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Abstract

In this paper, we study estimates on tail probabilities of several classes of subordinators under mild
assumptions on the tails of their Lévy measures. As an application of that result, we obtain two-sided
estimates for fundamental solutions of general homogeneous time fractional equations including those
with Dirichlet boundary conditions.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivation

The time fractional diffusion equation ∂
β
t u = ∆u (0 < β < 1) has been used in various

fields to model the diffusions on sticky and trapping environment. Here, ∂
β
t is the Caputo

derivative of order β which is defined as

∂
β
t u(t) :=

1
Γ (1 − β)

d
dt

∫ t

0
(t − s)−β(u(s) − u(0))ds,
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where Γ is the gamma function defined as Γ (z) :=
∫

∞

0 x z−1e−x dx . Motivated by this
equation, following [6], we consider the following generalized fractional-time derivatives. Let
w : (0, ∞) → [0, ∞) be a function which satisfies the following condition.

(Ker.) w is a right continuous non-increasing function satisfying lims→0+ w(s) = ∞,
lims→∞ w(s) = 0 and

∫
∞

0 min{1, s}(−dw(s)) < ∞.

Definition 1.1. For a function u : [0, ∞) → R, the generalized fractional-time derivative ∂w
t

with respect to the kernel w is given by

∂w
t u(t) :=

d
dt

∫ t

0
w(t − s)(u(s) − u(0))ds,

whenever the above integral makes sense.

For example, if w(t) = t−β/Γ (1−β) for some 0 < β < 1, then the fractional-time derivative
∂w

t is nothing but the Caputo derivative of order β.
In [6], Zhen-Qing Chen established the probabilistic representation for the fundamental

solution of time fractional equation ∂w
t u(t) = Lu where L is the infinitesimal generator of

some uniformly bounded strongly continuous semigroup in a Banach space. This procedure can
be described as follows: For a given function w satisfying condition (Ker.), define a Bernstein
function φ by

φ(λ) :=

∫
∞

0
(1 − e−λs)(−dw(s)) for all λ ≥ 0. (1.1)

Since |1 − e−λs
| ≤ (1+λ) min{1, s}, we see from (Ker.) that φ is well-defined. Let {Sr , r ≥ 0}

be a subordinator (non-negative valued Lévy process with S0 = 0) whose Laplace exponent is
given by (1.1), that is, φ(λ) = − logE

[
exp(−λS1)

]
for all λ ≥ 0. Then, define its inverse as

Et := inf{r > 0 : Sr > t} for t > 0. Since condition (Ker.) holds, we have lims→0+ w(s) = ∞

so that Sr is not a compounded Poisson process. Therefore, almost surely, r ↦→ Sr is strictly
increasing and hence t ↦→ Et is continuous. Denote by Tt the semigroup corresponding to the
generator L in a Banach space. Then, for every f ∈ D(L), where D(L) denotes the domain
of L, the unique solution (in some suitable sense) to the following general homogeneous time
fractional equation

∂w
t u(t, x) = Lu(t, x) with u(0, x) = f (x) (1.2)

is given by

u(t, x) = Ex
[
TEt f (x)

]
. (1.3)

In [8], the second named author, jointly with Zhen-Qing Chen, Takashi Kumagai and Jian
Wang, proved that when Tt is the transition semigroup of a symmetric strong Markov process,
(1.3) is the unique weak solution to Eq. (1.2) (see [8, Theorem 2.4] for a precise statement).
Moreover, they obtained two-sided estimates for the fundamental solution under the condition
that φ satisfies WS(α1, α2) for some 0 < α1 ≤ α2 < 1 (see Definition 1.2 for the definition
of WS(α1, α2)). The key ingredients to obtain those estimates were the estimates on tail
probabilities P(Sr ≥ t) and P(Sr ≤ t) established in [21,29]. Particularly, the weak scaling
conditions for φ were needed to get sharp estimates on P(Sr ≥ t).

In this paper, we study estimates on upper tail probabilities P(Sr ≥ t) of a general class
of subordinators. Our results cover some cases when the lower scaling index α1 of φ is 0 and
the upper scaling index α2 of φ is 1. Indeed, we will see that the lower scaling index has no
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role in tail probability estimates. On the other hand, when the upper scaling index is 1, various
phenomena can arise in the asymptotic behaviors of P(Sr ≥ t) as t → ∞. To assort those
phenomena, we impose conditions on the tail measure w instead of the Laplace exponent φ

and then obtain estimates on P(Sr ≥ t) under each condition. More precisely, we will consider
the three cases: (i) w is a polynomial decaying function; (ii) w decreases subexponentially or
exponentially; (iii) w is finitely supported. (See, Section 2 for details.)

As applications to these tail probability estimates, we then establish two-sided estimates
for fundamental solutions of time fractional equations including the ones with the Dirichlet
boundary condition, given by (1.5).

1.2. Settings

In this subsection, we introduce the notions of the fundamental solution for a time fractional
equation and the weak scaling properties for non-negative function. Then, we list our main
assumptions in this paper.

Let (M, ρ, m) be a separable locally compact Hausdorff metric measure space and D ⊂ M
be an open subset. Let {T D

t , t ≥ 0} be a uniformly bounded strongly continuous semigroup
with infinitesimal generator (LD,D(LD)) in some Banach space (B, ∥ · ∥). Let w be a function
satisfying condition (Ker.). Then, we consider the following time fractional equation with
Dirichlet boundary condition.⎧⎪⎨⎪⎩

∂w
t u(t, x) = LDu(t, x), x ∈ D, t > 0,

u(0, x) = f (x), x ∈ D,

u(t, x) = 0, vanishes continuously on ∂ D for all t > 0.

(1.4)

Examples and topics related to the problem (1.4) can be found in [3,16,24–27,31]. See
also [19,20] for examples of time fractional equations with non-linear noises.

If we overlook the boundary condition, then it is established in [6, Theorem 2.3] that for
all f ∈ D(LD), u(t, x) := E[T D

Et
f (x)] is a unique solution to (1.4) in the following sense:

(i) supt>0 ∥u(t, ·)∥ < ∞, x ↦→ u(t, x) is in D(LD) for each t ≥ 0 with supt≥0 ∥LDu(t, ·)∥ < ∞,
and both t ↦→ u(t, ·) and t ↦→ LDu(t, ·) are continuous in (B, ∥ · ∥);
(ii) for every t > 0, I w

t [u] :=
∫ t

0 w(t −s)(u(s, x)− f (x))ds is absolutely convergent in (B, ∥·∥)
and

lim
δ→0

1
δ

(I w
t+δ[u] − I w

t [u]) = LDu(t, x) in (B, ∥ · ∥).

Indeed, we will see that if {T D
t , t ≥ 0} admits a transition density enjoying certain

types of estimates, then the solution u(t, x) satisfies the following boundary condition (see
Corollary 1.21 for a precise statement):
(iii) if f is bounded, then for all t > 0, x ↦→ u(t, x) vanishes continuously on ∂ D.

As discussed in [8], if the semigroup {T D
t , t ≥ 0} has a transition density q(t, x, y) with

respect to m on M , for any function f ∈ D(LD),

u(t, x) = Ex [T D
Et

f (x)] =

∫
∞

0
T D

r f (x)drP(Et ≤ r ) =

∫
∞

0
T D

r f (x)drP(Sr ≥ t)

=

∫
∞

0

∫
M

f (y)q(r, x, y)m(dy)drP(Sr ≥ t)

=

∫
M

f (y)
(∫

∞

0
q(r, x, y)drP(Sr ≥ t)

)
m(dy).
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Therefore, it is natural to say that

p(t, x, y) :=

∫
∞

0
q(r, x, y)drP(Sr ≥ t) (1.5)

is the fundamental solution to Eq. (1.4).

Next, we introduce the weak scaling properties for non-negative functions.

Definition 1.2. Let f : (0, ∞) → [0, ∞) be a given function and α1, α2 ∈ R and c0 > 0 be
given constants.
(1) We say that f satisfies LS0(α1, c0) (resp. LS∞(α1, c0)) if there exists a constant c1 > 0
such that

f (R)
f (r )

≥ c1

(
R
r

)α1

for all r ≤ R ≤ c0 (resp. for all c0 ≤ r ≤ R).

(2) We say that f satisfies US0(α2, c0) (resp. US∞(α2, c0)) if there exists a constant c2 > 0
such that

f (R)
f (r )

≤ c2

(
R
r

)α2

for all r ≤ R ≤ c0 (resp. for all c0 ≤ r ≤ R).

(3) If f satisfies both LS0(α1, c0) and US0(α2, c0) (resp. LS∞(α1, c0) and US∞(α2, c0)), we
say that f satisfies WS0(α1, α2, c0) (resp. WS∞(α1, α2, c0)). Moreover, if f satisfies both
WS0(α1, α2, c0) and WS∞(α1, α2, c0), then we say that f satisfies WS(α1, α2).

Throughout this paper, we always assume that the kernel w satisfies condition (Ker.). Here,
we enumerate our main assumptions for w.

(S.Poly.)(ts) There exist constants ts > 0 and δ1 > 0 such that w satisfies LS0(−δ1, ts);

(L.Poly.) There exists a constant δ2 > 0 such that w satisfies LS∞(−δ2, 1);

(Sub.)(β, θ ) There exist constants c0, θ > 0 and β ∈ (0, 1] such that

w(t) ≤ c0 exp(−θ tβ) for all t ≥ 1.

(Trunc.)(t f ) There exists a constant t f > 0 such that
(i) w(t) > 0 for 0 < t < t f and w(t f ) = 0;
(ii) w is bi-Lipschitz continuous on [t f /4, t f ], i.e. there exists a constant K ≥ 1 such that

K −1
|t − s| ≤ |w(t) − w(s)| ≤ K |t − s|, for all t f /4 ≤ s ≤ t ≤ t f ;

(iii) there exists a constant δ3 > 0 such that w satisfies LS0(−δ3, t f /2).

Remark 1.3. (1) Condition (S.Poly.)(ts) implies that the corresponding Laplace exponent φ

satisfies US∞(min{δ1, 1}, 1). Conversely, if φ satisfies US∞(δ1, 1) for some δ1 < 1, then there
exists a constant ts > 0 such that condition (S.Poly.)(ts) holds with constant δ1. Analogously,
condition (L.Poly.) implies that φ satisfies US0(min{δ2, 1}, 1) and if φ satisfies US0(δ2, 1) with
δ2 < 1, then condition (L.Poly.) holds. (See, Lemma 2.1.)
(2) If condition (L.Poly.) or (Sub.)(β, θ ) holds, then we can replace the constant 1 with
arbitrary positive constant since w is a monotone function. However, we cannot replace the
constant ts in condition (S.Poly.)(ts) with other positive constants in general. For instance, if
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w(t) = (t−1/2
− 1)1(0,1](t), then we can only take ts strictly smaller than 1. Moreover, the

constant t f in condition (Trunc.)(t f ) is uniquely determined by its first condition.

Notations: In this paper, we use the symbol “:=” to denote a definition, which is read as “is
defined to be”. For a, b ∈ R, we use the notations a ∧ b := min{a, b} and a ∨ b := max{a, b}.
For x ∈ R, we define log+ x := 0 ∨ log x and ⌊x⌋ := max{n ∈ Z : x ≥ n}. We denote by ∂t

the partial derivative with respect to the variable t .
The notation f (x) ≍ g(x) means that there exist constants c1, c2 > 0 such that c1g(x) ≤

f (x) ≤ c2g(x) for the specified range of the variable x . The notation f (x) ≲ g1(x)+g2(x)h(cx)
(resp. f (x) ≳ g1(x) + g2(x)h(cx)) means that there exist constants c1, c2 > 0 such that

f (x) ≤ c1
(
g1(x) + g2(x)h(c2x)

)
(resp. f (x) ≥ c1

(
g1(x) + g2(x)h(c2x)

)
),

for the specified range of x . Then, the notation f (x) ≃ g1(x) + g2(x)h(cx) means that both
f (x) ≲ g1(x) + g2(x)h(cx) and f (x) ≳ g1(x) + g2(x)h(cx) hold for the specified range of x .

For a subset D of some metric space (M, ρ), we let diam(D) := supu,v∈D ρ(u, v) and
δD(x) := supz∈D ρ(x, z) for x ∈ D. Then, for x, y ∈ D, we define

δ∗(x, y) := δD(x)δD(y), δ∧(x, y) := δD(x) ∧ δD(y) and δ∨(x, y) := δD(x) ∨ δD(y).

(1.6)

Lower case letters c’s without subscripts denote strictly positive constants whose values are
unimportant and which may change even within a line, while values of lower case letters with
subscripts ci , i = 0, 1, 2, . . . , are fixed in each statement and proof, and the labeling of these
constants starts anew in each proof.

1.3. Some toy models with explicit Dirichlet estimates

Our general estimates on the fundamental solution include a term which is described in an
integral form. (See, (1.13).) However, in many applications, we can obtain explicit forms of
them. We first represent some special versions of our results which can be described explicitly.

Suppose that the operator (LD,D(LD)) on (D, ρ, m) admits a heat kernel q(t, x, y) with
respect to the measure m. We further assume that one of the following assumptions holds for
all (t, x, y) ∈ (0, ∞) × D × D.

(J1) diam(D) < ∞ and there exist constants α, d > 0 and λ > 0 such that

q(t, x, y) ≍

⎧⎪⎪⎨⎪⎪⎩
(

1 ∧
δD(x)
t1/α

)α/2 (
1 ∧

δD(y)
t1/α

)α/2 (
t−d/α

∧
t

ρ(x, y)d+α

)
, if 0 < t ≤ 1;

e−λtδD(x)α/2δD(y)α/2, if t ≥ 1;

(J2) There exist constants α > 0 and d > 0 such that for all t > 0,

q(t, x, y) ≍

(
1 ∧

δD(x)
t1/α

)α/2 (
1 ∧

δD(y)
t1/α

)α/2 (
t−d/α

∧
t

ρ(x, y)d+α

)
;

(J3) There exist constants α > 0 and d > 0 such that for all t > 0,

q(t, x, y) ≍

(
1 ∧

δD(x)
t1/α ∧ 1

)α/2 (
1 ∧

δD(y)
t1/α ∧ 1

)α/2 (
t−d/α

∧
t

ρ(x, y)d+α

)
;
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(J4) diam(D) < ∞ and there exist constants α > 1, d > 0 and λ > 0 such that

q(t, x, y) ≍

⎧⎪⎨⎪⎩
(

1 ∧
δD(x)
t1/α

)α−1 (
1 ∧

δD(y)
t1/α

)α−1 (
t−d/α

∧
t

ρ(x, y)d+α

)
, if 0 < t ≤ 1;

e−λtδD(x)α−1δD(y)α−1, if t ≥ 1;

(D1) diam(D) < ∞ and there exist constants α > 1, d > 0 and λ > 0 such that

q(t, x, y) ≃

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
1 ∧

δD(x)
t1/α

)α/2 (
1 ∧

δD(y)
t1/α

)α/2

t−d/α exp
(

−c
ρ(x, y)α/(α−1)

t1/(α−1)

)
,

if 0 < t ≤ 1;

e−λtδD(x)α/2δD(y)α/2, if t ≥ 1;

(D2) There exist constants α > 1 and d > 0 such that for all t > 0,

q(t, x, y) ≃

(
1 ∧

δD(x)
t1/α

)α/2 (
1 ∧

δD(y)
t1/α

)α/2

t−d/α exp
(

−c
ρ(x, y)α/(α−1)

t1/(α−1)

)
;

(D3) There exist constants α > 1 and d > 0 such that for all t > 0,

q(t, x, y) ≃

(
1 ∧

δD(x)
t1/α ∧ 1

)α/2 (
1 ∧

δD(y)
t1/α ∧ 1

)α/2

t−d/α exp
(

−c
ρ(x, y)α/(α−1)

t1/(α−1)

)
.

