗

Aγ (ξ)(s, t)ϕ)(x)q(x, ξ, s)dxdξds. (5.9)

Next we estimate (5.7)–(5.9) separately using averaging techniques. In the analysis we need
a basic integral estimate which is proved in Appendix C. For its statement it is convenient
to introduce, for each measurable b : R → RN , a : R → R+ and f ∈ L2, the function
φ(·; a, b, f ) : RN

→ R given by

φ(w; a, b, f ) := e−
|w|

2
δ


R

eib(ξ)·w−δa(ξ) f (ξ)dξ. (5.10)

Lemma 5.1. Let b : R → RN , a : R → R+ be measurable functions, such that, for all
ε > 0, z ∈ RN and some nondecreasing ι : [0,∞) → [0,∞) with limε→0 i(ε) = 0,

|{ξ ∈ R : |b(ξ)− z|2 + a(ξ) ≤ ε}| ≤ ι(ε).

Then, for all δ > 0 and f ∈ L2(R),

∥φ(·; a, b, f )∥2
L2 ≤

√
δπ

4


∞

0
e−

τ
4 ι
τ
δ


dτ∥ f ∥

2
2.

The estimate of u0. Taking Fourier transforms in (5.7) yields, for each n ∈ ZN ,

û0(n, t) =


e−i f (ξ)β(t)·n−(n A(ξ)n+γ (|n|

2α
+1))t χ̂0(n, ξ)dξ.

As in [25] we have û0(0, t) = 0. For n ∈ ZN
\ {0}, integrating in time, taking expectations and

using the scaling properties of the Brownian paths, we find

E
 T

0
|û0(n, t)|2dt

= E
 T

0

 e−i f (ξ)β(t)·n−(n A(ξ)n+γ (|n|
2α

+1))t χ̂0(n, ξ)dξ
2dt

=

 T

0
e−2γ (|n|

2α
+1)tE

 e−i f (ξ)β(t |n|
2)· n

|n|
−n A(ξ)nt

χ̂0(n, ξ)dξ
2dt

=

 T

0

e−2γ (|n|
2α

+1)t
2π |n|2t

 e−
|w|

2

4|n|2t


e−i f (ξ) n

|n|
·w−

n
|n|

A(ξ) n
|n|

|n|
2t
χ̂0(n, ξ)dξ

2dwdt.

Lemma 5.1 with δ = 4|n|
2t , b(ξ) = f (ξ) ·

n
|n|

, a(ξ) =
1
4

n
|n|

A(ξ) n
|n|

and i(ε) ∼ ε
θ
2 gives

E
 T

0
|û0(n, t)|2dt ≤

√
δπ

4

 T

0

e−2γ (|n|
2α

+1)t
2π |n|2t


∞

0
e−

τ
4 ι
τ
δ


dτdt∥χ̂0(n, ·)∥

2
2

. δ
1−θ

2

 T

0

e−2γ (|n|
2α

+1)t
2π |n|2t


∞

0
τ
θ
2 e−τdτdt∥χ̂0(n, ·)∥

2
2

.
 T

0
e−2γ (|n|

2α
+1)t (|n|

2t)−
θ
2 dt∥χ̂0(n, ·)∥

2
2
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. |n|
−θ

 T

0
e−2γ (|n|

2α
+1)t t−

θ
2 dt∥χ̂0(n, ·)∥

2
2

. |n|
−θγ−

2−θ
2 (|n|

2α
+ 1)−

2−θ
2


∞

0
e−t t−

θ
2 dt∥χ0(·, ·)∥

2
2,

and, hence,

E
 T

0
|û0(n, t)|2dt ≤ C |n|

−θγ−
2−θ

2 (|n|
2α

+ 1)−
2−θ

2 ∥χ̂0(n, ·)∥
2
2

. γ−
2−θ

2 ∥χ̂0(n, ·)∥
2
2. (5.11)

Combining the previous estimates, after summing over n, we obtain

E
 T

0
∥u0(t)∥2

2dt = E
 T

0
∥û0(t)∥2dt . γ−

2−θ
2 ∥χ0(·, ·)∥

2
2

. γ−
2−θ

2 ∥χ0(·, ·)∥1 = γ−
2−θ

2 ∥u0∥1. (5.12)

The estimate of u1. Let ω̄n := γ (|n|
2α

+ 1). For each n ∈ ZN , the Fourier transform û1(n, t) of
u1(t) in x is given by

û1(n, t) = ω̄n

 t

0


e−i f (ξ)(β(t)−β(s))·n−(n A(ξ)n+γ (|n|

2α
+1))(t−s)χ̂(n, ξ, s)dξds

= ω̄n

 t

0
e−ω̄n(t−s)


e−i f (ξ)(β(t)−β(s))·n−n A(ξ)n(t−s)χ̂(n, ξ, s)dξds.

Integrating in t , taking expectation and using that
 t

0 ω̄ne−ω̄nr dr ≤ 1, we find

E
 T

0
|û1

|
2(n, t)dt

= E
 T

0

 t

0
ω̄ne−ω̄n(t−s)


e−i f (ξ)(β(t)−β(s))·n−n A(ξ)n(t−s)χ̂(n, ξ, s)dξds

2dt

= E
 T

0

 t

0
ω̄ne−ω̄nr


e−i f (ξ)(β(t)−β(t−r))·n−n A(ξ)nr χ̂(n, ξ, t − r)dξdr

2dt

≤ E
 T

0

 t

0
ω̄ne−ω̄nr

 e−i f (ξ)(β(t)−β(t−r))·n−n A(ξ)nr χ̂(n, ξ, t − r)dξ
2drdt.