An open subset D ⊂ Rd (d ≥ 2) is said to be a C1,1 open set if there exist a localization
radius R0 > 0 and a constant Λ > 0 such that for every z ∈ ∂ D, there is a C1,1 function
Γ : Rd−1

→ R satisfying Γ (0) = 0, ∇Γ (0) = (0, . . . , 0), ∥Γ∥∞ ≤ Λ, |∇Γ (y) − ∇Γ (z)| ≤

Λ|y − z| and an orthonormal coordinate system C Sz : x = (x̃, xd ) := (x1, . . . , xd−1, xd ) with
origin at z such that

D ∩ B(z, R0) = {x ∈ B(0, R0) in C Sz : xd > Γ (x̃)}.

A C1,1 open set in R is the union of disjoint intervals such that the minimum of their lengths
and the distances between them is positive.

Remark 1.4. When M is Rd , ρ is the usual metric on Rd and m is the Lebesgue measure, there
are many examples of generators (LD,D(LD)) on (D, ρ, m) which admit a transition density
satisfying one of the estimates among (J1), (J2), (J3), (J4), (D1), (D2) and (D3). For instance,
if LD is a generator of a killed symmetric α-stable process with 0 < α < 2 or a censored
α-stable process with 1 < α < 2, and D ⊂ Rd is a bounded C1,1 open set, then estimate (J1)
or (J4) holds, respectively. (See, [9,10,14].) Else if LD is a generator of a killed symmetric
α-stable process with 0 < α < 2 ∧ d , and D is a half space-like C1,1 open set or exterior of a
bounded C1,1 open set, then estimate (J2) or (J3) holds, respectively. (See, [5,7].) Moreover,
when d ≥ 3, L is the Dirichlet laplacian on D, and D ⊂ Rd is a bounded connected C1,1 open
set or half space-like C1,1 open set or exterior of a bounded C1,1 open set, then estimate (D1)
or (D2) or (D3) holds with α = 2, respectively. (See, [30,33,34].)

Recall that δ∗, δ∧ and δ∨ are defined in (1.6). For α > 0, we define two auxiliary functions
Fα

k , Fα
c : R × (0, ∞) × D × D → [0, ∞) as follows.

Fα
k (s, t, x, y) :=
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1{δ∗(x,y)α/2≤φ(t−1)−1}

(
ρ(x, y)α ∨ δ∗(x, y)α/2

)
φ(t−1)−s/α, if s < 0;

1{δ∗(x,y)α/2≤φ(t−1)−1}

(
ρ(x, y)α ∨ δ∗(x, y)α/2

)
log+

(
2φ(t−1)−1

ρ(x, y)α ∨ δ∨(x, y)α

)
, if s = 0;

1{δ∗(x,y)α/2≤φ(t−1)−1}

(
ρ(x, y)α−s

∨ δ∗(x, y)α/2δ∨(x, y)−s
)
, if s <

α

2
;

1{δ∗(x,y)α/2≤φ(t−1)−1}

(
ρ(x, y)α/2

+ δ∧(x, y)α/2 log
(

ρ(x, y) ∨ 2δ∨(x, y)
ρ(x, y) ∨ δ∧(x, y)

))
, if s =

α

2
;

1{δ∗(x,y)α/2≤φ(t−1)−1}

(
ρ(x, y)α−s

∨ δ∧(x, y)α−s
)
, if

α

2
< s < α;

1 + log+

(
2φ(t−1)−1

∧ 2δ∧(x, y)α

ρ(x, y)α

)
, if s = α;

ρ(x, y)α−s, if s > α.

Fα
c (s, t, x, y) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1{δ∗(x,y)α/2≤φ(t−1)−1}

(
ρ(x, y)2α−2

∨ δ∗(x, y)α−1
)
φ(t−1)−(2−α−s)/α, if s < 2 − α;

1{δ∗(x,y)α/2≤φ(t−1)−1}

(
ρ(x, y)2α−2

∨ δ∗(x, y)α−1
)

log+

(
2φ(t−1)−1

ρ(x, y)α ∨ δ∨(x, y)α

)
, if s = 2 − α;

1{δ∗(x,y)α/2≤φ(t−1)−1}

(
ρ(x, y)α−s

∨ δ(x, y)α−1δ∨(x, y)2−α−s
)
, if 2 − α < s < 1;

1{δ∗(x,y)α/2≤φ(t−1)−1}

(
ρ(x, y)α−1

+ δ∧(x, y)α−1 log
(

ρ(x, y) ∨ 2δ∨(x, y)
ρ(x, y) ∨ δ∧(x, y)

))
, if s = 1;

1{δ∗(x,y)α/2≤φ(t−1)−1}

(
ρ(x, y)α−s

∨ δ∧(x, y)α−s
)
, if 1 < s < α;

1 + log+

(
2φ(t−1)−1

∧ 2δ∧(x, y)α

ρ(x, y)α

)
, if s = α;

ρ(x, y)α−s, if s > α.

We also define

φα(λ) := inf{s > 0 : sαφ(s)−1
≥ λ} for λ ≥ 0. (1.7)

Recall that for an integral kernel w satisfying condition (Ker.), the fundamental solution
p(t, x, y) of the time fractional equation (1.4) is given by (1.5). We first give the small time
estimates for p(t, x, y) under condition (S.Poly.)(ts).

Theorem 1.5. Assume that w satisfies conditions (Ker.) and (S.Poly.)(ts). Then, the following
estimates for p(t, x, y) hold for all (t, x, y) ∈ (0, ts] × D × D.
(i) (Near diagonal estimates) Suppose that φ(t−1)ρ(x, y)α ≤ 1/(4e2).

(a) If one of the estimates among (J1), (J2), (J3), (D1), (D2) and (D3) holds, then we have

p(t, x, y) ≍

(
1 ∧

δ∗(x, y)
φ(t−1)−2/α

)α/2

φ(t−1)d/α
+ w(t)

(
1 ∧

δ∗(x, y)
ρ(x, y)2

)α/2

Fα
k (d, t, x, y).

(1.8)
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(b) Otherwise, if (J4) holds, then we have

p(t, x, y) ≍

(
1 ∧

δ∗(x, y)
φ(t−1)−2/α

)α−1

φ(t−1)d/α
+ w(t)

(
1 ∧

δ∗(x, y)
ρ(x, y)2

)α−1

Fα
c (d, t, x, y).

(ii) (Off diagonal estimates) Suppose that φ(t−1)ρ(x, y)α > 1/(4e2).
(a) If (J1) or (J2) or (J3) holds, then we have

p(t, x, y) ≍

(
1 ∧

δD(x)
φ(t−1)−1/α

)α/2 (
1 ∧

δD(y)
φ(t−1)−1/α

)α/2
φ(t−1)−1

ρ(x, y)d+α
. (1.9)

(b) If (J4) holds, then we have

p(t, x, y) ≍

(
1 ∧

δD(x)
φ(t−1)−1/α

)α−1 (
1 ∧

δD(y)
φ(t−1)−1/α

)α−1
φ(t−1)−1

ρ(x, y)d+α
.

(c) Otherwise, if (D1) or (D2) or (D3) holds, then we have

p(t, x, y)

≃

(
1 ∧

δD(x)
φ(t−1)−1/α

)α/2 (
1 ∧

δD(y)
φ(t−1)−1/α

)α/2

φ(t−1)d/α exp
(

−ctφα

(
(
ρ(x, y)

t
)α
))

,

(1.10)

where the function φα is defined as (1.7).

Next, under condition (L.Poly.), we get the large time estimates for p(t, x, y). Hereinafter,
we let RD := diam(D) and TD := [φ−1(4−1e−2 R−α

D )]−1.

Theorem 1.6. Assume that w satisfies conditions (Ker.) and (L.Poly.). Then, for every fixed
T > 0, the following estimates hold for all (t, x, y) ∈ [T, ∞) × D × D.
(i) If (J1) or (D1) holds and RD < ∞, then we have

p(t, x, y) ≍ w(t)
(

1 ∧
δ∗(x, y)
ρ(x, y)2

)α/2 (
δ∗(x, y)α/2

+ Fα
k (d, TD, x, y)

)
.

(ii) If (J4) holds and RD < ∞, then we have

p(t, x, y) ≍ w(t)
(

1 ∧
δ∗(x, y)
ρ(x, y)2

)α−1 (
δ∗(x, y)α−1

+ Fα
c (d, TD, x, y)

)
.

(iii) If (J2) holds, then (1.8) and (1.9) hold for all (t, x, y) ∈ [T, ∞) × D × D satisfying
φ(t−1)ρ(x, y)α ≤ 1/(4e2) and φ(t−1)ρ(x, y)α > 1/(4e2), respectively.
(iv) If (D2) holds, then (1.8) and (1.10) hold for all (t, x, y) ∈ [T, ∞) × D × D satisfying
φ(t−1)ρ(x, y)α ≤ 1/(4e2) and φ(t−1)ρ(x, y)α > 1/(4e2), respectively.
(v) Assume that either of the estimates (J3) or (D3) holds.

(a) If φ(t−1)ρ(x, y)α ≤ 1/(4e2), then we have

p(t, x, y) ≍
(
1 ∧ δD(x)

)α/2(1 ∧ δD(y)
)α/2

(
φ(t−1)d/α

+ w(t)Gα
d (t, 1 ∨ ρ(x, y))

)
+ 1{ρ(x,y)≤1}w(t)

(
1 ∧

δ∗(x, y)
ρ(x, y)2

)α/2

Fα
k (d, [φ−1(4−1e−2)]−1, x, y),
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where the function Gα
d (t, l) is defined as follows:

Gα
d (t, l) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if d < α;

log
(

2φ(t−1)−1

lαφ(T −1)−1

)
, if d = α;

lα−d , if d > α.

(b) If φ(t−1)ρ(x, y)α > 1/(4e2), then we have

p(t, x, y) ≃
(
1 ∧ δD(x)

)α/2(1 ∧ δD(y)
)α/2

×

⎧⎪⎪⎨⎪⎪⎩
φ(t−1)−1

ρ(x, y)d+α
, if (J3) holds;

φ(t−1)d/α exp
(

−ctφα

(
(
ρ(x, y)

t
)α
))

, if (D3) holds,

where the function φα is defined as (1.7).

Example 1.7. Let 0 < α ≤ 2, d ≥ 1 and D ⊂ Rd be a C1,1 open set. Suppose that D is
a bounded set or half space-like set or exterior of a bounded set. If α = 2 then we further
assume that d ≥ 2 and D is connected. If D is unbounded, then we also assume that d > α.
In this example, we consider the following time fractional equation.

d
dt

∫ t

0
w(t − s)

(
u(t, x) − f (x)

)
ds = ∆α/2u(t, x), x ∈ D, t > 0,

u(0, x) = f (x), x ∈ D, u(t, x) = 0, x ∈ Rd
\ D, t > 0, (1.11)

where w(s) = s−β/Γ (1 − β) for some 0 < β < 1. Then, the fractional-time derivative is the
Caputo derivative of order β and conditions (Ker.), (S.Poly.)(1) and (L.Poly.) are satisfied.
Thus, by Remark 1.4 and Theorems 1.5 and 1.6, we obtain the global estimates on the
fundamental solution pβ(t, x, y) of (1.11). Denote by p0

β(t, x, y) the fundamental solution of
(1.11) when D = Rd . Two-sided estimates on p0

β(t, x, y) are obtained in [8, Corollary 1.5].
(See also [18, Theorem 2.2] for the exact asymptotic formulas of p0

β(t, x, y).)

1.7.1. Small time estimates. Suppose that t ∈ (0, 2].
(1) Assume that |x − y| ≤ tβ/α . Then, by calculating the function Fα

k (d, t, x, y), since d > α/2
in this example, we have

(i) if d < α, then

pβ(t, x, y) ≍

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t−βd/α, if δD(x)δD(y) > t2β/α

;(
1 ∧

δD(x)δD(y)
|x − y|

2

)α/2

t−β

(
|x − y| ∨

(
δD(x) ∧ δD(y)

))α−d

,

if δD(x)δD(y) ≤ t2β/α.

(ii) if d = α, then

pβ(t, x, y) ≍

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
t−β log

(
2tβ/α

|x − y|

)
, if δD(x)δD(y) > t2β/α

;(
1 ∧

δD(x)δD(y)
|x − y|

2

)α/2

t−β

(
1 + log+

(
δD(x) ∧ δD(y)

|x − y|

))
,

if δD(x)δD(y) ≤ t2β/α.
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(iii) if d > α, then

pβ(t, x, y) ≍

(
1 ∧

δD(x)δD(y)
|x − y|

2

)α/2

t−β
|x − y|

α−d .

Note that interior estimates in (i), (ii) and (iii) coincide with estimates on p0
β(t, x, y). We

also note that in any cases, for x, y ∈ D satisfying 2δD(x) ≤ |x − y| ≤ tβ/α,

pβ(t, x, y) ≍ δD(x)α/2δD(y)α/2t−β
|x − y|

−d ,

while for x, y ∈ D satisfying |x − y| ≤ 2δD(x) ≤ tβ/α ,

pβ(t, x, y) ≍

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δD(x)α−d t−β, if d < α;

log
(
δD(x)/|x − y|

)
t−β, if d = α;

t−β
|x − y|

α−d , if d > α.

Hence, the decay rate of the boundary term in pβ(t, x, y) depends on whether |x − y| ≤ 2δD(x)
or not. Indeed, if |x − y| ≤ 2δD(x), then the decay rate becomes smaller than α/2. We mention
that there is no boundary term in the estimate of pβ(t, x, y) when d > α and |x − y| ≤ 2δD(x).

(2) Next, assume that |x − y| > tβ/α . Then, we have

pβ(t, x, y) ≃

(
1 ∧

δD(x)
tβ/α

)α/2 (
1 ∧

δD(y)
tβ/α

)α/2

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tβ

|x − y|
d+α

, if 0 < α < 2;

t−βd/2 exp
(

−c
|x − y|

2/(2−β)

tβ/(2−β)

)
, if α = 2.

In particular, if |x − y| > tβ/α , then by combining with the results in [8, Corollary 1.5], we get

pβ(t, x, y) ≃

(
1 ∧

δD(x)
tβ/α

)α/2 (
1 ∧

δD(y)
tβ/α

)α/2

p0
β(t, x, y).

1.7.2. Large time estimates. Suppose that t ∈ [2, ∞).
(1) Suppose that D is bounded. Then, by Theorem 1.6(i), we get

pβ(t, x, y) ≍

(
1 ∧

δD(x)δD(y)
|x − y|

2

)α/2

t−β

×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
|x − y| ∨

(
δD(x) ∧ δD(y)

))α−d

, if d < α;(
1 + log+

(
δD(x) ∧ δD(y)

|x − y|

))
, if d = α;

|x − y|
α−d , if d > α.

These estimates are exactly the same as the ones given in 1.7.1. Small time estimates when
|x − y| ≤ tβ/α and δD(x)δD(y) ≤ t2β/α . We can see that since D is bounded so that δD(x), δD(y)
and |x − y| are small, those two inequalities always hold (up to constant) in this case.
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(2) Suppose that D is a half space-like set and d > α. Then, by Theorem 1.6(iii) and (iv), we
see that the estimates given in 1.7.1. Small time estimates hold not only on t ∈ (0, 2] but also
on t ∈ (0, ∞).
(3) Suppose that D is exterior of a bounded set and d > α. Then, by Theorem 1.6(v), we
obtain the following:

If |x − y| ≤ tβ/α , then

pβ(t, x, y) ≍

(
1 ∧

δD(x)
|x − y| ∧ 1

)α/2 (
1 ∧

δD(y)
|x − y| ∧ 1

)α/2

t−β
|x − y|

α−d ,

Otherwise, if |x − y| > tβ/α , then

pβ(t, x, y) ≃ (1 ∧ δD(x))α/2(1 ∧ δD(y))α/2

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tβ

|x − y|
d+α

, if 0 < α < 2;

t−βd/2 exp
(

−c
|x − y|

2/(2−β)

tβ/(2−β)

)
, if α = 2.

In both cases, according to [8, Corollary 1.5], we get

pβ(t, x, y) ≃

(
1 ∧

δD(x)
|x − y| ∧ 1

)α/2 (
1 ∧

δD(y)
|x − y| ∧ 1

)α/2

p0
β(t, x, y). □

Example 1.8. Under the settings of Example 1.7, let pβ,η(t, x, y) be the fundamental solution
of (1.11) with w(s) = s−β1(0,1](s) + s−η1(1,∞)(s) for some η > 1. Note that still conditions
(Ker.), (S.Poly.)(1) and (L.Poly.) are satisfied. Thus, by Remark 1.4 and Theorems 1.5 and 1.6,
we obtain the global estimates on pβ,η(t, x, y).

1.8.1. Small time estimates. For all t ∈ (0, 2] and x, y ∈ D, it holds that

pβ,η(t, x, y) ≃ pβ(t, x, y).

1.8.2. Large time estimates. Suppose that t ∈ [2, ∞) and x, y ∈ D. Since φ′(0) < ∞ in this
example, we see that φ(t−1) ≍ t−1 for all t ≥ 2. Define

pbdd
η (t, x, y) :=

(
1 ∧

δD(x)δD(y)
|x − y|

2

)α/2

t−η

×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
|x − y| ∨

(
δD(x) ∧ δD(y)

))α−d

, if d < α;(
1 + log+

(
δD(x) ∧ δD(y)

|x − y|

))
, if d = α;

|x − y|
α−d , if d > α.

(1) Suppose that D is bounded. Then, by Theorem 1.6(i), we get

pβ,η(t, x, y) ≍ pbdd
η (t, x, y).

(2) Suppose that D is a half space-like set and d > α. Then, by Theorem 1.6(iii) and (iv), we
obtain the following:
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If |x − y| ≤ t1/α , then

pβ,η(t, x, y) ≍

(
1 ∧

δD(x)δD(y)
t2/α

)α/2

t−d/α
+

(
1 ∧

δD(x)δD(y)
|x − y|

2

)α/2

t−η
|x − y|

α−d .

In particular, if
(
δD(x)δD(y)

)1/2
∨ |x − y| ≤ t1/αt−(η−1)/d , then pβ,η(t, x, y) ≍ pbdd

η (t, x, y).
Otherwise, if |x − y| > t1/α , then

pβ,η(t, x, y) ≃

(
1 ∧

δD(x)
t1/α

)α/2 (
1 ∧

δD(y)
t1/α

)α/2

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t

|x − y|
d+α

, if 0 < α < 2;

t−d/2 exp
(

−c
|x − y|

2

t

)
, if α = 2.

(3) Suppose that D is exterior of a bounded set and d > α. Then, by Theorem 1.6(v), we
obtain the following:

If |x − y| ≤ t1/α , then

pβ,η(t, x, y) ≍
(
1 ∧ δD(x)

)α/2(1 ∧ δD(x)
)α/2t−d/α

+

(
1 ∧

δD(x)
|x − y| ∧ 1

)α/2 (
1 ∧

δD(y)
|x − y| ∧ 1

)α/2

t−η
|x − y|

α−d .

Otherwise, if |x − y| > t1/α , then

pβ,η(t, x, y) ≃
(
1 ∧ δD(x)

)α/2(1 ∧ δD(y)
)α/2

×

⎧⎪⎪⎨⎪⎪⎩
t

|x − y|
d+α

, if 0 < α < 2;

t−d/2 exp
(

−c
|x − y|

2

t

)
, if α = 2. □

Under condition (L.Poly.), even if D is bounded so that q(t, x, y) decreases exponentially
as t → ∞, the fundamental solution p(t, x, y) decreases polynomially. (See, Theorem 1.6(i)
and (ii).) We introduce a condition which makes p(t, x, y) decrease subexponentially.

(Sub*.)(β, θ ) There exist constants c0 > 1, θ > 0 and β ∈ (0, 1) such that

c−1
0 exp(−θ tβ) ≤ w(t) ≤ c0 exp(−θ tβ) for all t ≥ 1.

Under condition (Sub*.)(β, θ ), we obtain estimates for p(t, x, y) which have exactly the
same exponential terms as w.

Theorem 1.9. Assume that w satisfies conditions (Ker.) and (Sub*.)(β, θ ). We further assume
that (J1) or (J4) or (D1) holds. Then, for every fixed T > 0, the following estimates hold for
all (t, x, y) ∈ [T, ∞) × D × D.
(i) If (J1) or (D1) holds and RD < ∞, then we have

p(t, x, y) ≍ exp(−θ tβ)
(

1 ∧
δ∗(x, y)
ρ(x, y)2

)α/2 (
δ∗(x, y)α/2

+ Fα
k (d, TR, x, y)

)
.
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(ii) If (J4) holds and RD < ∞, then we have

p(t, x, y) ≍ exp(−θ tβ)
(

1 ∧
δ∗(x, y)
ρ(x, y)2

)α−1 (
δ∗(x, y)α−1

+ Fα
c (d, TR, x, y)

)
.

Notice that condition (Trunc.)(t f ) implies condition (S.Poly.)(ts) with ts = t f /2. Hence, we
obtain the small time estimates (0 < t ≤ t f /2) under condition (Trunc.)(t f ) from Theorem 1.5.
Here, we give the large time behaviors of p(t, x, y) under condition (Trunc.)(t f ).

Theorem 1.10. Assume that w satisfies conditions (Ker.) and (Trunc.)(t f ). Then, the following
estimates hold for all (t, x, y) ∈ [t f /2, ∞) × D × D. Let nt := ⌊t/t f ⌋ + 1 ∈ N.
(i) If (J1) or (D1) holds and RD < ∞, then we have

p(t, x, y) ≃⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
1 ∧

δ∗(x, y)
ρ(x, y)2

)α/2 [
δ∗(x, y)α/2

+ Fα
k (d − αnt , TD, x, y)

+
(
nt t f − t

)nt Fα
k (d − α(nt − 1), TD, x, y)

]
, if t < ⌊

d + α

α
⌋t f ;

δ∗(x, y)α/2e−ct , if t ≥ ⌊
d + α

α
⌋t f .

(ii) If (J4) holds and RD < ∞, then we have

p(t, x, y) ≃⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
1 ∧

δ∗(x, y)
ρ(x, y)2

)α−1 [
δ∗(x, y)α/2

+ Fα
c (d − αnt , TD, x, y)

+
(
nt t f − t

)nt Fα
c (d − α(nt − 1), TD, x, y)

]
, if t < ⌊

d + 2α − 2
α

⌋t f ;

δ∗(x, y)α−1e−ct , if t ≥ ⌊
d + 2α − 2

α
⌋t f .

(iii) If (J2) or (J3) or (D2) or (D3) holds, then we have

p(t, x, y) ≃⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 ∧

δ∗(x, y)
ρ(x, y)2

)α/2 [
δ∗(x, y)α/2

∧ φ(t−1)−1
+ Fα

k (d − αnt , t, x, y)

+
(
nt t f − t

)nt Fα
k (d − α(nt − 1), t, x, y)

]
,

if ρ(x, y)α ≤ φ(t−1)−1 and t < ⌊(d + α)/α⌋t f ;

q(ct, x, y), if ρ(x, y)α > φ(t−1)−1 or t ≥ ⌊(d + α)/α⌋t f .

Remark 1.11. When d > α, we have that Fα
k (d, t, x, y) = Fα

c (d, t, x, y) = ρ(x, y)α−d .
Thus, by Theorems 1.6 and 1.9, under either of the conditions (L.Poly.) or (Sub*.)(β, θ ),
limy→x p(t, x, y) = ∞ for all large t even if D is bounded. However, under condition
(Trunc.)(t f ), by Theorem 1.10, p(t, x, x) < ∞ for all t large enough. Indeed, we see that
when the kernel w is finitely supported, the singularity of p(t, x, y) at x = y recedes as the
number ⌊t/t f ⌋ increases.
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1.4. General results

In this subsection, we present our estimates for the fundamental solution in full generality.
Throughout the remainder of this paper, we always assume that {V (x, ·) : x ∈ D} is a

family of strictly positive functions satisfying the condition WS(d1, d2) for some d2 ≥ d1 > 0
uniformly, that is, there exist constants c1, c2 > 0 such that

c1

(
l2

l1

)d1

≤
V (x, l2)
V (x, l1)

≤ c2

(
l2

l1

)d2

for all x ∈ D, 0 < l1 ≤ l2 < ∞.

We also always assume that Φ : [0, ∞) → [0, ∞) is a strictly increasing function such that
Φ(0) = 0 and satisfies WS(α1, α2) for some α2 ≥ α1 > 0.

For a given non-decreasing function Ψ : (0, ∞) → [0, ∞) such that Φ(l) ≤ Ψ (l) for all
l > 0 and satisfies WS(γ1, γ2) for some γ2 ≥ γ1 > 0, we define

q j (t, x, l;Φ,Ψ ) :=
t

tV (x,Φ−1(t)) + Ψ (l)V (x, l)
.

Besides, for a given function M : (0, ∞) × (0, ∞) → [0, ∞) and a constant a > 0, we define

qd (a, t, x, l;Φ,M) :=
exp

(
−aM(t, l)

)
V (x,Φ−1(t))

.

We will use the functions q j and qd to describe interior estimates for q(t, x, y).
On the other hand, for γ ∈ [0, 1) and (t, x, y) ∈ (0, ∞) × D × D, we define

aγ

1 (t, x, y) :=

(
Φ(δD(x))

Φ(δD(x)) + t

)γ ( Φ(δD(y))
Φ(δD(y)) + t

)γ

,

aγ

2 (t, x, y) := aγ

1 (t/(t + 1), x, y).

These functions will be used to describe boundary behaviors of q(t, x, y).

Remark 1.12. Observe that for any positive constants a, b and c, it holds that a/(b + c) ≤

(a/b) ∧ (a/c) ≤ 2a/(b + c). Hence, we have that

q j (t, x, l;Φ,Ψ ) ≍
1

V (x,Φ−1(t))
∧

t
Ψ (l)V (x, l)

,

aγ

1 (t, x, y) ≍

(
1 ∧

Φ(δD(x))
t

)γ (
1 ∧

Φ(δD(y))
t

)γ

,

aγ

2 (t, x, y) ≍

(
1 ∧

Φ(δD(x))
t ∧ 1

)γ (
1 ∧

Φ(δD(y))
t ∧ 1

)γ

.

We list our candidates for the estimates of the transition density q(t, x, y).

Definition 1.13. Let γ ∈ [0, 1), λ ∈ [0, ∞) and k ∈ {1, 2}.
(1) We say that q(t, x, y) enjoys the estimate HKγ,λ,k

J (Φ,Ψ ) if

q(t, x, y) ≍ aγ

1 (t, x, y)q j (t, x, ρ(x, y);Φ,Ψ ) for all (t, x, y) ∈ (0, 1] × D × D,

and for all (t, x, y) ∈ [1, ∞) × D × D,

q(t, x, y) ≍

⎧⎨⎩aγ

k (t, x, y)q j (t, x, ρ(x, y);Φ,Ψ ), if λ = 0,

aγ

1 (1, x, y)e−λt , if λ > 0.
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(2) We say that q(t, x, y) enjoys the estimate HKγ,λ,k
D (Φ) if α1 > 1 where α1 is the lower

scaling index of Φ, and

q(t, x, y) ≃ aγ

1 (t, x, y)qd (c, t, x, ρ(x, y);Φ,M) for all (t, x, y) ∈ (0, 1] × D × D,

and for all (t, x, y) ∈ [1, ∞) × D × D,

q(t, x, y) ≃

⎧⎨⎩aγ

k (t, x, y)qd (c, t, x, ρ(x, y);Φ,M), if λ = 0,

aγ

1 (1, x, y)e−λt , if λ > 0,

where the function M(t, l) is a strictly positive for all t, l > 0, non-increasing on (0, ∞) for
each fixed l > 0 and determined by the following relation:

t
M(t, l)

≍ Φ

(
l

M(t, l)

)
for all t, l > 0. (1.12)

(3) We say that q(t, x, y) enjoys the estimate HKγ,λ,k
M (Φ,Ψ ) if α1 > 1 where α1 is the lower

scaling index of Φ, and there are functions q j , qd such that

q(t, x, y) = q j (t, x, y) + qd (t, x, y) for all (t, x, y) ∈ (0, ∞) × D × D,

and q j and qd enjoy the estimate HKγ,λ,k
J (Φ,Ψ ) and HKγ,λ,k

D (Φ), respectively.

In the rest of this subsection, we always assume that q(t, x, y) enjoys one of the estimates
HKγ,λ,k

J (Φ,Φ), HKγ,λ,k
D (Φ) and HKγ,λ,k

M (Φ,Ψ ) for some γ ∈ [0, 1), λ ≥ 0 and k ∈ {1, 2}. If
λ > 0, then we further assume that D is bounded so that RD = diam(D) < ∞.

Example 1.14. (1) Examples of estimates HKγ,λ,k
J (Φ,Ψ ), HKγ,λ,k

D (Φ) and HKγ,λ,k
M (Φ,Ψ )

include all estimates given in Section 1.3. For example, we see that estimate (J1) is nothing
but estimate HK1/2,λ,1

J (Φα,Φα) for λ > 0 where Φα(x) := xα .
(2) The factor e−λt aγ

1 (1, x, y) usually appears in the global estimates of the Dirichlet heat kernel
when D is a C1,1 bounded open set, aγ

1 (t, x, y) appears when D is a half space-like C1,1 open
set and aγ

2 (t, x, y) appears when D is an exterior of a bounded C1,1 open set. Various examples
are given in [4,7,13,15,23,30,33].
(3) Recently, in [17], we, jointly with Renming Song and Zoran Vondraček give examples of
generators whose transition density satisfies estimate HKγ,λ,1

J (Φα,Φα) for each 0 < α < 2 and
γ ∈ [0 ∨ (α − 1)/α, 1).
(4) Examples of symmetric Markov processes (including non Lévy processes) satisfying the
mixed heat kernel estimates HKγ,λ,k

M (Φ,Ψ ) can be found in [1,2,23,29]. We will show that one
of the explicit expressions of the function M is given by

M(t, l) := sup
s>0

{
l
s

−
t

Φ(s)

}
,

which appears in the exponential terms in [1]. (See, Lemma 3.2(i).)