Using that χ̂ is Ft -adapted, that the increments β(t)− β(t − r) are independent of Ft−r and the
scaling properties of the Brownian motion, as in [25], we find

E
 e−i f (ξ)(β(t)−β(t−r))·n−n A(ξ)nr χ̂(n, ξ, t − r)dξ

2
= EẼ

 e
−i f (ξ)β(|n|

2r)(ω̃)· n
|n|

−


n
|n|

A(ξ) n
|n|


|n|

2r
χ̂(n, ξ, t − r)(ω)dξ

2
=

1
2π |n|2r

E
 e−

|w|
2

4|n|2r


e
−i f (ξ)w·

n
|n|

−


n
|n|

A(ξ) n
|n|


|n|

2r
χ̂(n, ξ, t − r)dξ


2

dw,
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where Ẽ is the expectation with respect to ω̃. Using again Lemma 5.1 with δ = 4|n|
2r ,

b(ξ) = f (ξ) ·
n
|n|

and a(ξ) =
1
4


n
|n|

A(ξ) n
|n|


we get

 e−
|w|

2

4|n|2r


e
−i f (ξ)w·

n
|n|

−


n
|n|

A(ξ) n
|n|


|n|

2r
χ̂(n, ξ, t − r)dξ


2

dw

.
√
δ


∞

0
e−

τ
4 ι
τ
δ


dτ∥χ̂(n, ·, t − r)∥2

2

. δ
1−θ

2


∞

0
τ
θ
2 e−τdτ∥χ̂(n, ·, t − r)∥2

2 . (|n|
2r)

1−θ
2 ∥χ̂(n, ·, t − r)∥2

2,

and, hence,

E
 e−i f (ξ)(β(t)−β(t−r))·n−n A(ξ)nr χ̂(n, t − r)dξ

2 . (|n|
2r)−

θ
2 E∥χ̂(n, ·, t − r)∥2

2.

Combining all the above estimates we find

E
 T

0
|û1

|
2(n, t)dt .

 T

0

 t

0
ω̄ne−ω̄nr (|n|

2r)−
θ
2 E∥χ̂(n, ·, t − r)∥2

2drdt.

Young’s inequality then yields

E
 T

0
|û1

|
2(n, t)dt .

 T

0
ω̄ne−ω̄nr (|n|

2r)−
θ
2 dr

 T

0
E∥χ̂(n, ·, r)∥2

2dr,

and, in view of the fact that, for θ ∈ [0, 1], T

0
ω̄ne−ω̄nrr−

θ
2 dr ≤ ω̄

1+
θ
2

n


R

e−ω̄nr (ω̄nr)−
θ
2 dr = ω̄

θ
2
n


R

e−rr−
θ
2 dr < ∞,

we conclude that, for n ∈ ZN
\ {0},

E
 T

0
|û1

|
2(n, t)dt . γ

θ
2 (|n|

2α−2
+ |n|

−2)
θ
2 E∥χ̂(n, ·, ·)∥2

L2(R×[0,T ])
. (5.13)

Hence,

E
 T

0
∥u1(t)∥2

2dt . γ
θ
2 E
 T

0
∥u(t)∥1dt.

The estimate of Q. For λ ≥ 0 and ϕ ∈ L∞(Ω × [0, T ]; C∞(TN )) (in what follows, unless
necessary, we do not display the dependence of ϕ in ω and t), let

(−∆)
λ
2 Q(t), ϕ(t)


:=

 t

0


∂ξ


SAγ (ξ)(s, t)


(−∆)

λ
2 ϕ(t)


(x)dq(x, ξ, s)

=

 t

0


TN ×(R\{0})

∂ξ


SAγ (ξ)(s, t)


(−∆)

λ
2 ϕ(t)


(x)dq(x, ξ, s)

=

 t

0


TN ×(R\{0})


f ′(ξ)(βt − βs) · D + A′(ξ) : D2(t − s)


× S∗

Aγ (ξ)(s, t)(−∆)
λ
2 ϕ(t)(x)dq(x, ξ, s),
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where the first equality follows from (2.18) and the second equality is immediate from the
definition of SAγ (ξ) and S∗

Aγ (ξ)
.

In view of Lemma B.1, for any ψ ∈ C∞(TN ), we haveD(S∗

Aγ (ξ)(s, t)(−∆)
λ
2ψ)


∞

=

D


e−γ (t−s)(γ B+A(ξ):D2)(−∆)
λ
2ψ(·)


(x − f (ξ)(β(t)− β(s)))


∞

= e−γ (t−s)
e−γ (t−s)A(ξ):D2

De−γ (t−s)(−∆)α (−∆)
λ
2ψ(·)


(x− f (ξ)(β(t)− β(s)))


∞

≤ e−γ (t−s)
De−γ (t−s)(−∆)α (−∆)

λ
2ψ


∞

. e−γ (t−s)(γ (t − s))−
λ+1
2α ∥ψ∥∞.

Again using Lemma B.1 we have∂2
xi x j


S∗

Aγ (ξ)(s, t)(−∆)
λ
2ψ


∞

=

∂2
xi x j


e−(t−s)(γ B+A(ξ):D2)(−∆)

λ
2ψ(·)


(x − f (ξ)(β(t)− β(s)))


∞

= e−γ (t−s)
e−(t−s)A(ξ):D2

∂2
xi x j

e−(t−s)γ (−∆)α (−∆)
λ
2ψ(·)


(x− f (ξ)(β(t)−β(s)))


∞

≤ e−γ (t−s)
∂2

xi x j
e−(t−s)γ (−∆)α (−∆)

λ
2ψ(·)


∞

. e−γ (t−s)(γ (t − s))−
λ+2
2α ∥ψ∥∞.

In view of (1.7), it follows that, for all ϕ ∈ L∞(Ω × [0, T ]; C∞(TN )),

E
 T

0


(−∆)

λ
2 Q(t), ϕ(t)


dt

≤ C∥ϕ∥∞E
 T

0

 t

0
e−γ (t−s)


γ−

λ+1
2α |β(t)− β(s)|(t − s)−

λ+1
2α + γ−

λ+2
2α (t − s)1−

λ+2
2α


×


TN ×(R\{0})

(1 + |ξ |p1 + |ξ |p2)dq(x, ξ, s)dt

≤ C∥ϕ∥∞E
 T

0

 t

0
e−γ (t−s)


γ−

λ+1
2α |β(t)− β(s)|(t − s)−

λ+1
2α + γ−

λ+2
2α (t − s)1−

λ+2
2α


×


TN ×R

(1 + |ξ |p1 + |ξ |p2)dq(x, ξ, s)dt.

At this point we need to argue as in the previous step by taking conditional expectation and using
that β(t) − β(t − r) is independent of Ft−r . Since q is only a measure, to make the following
argument rigorous it is necessary to perform another approximation. This is done in [25] and we
omit the details here.