We introduce some functions which will be used in near diagonal estimates for the
fundamental solution. Define for (t, x, y) ∈ (0, ∞) × D × D, γ ∈ [0, 1) and k ∈ {1, 2},

Iγ

k (t, x, y) :=

∫ 1/(2e2φ(t−1))

Φ(ρ(x,y))

aγ

k (r, x, y)
V (x,Φ−1(r ))

dr,

J γ

k (t, x, y) :=
aγ

k (1/φ(t−1), x, y)
V
(
x,Φ−1(1/φ(t−1))

) + w(t)Iγ

k (t, x, y). (1.13)
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Under certain weak scaling conditions for V and Φ, we can calculate the integral term Iγ

k
explicitly. (See, Proposition 1.22.) Now, we are ready to state the main results.

Theorem 1.15. Let p(t, x, y) be given by (1.5). Assume that w satisfies conditions (Ker.) and
(S.Poly.)(ts). Then the following estimates hold for all (t, x, y) ∈ (0, ts] × D × D.
(i) (Near diagonal estimates) If Φ(ρ(x, y))φ(t−1) ≤ 1/(4e2), then we have

p(t, x, y) ≍ J γ

k (t, x, y).

(ii) (Off diagonal estimates) Suppose that Φ(ρ(x, y))φ(t−1) > 1/(4e2).
(a) If q(t, x, y) enjoys the estimate HKγ,λ,k

J (Φ,Φ), then we have

p(t, x, y) ≍
aγ

k (1/φ(t−1), x, y)
φ(t−1)Φ(ρ(x, y))V (x, ρ(x, y))

.

(b) If q(t, x, y) enjoys the estimate HKγ,λ,k
D (Φ), then we have

p(t, x, y) ≃ aγ

k (1/φ(t−1), x, y)
exp

(
−cN (t, ρ(x, y))

)
V
(
x,Φ−1(1/φ(t−1))

) ,

where N (·, l) is a strictly positive function which is determined by the following relation

1
φ
(
N (t, l)/t

) ≍ Φ

(
l

N (t, l)

)
, t, l > 0. (1.14)

(c) If q(t, x, y) enjoys the estimate HKγ,λ,k
M (Φ,Ψ ), then we have

p(t, x, y)

≃ aγ

k (1/φ(t−1), x, y)

(
1

φ(t−1)Ψ (ρ(x, y))V (x, ρ(x, y))
+

exp
(
−cN (t, ρ(x, y))

)
V
(
x,Φ−1(1/φ(t−1))

) ) .

Recall that RD = diam(D) and TD = [φ−1(4−1e−2 R−α
D )]−1.

Theorem 1.16. Let p(t, x, y) be given by (1.5). Assume that w satisfies conditions (Ker.)
and (L.Poly.). Then for every fixed T > 0, the following estimates hold for all (t, x, y) ∈

[T, ∞) × D × D.
(i) If λ = 0, then estimates given in Theorem 1.15 hold for all (t, x, y) ∈ [T, ∞) × D × D.
(ii) If λ > 0 and RD < ∞, then we have

p(t, x, y) ≍ w(t)Fγ

1 (TD, x, y) = w(t)
∫ 2Φ(RD )

Φ(ρ(x,y))

aγ

1 (r, x, y)
V (x,Φ−1(r ))

dr.

Remark 1.17. (1) By Lemma 3.2(i), one of the explicit expressions of the function N
satisfying (1.14) is given by

N (t, l) := sup
s>0

{
l
s

− tφ−1(1/Φ(s))
}

.

(2) Theorems 1.15 and 1.16 recover [8, Theorems 1.6 and 1.8]. Indeed, the assumptions in [8]
can be interpreted as the kernel w satisfies conditions (Ker.), (S.Poly.)(ts) and (L.Poly.) for
some 0 < δ1, δ2 < 1 and q(t, x, y) enjoys either of the estimates HK0,0,1

J (Φ,Φ) or HK0,0,1
D (Φ).

(3) In off diagonal situations, that is, when Φ(ρ(x, y)) ≥ φ(t−1)−1, estimates for p(t, x, y) can
be factorized into the boundary factors and the rest. However, there is no such factorization
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on near diagonal situation in general since J γ

k (t, x, y) cannot be factorized commonly.
(cf. Theorem 1.5.)

When condition (Sub.)(β, θ ) holds, the bounds for fundamental solution decrease subexpo-
nentially as t → ∞. Moreover, when 0 < β < 1 and D is bounded, we obtain the sharp upper
bounds that decrease with exactly the same rate as the upper bound for w as t → ∞.

Theorem 1.18. Let p(t, x, y) be given by (1.5). Assume that w satisfies conditions (Ker.)
and (Sub.)(β, θ ). Then for every fixed T > 0, the following estimates hold for all (t, x, y) ∈

[T, ∞) × D × D.
(i) Suppose that λ = 0.

(a) If Φ(ρ(x, y))φ(t−1) ≤ 1/(4e2), then there exists a constant c > 1 such that

c−1

(
aγ

k (t, x, y)
V
(
x,Φ−1(t)

) + w(t)
∫ 1/(2e2φ(t−1))

Φ(ρ(x,y))

aγ

k (r, x, y)
V (x,Φ−1(r ))

dr

)

≤ p(t, x, y) ≤ c

(
aγ

k (t, x, y)
V
(
x,Φ−1(t)

) + exp
(
−

θ

2
tβ
) ∫ 1/(2e2φ(t−1))

Φ(ρ(x,y))

aγ

k (r, x, y)
V (x,Φ−1(r ))

dr

)
,

where θ > 0 is the constant in condition (Sub.)(β, θ ).
(b) If Φ(ρ(x, y))φ(t−1) > 1/(4e2), then we have

p(t, x, y) ≃ q(ct, x, y).

(ii) Suppose that λ > 0 and RD < ∞. Then, there exist constants L1, L2 > 0 independent of
λ and c > 1 such that in the case when β ∈ (0, 1), we have

c−1w(t)
∫ 2Φ(RD )

Φ(ρ(x,y))

aγ

1 (r, x, y)
V (x,Φ−1(r ))

dr

≤ p(t, x, y) ≤ c exp
(
−θ tβ

) ∫ 2Φ(RD )

Φ(ρ(x,y))

aγ

1 (r, x, y)
V (x,Φ−1(r ))

dr,

and in the case when β = 1, we have

c−1
(

w(t)
∫ 2Φ(RD )

Φ(ρ(x,y))

aγ

1 (r, x, y)
V (x,Φ−1(r ))

dr + e−λL1tΦ(δD(x))γΦ(δD(y))γ
)

≤ p(t, x, y)

≤ c
(

exp
(
−

θ

2
t
) ∫ 2Φ(RD )

Φ(ρ(x,y))

aγ

1 (r, x, y)
V (x,Φ−1(r ))

dr + e−λL2tΦ(δD(x))γΦ(δD(y))γ
)

,

where θ > 0 is the constant in condition (Sub.)(β, θ ).

Our last theorem gives the estimates for p(t, x, y) when w is finitely supported.

Theorem 1.19. Let p(t, x, y) be given by (1.5). Assume that w satisfies conditions (Ker.)
and (Trunc.)(t f ). Then the following estimates hold for all (t, x, y) ∈ [t f /2, ∞) × D × D. Let
nt := ⌊t/t f ⌋ + 1 ∈ N.
(i) Suppose that λ = 0.

(a) If Φ(ρ(x, y)) ≤ t ≤ ⌊d2/α1 + 2γ ⌋t f , then

p(t, x, y) ≍

∫ 2t

Φ(ρ(x,y))

rnt aγ

1 (r, x, y)
V (x,Φ−1(r ))

dr + (nt t f − t)nt

∫ 2t

Φ(ρ(x,y))

rnt −1aγ

1 (r, x, y)
V (x,Φ−1(r ))

dr,
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(b) If Φ(ρ(x, y)) ≤ t and t > ⌊d2/α1 + 2γ ⌋t f , then

p(t, x, y) ≍
aγ

k (t, x, y)
V
(
x,Φ−1(t)

) ≍ q(t, x, y).

(c) If Φ(ρ(x, y)) > t , then

p(t, x, y) ≃ q(ct, x, y).

(ii) Suppose that λ > 0 and RD < ∞.
(a) If t ≤ ⌊d2/α1 + 2γ ⌋t f , then

p(t, x, y) ≃

∫ 2Φ(RD )

Φ(ρ(x,y))

rnt aγ

1 (r, x, y)
V (x,Φ−1(r ))

dr + (nt t f − t)nt

∫ 2Φ(RD )

Φ(ρ(x,y))

rnt −1aγ

1 (r, x, y)
V (x,Φ−1(r ))

dr,

(b) If t ≥ ⌊d2/α1 + 2γ ⌋t f , then

p(t, x, y) ≃ e−ctΦ(δD(x))γΦ(δD(y))γ ≃ q(t, x, y).

Remark 1.20. Note that under settings of Theorem 1.19, we can apply Theorem 1.15 to
obtain the estimates of p(t, x, y) for all (t, x, y) ∈ (0, t f /2] × D × D. Hence, we have the
global estimates for p(t, x, y) under those settings.

As a consequence of the estimates for the fundamental solution, we have that the solution
to the Dirichlet problem (1.4) vanishes continuously on the boundary of D. Indeed, under mild
conditions, the solution u(t, x) vanishes exactly the same rate as a transition density q(t, x, y).

(V.) There exists a constant cV > 1 such that for all x ∈ D and 0 < l ≤ RD = diam(D),

c−1
V V (x, l) ≤ m

(
{y ∈ D : ρ(x, y) ≤ l}

)
≤ cV V (x, l).

Corollary 1.21. Suppose that (D, ρ, m) satisfies (V.), and w satisfies conditions (Ker.),
(S.Poly.)(ts) and one among (L.Poly.), (Sub.)(β, θ ) and (Trunc.)(t f ). We also assume that
q(t, x, y) enjoys one of the estimates HKγ,λ,k

J (Φ,Φ), HKγ,λ,k
D (Φ) and HKγ,λ,k

M (Φ,Ψ ) for some
0 < γ < 1, λ ≥ 0 and k ∈ {1, 2}. When λ > 0, we further assume that D is bounded. Then,
for all bounded measurable function f on D, u(t, x) := E[T D

Et
f (x)] satisfies the following

boundary condition:
For any fixed t > 0, there exists a constant c1 > 0 such that for every x ∈ D,

|u(t, x)| ≤ c1∥ f ∥∞Φ(δD(x))γ .

Proof. Since the ideas are similar, we only give the proof for the case when w satisfies (Ker.),
(S.Poly.)(ts) and (L.Poly.) and q(t, x, y) enjoys estimate HKγ,0,2

J (Φ,Φ) for some γ ∈ (0, 1).
Fix t > 0 and we let At := Φ−1

(
1/(4e2φ(t−1))

)
. By Theorems 1.15 and 1.16, for every x ∈ D,

|u(t, x)| =

⏐⏐⏐⏐∫
D

p(t, x, y) f (y)m(dy)
⏐⏐⏐⏐

≤ c∥ f ∥∞Φ(δD(x))γ

×

(∫
{y∈D:ρ(x,y)≤At }

J γ

k (t, x, y)
Φ(δD(x))γ

m(dy) +

∫
{y∈D:ρ(x,y)>At }

m(dy)
Φ(ρ(x, y))V (x, ρ(x, y))

)
=: c∥ f ∥∞Φ(δD(x))γ (I1 + I2).
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Set η = (d1/(2α2)) ∧ ((1 − γ )/2). Since η < d1/α2, by [4, Theorem 2.2.2], we have that for
all x ∈ D and 0 < s < t ,

inf
r∈(s,t]

r−ηV (x,Φ−1(r )) ≍ s−ηV (x,Φ−1(s)). (1.15)

Then, by Fubini’s theorem, (1.15), condition (V.) and the weak scaling properties of V
and Φ, since γ + η < 1,

I1 ≤ c
∞∑

k=1

∫
{y∈D:2−k At <ρ(x,y)≤2−(k−1) At }

∫ 1/(2e2φ(t−1))

Φ(ρ(x,y))

dr
rγ V (x,Φ−1(r ))

m(dy)

≤ c
∞∑

k=1

∫
{y∈D:2−k At <ρ(x,y)≤2−(k−1) At }

m(dy)
∫ 1/(2e2φ(t−1))

Φ(2−k At )

dr
rγ+ηr−ηV (x,Φ−1(r ))

≤ c
∞∑

k=1

V (x, 2−(k−1) At )
Φ(2−k At )−ηV (x, 2−k At )

∫ 1/(2e2φ(t−1))

Φ(2−k At )

dr
rγ+η

≤ cΦ(At )η
(∫ 1/(2e2φ(t−1))

0

dr
rγ+η

)
∞∑

k=1

2−kηα1 ≤ c.

Moreover, we also have that by condition (V.) and the weak scaling properties of V and Φ,

I2 ≤ c
∞∑

k=1

∫
{y∈D:2k−1 At <ρ(x,y)≤2k At }

1
Φ(ρ(x, y))V (x, ρ(x, y))

m(dy)

≤ c
∞∑

k=1

V (x, 2k At )
Φ(2k−1 At )V (x, 2k−1 At )

≤ c
∞∑

k=1

2−kα1

Φ(At )
≤ c.

Therefore, we get the result. □

In the end of this section, we study explicit forms of J γ

k (t, x, y) (0 ≤ γ < 1) under some
weak scaling conditions for V and Φ. Recall that Φ(·) satisfies WS(α1, α2) and V (x, ·) satisfies
WS(d1, d2) uniformly. We define δΦ

∗
(x, y) := Φ(δD(x))Φ(δD(y)).

Proposition 1.22. Let γ ∈ [0, 1). If γ = 0, then we redefine δD(x) = ∞ for all
x ∈ D. Then, the following estimates hold for all (t, x, y) ∈ (0, ∞) × D × D satisfying
Φ(ρ(x, y))φ(t−1) ≤ 1/(4e2).

(a) If d2/α1 < 1 − 2γ , then

J γ

1 (t, x, y) ≍

(
1 ∧

δΦ
∗

(x, y)
φ(t−1)−2

)γ 1
V
(
x,Φ−1(1/φ(t−1))

) .
(b) If α1 = α2, d1 = d2 = (1 − 2γ )α1 and γ > 0, then

J γ

1 (t, x, y) ≍

(
1 ∧

δ∗(x, y)α1

φ(t−1)−2

)γ

φ(t−1)1−2γ
+ 1

{δ∗(x,y)α1/2
≤φ(t−1)−1}

w(t)

× δ∗(x, y)α1γ log+

(
2φ(t−1)−1(

ρ(x, y) ∨ δ∨(x, y)
)α1

)
.

(c) If 1 − 2γ < d1/α2 ≤ d2/α1 < 1 − γ , then

J γ

1 (t, x, y) ≍

(
1 ∧

δΦ
∗

(x, y)
φ(t−1)−2

)γ 1
V
(
x,Φ−1(1/φ(t−1))

) + 1
{δΦ∗ (x,y)1/2≤φ(t−1)−1}

w(t)
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×

(
1 ∧

δΦ
∗

(x, y)
Φ(ρ(x, y))2

)γ (
Φ(ρ(x, y))

V (x, ρ(x, y))
∨

δΦ
∗

(x, y)γΦ(δ∨(x, y))1−2γ

V (x, δ∨(x, y))

)
.

(d) If α1 = α2, d1 = d2 = (1 − γ )α1 and γ > 0, then

J γ

1 (t, x, y) ≍

(
1 ∧

δ∗(x, y)α1

φ(t−1)−2

)γ

φ(t−1)1−γ

+ 1
{δ∗(x,y)α1/2

≤φ(t−1)−1}
w(t)

(
1 ∧

δ∗(x, y)
ρ(x, y)2

)α1γ

×

(
ρ(x, y)α1γ

+ δ∧(x, y)α1γ log
(

ρ(x, y) ∨ 2δ∨(x, y)
ρ(x, y) ∨ δ∧(x, y)

))
.