Using the independence of β(t)− β(s) from Fs and Fs-measurability of q we find

E|β(t)−β(s)|q(s) = E[E|β(t)−β(s)|q(s)|Fs] = E|β(t)−β(s)|Eq(s) =
√

t − sEq(s),

and employing once more Young’s inequality we obtain

E
 T

0

 t

0
e−γ (t−s)


|β(t)− β(s)|γ−

λ+1
2α (t − s)−

λ+1
2α + γ−

λ+2
2α (t − s)1−

λ+2
2α


×


TN ×R

(1 + |ξ |p1 + |ξ |p2)dq(x, ξ, s)dt

=

 T

0

 t

0
e−γ (t−s)


γ−

λ+1
2α (t − s)

1
2 −

λ+1
2α + γ−

λ+2
2α (t − s)1−

λ+2
2α


E
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×


TN ×R

(1 + |ξ |p1 + |ξ |p2)dq(x, ξ, s)dt

≤

 T

0
e−γ t


γ−

λ+1
2α t

1
2 −

λ+1
2α + γ−

λ+2
2α t1−

λ+2
2α


dt

×

 T

0
E


TN ×R
(1 + |ξ |p1 + |ξ |p2)dq(x, ξ, s)dt.

In conclusion,

E
 T

0


(−∆)

λ
2 Q(t), ϕ(t)


dt . ∥ϕ∥∞

 T

0
e−γ t


γ−

λ+1
2α t

1
2 −

λ+1
2α + γ−

λ+2
2α t1−

λ+2
2α


dt

× E
 T

0


TN ×R

(1 + |ξ |p1 + |ξ |p2)dq(x, ξ, s).

Moreover note that, if δ > −1, then T

0
tδe−γ t dt = γ−δ

 T

0
(γ t)δe−γ t dt = γ−δ−1


R+

tδe−t dt ≤ Cγ−δ−1,

and for δ =
1
2 − µ

(1)
α,λ =

1
2 −

λ+1
2α , δ = 1 − µ

(2)
α,λ = 1 −

λ+2
2α and assuming µ(2)α,λ < 2 (note that

this also implies µ(1)α,λ <
3
2 ), we get T

0
e−γ t


γ

−µ
(1)
α,λ t

1
2 −µ

(1)
α,λ + γ

−µ
(2)
α,λ t1−µ

(2)
α,λ


dt ≤ C


γ−

3
2 + γ−2


.

We use next (2.18) and get, in view of all the above,

E
 T

0


(−∆)

λ
2 Q(t), ϕ(t)


dt . ∥ϕ∥∞


γ−

3
2 + γ−2


(∥u0∥

2
2 + ∥u0∥

p1+2
p1+2 + ∥u0∥

p2+2
p2+2).

(5.14)

For now it is enough to take λ = 0. Then µ(1)α,0 <
3
2 , µ(2)α,0 < 2 is satisfied if α > 1

2 , and, for
γ ≤ 1, we obtain

E
 T

0
⟨Q(t), ϕ(t) ⟩dt . γ−2

∥ϕ∥∞(∥u0∥
2
2 + ∥u0∥

p1+2
p1+2 + ∥u0∥

p2+2
p2+2).

Proof of Theorem 2.6. We conclude the proof as in [25]. Note that as compared to [25] the
constants change due to the changed constants in the estimate of Q. We obtain

E∥u(T )∥1 . T
−

1
2 +a


2−θ

4


∥u0∥

1
2
1 + 2T −

aθ
2 + T 2a−1(∥u0∥

2
2 + ∥u0∥

p1+2
p1+2 + ∥u0∥

p2+2
p2+2)

and letting a =
2

4+θ
, for T ≥ 1, we get

E∥u(T )∥1 . T −
θ

4+θ


∥u0∥

1
2
1 + 1 + ∥u0∥

2
2 + ∥u0∥

p1∨p2+2
p1∨p2+2


;

note that the rate is independent of the choice of α. The proof is concluded as in [25].
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6. Regularity (proof of Theorem 2.7)

The remaining argument is precisely the same as in [25]. First, assuming χ = χ(u) ∈

L2(R × [0, T ] × Ω; H τ (RN )) for some τ ∈ [0, 1] this implies

E
 T

0
∥u(t)∥Wλ,1dt ≤ C(1 + ∥u0∥

p1+2
p1+2 + ∥u0∥

p2+2
p2+2), (6.1)

for λ satisfying the constraint

λ < (4α − 2) ∧


θ(1 − α)

2
+ τ


.

Note that the constants change as compared to [25] due to the changed constants in the estimation
of Q. Maximizing the right hand side yields α =

θ+4+2τ
θ+8 ∈ (0, 1) and we obtain

λ < 4α − 2 =
2θ
θ + 8

+
8τ
θ + 8

.

As in [25] this bound is now bootstrapped, which yields that (6.1) holds for all λ ∈


0, 2θ

θ+4


.

The proof is then concluded as in [25].
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Appendix A. Convolution error estimates

We study here the behavior of the several error terms introduced in the proof of the comparison
principle for pathwise entropy solutions.

The first type of errors, which are studied in the first subsection below, are due to the
convolution along characteristics, that is, when we replace χ(x, ξ, t) by χ̃(x, ξ, t) := χ(x +

f (ξ)zt , ξ, t) and χ̃ by its approximation χ∗ϱs
ε. We then consider the parabolic error terms arising

from doubling of variables/mollification of the velocity variable ξ in the second subsection. In
the last subsection we estimate the hyperbolic error which is a consequence of the failure of the
right hand side in (3.1) to be the ξ -derivative of a nonnegative measure.

Convolution along characteristics. Let

ϱs
ε(x, y, ξ, t) := ϱs

ε(x − y + f (ξ)z(t)),

where ϱs
ε is a standard Dirac family.

Lemma A.1. Let u ∈ BV (RN ). Then, for all t ∈ [0, T ], p ∈ [1,∞),

∥

χ ∗ ϱs

ε


(y, ξ, t)− χ(y − f (ξ)z(t), ξ)∥L p(RN ×R) ≤ εBV (u).
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Proof. Using Hölder’s inequality and u ∈ BV we find

∥

χ ∗ ϱs

ε


(y, ξ, t)− χ(y − f (ξ)z(t), ξ)∥p

L p(RN ×R)

=

  χ(x, ξ)ϱs
ε(x, y, ξ, t)dx − χ(y − f (ξ)z(t), ξ)

p
dydξ

=

  [χ(x, ξ)− χ(y − f (ξ)z(t), ξ)]ϱs
ε(x, y, ξ, t)dx

p
dydξ

≤

 


ϱs
ε(x, y, ξ, t)dx

 1
q


|χ(x, ξ)− χ(y − f (ξ)z(t), ξ)|pϱs

ε(x, y, ξ, t)dx

 1
p


p

dydξ

≤


|χ(x, ξ)− χ(y − f (ξ)z(t), ξ)|p ϱs,0

ε (x − y + f (ξ)z(t))dxdydξ

=


|χ(x, ξ)− χ(y, ξ)|ϱs

ε(x − y)dxdydξ

=


|u(x)− u(y)|ϱs

ε(x − y)dxdy

≤ εBV (u). �

Lemma A.2. Let u ∈ (BV ∩ L∞)(RN ). Then, for all t ∈ [0, T ],

∥χ(y − f (ξ)z(t), ξ)− χ(y, ξ)∥L1(RN ×R) ≤ ∥ f (u)∥∞|z(t)|BV (u).

Proof. Due to [23, Lemma C.1] we have that

∥u∥BV =


R

BV (χ(·, ξ))dξ,

with χ(x, ξ) := χ(u(x), ξ). It follows that
|χ(y − f (ξ)z(t), ξ)− χ(y, ξ)|dydξ ≤


BV (χ(·, ξ))| f (ξ)z(t)|dξ

≤ |z(t)|∥ f (u)∥∞


BV (χ(·, ξ))dξ. �

Let

G̃(t) := −2

χ (1)(y − f (ξ)z(1)(t), ξ, t)χ (2)(y − f (ξ)z(1)(t), ξ, t)dydξ

+


sgn(η)χ (1)(y − f (ξ)z(1)(t), ξ, t)dydξ

+


sgn(η)χ (2)(y − f (ξ)z(2)(t), ξ, t)dydξ

= −2

χ (1)(y − f (ξ)(z(1)(t)− z(2)(t)), ξ, t)χ (2)(y, ξ, t)dydξ

+


sgn(η)χ (1)(y, ξ, t)dydξ +


sgn(η)χ (2)(y, ξ, t)dydξ.
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Lemma A.1, with Gε as in Section 3, yields

|Gε(t)− G̃(t)| ≤ ε(BV (u(1)(t))+ BV (u(2)(t)))

and, with G as in Section 3, Lemma A.2 implies

|G̃(t)− G(t)| ≤ ∥ f (u(1))∥∞|z(1)(t)− z(2)(t)|BV (u(1)(t)).

In conclusion, we have:

Lemma A.3. If u ∈ (BV ∩ L∞)(RN ), then for all t ∈ [0, T ],

|Gε(t)− G(t)| ≤


ε + ∥ f (u(1)(t))∥∞|z(1)(t)− z(2)(t)|


(BV (u(1)(t))+ BV (u(2)(t))).

Parabolic error. We study the parabolic error Errpar
ε,ψ,δ occurring in the proof of Theorem 2.3.

Lemma A.4. Let s, t ∈ [0, T ], s < t , ψ ∈ C∞
c (RN+1), ε > 0. Then, as δ → 0, t

s Errpar
ε,ψ,δ(r)dr → 0.

Proof. Straightforward calculations lead to

Errpar
ε,ψ,δ(r) = 2

N
i, j=1


ψ(y, η)χ (1)(x, ξ, r)χ (2)(x ′, ξ ′, r)

×


ai j (ξ)− 2

N
k=1

σik(ξ)σk j (ξ
′)+ ai j (ξ

′)


× ∂xiϱ

(1)
ε,δ(x, y, ξ, η, r)∂x ′

j
ϱ
(2)
ε,δ(x

′, y, ξ ′, η, r)dxdξdx ′dξ ′dydη

= 2
N

i, j=1


ψ(y, η)


χ (1)(x, ξ, r)ai j (ξ)∂xiϱ

(1)
ε,δ(x, y, ξ, η, r)dxdξ


×


χ (2)(x ′, ξ ′, r)∂x ′

j
ϱ
(2)
ε,δ(x

′, y, ξ ′, η, r)dx ′dξ ′


dydη

− 4
N

i, j=1

N
k=1


ψ(y, η)

×


χ (1)(x, ξ, r)σik(ξ)∂xiϱ

(1)
ε,δ(x, y, ξ, η, r)dxdξ


×


χ (2)(x ′, ξ ′, r)σk j (ξ

′)∂x ′
j
ϱ
(2)
ε,δ(x

′, y, ξ ′, η, r)dx ′dξ ′


dydη

+ 2
N

i, j=1


ψ(y, η)


χ (1)(x, ξ, r)∂xiϱ

(1)
ε,δ(x, y, ξ, η, r)dxdξ


×


χ (2)(x ′, ξ ′, r)ai j (ξ

′)∂x ′
j
ϱ
(2)
ε,δ(x

′, y, ξ ′, η, r)dx ′dξ ′


dydη.

We now aim to take the limit δ → 0 in each of these three terms. Since the first and third terms
are similar, here we only give the details for the first two.
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Note that, since ψ has compact support, the integration in (x, y) and (x ′, y′) is taking place
over bounded sets. This together with ai j ∈ L∞

loc yields that, in the limit δ → 0, and in L2
loc(R)

χ (1)(x, ξ, r)ai j (ξ)∂xiϱ
(1)
ε,δ(x, y, ξ, η, r)dxdξ

=


χ (1)(x, ·, r)ai j (·)∂xiϱ

s,(1)
ε (x, y, ·, r)dx


∗ ϱvδ (η)

→


χ (1)(x, η, r)ai j (η)∂xiϱ

s,(1)
ε (x, y, η, r)dx .

Since all functions are locally bounded, dominated convergence implies that, as δ → 0,

N
i, j=1

 t

s


ψ(y, η)


χ (1)(x, ξ, r)ai j (ξ)∂xiϱ

(1)
ε,δ(x, y, ξ, η, r)dxdξ


×


χ (2)(x ′, ξ ′, r)∂x ′

j
ϱ
(2)
ε,δ(x

′, y, ξ ′, η, r)dx ′dξ ′


dydηdr

→

N
i, j=1

 t

s


ψ(y, η)χ (1)(x, η, r)χ (2)(x ′, η, r)ai j (η)

× ∂xiϱ
s,(1)
ε (x, y, η, r)∂x ′

j
ϱs,(2)
ε (x ′, y, η, r)dx ′dxdydηdr.