(e) If 1 − γ < d1/α2 ≤ d2/α1 < 1, then

J γ

1 (t, x, y) ≍

(
1 ∧

δΦ
∗

(x, y)
φ(t−1)−2

)γ 1
V
(
x,Φ−1(1/φ(t−1))

) + 1
{δΦ∗ (x,y)1/2≤φ(t−1)−1}

w(t)

×

(
1 ∧

δΦ
∗

(x, y)
Φ(ρ(x, y))2

)γ (
Φ(ρ(x, y))

V (x, ρ(x, y))
∨

Φ(δ∧(x, y))
V (x, δ∧(x, y))

)
.

(f) If α1 = α2 = d1 = d2, then

J γ

1 (t, x, y) ≍

(
1 ∧

δ∗(x, y)α1

φ(t−1)−2

)γ

φ(t−1)

+ w(t)
(

1 ∧
δ∗(x, y)
ρ(x, y)2

)α1γ (
1 + log+

(
2φ(t−1)−1

∧ 2δ∧(x, y)α1

ρ(x, y)α1

))
.

(g) If 1 < d1/α2, then

J γ

1 (t, x, y) ≍

(
1 ∧

δΦ
∗

(x, y)
φ(t−1)−2

)γ 1
V
(
x,Φ−1(1/φ(t−1))

)
+ w(t)

(
1 ∧

δΦ
∗

(x, y)
Φ(ρ(x, y))2

)γ
Φ(ρ(x, y))

V (x, ρ(x, y))
.

Proof. See Appendix. □

Remark 1.23. We can obtain closed forms of J γ

2 from closed forms of J γ

1 and J 0
1 . Indeed,

for every fixed T > 0, we can see that J γ

2 (t, x, y) ≍ J γ

1 (t, x, y) for all γ ∈ [0, 1) and
(t, x, y) ∈ (0, T ] × D × D. Moreover, for all large t such that Φ(1)φ(t−1) ≤ 1/(8e2),∫ 1/(2e2φ(t−1))

Φ(ρ(x,y))

aγ

2 (r, x, y)
V (x,Φ−1(r ))

dr

≍ aγ

1 (1, x, y)
∫ 1/(2e2φ(t−1))

2Φ(1)∨Φ(ρ(x,y))

1
V (x,Φ−1(r ))

dr + 1{ρ(x,y)≤1}

∫ 2Φ(1)

Φ(ρ(x,y))

aγ

1 (r, x, y)
V (x,Φ−1(r ))

dr.

Add an isolated point y0 to D and define ρ(x, y0) = 1 for all x ∈ D. By the above observation,
we have that for any fixed T > 0, the following comparison holds for all γ ∈ [0, 1) and
(t, x, y) ∈ [T, ∞) × D × D:

J γ

2 (t, x, y)

≍
(
1 ∧ Φ(δD(x))

)γ (1 ∧ Φ(δD(y))
)γJ 0

1 (t, x, y′) + 1{ρ(x,y)≤1}J γ

1 ([φ−1(4−1e−2)]−1, x, y),

where y′
= y if ρ(x, y) ≥ 1 and y′

= y0 if ρ(x, y) < 1. (cf. Theorem 1.6(v)(a).)
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2. Estimates for subordinator

Throughout this section, we always assume that S be the subordinator whose Laplace
exponent has the following representation with a function w satisfying condition (Ker.):

φ(λ) = − logE
[
exp(−λS1)

]
=

∫
∞

0
(1 − e−λs)(−dw(s)) for all λ ≥ 0.

Following [21], we let

H (λ) := φ(λ) − λφ′(λ) for all λ ≥ 0.

In [21], Naresh C. Jain and William E. Pruitt studied asymptotic properties of lower tail
probabilities of subordinators, P(Sr ≤ t), in terms of the function H . Then, in [29], Ante
Mimica obtained estimates for upper tail probabilities, P(Sr ≥ t), in terms of the function
H as well. Those estimates were crucial ingredients in [8] to establish the estimates for the
fundamental solution p(t, x, y).

In this section, we will improve the results in [29] and obtain tail probability estimates in
terms of the tail measure w instead of the function H . This allows us to get estimates for the
fundamental solution in more general situations.

2.1. General estimates for subordinator

Lemma 2.1. (i) For every λ > 0, we have

φ(λ) ≍ λ

∫ 1/λ

0
w(s)ds and H (λ) ≍ λ2

∫ 1/λ

0
sw(s)ds.

(ii) If w satisfies LS0(−α1, c0) (resp. LS∞(−α1, c0)) for some α1 ≥ 0 and c0 > 0, then φ

satisfies US∞(α1 ∧ 1, 1/c0) (resp. US0(α1 ∧ 1, 1/(2c0))) and H satisfies US∞(α1 ∧ 2, 1/c0)
(resp. US0(α1 ∧ 2, 1/(2c0))).
(iii) If w satisfies LS0(−α1, c0) (resp. LS∞(−α1, c0)) for some α1 < 2 and c0 > 0, then

w(s) ≍ H (s−1), for all 0 < s ≤ c0. (resp. for all s ≥ 2c0.)

(iv) If φ satisfies WS∞(α2, α1, c0) (resp. WS0(α2, α1, c0)) for some 0 ≤ α2 ≤ α1 < 1, c0 > 0,
or H satisfies WS∞(α2, α1, c0) (resp. WS0(α2, α1, c0)) for some 0 ≤ α1 ≤ α2 < 2, c0 > 0,
then there exists c1 > 0 such that w satisfies WS0(−α1, −α2, c1). (resp. WS∞(−α1, −α2, c1).)

Proof. (i) By the integration by parts and Fubini’s theorem,

φ(λ)
λ

=

∫
∞

0

∫ s

0
e−λudu(−dw(s)) =

∫ 1/λ

0
e−λuw(u)du +

∫
∞

1/λ

e−λuw(u)du =: I1 + I2.

First, we see that I1 ≍
∫ 1/λ

0 w(s)ds. Moreover, since w is non-increasing,

I2 ≤ w(1/λ)
∫

∞

1/λ

e−λudu =
w(1/λ)

eλ
≤

∫ 1/λ

1/(2λ)
w(s)ds ≤

∫ 1/λ

0
w(s)ds.

Hence, the first claim holds. On the other hand, note that by the definition of H ,

H (λ)
λ2 = −(λ−1φ(λ))′ =

∫
∞

0
ue−λuw(u)du.

Then, we can deduce that H (λ) ≍ λ2
∫ 1/λ

0 sw(s)ds by a similar argument.
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(ii) First, assume that w satisfies LS0(−α1, c0). By (i),

φ(κλ) ≍ κλ

∫ 1/(κλ)

0
w(s)ds = λ

∫ 1/λ

0

w(s/κ)
w(s)

w(s)ds for all κ ≥ 1, λ ≥ 1/c0. (2.1)

Besides, by the assumption, there exists c2 > 0 such that w(s/κ)/w(s) ≤ c2κ
α1 for all

κ ≥ 1, λ ≥ 1/c0. Thus, we deduce that φ satisfies US∞(α1, 1/c0) from (2.1) and (i). Since φ

always satisfy WS(0, 1), we get the result for φ. Then, by a similar argument and the fact that
H always satisfy WS(0, 2), we can also deduce that H satisfies US∞(α1 ∧ 2, 1/c0).

Now, assume that w satisfies LS∞(−α1, c0). Then, by (i),

φ(λ) ≍ λ

∫ 1/λ

0
w(s)ds ≍ λ

∫ 1/λ

c0

w(s)ds for all 0 < λ ≤ 1/(2c0). (2.2)

The second comparison holds since
∫ c0

0 w(s)ds ≤ c3 ≤ c4
∫ 2c0

c0
w(s)ds ≤ c4

∫ 1/λ

c0
w(s)ds for all

λ ≤ 1/(2c0). Then, we get that for all κ ≥ 1 and 0 < λ ≤ 1/(2κc0),

φ(κλ)
φ(λ)

≤ c5κ

∫ 1/(κλ)
c0

w(s)ds∫ 1/λ

c0
w(s)ds

= c5

∫ 1/λ

c0κ
w(s/κ)ds∫ 1/λ

c0
w(s)ds

≤ c5

∫ 1/λ

c0κ
w(s/κ)ds∫ 1/λ

c0κ
w(s)ds

≤ c6κ
α1 ,

which proves that φ satisfies US0(α1 ∧ 1, 1/(2c0)). The proof for the assertion on H is similar.
(iii) We first assume that w satisfies LS0(−α1, c0) for α1 < 2 and c0 > 0. Then, by (i),

H (s−1) ≍ s−2w(s)
∫ s

0
u

w(u)
w(s)

du ≍ s−2w(s)
∫ s

0
sα1u1−α1du ≍ w(s) for all 0 < s ≤ c0.

Next, assume that w satisfies LS∞(−α1, c0) for α1 < 2 and c0 > 0. Then, by the same
arguments as the ones given in the proof for (ii) and (i), we get

H (s−1) ≍ s−2w(s)
∫ s

c0

u
w(u)
w(s)

du ≍ s−2w(s)
∫ s

c0

sα1u1−α1du ≍ w(s) for all s ≥ 2c0.

(iv) Suppose that there is c0 > 0 such that φ satisfies WS∞(α2, α1, c0) for some constants
0 ≤ α2 ≤ α1 < 1 or H satisfies WS∞(α2, α1, c0) for some constants 0 ≤ α2 ≤ α1 < 2. In
either case, by [29, Lemma 2.6 and Proposition 2.9], H satisfies WS∞(α2, α1, c0) and there
exists a constant c1 > 0 such that w(s) ≍ H (s−1) for 0 < s < c1. Then, the result follows.

The cases when either of φ and H satisfies the weak scaling properties at the origin can be
proved by similar arguments. □

Lemma 2.2. Suppose that there exist δ > 0 and t0 > 0 such that w satisfies LS0(−δ, t0).
Then, there exists a constant c1 > 0 such that for every t ∈ (0, t0],

H (t−1)δ+1
≤ c1φ(t−1)δw(t).

Similarly, if there exist δ′ > 0 and t ′

0 > 0 such that w satisfies LS∞(−δ′, t ′

0), then there exists
a constant c2 > 0 such that for every t ∈ [t ′

0, ∞),

H (t−1)δ+1
≤ c2φ(t−1)δ

′

w(t).

Proof. Since the proofs are similar, we only give the proof for the first assertion. If δ < 2,
then by Lemma 2.1(iii), we have that for all t ∈ (0, t0],

H (t−1)δ+1
≤ cH (t−1)δw(t) ≤ cφ(t−1)δw(t).
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Now, assume that δ ≥ 2. By Lemma 2.1(i) and Hölder’s inequality, for every t ∈ (0, t0],

H (t−1) ≤ ct−2
∫ t

0
sw(s)ds ≤ ct−2

(∫ t

0
w(s)ds

)1−1/(δ+1) (∫ t

0
sδ+1w(s)ds

)1/(δ+1)

≤ ct−2(tφ(t−1)
)1−1/(δ+1)(tδ+2w(t)

)1/(δ+1)
= cφ(t−1)1−1/(δ+1)w(t)1/(δ+1).

We used Lemma 2.1(i) and [4, 2.12.16] in the third inequality. □

Lemma 2.3. Suppose that there exist δ > 0 and t0 > 0 such that w satisfies LS∞(−δ, t0).
Then, there exists a constant c1 > 0 such that for every t ∈ [t0, ∞),

φ(t−1)δ+1
≤ c1w(t).

Proof. We first assume that
∫

∞

1/(2t0) w(s)ds < ∞. By Lemma 2.1(i), we have that φ(t−1) ≍ t−1

for all t ≥ t0. Then, by Potter’s theorem, (see, [4, Theorem 1.5.6],) for all t ≥ t0,

φ(t−1)δ+1
≤ ct−δ−1

≤ cw(t).

Now, assume that
∫

∞

t0/2 w(s)ds = ∞. In this case, by Lemma 2.1(i), φ(t−1) ≍ t−1
∫ t

t0/2 w(s)ds
for all t ≥ t0. We also have that by [4, 2.12.16], w(t) ≍ t−δ−1

∫ t
t0/2 sδw(s)ds for all t ≥ t0.

Then, by l’Hospital’s rule and the fact that w is non-increasing, we get

lim sup
t→∞

w(t)
φ(t−1)δ+1 ≤ c lim sup

t→∞

t−δ−1
∫ t

t0/2 sδw(s)ds(
t−1

∫ t
t0/2 w(s)ds

)δ+1 = c lim sup
t→∞

∫ t
t0/2 sδw(s)ds(∫ t

t0/2 w(s)ds
)δ+1

≤ c lim sup
t→∞

tδw(t)

w(t)
(∫ t

t0/2 w(s)ds
)δ

≤ c lim sup
t→∞

tδ(
tw(t0/2)

)δ = c. □

For s > 0, we define

b(s) := sφ′(H−1(1/s)).

Lemma 2.4. (i) b is strictly increasing on (0, ∞), lims→0 b(s) = 0 and lims→∞ b(s) = ∞.
(ii) For every s > 0, we have that

φ(s−1)−1
≤ b−1(s) ≤

e2
− e

e − 2
φ(s−1)−1.

Proof. (i) Since H is strictly increasing on (0, ∞) and φ′ is strictly decreasing on (0, ∞), b is
strictly increasing on (0, ∞). Moreover, we have that lims→0 b(s) ≤ φ′(H−1(1)) lims→0 s = 0
and lims→∞ b(s) ≥ φ′(H−1(1)) lims→∞ s = ∞.

(ii) From the concavity of φ, since φ−1(λ) ≤ H−1(λ), we have that for all s > 0,

b(s) ≤
φ−1(s−1)

φ(φ−1(s−1))
φ(H−1(s−1))

H−1(s−1)
1

φ−1(s−1)
≤

1
φ−1(s−1)

.

Therefore, we get b−1(s) ≥ φ(s−1)−1 since both φ and b are strictly increasing.
On the other hand, we note that from the definition of φ and H , for every λ > 0,

φ(λ) ≤ λ

∫
(0,1/λ]

u(−dw(u)) + w(1/λ),
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φ′(λ) ≥ e−1
∫

(0,1/λ]
u(−dw(u)), H (λ) ≥ e−1(e − 2)w(1/λ).

Let a := (e2
− e)/(e − 2). Then, for all s > 0,

b
(
aφ(s−1)−1)

= aφ(s−1)−1φ′
(
H−1(φ(s−1)/a

))
≥ ae−1φ(s−1)−1

∫
(0,[H−1(φ(s−1)/a)]−1]

u(−dw(u))

≥ ae−1φ(s−1)−1
[∫

(0,s]
u(−dw(u)) + s

∫
(s,[H−1(φ(s−1)/a)]−1]

(−dw(u))
]

= ae−1φ(s−1)−1
[∫

(0,s]
u(−dw(u)) + sw(s) − sw

(
[H−1(φ(s−1)/a)]−1)]

≥ ae−1φ(s−1)−1
[

sφ(s−1) − e(e − 2)−1s H
(
H−1(φ(s−1)/a

))]
= ae−1(1 − e(e − 2)−1a−1)s = s.

Again, since b is strictly increasing, we conclude that b−1(s) ≤ aφ(s−1)−1. □

We will use Chebyshev’s inequality in tail probability estimates several times. To applying
Chebyshev’s inequality for subordinators, we need the following lemma.

Lemma 2.5. Assume that w is finitely supported, that is, there exists a constant T > 0 such
that w(T ) = 0. Then, for every λ ∈ R, r > 0 and n ∈ {0} ∪ N, we have that

E[(Sr )neλSr ] =
dn

dλn
exp

(
r
∫

(0,T ]
(eλs

− 1)(−dw(s))
)

.

Proof. Fix r > 0 and let ξ (dt) := P(Sr ∈ dt). For z ∈ C, define

f (z) =

∫
[0,∞)

e−ztξ (dt).

Then, it is well known that there exists the abscissa of convergence σ0 ∈ [−∞, ∞] such that
f (z) converges for Re z > σ0, diverges for Re z < σ0 and has a singularity at σ0. Moreover,
f (z) is analytic in the half-plane Re z > σ0 so that for every n ∈ N and x > σ0, it holds that

dn

dxn
f (x) = (−1)n

∫
[0,∞)

tne−xtξ (dt). (2.3)

(See, [32, p.37 and p.58] and [28].) On the other hand, we also have that for λ > 0,

f (λ) = E
[
exp(−λSr )

]
= exp

(
−rφ(λ)

)
= exp

(
r
∫

(0,T ]
(eλs

− 1)(−dw(s))
)

=: g(λ).

Since w is finitely supported, the function λ ↦→ g(λ) is a well-defined differentiable function
on R. If σ0 > −∞, then from the uniqueness of the analytic continuation, the function g(λ)
should have a singularity at λ = σ0. Since there is no such singularity, we get σ0 = −∞. Then,
the result follows from the definition of f and (2.3). □
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2.2. Tail probability estimates for subordinator

In this section, we study two tail probabilities P(Sr ≥ t) and P(Sr ≤ t) under mild
assumption for w. We first give the general lower bounds for upper tail probability P(Sr ≥ t)
which are established in [29]. Note that these bounds hold for every subordinator.

Lemma 2.6. For every L > 0, it holds that for all r, t > 0 satisfying rφ(t−1) ≤ L,

P(Sr ≥ t) ≥ e−eLrw(t).

Proof. Note that rφ(t−1) ≤ L implies that rw(t) ≤ erφ(t−1) ≤ eL . Thus, by [29, Proposition
2.5], for all r, t > 0 satisfying rφ(t−1) ≤ L , we have that

P(Sr ≥ t) ≥ 1 − e−rw(t)
≥ rw(t)e−rw(t)

≥ e−eLrw(t). □

Now, we study the upper bounds for P(Sr ≥ t).

Proposition 2.7. Assume that condition (S.Poly.)(ts) holds. Then, there exists a constant c1 > 0
such that for all r, t > 0 satisfying 0 < t ≤ ts and rφ(t−1) ≤ 1/(4e2),

P(Sr ≥ t) ≤ c1rw(t).

Proof. Fix r, t > 0 satisfying 0 < t ≤ ts and rφ(t−1) ≤ 1/(4e2). Set

µ1
:= 1(0,1/H−1(1/r )] · (−dw), µ2

:= 1(1/H−1(1/r ),t] · (−dw), µ3
:= 1(t,∞) · (−dw).

Let S1, S2 and S3 be independent subordinators without drift and having Lévy measure µ1, µ2

and µ3, respectively. Then, we have Sr ≤ S1
r + S2

r + S3
r and hence

P(Sr ≥ t) ≤ P(S1
r + S2

r + S3
r ≥ t) ≤ P(S1

r ≥ t/2) + P(S2
r ≥ t/2) + P(S3

r > 0). (2.4)

First, since S3 is a compounded Poisson process, P(S3
r > 0) = 1 − e−rw(t)

≤ rw(t).
Next, we note that by Lemma 2.4(ii), t = b(b−1(t)) ≥ b(φ(t−1)−1) ≥ b(4e2r ) ≥ 4e2b(r ).

By Chebyshev’s inequality and Lemma 2.5, we have that for every λ > 0,

P
(
S1

r ≥ t/2
)

≤ E
[
exp

(
−λt/2 + λS1

r

)]
= exp

(
−

λt
2

+ r
∫

(0,1/H−1(1/r )]
(eλs

− 1)(−dw(s))
)

≤ exp
(

−
λt
2

+ λreλ/H−1(1/r )
∫

(0,1/H−1(1/r )]
s(−dw(s))

)
≤ exp

(
−

λt
2

+ eλb(r )eλ/H−1(1/r )
)

.

Thus, by letting λ = H−1(1/r ), we get

P
(
S1

r ≥ t/2
)

≤ exp
(
−2−1t H−1(1/r ) + e2b(r )H−1(1/r )

)
≤ exp

(
−4−1t H−1(1/r )

)
.

Thirdly, let f0(s) := w(s)1(0,t](s) + w(t)t2s−21(t,∞)(s) for s > 0. Then, we see that f0 is
non-increasing and for every Borel set A ⊂ R, it holds that

µ2(A) ≤ w(dist(0, A))1(0,t](dist(0, A)) ≤ f0(dist(0, A)),
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where dist(0, A) := inf{|y| : y ∈ A}. Moreover, since w satisfies LS0(−δ, ts), for all u, v > 0,∫
∞

u
f0
(
v ∨ y −

y
2

)
µ2(dy) ≤ f0(v/2)w(u) ≤ c1 f0(v)H (1/u).

Therefore, by [22, Proposition 1 and Lemma 9], we have that for every x > 0 and ρ ∈ (0, x/3],

P(S2
r ∈ [x − ρ, x + ρ]) ≤ c2r f0(x/3).

It follows that

P(S2
r ≥ t/2) ≤

∞∑
i=0

P
(
S2

r ∈ [2i−1t, 2 · 2i−1t]
)

≤ cr
∞∑

i=0

f0(2i−2t) ≤ crw(t)
∞∑

i=0

2−2i
= crw(t).

Combining the above inequalities, by (2.4) and Lemma 2.2, we deduce that

P(Sr ≥ t) ≤ crw(t) + exp
(

−2(δ + 1) ·
t H−1(1/r )

8(δ + 1)

)
≤ crw(t) +

(
1 ∨ 8(δ + 1)

1 ∨ t H−1(1/r )

)2δ+2

≤ crw(t) + c
(

H (t−1)
H (H−1(1/r ))

)δ+1

≤ crw(t) + crφ(t−1)−δ H (t−1)δ+1
≤ crw(t).

In the second inequality, we used the fact that ex
≥ x for all x > 0 and in the third inequality,

we used the fact that H (λx) ≤ (1 ∨ λ2)H (x) for all λ, x > 0. Also, the fourth inequality holds
since r ≤ Lφ(t−1)−1. □

By the same argument, we also get analogous estimates for large time t .

Proposition 2.8. Assume that condition (L.Poly.) holds. Then, for every T > 0, there exists
a constant c1 > 0 such that for all r, t > 0 satisfying t ≥ T and rφ(t−1) ≤ 1/(4e2),

P(Sr ≥ t) ≤ c1rw(t).

Proof. Follow the proof of Proposition 2.7. The only difference occurs in the definition of f0.
In this case, we use f1(s) :=

e
e−2 H (s−1)1(0,T/2](s) + w(s)1(T/2,∞)(s) instead of f0(s). □

Proposition 2.9. Assume that condition (Sub.)(β, θ ) holds. Then, for every T > 0, there exist
constants c2 > 0 and L ∈ (0, 1] such that for all r, t > 0 satisfying t ≥ T and rt−1

≤ L,

P(Sr ≥ t) ≤ c2r exp
(
−

θ

2
tβ
)
.

Proof. Fix t ≥ T and r ∈ (0, Lt) where the constant L ∈ (0, 1] will be chosen later. Let Ŝ1

and Ŝ2 be independent subordinators without drift and having Lévy measures

µ̂1
:= 1(0,t] · (−dw) and µ̂2

:= 1(t,∞) · (−dw), respectively.

Then, since Sr = Ŝ1
r + Ŝ2

r , by condition (Sub.)(β, θ ), we have

P(Sr ≥ t) ≤ P(Ŝ1
r ≥ t) + P(Ŝ2

r > 0) ≤ P(Ŝ1
r ≥ t) + rw(t) ≤ P(Ŝ1

r ≥ t) + cr exp
(
−θ tβ

)
.
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It remains to bound P(Ŝ1
r ≥ t). By Chebyshev’s inequality and Lemma 2.5, for all λ > 0,

P(Ŝ1
r ≥ t) ≤ E

[
t−1 Ŝ1

r exp
(
λŜ1

r − λt
)]

≤ t−1e−λtr
(∫

(0,t]
seλs(−dw(s))

)
exp

(
r
∫

(0,t]
(eλs

− 1)(−dw(s))
)

. (2.5)

Note that by the integration by parts and condition (Sub.)(β, θ ), we get∫
(0,t]

seλs(−dw(s)) ≤

∫
(0,t]

w(s)eλsds + λ

∫
(0,t]

sw(s)eλsds

≤ 2λeλ

∫
(0,1]

w(s)ds + c0

∫
(1,t]

exp
(
−θsβ

+ λs
)
ds + c0λ

∫
(1,t]

s exp
(
−θsβ

+ λs
)
ds,

and ∫
(0,t]

(eλs
− 1)(−dw(s)) ≤ λeλ

∫
(0,1]

w(s)ds + c0λ

∫
(1,t]

exp
(
−θsβ

+ λs
)
ds.

Take λ = 2θ tβ−1/3 ∈ (0, 2θT β−1/3]. Then, since s ↦→ −2θsβ/3 + λs is a convex function,∫
(1,t]

s exp
(
−θsβ

+ λs
)
ds ≤ sup

s∈(1,t]

[
−

2θsβ

3
+ λs

]
·

∫
(1,t]

s exp
(
−

θsβ

3

)
ds

≤
(
−

2θ

3
+ λ −

2θ tβ

3
+ λt

) ∫
(1,t]

s exp
(
−

θsβ

3

)
ds ≤ c.

Using this observation and the fact that
∫

(0,1] w(s)ds < ∞, (2.5) implies that

P(Ŝ1
r ≥ t) ≤ c3t−1r exp

(
−

2θ

3
tβ

+ c4r tβ−1),
for some constants c3, c4 > 0. Now, we choose L = 1 ∧ (θ/(6c4)). Then, we get

P(Ŝ1
r ≥ t) ≤ c3T −1r exp

(
−

2θ

3
tβ

+ c4Ltβ
)

≤ c2r exp
(
−

θ

2
tβ
)
. □

When w decreases subexponentially (0 < β < 1), we obtain small time sharp upper bounds
for P(Sr ≥ t) which decrease with exactly the same rate as the bounds for w as t → ∞.

Proposition 2.10. Assume that condition (Sub.)(β, θ ) holds with constant 0 < β < 1. Then,
for every fixed k > 0 and T > 0, there exist constants c2 > 0 and L ∈ (0, 1] such that for all
r, t > 0 satisfying t ≥ T and rt−1

≤ L,

P(Sr ≥ t) ≤ c2r exp
(
−θ tβ

+ kr
)
.

Proof. Let S̃1 and S̃2 be independent subordinators without drift and having Lévy measures

µ̃1
:= 1(0,t/2] · (−dw) and µ̃2

:= 1(t/2,∞) · (−dw), respectively.

Then, since Sr = S̃1
r + S̃2

r , we get

P(Sr ≥ t) =

∫
∞

0
P(S̃2

r ≥ t − u)P(S̃1
r ∈ du)

≤ P(S̃2
r ≥ t − T/2) +

∫ t−T/2

T/2
P(S̃2

r ≥ t − u)P(S̃1
r ∈ du) + P(S̃1

r ≥ t − T/2). (2.6)
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By Chebyshev’s inequality, Lemma 2.5 and the integration by parts, for u > 0 and λ > 0,

P(S̃1
r ≥ u) ≤ E

[
u−2(S̃1

r )2 exp
(
−λu + λS̃1

r

)]
= u−2

[
r
∫

(0,t/2]
s2eλs(−dw(s)) +

(
r
∫

(0,t/2]
seλs(−dw(s))

)2]
× exp

(
−λu + r

∫
(0,t/2]

(eλs
− 1)(−dw(s))

)
≤ u−2

[
r
∫ t/2

0
(2 + λs)seλsw(s)ds +

(
r
∫ t/2

0
(1 + λs)eλsw(s)ds

)2]
× exp

(
−λu + λr

∫ t/2

0
eλsw(s)ds

)
.

Take λ = θ tβ−1
∈ (0, θT β−1]. Then, for all 1 ≤ s ≤ t/2, we have that λs ≤ θ tβ−1(t/2)1−βsβ

≤

2β−1θsβ . It follows that∫ t/2

0
(2 + λs)seλsw(s)ds

≤(2 + λ)eλ

∫ 1

0
w(s)ds + c0(2 + λ)

∫ t/2

1
s2 exp

(
2β−1θsβ

− θsβ
)
ds

≤c + c
∫

∞

1
s2 exp

(
−θ (1 − 2β−1)sβ

)
ds ≤ c4,

where the constant c4 > 0 is independent of t ∈ [T, ∞). By similar calculations, by taking c4

larger, we may assume that∫ t/2

0
(1 + λs)eλsw(s)ds ≤ c4 and

∫ t/2

0
eλsw(s)ds ≤ c4.

Therefore, we have that for every u > 0,

P(S̃1
r ≥ u) ≤ (c4 + c2

4)u−2(r + r2) exp
(
−θ tβ−1u + θc4tβ−1r

)
.

In particular,

P(S̃1
r ≥ t − T/2) ≤ ct−2(r + r2) exp

(
−θ tβ

+ θ tβ−1T/2 + θc4tβ−1r
)

≤ cT −2 exp
(
θT β/2

)
r exp

(
−θ tβ

+ (θc4tβ−1
+ k/2)r

)
.

On the other hand, note that S̃2
r =

∑N (r )
i=1 Di where N (r ) is a Poisson process with rate

w(t/2) and Di are i.i.d. random variables with distribution P(Di > u) = w
(
u ∨ (t/2)

)
/w
(
t/2
)
.

Thus, for every 0 < u < t ,

P(S̃2
r ≥ u) ≤ P(N (r ) = 1, D1 ≥ u) + P(N (r ) ≥ 2)

≤ rw(u ∨ (t/2)) + 1 − e−rw(t/2)
− rw(t/2)e−rw(t/2)

≤ cr exp
(
−θuβ

)
+ r2w(t/2)2

≤ cr exp
(
−θuβ

)
+ cLrt exp

(
−θ21−β tβ

)
≤ cr exp

(
−θuβ

)
+ cLr exp

(
−θ tβ

)
.

It follows that

P(S̃2
r ≥ t − T/2) ≤ cr exp

(
−c1(t − T/2)β

)
≤ cr exp

(
−c1tβ

)
.

The second inequality holds since tβ
− (t − T/2)β ≤ (T/2)β .
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Using the above inequalities, by (2.6) and the integration by parts, we obtain

P(Sr ≥ t) ≤ cr exp
(
−θ tβ

+ (θc4tβ−1
+

k
2

)r
)
+ cr

∫ t

T/2
exp

(
−θ (t − u)β

)
P(S̃1

r ∈ du)

≤ cr exp
(
−θ tβ

+ (θc4tβ−1
+

k
2

)r
)
+ cr

∫ t

T/2
P(S̃1

r ≥ u)(t − u)β−1 exp
(
−θ (t − u)β

)
du

≤ cr exp
(
−θ tβ

+ (θc4tβ−1
+

k
2

)r
)(

1 + c(T/2)β−1
∫ t

T/2
u−2 exp

(
− f (u)

)
du
)

,

where f (u) := θ (t − u)β + θ tβ−1u − θ tβ . Observe that

f ′(u) = −βθ (t − u)β−1
+ θ tβ−1

= −θ tβ−1(t − u)β−1(βt1−β
− (t − u)1−β).