Similarly, as δ → 0,

N
i, j,k=1

 t

s


ψ(y, η)χ (1)(x, ξ, r)σik(ξ)∂xiϱ

(1)
ε,δ(x, y, ξ, η, r)dxdξ

×


χ (2)(x ′, ξ ′, r)σk j (ξ

′)∂x ′
j
ϱ
(2)
ε,δ(x

′, y, ξ ′, η, r)dx ′dξ ′dydηdr

→

N
i, j,k=1

 t

s


ψ(y, η)χ (1)(x, η, r)σik(η)∂xiϱ

s,(1)
ε,δ (x, y, η, r)dx

×


χ (2)(x ′, η, r)σk j (η)∂x ′

j
ϱ

s,(2)
ε,δ (x

′, y, η, r)dx ′dydηdr

=

N
i, j=1

 t

s


ψ(y, η)χ (1)(x, η, r)χ (2)(x ′, η, r)ai j (η)

× ∂xiϱ
s,(1)
ε,δ (x, y, η, r)∂x ′

j
ϱs,(2)
ε (x ′, y, η, r)dxdx ′dydηdr. �

The localization error. We study here the error terms appearing in Section 3 due to the
localization in the (y, η) variables, that is Errloc,(i)

ε,ψ,δ , i = 1, 2, 3, 4. Since their analysis is similar,

we concentrate on Errloc,(1)
ε,ψ,δ and Errloc,(3)

ε,ψ,δ .
Recall

Errloc,(1)
ε,ψ,δ (r) =


(sgn ∗ ϱvδ )(η)


∂yi y jψ(y, η)

N
i, j=1


χ (2)(x ′, ξ ′, r)ai j (ξ

′)

× ϱ
(2)
ε,δ(x

′, y, ξ ′, η, r)dx ′dξ ′


dydη
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Errloc,(3)
ε,ψ,δ (r) = −

N
i, j=1


∂yiψ(y, η)χ

(1)(x, ξ, r)χ (2)(x ′, ξ ′, r)ai j (ξ
′)

× ϱ(1)(x, y, ξ, η, r)∂x ′
j
ϱ(2)(x ′, y, ξ ′, η, r)dxdξdx ′dξ ′dydη

and set

Errloc,(1)
ε,ψ (r) =

N
i, j=1


sgn(η)∂yi y jψ(y, η)χ

(2)(x ′, η, r)ai j (η)ϱ
s,(2)
ε (x ′, y, η, r)dx ′dydη

Errloc,(3)
ε,ψ (r) = −

N
i, j=1


∂yiψ(y, η)χ

(1)(x, η, r)χ (2)(x ′, η, r)ai j (η)

× ϱs,(1)(x, y, η, r)∂x ′
j
ϱs,(2)(x ′, y, η, r)dxdx ′dydη.

Lemma A.5. For all s < t , s, t ∈ [0, T ], as δ → 0, we have t

s
Errloc,(1)

ε,ψ,δ (r)dr →

 t

s
Errloc,(1)

ε,ψ (r)dr and
 t

s
Errloc,(3)

ε,ψ,δ (r)dr →

 t

s
Errloc,(3)

ε,ψ (r)dr.

Proof. Noting that ψ has compact support and ai j ∈ L∞

loc, the proof is a simple consequence of
convergence of mollifications along Dirac families. �

Lemma A.6. Let ψR be as in (3.13). Then, as R → ∞, t

s
Errloc,(1)

ε,ψR
(r)dr → 0 and

 t

s
Errloc,(3)

ε,ψR
(r)dr → 0.

Proof. The convergence of Errloc,(1)
ε,ψR

is a consequence of the dominated convergence theorem.
We first observe that

|sgn(η)∂yi y jψR(y, η)χ
(2)(x ′, η, r)ai j (η)ϱ

s,(2)
ε (x ′, y, η, r)|

≤C |χ (2)|(x ′, η, r)ai j (η)ϱ
s,(2)
ε (x ′, y, η, r)≤ C∥ai j∥L∞

loc
|χ (2)|(x ′, η, r)ϱs,(2)

ε (x ′, y, η, r)

and  t

s


|χ (2)|(x ′, η, r)ϱs,(2)

ε (x ′, y, η, r)dydx ′dηdr =

 t

s


|χ (2)|(x ′, η, r)dx ′dηdr

=

 t

s


|u(2)|(x ′, r)dx ′dt < ∞.

Moreover, as R → ∞ and for all (y, η) ∈ RN+1 and r ∈ [0, T ],

sgn(η)∂yi y jψR(y, η)χ
(2)(x ′, η, r)ai j (η)ϱ

s,(2)
ε (x ′, y, η, r) → 0,

and the claim now follows again from dominated convergence.
For the convergence of Errloc,(3)

ε,ψR
we observe that

∂yiψ(y, η)χ
(1)(x, η, r)χ (2)(x ′, η, r)ai j (η)ϱ

s,(1)(x, y, η, r)∂x ′
j
ϱs,(2)(x ′, y, η, r)

≤ C |χ (1)|(x, η, r)|χ (2)|(x ′, η, r)|ai j |(η)|ϱ
s,(1)

|(x, y, η, r)|∂x ′
j
ϱs,(2)

|(x ′, y, η, r)

≤ C∥ai j∥L∞

loc
|χ (1)|(x, η, r)|χ (2)|(x ′, η, r)|ϱs,(1)

|(x, y, η, r)|∂x ′
j
ϱs,(2)

|(x ′, y, η, r)



38 B. Gess, P.E. Souganidis / Stochastic Processes and their Applications ( ) –

and  t

s


|χ (1)|(x, η, r)|χ (2)|(x ′, η, r)|ϱs,(1)

|(x, y, η, r)|∂x ′
j
ϱs,(2)

|(x ′, y, η, r)dxdx ′dydηdr

≤

 t

s


|χ (2)|(x ′, η, r)|∂x ′

j
ϱs,(2)

|(x ′, y, η, r)dx ′dydηdr

≤ C
 t

s


|χ (2)|(x ′, η, r)dx ′dηdr ≤ C

 t

s


|u(2)|(x ′, r)dx ′dr < ∞.

Since, as R → ∞ and for all (y, η) ∈ RN+1 and r ∈ [0, T ],

∂yiψ(y, η)χ
(1)(x, η, r)χ (2)(x ′, η, r)ai j (η)ϱ

s,(1)(x, y, η, r)∂x ′
j
ϱs,(2)(x ′, y, η, r) → 0

dominated convergence finishes the proof. �

A.1. The hyperbolic errors

We first provide the following cancellation result.

Lemma A.7. Let ϱ(1)ε,δ , ϱ
(2)
ε,δ be as in (2.6) with z(1), z(2) ∈ C0([0, T ]; RN ) and fix ε > 0,

ψ ∈ C∞
c (RN+1). There exists a bounded function cψ,δ : R → R so that limδ→0 cψ,δ(ξ ′) = 0 for

all ξ ′ and  ψ(y, η)(ϱ(1)ε,δ(x, y, ξ, η, t)∂ξ ′ϱ
(2)
ε,δ(x

′, y, ξ ′, η, t)

+ ∂ξϱ
(1)
ε,δ(x, y, ξ, η, t)ϱ(2)ε,δ(x

′, y, ξ ′, η, t))


dydη
dxdξ

≤
C

ε
|z(2)t − z(1)t | +

cψ,δ(ξ ′)

ε
+ (∥∂ηψ(·, ·)∥C(RN ) ∗ ϱvδ )(ξ

′).

Proof. We have

ϱ
(1)
ε,δ(x, y, ξ, η, t)∂ξ ′ϱ

(2)
ε,δ(x

′, y, ξ ′, η, t)+ ∂ξϱ
(1)
ε,δ(x, y, ξ, η, t)ϱ(2)ε,δ(x

′, y, ξ ′, η, t)

= ϱs,(1)
ε (x, y, ξ, t)ϱvδ (ξ − η)∂ξ ′ [ϱs,(2)

ε (x ′, y, ξ ′, t)ϱvδ (ξ
′
− η)]

+ ∂ξ [ϱ
s,(1)
ε (x, y, ξ, t)ϱvδ (ξ − η)]ϱs,(2)

ε (x ′, y, ξ ′, t)ϱvδ (ξ
′
− η)

= ϱvδ (ξ − η)ϱvδ (ξ
′
− η)


ϱs,(1)
ε (x, y, ξ, t)∂ξ ′ϱs,(2)

ε (x ′, y, ξ ′, t)

+ ∂ξϱ
s,(1)
ε (x, y, ξ, t)ϱs,(2)

ε (x ′, y, ξ ′, t)


+ ϱs,(1)
ε (x, y, ξ, t)ϱs,(2)

ε (x ′, y, ξ ′, t)

∂ξϱ

v
δ (ξ − η)ϱvδ (ξ

′
− η)

+ ϱvδ (ξ − η)∂ξ ′ϱvδ (ξ
′
− η)


.

We first note that
ψ(y, η)ϱs,(1)

ε (x, y, ξ, t)ϱs,(2)
ε (x ′, y, ξ ′, t)


∂ξϱ

v
δ (ξ − η)ϱvδ (ξ

′
− η)

+ ϱvδ (ξ − η)∂ξ ′ϱvδ (ξ
′
− η)


dη

=


∂ηψ(y, η)ϱ

s,(1)
ε (x, y, ξ, t)ϱs,(2)

ε (x ′, y, ξ ′, t)ϱvδ (ξ − η)ϱvδ (ξ
′
− η)dη
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and, after integrating, we get  ψ(y, η)ϱs,(1)
ε (x, y, ξ, t)ϱs,(2)

ε (x ′, y, ξ ′, t)

∂ξϱ

v
δ (ξ − η)ϱvδ (ξ

′
− η)

+ ϱvδ (ξ − η)∂ξ ′ϱvδ (ξ
′
− η)


dydη

dxdξ

≤


|∂ηψ(y, η)|ϱ

s,(1)
ε (x, y, ξ, t)ϱs,(2)

ε (x ′, y, ξ ′, t)ϱvδ (ξ − η)ϱvδ (ξ
′
− η)dydηdxdξ

=


|∂ηψ(y, η)|ϱ

s,(2)
ε (x ′, y, ξ ′, t)ϱvδ (ξ − η)ϱvδ (ξ

′
− η)dydηdξ

≤


∥∂ηψ(·, η)∥C(RN )ϱ

v
δ (ξ − η)ϱvδ (ξ

′
− η)dηdξ

=


∥∂ηψ(·, η)∥C(RN )ϱ

v
δ (ξ

′
− η)dη = (∥∂ηψ(·, ·)∥C(RN ) ∗ ϱvδ )(ξ

′).

Next we observe that

∂ξϱ
s,(i)
ε (x, y, ξ, t) = f ′(ξ)z(i)t ∂yϱ

s,(i)
ε (x, y, ξ, t),

and, hence,

ϱs,(1)
ε (x, y, ξ, t)∂ξ ′ϱs,(2)

ε (x ′, y, ξ ′, t)+ ∂ξϱ
s,(1)
ε (x, y, ξ, t)ϱs,(2)

ε (x ′, y, ξ ′, t)

= ϱs,(1)
ε (x, y, ξ, t) f ′(ξ ′)z(2)t ∂yϱ

s,(2)
ε (x ′, y, ξ ′, t)

+ f ′(ξ)z(1)t ∂yϱ
s,(1)
ε (x, y, ξ, t)ϱs,(2)

ε (x ′, y, ξ ′, t)

= ϱs,(1)
ε (x, y, ξ, t) f ′(ξ)z(2)t ∂yϱ

s,(2)
ε (x ′, y, ξ ′, t)

+ f ′(ξ)z(1)t ∂yϱ
s,(1)
ε (x, y, ξ, t)ϱs,(2)

ε (x ′, y, ξ ′, t)

− ϱs,(1)
ε (x, y, ξ, t)( f ′(ξ)− f ′(ξ ′))z(2)t ∂yϱ

s,(2)
ε (x ′, y, ξ ′, t). (A.1)

For the last term we have the estimate  ψ(y, η)ϱvδ (ξ − η)ϱvδ (ξ
′
− η)ϱs,(1)

ε (x, y, ξ, t)( f ′(ξ)

− f ′(ξ ′))z(2)t ∂yϱ
s,(2)
ε (x ′, y, ξ ′, t)dydη

dxdξ

≤
|z(2)t |

ε


ψ(y, η)ϱvδ (ξ

′
− η)ϱvδ (ξ − η)| f ′(ξ)− f ′(ξ ′)|dηdξ =:

cψ,δ(ξ ′)

ε
.