Hence, f is decreasing on (0, (1 − β1/(1−β))t) and increasing on ((1 − β1/(1−β))t, t). Since
f (0) = f (t) = 0, we deduce that f (u) ≤ 0 for u ∈ (0, t) and hence

∫ t
T/2 u−2 exp

(
− f (u)

)
du ≤∫

∞

T/2 u−2du ≤ c. It follows that

P(Sr ≥ t) ≤ cr exp
(
−θ tβ

+ (θc4tβ−1
+

k
2

)r
)
.

Hence, if t ≥ (k/(2θc4))−1/(1−β)
=: c5, we are done. Moreover, if t < c5, then we get

exp
(
(θc4tβ−1

+
k
2

)r
)

≤ exp
(
θc4tβ

+
k
2

t
)

≤ c,

since r ≤ Lt ≤ t . This completes the proof. □

Here, we state the estimates on lower tail probabilities P(Sr ≤ t) when r is large enough
compared to b−1(t), which are established in [21].

Lemma 2.11 ([21, Lemma 5.2]). For every N > 0, there exist constants c1, c2 > 0 such that

c1 exp
(
−c2r H ((φ′)−1(t/r ))

)
≤ P(Sr ≤ t) ≤ exp

(
−r H ((φ′)−1(t/r ))

)
,

for all r, t > 0 satisfying r ≥ Nb−1(t).

Proof. If N ≥ 1, then r ≥ Nb−1(t) implies that r H ((φ′)−1(t/r )) ≥ r H ((φ′)−1(b(r )/r )) = 1
and hence the result follows from [21, Lemma 5.2]. Suppose that N ∈ (0, 1). Since r ↦→ Sr is
strictly increasing almost surely, we deduce that for all r ∈ (Nb−1(t), b−1(t)],

P(Sr ≤ t) ≥ P(Sb−1(t) ≤ t) ≥ c ≥ c exp
(
−c2r H ((φ′)−1(t/r ))

)
. □

Corollary 2.12. If condition (S.Poly.)(ts) holds, then there exist constants N > ε1 > 0 such
that for all t ∈ (0, ts], it holds that

P(SN/φ(t−1) ≥ t) − P(Sε1/φ(t−1) ≥ t) ≥ 1/4. (2.7)

On the other hand, if either of the conditions (L.Poly.) or (Sub.)(β, θ ) holds, then for every
fixed T > 0, there exist constants N > ε1 > 0 such that (2.7) holds for all t ∈ [T, ∞).

Proof. By Lemmas 2.11 and 2.4(ii), there exists a constant N > 0 such that for all
t > 0, P(SN/φ(t−1) < t) ≤ 1/4 and hence P(SN/φ(t−1) ≥ t) ≥ 3/4. On the other hand, by
Proposition 2.7 (resp. Proposition 2.8 or Proposition 2.9) and the facts that φ(t−1) ≍ t−1 for all
t ≥ T under condition (Sub.)(β, θ ) and φ(t−1) ≥ e−1w(t) for all t > 0, we can find a constant
ε1 > 0 such that P(Sε1/φ(t−1) ≥ t) ≤ 1/2 for all t ∈ (0, ts] (resp. for all t ∈ [T, ∞)). □
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By Corollary 2.12, we get a priori estimates for the fundamental solution p(t, x, y).

Corollary 2.13. Assume that condition (S.Poly.)(ts) holds. Let p(t, x, y) be given by (1.5).
Then, there exist constants N > ε1 > 0 and c > 0 such that for all t ∈ (0, ts],

p(t, x, y) ≥ c inf
r∈(ε1/φ(t−1),N/φ(t−1))

q(r, x, y). (2.8)

On the other hand, if either of the conditions (L.Poly.) or (Sub.)(β, θ ) holds, then for every
fixed T > 0, there exist constants N > ε1 > 0 such that (2.8) holds for all t ∈ [T, ∞).

2.3. Estimates for truncated subordinator

In this subsection, we obtain tail probability estimates when the kernel w is finitely
supported. Throughout this subsection, we always assume that condition (Trunc.)(t f ) holds.
An example of such kernel is given by w(t) :=

1
Γ (1−β) (t

−β
− 1)1(0,1](t) (0 < β < 1). Those

integral kernels are used in the fractional-time derivative whose value at time t depends only
on the finite range of the past. (See, [6, Example 2.5].)

Proposition 2.14. There exists a constant r0 > 0 such that for all r ∈ (0, r0] and t ≥ t f /2,

P(Sr ≥ t) ≃
[
r + (nts − t)n]rn exp

(
−ct log t

)
,

where n := ⌊t/t f ⌋ + 1.

Proof. Take r0 small enough so that rφ(r−1) ≤ 1/(4e2) and r ≤ t f /6 for all r ∈ (0, r0]. Since
limr→0 rφ(r−1) = 0, we can always find such constant r0. Then, fix r ∈ (0, r0] and t ≥ t f /2.
Note that since n = ⌊t/t f ⌋ + 1, we have

(
(n − 1) ∨ 1/2

)
t f ≤ t < nt f .

(Lower bound) Let U 1 and U 2 be the driftless subordinators with Lévy measures

ν1 := 1(t/(n+1),∞) · (−dw) and ν2 := 1(t/n,∞) · (−dw), respectively.

Observe that both U 1 and U 2 are compounded Poisson processes and their jump sizes are at
least bigger than t/(n + 1) and t/n, respectively. Since Sr ≥ U 1

r ≥ U 2
r , it follows that

2P(Sr ≥ t) ≥ P(U 1
r ≥ t) + P(U 2

r ≥ t)

≥ P
(
U 1 jumps (n + 1) times before time r

)
+ P

(
U 2 jumps n times before time r

)
≥ exp

(
−rw(t/(n + 1))

)(rw(t/(n + 1))
)n+1

(n + 1)!
+ exp

(
−rw(t/n)

)(rw(t/n)
)n

n!
. (2.9)

Since s ↦→ w(s) is non-increasing, we have w(t/(n + 1)) ≤ w(t f /4) and w(t/n) ≤ w(t f /2).
Moreover, by condition (Trunc.)(t f )(i) and (ii),

w(t/(n + 1)) ≥ K −1(t f − t/(n + 1)) ≥ K −1(n + 1)−1t f ,

w(t/n) ≥ K −1(t f − t/n) ≥ K −1n−1(nt f − t).

Using these observations, Stirling’s formula and the fact that n ≍ t , by (2.9), we obtain

P(Sr ≥ t) ≥ e−rw(t f /4)
tn+1

f rn+1

2K n+1(n + 1)n+1(n + 1)!
+ e−rw(t f /2) (nt f − t)nrn

2K nnnn!

≳ rn+1 exp
(
−ct − 2n log n

)
+ (nt f − t)nrn exp

(
−ct − 2n log n

)
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≳
[
r + (nt f − t)n]rn exp

(
−ct log t

)
.

(Upper bound) Let U 3 and U 4 be the driftless subordinators with Lévy measures

ν3 := 1(0,t/9] · (−dw) and ν4 := 1(t/9,∞) · (−dw), respectively.

Then, we have that Sr = U 3
r + U 4

r and U 4
r =

∑P(r )
i=1 Ji where P(r ) is a Poisson process with

rate w(t f /9) and Ji are i.i.d. random variables with distribution

F(u) := P(Ji ≥ u) = w(t f /9)−1w
(
u ∨ (t f /9)

)
.

Hence, we get

P(Sr ≥ t) =

∞∑
j=0

P
(
U 3

r + U 4
r ≥ t, P(r ) = j

)
≤ P

(
U 3

r ≥ t
)
+

n∑
j=1

P
(
U 3

r + U 4
r ≥ t |P(r ) = j

)
P
(
P(r ) = j

)
+ P

(
P(r ) > n

)
.

First, by Stirling’s formula, the definition of Poisson process and the fact that n ≍ t ,

P(P(r ) > n) ≤
ern+1

(n + 1)!
≃ rn+1 exp

(
−ct log t

)
.

Secondly, by Chebyshev’s inequality and Lemma 2.5, for all u > 0 and λ > 0,

P(U 3
r ≥ u) ≤ E

[
exp

(
−λu + λU 3

r

)]
= exp

(
−λu + r

∫
(0,ts/9]

(eλs
− 1)(−dw(s))

)
≤ exp

(
−λu + λeλt f /9r

∫
(0,t f /9]

s(−dw(s))
)

≤ exp
(
−λu + c1λeλt f /9r

)
.

Hence, by taking λ = 9t−1
f log

(
u/(9c1r )

)
, we have that for every u > 0,

P(U 3
r ≥ u) ≤ exp

(
−8λu/9

)
=
(
9c1r/u

)8u/t f . (2.10)

In particular, since t ≥
(
(n − 1) ∨ 1/2

)
t f , we have that

P(U 3
r ≥ t) ≤

(
9c1r/t

)8t/t f ≲ r8t/t f exp
(
−ct log t

)
≤ crn+1 exp

(
−ct log t

)
.

Moreover, we also have that
n−2∑
j=1

P
(
U 3

r + U 4
r ≥ t |P(r ) = j

)
P
(
P(r ) = j

)
≤

n−2∑
j=1

r jw(t f /9) j

j !
P
(
U 3

r ≥ (n − 1 − j)t f
)

≤

n−2∑
j=1

r jw(t f /9) j

j !

(
9c1r

(n − j − 1)t f

)8(n−1− j)

≲ ect
n−2∑
j=1

r8(n−1)−7 j 1
j !(n − j − 1)8(n− j−1)

≲ rn+1
n−2∑
j=1

exp
(
ct − cj log j − c(n − j − 1) log(n − j − 1)

)
≲ rn+1 exp

(
ct − c(n − 1) log(n − 1)

)
≃ rn+1 exp

(
−ct log t

)
.
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The first inequality holds since the jump sizes of U 4
r are at most t f and the third line follows

form Stirling’s formula. Lastly, the fourth line holds by the facts that 4(a log a + b log b) ≥

2(a ∨ b) log(2(a ∨ b)) ≥ (a + b) log(a + b) for all a, b ≥ 1 satisfying a ∨ b ≥ 2 and that n ≍ t .
It remains to bound probabilities P

(
U 3

r + U 4
r ≥ t, P(r ) = j

)
for j = n − 1 (when n ≥ 2)

and j = n. Observe that by Stirling’s formula, we have

P
(
U 3

r + U 4
r ≥ t |P(r ) = n − 1

)
P
(
P(r ) = n − 1

)
≤

rn−1w(t f /9)n−1

(n − 1)!

∫ (n−1)t f

0
P
(
U 3

r ≥ t − (n − 1)t f + u
)
duP

(n−1∑
i=1

Ji ≥ (n − 1)t f − u
)

≲ rn−1 exp
(
−ct log t

)
×

[(∫ r

0
+

∫ (n−1)t f

t f /4
+

∫ t f /4

r

)
P
(
U 3

r ≥ t − (n − 1)t f + u
)
duP

(n−1∑
i=1

Ji ≥ (n − 1)t f − u
)]

≤ rn−1 exp
(
−ct log t

)[
P(U 3

r ≥ ts/4) + P
(
U 3

r ≥ t − (n − 1)t f
)
P
(n−1∑

i=1

Ji ≥ (n − 1)t f − r
)

+

∫ t f /4

r
P
(
U 3

r ≥ t − (n − 1)t f + u
)
duP

(n−1∑
i=1

Ji ≥ (n − 1)t f − u
)]

=: rn−1 exp
(
−ct log t

)[
A1 + A2 + A3

]
and by the same way, we also have that

P
(
U 3

r + U 4
r ≥ t |P(r ) = n

)
P
(
P(r ) = n

)
≲ rn exp

(
−ct log t

)[
P(U 3

r ≥ t f /4) + P
( n∑

i=1

Ji ≥ nt f − (nt f − t + r )
)

+

∫ t f /4

nt f −t+r
P
(
U 3

r ≥ t − nt f + u
)
duP

( n∑
i=1

Ji ≥ nt f − u
)]

=: rn exp
(
−ct log t

)[
B1 + B2 + B3

]
.

To bound Ai and Bi , we claim that for every k ∈ N and u ∈ (0, t f /4], it holds that

P
( k∑

i=1

Ji ≥ kt f − u
)

≤
(
Kw(t f /9)−1)kuk, (2.11)

where K ≥ 1 is the constant in (Trunc.)(t f )(ii). Indeed, if k = 1, then by (Trunc.)(t f )(i) and
(ii), we get P(J1 ≥ t f − u) = F(t f − u) = w(t f /9)−1w(t f − u) ≤ Kw(t f /9)−1u. Suppose that
the claim holds for k. Then, by (Trunc.)(t f )(i) and (ii), for all u ∈ (0, t f /4],

P
(k+1∑

i=1

Ji ≥ (k + 1)t f − u
)

=

∫
{
∑k

i=1 ui ≤u}

F
(
t f − u +

k∑
i=1

ui
)
duk F(t f − uk)...du1 F(t f − u1)

≤ Kw(t f /9)−1
∫

{
∑k

i=1 ui ≤u}

(
u −

k∑
i=1

ui
)
duk F(t f − uk)...du1 F(t f − u1)

≤ Kw(t f /9)−1u
∫

{
∑k

i=1 ui ≤u}

duk F(t f − uk)...du1 F(t f − u1)
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≤ Kw(t f /9)−1uP
( k∑

i=1

Ji ≥ kt f − u
)

≤
(
Kw(t f /9)−1u

)k+1
.

Therefore, the claim holds by induction.
We consider the following two cases that when t is very close to nt f and not.

Case 1. (n − 1/12)t f ≤ t < nt f ;
At first, by (2.10), we obtain A1 + A2 + A3 ≤ 3P(U 3

r ≥ t f /4) ≤ cr2. On the other hand, by
(2.10), (2.11), Proposition 2.7, the change of the variables and the integration by parts,

B1 + B2 + B3 ≤ cr2
+ cn(nt f − t + r )n

+ cr
∫ t f /4+t−nt f

r
w(u)duP

( n∑
i=1

Ji ≥ t − u
)

≤ cnr + cn(nt f − t)n
+ cnr

∫ t f /4+t−nt f

r
(nt f − t + u)n(−dw(u))

≤ cnr + cn(nt f − t)n
+ cn(nt f − t)nrw(r ) + cnr

∫ t f /4+t−nt f

r
un(−dw(u))

≤ cn(r + (nt f − t)n).
In the third inequality, we used the fact that (a + b)k

≤ 2k(ak
+ bk) for all a, b > 0 and

k ∈ N and in the fourth inequality, we used the assumption that rw(r ) ≤ erφ(r−1) ≤ 1/(4e).
Therefore, since n ≍ t so that cn

≤ cect , we get the result in this case.

Case 2. (n − 1)t f ≤ t < (n − 1/12)t f ;
By (2.10), (2.11), Proposition 2.7 and the integration by parts, we obtain

A1 + A2 + A3 ≤ (36c1r/t f )2
+ cnrn−1

+ cr
∫ t f /4

r
w(u)duP

(n−1∑
i=1

Ji ≥ (n − 1)t f − u
)

≤ cnr + cnr
∫ t f /4

r
u(−dw(u)) ≤ cnr.