Since f ′ is continuous, cψ,δ is bounded and limδ→0 cψ,δ = 0. The conclusion now follows from
the following estimate  ψ(y, η)ϱvδ (ξ − η)ϱvδ (ξ

′
− η)


ϱs,(1)
ε (x, y, ξ, t) f ′(ξ)z(2)t ∂yϱ

s,(2)
ε (x ′, y, ξ ′, t)

+ f ′(ξ)z(1)t ∂yϱ
s,(1)
ε (x, y, ξ, t)ϱs,(2)

ε (x ′, y, ξ ′, t)

dydη

 dxdξ

≤ |z(1)t − z(2)t |


ψ(y, η)ϱvδ (ξ − η)ϱvδ (ξ

′
− η)

× ϱs,(1)
ε (x, y, ξ, t)|∂yϱ

s,(2)
ε |(x ′, y, ξ ′, t)| f ′

|(ξ)dydηdxdξ

= |z(1)t − z(2)t |


ψ(y, η)ϱvδ (ξ − η)ϱvδ (ξ

′
− η)|∂yϱ

s,(2)
ε |(x ′, y, ξ ′, t)| f ′

|(ξ)dydηdξ

≤
|z(1)t − z(2)t |

ε


∥ψ(·, η)∥C(RN )ϱ

v
δ (ξ − η)ϱvδ (ξ

′
− η)| f ′

|(ξ)dηdξ
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=
|z(1)t − z(2)t |

ε


∥ψ(·, η)∥C(RN )ϱ

v
δ (ξ − η)| f ′

|(ξ)dξϱvδ (ξ
′
− η)dη

≤ sup
supp(η→∥ψ(·,η)∥C(RN ))+[−δ,δ]

| f ′
|ε−1

|z(1)t − z(2)t |. �

For the estimate for Err(i), i = 1, 2 we recall that

Err(1)ε,ψ,δ(r) = −

 
ψ(y, η)sgn(ξ)(∂ξϱ

(1)
ε,δ(x, y, ξ, η, r)ϱ(2)ε,δ(x

′, y, ξ ′, η, r)

+ ϱ
(1)
ε,δ(x, y, ξ, η, r)∂ξ ′ϱ

(2)
ε,δ(x

′, y, ξ ′, η, r))q(2)(x ′, ξ ′, r)


dxdξdx ′dξ ′dydη.

Hence, using Lemma A.7, we find

|Err(1)ε,ψ,δ(r)|

≤


q(2)(x ′, ξ ′, r)

  ψ(y, η)(∂ξϱ
(1)
ε,δ(x, y, ξ, η, r)ϱ(2)ε,δ(x

′, y, ξ ′, η, r)

+ ϱ
(1)
ε,δ(x, y, ξ, η, r)∂ξ ′ϱ

(2)
ε,δ(x

′, y, ξ ′, η, r))dydη
dxdξ


dx ′dξ ′

≤


q(2)(x ′, ξ ′, r)

C

ε
|z(2)t − z(1)t | +

cψ,δ(ξ ′)

ε
+ (∥∂ηψ(·, ·)∥C(RN ) ∗ ϱvδ )(ξ

′)


dx ′dξ ′,

and, letting δ → 0, we get

lim
δ→0

 t

s
|Err(1)ε,ψ,δ(r)|dr

≤
C

ε
∥z(2) − z(1)∥C([s,t];RN ) +

 t

s


q(2)(x ′, ξ ′, r)∥∂ηψ(·, ξ

′)∥C(RN )dx ′dξ ′dr. (A.2)

Now we present the proof of the error estimates for
Err(1,2)ε,ψ,δ(t) := 2


ψ(y, η)


χ (1)(x, ξ, t)q(2)(x ′, ξ ′, t)+ χ (2)(x ′, ξ ′, t)q(1)(x, ξ, t)


×


ϱ
(1)
ε,δ(x, y, ξ, η, t)∂ξ ′ϱ

(2)
ε,δ(x

′, y, ξ ′, η, t)

+ ∂ξϱ
(1)
ε,δ(x, y, ξ, η, t)ϱ(2)ε,δ(x

′, y, ξ ′, η, t)


dydηdx ′dξ ′dxdξ,

and we note that

|Err(1,2)ε,ψ,δ(t)|

≤ 2


q(2)(x ′, ξ ′, t)
  ψ(y, η)(ϱ(1)ε,δ(x, y, ξ, η, t)∂ξ ′ϱ

(2)
ε,δ(x

′, y, ξ ′, η, t)

+ ∂ξϱ
(1)
ε,δ(x, y, ξ, η, t)ϱ(2)ε,δ(x

′, y, ξ ′, η, t))

dydη

dxdξ


dx ′dξ ′

+ 2


q(1)(x, ξ, t)
  ψ(y, η)(ϱ(1)ε,δ(x, y, ξ, η, t)∂ξ ′ϱ

(2)
ε,δ(x

′, y, ξ ′, η, t)

+ ∂ξϱ
(1)
ε,δ(x, y, ξ, η, t)ϱ(2)ε,δ(x

′, y, ξ ′, η, t))

dydη

dx ′dξ ′


dxdξ. (A.3)

Using Lemma A.7 in (A.3) yields

|Err(1,2)(t)| ≤ 2


q(2)(x ′, ξ ′, t)


C

ε
|z(2)t − z(1)t | +

cψ,δ(ξ ′)

ε

+ (∥∂ηψ(·, ·)∥C(RN ) ∗ ϱvδ )(ξ
′)


dx ′dξ ′
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+ 2


q(1)(x, ξ, t)


C

ε
|z(2)t − z(1)t | +

cψ,δ(ξ)

ε

+ (∥∂ηψ(·, ·)∥C(RN ) ∗ ϱvδ )(ξ)


dxdξ.

Letting δ → 0 and again using dominated convergence we get

lim
δ→0

 t

s
|Err(1,2)(r)|dr ≤ 2

 t

s


q(2)(x ′, ξ ′, r)

×


C

ε
|z(2)r − z(1)r | + ∥∂ηψ(·, ξ

′)∥C(RN )


dx ′dξ ′dr

+ 2
 t

s


q(1)(x, ξ, r)

×


C

ε
|z(2)r − z(1)r | + ∥∂ηψ(·, ξ)∥C(RN )


dxdξdr.

≤
C

ε
∥z(2) − z(1)∥C([s,t];RN )

+ 2
 t

s


q(2)(x ′, ξ ′, r)∥∂ηψ(·, ξ

′)∥C(RN )dx ′dξ ′dr

+ 2
 t

s


q(1)(x, ξ, r)∥∂ηψ(·, ξ)∥C(RN )dxdξdr. (A.4)

Appendix B. The Regularity for the Fractional Heat semigroup

We recall without a proof [15, Lemma 9].

Lemma B.1. For γ > 0, α ∈ (0, 1], let Bγ = γ (−∆)α on TN with corresponding semigroup
e−t Bγ . Then there exists a C = C(N , n,m, α, β) such that, for all 1 ≤ m ≤ n ≤ ∞ and β ≥ 0,(−∆)

β
2 e−t Bγ


Lm→Ln

≤
C

|γ t |
N
2α


1
m −

1
n


+

β
2α

.

Appendix C. The proof of Lemma 5.1

We present here the proof of Lemma 5.1.

Proof. We compute the Fourier transform φ̂ of φ. Using the elementary fact that
e−2π i z·we− |w|

2

δ
dw =

√
δπe−δπ2

|z|2 , we find

φ̂(z) =


e−2π i z·wφ(w)dw =


e−2π i z·we−

|w|
2
δ


eib(ξ)·w−δa(ξ) f (ξ)dξdw

=


e
−2π i


z− 1

2π b(ξ)

·w

e−
|w|

2
δ dwe−δa(ξ) f (ξ)dξ

=


√
δπe

−

√δπ 1
2π b(ξ)−z

2
e−δa(ξ) f (ξ)dξ,
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and, hence,

|φ̂(z)|2 =




√
δπe

−

√δπ 1
2π b(ξ)−z

2−δa(ξ)
f (ξ)dξ


2

≤ δπ


e
−

√δπ 1
2π b(ξ)−z

2+δa(ξ)
dξ


e
−

√δπ 1
2π b(ξ)−z

2−δa(ξ)
f 2(ξ)dξ.

Next we use the assumption on a, b which enters in the following straightforward estimate:
e
−δ


1
4 |b(ξ)−2π z|2+a(ξ)


dξ =


∞

0
δe−δτ

ξ :
1
4
|b(ξ)− 2π z|2 + a(ξ) < τ

 dτ

≤


∞

0
δe−δτ

|{ξ : |b(ξ)− 2π z|2 + a(ξ) < 4τ }|dτ

≤


∞

0
δe−δτ ι(4τ)dτ ≤

1
4


∞

0
e−

τ
4 ι
τ
δ


dτ.

Hence,

|φ̂(z)|2 ≤
δπ

4


∞

0
e−

τ
4 ι
τ
δ


dτ


e
−

√δπ 1
2π b(ξ)−z

2−δa(ξ)
f 2(ξ)dξ.

Integrating the above inequality in z and using that


e
−|

√
δπ


1
2π b(ξ)−z


|
2
−δa(ξ)

dz =


e−δπ2
|z|2−δa(ξ)dz ≤

1
√
δ

yields
|φ̂(z)|2dz ≤

√
δπ

4


∞

0
e−

τ
4 ι
τ
δ


dτ∥ f ∥

2
2. �

Appendix D. The definition of the kinetic solution for smooth driving signals

For the convenience of the reader we recall here the definition of the kinetic solution to
(1.1) for smooth signals given in [10]. Note that this reference considers the special case of
z(t) = (t, . . . , t) but the argument extends trivially to the case of z ∈ C1([0, T ]; RN ). For the
notation βψik recall (2.13).

Definition D.1 (Definition 2.2 in [10]). Assume that z ∈ C1([0, T ]; RN ). Then u ∈ C([0, T ];

L1(RN )) ∩ L∞(RN
× [0, T ]) for each T > 0 is a kinetic solution to (1.1) if

(i) for all k ∈ {1, . . . , N } and all nonnegative ψ ∈ D(R),
N

i=1

∂xiβ
ψ
ik(u) ∈ L2(RN

× [0, T ]), (D.1)

(ii) for any nonnegative ψ1, ψ2 ∈ D(R) and for all k ∈ {1, . . . , N }


ψ1(u(x, t))

N
i=1

∂xiβ
ψ2
ik (u(x, t)) =

N
i=1

∂xiβ
ψ1ψ2
ik (u(x, t)), (D.2)
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(iii) there exists a non-negative bounded measure m on RN
× R × [0, T ] such that (2.3) holds in

the sense of distributions, where n is a non-negative measure on RN
× R × [0, T ] such that,

for any nonnegative ψ ∈ D(R),
ψ(ξ)dn(x, ξ, t) =

N
k=1


N

i=1

∂xiβ
ψ
ik(u(x, t))

2

. (D.3)
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H. Poincaré Anal. Non Linéaire 20 (4) (2003) 645–668.

[11] G.-Q. Chen, B. Perthame, Large-time behavior of periodic entropy solutions to anisotropic degenerate parabolic-
hyperbolic equations, Proc. Amer. Math. Soc. 137 (9) (2009) 3003–3011.

[12] C.M. Dafermos, Long time behavior of periodic solutions to scalar conservation laws in several space dimensions,
SIAM J. Math. Anal. 45 (4) (2013) 2064–2070.
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[26] M. Hofmanová, Degenerate parabolic stochastic partial differential equations, Stochastic Process. Appl. 123 (12)
(2013) 4294–4336.
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[43] C. Prévôt, M. Röckner, A Concise Course on Stochastic Partial Differential Equations, in: Lecture Notes in

Mathematics, vol. 1905, Springer, Berlin, 2007.
[44] E. Tadmor, T. Tao, Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Comm.

Pure Appl. Math. 60 (10) (2007) 1488–1521.
[45] A.I. Vol’rpert, S.I. Hudjaev, The Cauchy problem for second order quasilinear degenerate parabolic equations,

Mat. Sb. (NS) 78 (120) (1969) 374–396.

http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref24
http://arxiv.org/1411.3939
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref26
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref27
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref28
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref29
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref30
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref31
http://arxiv.org/1403.4424
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref34
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref35
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref36
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref37
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref38
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref39
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref40
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref41
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref42
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref43
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref44
http://refhub.elsevier.com/S0304-4149(17)30008-X/sbref45

	Stochastic non-isotropic degenerate parabolic--hyperbolic equations
	Introduction
	The main results
	The stability of pathwise entropy solutions
	The existence of pathwise entropy solutions
	Long-time behavior---the proof of Theorem 2.6
	Regularity (proof of Theorem 2.7)
	Acknowledgments
	Convolution error estimates
	The hyperbolic errors

	The Regularity for the Fractional Heat semigroup
	The proof of Lemma 5.1
	The definition of the kinetic solution for smooth driving signals
	References