Since B1 + B2 + B3 ≤ 3, n ≍ t and (nt f − t) ≍ 1 in this case, we finish the proof. □

Lemma 2.15. There exists a constant L ∈ (0, 1) such that for all t, r > 0 satisfying t ≥ t f /2
and rt−1

≤ L,

P(Sr ≥ t) ≃

(r
t

)ct
≃ exp

(
−ct log

t
r

)
.

Proof. Fix r, t > 0 satisfying t ≥ t f /2 and r t−1
≤ L where the constant L will be chosen

later. Pick any te ∈ (0, t f ) such that w(te) ≥ 1 and let S∗ be the driftless subordinator with
Lévy measure 1(te,∞) · (−dw). By condition (Ker.), we can always find such constant te. Since
Sr ≥ S∗

r and jump sizes of S∗ are at least bigger than te, by Stirling’s formula, we get

P(Sr ≥ t) ≥ P(S∗

r ≥ t) ≥ P
(
S∗ jumps (⌊t/te⌋ + 1) times before time r

)
= exp

(
−rw(te)

)(rw(te)
)(⌊t/te⌋+1)

(⌊t/te⌋ + 1)!

≥ exp
(
−rw(te) − (⌊t/te⌋ + 3/2) log(⌊t/te⌋ + 1) + ⌊t/te⌋ + (⌊t/te⌋ + 1) log r

)
≥ exp

(
−ct log

t
r

+ t/(2te) − rw(te)
)

≥ exp
(
−ct log

t
r

+ t/(2te) − Ltw(te)
)
.
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Hence, by taking L sufficiently small so that Lw(te) ≤ 1/(2te), we get the lower bound.
On the other hand, by Chebyshev’s inequality and Lemma 2.5, for all λ > 0,

P(Sr ≥ t) ≤ e−λtE
[
eλSr

]
= exp

(
−λt +r

∫ t f

0
(eλu

−1)(−dw(u))
)

≤ exp
(
−λt +c0λreλt f

)
,

where c0 :=
∫ t f

0 u(−dw(u)) ∈ (0, ∞). Then, by taking λ = t−1
f log

(
t/(2c0r )

)
, we obtain

P(Sr ≥ t) ≤ exp
(
−

λt
2

)
≲ exp

(
−ct log

t
r

)
. □

3. Properties of the estimates HKγ,λ,k
J (Φ,Ψ ), HKγ,λ,k

D (Φ) and HKγ,λ,k
M (Φ,Ψ )

A function f : (0, ∞) → R is called a completely monotone function if f is infinitely
differentiable and (−1)n f (n)(λ) ≥ 0 for all n ∈ N and λ > 0. A Bernstein function is said to
be a complete Bernstein function if its Lévy measure has a completely monotone density with
respect to Lebesgue measure.

Lemma 3.1 ([8, Lemmas 3.1 and 3.2]). Assume that a family of non-negative functions
{ f (x, ·)}x∈M satisfies the weak scaling property uniformly with (α1, α2) for some 0 < α1 ≤

α2 < ∞, that is, there are constants c1, c2 > 0 such that for all x ∈ M,

c1(R/r )α1 ≤ f (x, R)/ f (x, r ) ≤ c2(R/r )α2 , 0 < r ≤ R < ∞.

Then for any α3 > α2, there is a family of complete Bernstein functions {ϕ(x, ·)}x∈M such that
for all x ∈ M and r > 0, we have that

f (x, r ) ≍ ϕ(x, r−α3 )−1 and ∂rϕ(x, r ) ≍ r−1ϕ(x, r ).

By Lemma 3.1, we can assume that all functions Φ(r ),Ψ (r ) and V (x, r ) are differentiable
in variable r and their derivatives are comparable to the function obtained by dividing r ,
i.e., Φ ′(r ) ≍ r−1Φ(r ), Ψ ′(r ) ≍ r−1Ψ (r ) and ∂r V (x, r ) ≍ r−1V (x, r ) for all r > 0 and x ∈ M .
Indeed, for example, by Lemma 3.1, we have V (x, r ) ≍ Ṽ (x, r ) := ϕ(x, r−d3 )−1 for some
complete Bernstein functions {ϕ(x, ·)}x∈M and d3 > d2. Then, for all r > 0 and x ∈ M ,

r∂r Ṽ (x, r ) ≍
r−d3ϕ′(x, r−d3 )

ϕ(x, r−d3 )2 ≍ Ṽ (x, r ).

Therefore, by using Ṽ instead of V , we get the desired properties.
Recall that for a strictly increasing function Φ : [0, ∞) ↦→ [0, ∞) which satisfies WS(α1, α2)

for some α2 ≥ α1 > 1 and Φ(0) = 0, a function M is determined by the relation (1.12),

t
M(t, l)

≍ Φ

(
l

M(t, l)

)
for all t, l > 0.

For example, if Φ(l) = lα for some α > 1, then we have M(t, l) = lα/(α−1)t−1/(α−1).

Lemma 3.2. (i) For t, l > 0, define

Φ1(t, l) := sup
s>0

{
l
s

−
t

Φ(s)

}
.

Then, Φ1(t, l) is strictly positive for all t, l > 0, non-increasing on (0, ∞) for fixed l > 0 and
satisfies (1.12). In other words, Φ1(t, l) is one of the explicit forms of the function M(t, l).
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(ii) M(Φ(l), l) ≍ 1 for all l > 0.
(iii) There are constants c3, c4 > 0 such that for all l > 0 and 0 < t ≤ T ,

c3

(
T
t

)−1/(α1−1)

≤
M(T, l)
M(t, l)

≤ c4

(
T
t

)−1/(α2−1)

.

Proof. (i) Fix t, l > 0 and define for s > 0,

g(s) :=
lΦ(s) − ts

sΦ(s)
, k(s) :=

Φ(s)
s

.

We also define k−1(x) := inf{s : k(s) ≥ x} for x > 0. Since Φ(s) ≍ sΦ ′(s) for all s > 0, there
exists a constant c1 > 0 such that

(sΦ(s))2g′(s) = s(tsΦ ′(s) − lk(s)Φ(s)) ≥ sΦ(s)(c1t − lk(s)).

It follows that for s∗ := k−1(c1t/ l), we have Φ1(t, l) = sups>0 g(s) = sups≥s∗ g(s) ≤ l/s∗.
On the other hand, for any a > 1, we have

Φ1(t, l) ≥
l

as∗

−
t

Φ(as∗)
≥

l
as∗

− c2
t

aα1Φ(s∗)
=

l
as∗

(
1 −

c−1
1 c2

aα1−1

)
.

Hence, by choosing a = 2 ∨ (2c−1
1 c2)1/(α1−1), we get Φ1(t, l) ≍ l/s∗. Then, we conclude that

Φ

(
l

Φ1(t, l)

)
≍ Φ(s∗) = s∗k(s∗) ≍

t
Φ1(t, l)

.

(ii), (iii) These are consequences of the relation (1.12). □

By Lemma 3.2(iii) and Lemma 3.1, we can assume that M(t, l) is differentiable in variable
t for every fixed l > 0 and there exists a constant c1 > 1 such that for all t, l > 0,

c−1
1 t−1M(t, l) ≤ −∂tM(t, l) ≤ c1t−1M(t, l). (3.1)

From [8, Lemma 5.1], we get the following time derivative estimates for q(a, t, x, l;Φ,M).

Lemma 3.3. For every a > 0, there are constants c1, c2 > 0 such that⏐⏐∂t qd (a, t, x, l;Φ,M)
⏐⏐ ≤ c1t−1qd (c2, t, x, l;Φ,M), t, l > 0, x ∈ D,

Moreover, there are constants c3 > 0 and cu ∈ (1, ∞) such that for all x ∈ D,

∂t qd (a, t, x, l;Φ,M) ≥ c3t−1qd (a, t, x, l;Φ,M) if Φ(l) ≥ cu t.

We obtain the upper time derivative estimates for q j (t, x, l;Φ,Ψ ) and aγ

k (t, x, y).

Lemma 3.4. (i) There is a constant c1 > 0 such that for all t, l > 0 and x ∈ D,⏐⏐∂t q j (t, x, l;Φ,Ψ )
⏐⏐ ≤ c1t−1q j (t, x, l;Φ,Ψ ).

(ii) For all γ ∈ [0, 1), t > 0, x, y ∈ D and j ∈ {1, 2},⏐⏐∂t a
γ

k (t, x, y)
⏐⏐ ≤ 2t−1aγ

k (t, x, y).

Proof. (i) Observe that

∂t q j (t, x, l;Φ,Ψ ) =
Ψ (l)V (x, l) − t2∂r V (x,Φ−1(t))∂tΦ

−1(t)
(tV (x,Φ−1(t)) + Ψ (l)V (x, l))2 ,
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By using the comparisons ∂r V (x, r ) ≍ r−1V (x, r ) and ∂tΦ
−1(t) ≍ t−1Φ−1(t), we get

|∂t q j (t, x, l;Φ,Ψ )| ≤
ctV (x,Φ−1(t)) + Ψ (l)V (x, l)

(tV (x,Φ−1(t)) + Ψ (l)V (x, l))2 ≤ ct−1q j (t, x, l;Φ,Ψ )

(ii) From the definition of aγ

j , we get

|∂t a
γ

1 (t, x, y)| =

(
γ

t + Φ(δD(x))
+

γ

t + Φ(δD(y))

)
aγ

1 (t, x, y) ≤ 2t−1aγ

1 (t, x, y),

|∂t a
γ

2 (t, x, y)| =

(
γ

t + (1 + t)Φ(δD(x))
+

γ

t + (1 + t)Φ(δD(y))

)
aγ

2 (t, x, y)
1 + t

≤ 2t−1aγ

2 (t, x, y). □

4. Proof of main theorems

In this section, we give the proof for Theorems 1.15, 1.16, 1.18 and 1.19. Throughout this
section, we assume that there exist γ ∈ [0, 1), λ ≥ 0 and k ∈ {1, 2} such that q(t, x, y) enjoys
the one of the estimates HKγ,λ,k

J (Φ,Φ), HKγ,λ,k
D (Φ) and HKγ,λ,k

M (Φ,Ψ ). Let p(t, x, y) be given
by (1.5).

Proposition 4.1. (On-diagonal lower bounds) If condition (S.Poly.)(ts) holds, then there exists
c > 0 such that for all (t, x, y) ∈ (0, ts] × D × D satisfying Φ(ρ(x, y))φ(t−1) ≤ 1/(4e2),

p(t, x, y) ≥ cJ γ

k (t, x, y). (4.1)

On the other hand, if condition (L.Poly.) holds and λ = 0, then for every fixed T > 0, (4.1)
holds for all (t, x, y) ∈ [T, ∞) × D × D satisfying Φ(ρ(x, y))φ(t−1) ≤ 1/(4e2).

Proof. Since the proofs are similar, we only give the proof when condition (S.Poly.)(ts) holds.
Fix (t, x, y) ∈ (0, ts] × D × D satisfying Φ(ρ(x, y))φ(t−1) ≤ 1/(4e2) and set l := ρ(x, y).
By Proposition 2.7, there is a constant ε2 ∈ (0, 1/2] such that for all t ∈ (0, ts], we have that
P(Sε2Φ(l) ≥ t) ≤ 1/2. Then, by the Markov property, we get

P(S2ε2Φ(l) ≥ t) ≥ P(S2ε2Φ(l) − Sε2Φ(l) ≥ t or Sε2Φ(l) ≥ t)

≥ 1 − (1 − P(Sε2Φ(l) ≥ t))2
≥

3
2
P(Sε2Φ(l) ≥ t).

We used the inequality that 1 − (1 − x)2
≥ 3x/2 for x ∈ (0, 1/2]. It follows that

P(S2ε2Φ(l) ≥ t) − P(Sε2Φ(l) ≥ t) ≥
1
2
P(Sε2Φ(l) ≥ t).

and hence by the scaling properties of V and Φ and the monotonicity of r ↦→ aγ

k (r, x, y),

p(t, x, y) ≥ c
∫ 2ε2Φ(l)

ε2Φ(l)

aγ

k (r, x, y)
V (x,Φ−1(r ))

drP(Sr ≥ t) ≥ c2
aγ

k (Φ(l), x, y)
V (x, l)

P(Sε2Φ(l) ≥ t). (4.2)

Besides, by the integration by parts and Lemma 2.6,

p(t, x, y) ≥ c
∫ 1/(2e2φ(t−1))

ε2Φ(l)

aγ

k (r, x, y)
V (x,Φ−1(r ))

drP(Sr ≥ t)
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≥ −cw(t)
∫ 1/(2e2φ(t−1))

ε2Φ(l)
rdr

(
aγ

k (r, x, y)
V (x,Φ−1(r ))

)
− c3

aγ

k (Φ(l), x, y)
V (x, l)

P(Sε2Φ(l) ≥ t)

≥ c4w(t)
∫ 1/(2e2φ(t−1))

Φ(l)

aγ

k (r, x, y)
V (x,Φ−1(r ))

dr − c3
aγ

k (Φ(l), x, y)
V (x, l)

P(Sε2Φ(l) ≥ t). (4.3)

Finally, by Corollary 2.13, (4.2) and (4.3), we deduce that

(1 + c3 + c2)p(t, x, y)

≥c
aγ

k (1/φ(t−1), x, y)
V
(
x,Φ−1(1/φ(t−1))

) + c2c4w(t)
∫ 1/(2e2φ(t−1))

Φ(l)

aγ

k (r, x, y)
V (x,Φ−1(r ))

dr. □

In the rest of this section, we fix (x, y) ∈ D × D and then define l := ρ(x, y) and
V (r ) := V (x, r ).

4.1. Pure jump case

In this subsection, we give the proofs when q(t, x, y) enjoys the estimate HKγ,λ,k
J (Φ,Φ).

Proof of Theorem 1.15. Fix t ∈ (0, ts]. Since we only deal with small time t , we can assume
that λ = 0. By (1.5) and the integration by parts, we have that for L := 1/(4e2),

p(t, x, y) ≍

∫
∞

0
q(r, x, y)drP(Sr ≥ t)

=

∫ L/φ(t−1)

0
q(r, x, y)drP(Sr ≥ t) −

∫
∞

L/φ(t−1)
q(r, x, y)drP(Sr ≤ t)

= q
(
L/φ(t−1), x, y

)
−

∫ L/φ(t−1)

0
P(Sr ≥ t)dr q(r, x, y) +

∫
∞

L/φ(t−1)
P(Sr ≤ t)dr q(r, x, y)

=: q
(
L/φ(t−1), x, y

)
− I1 + I2. (4.4)

Case 1. Φ(l)φ(t−1) ≤ 1/(4e2);
By Proposition 4.1, it remains to prove the upper bound. We first note that

q
(
L/φ(t−1), x, y

)
≤ c

aγ

k (1/φ(t−1), x, y)
V
(
Φ−1(1/φ(t−1))

) .
Next, by Proposition 2.7, Lemma 3.4 and the definition of HKγ,λ,k

J (Φ,Φ),

|I1| ≤ cw(t)
∫ L/φ(t−1)

0
q(r, x, y)dr

≤ cw(t)
∫ Φ(l)/2

0

raγ

k (r, x, y)
Φ(l)V (l)

dr + cw(t)
∫ L/φ(t−1)

Φ(l)/2

aγ

k (r, x, y)
V (Φ−1(r ))

dr =: I1,1 + I1,2.

Observe that since γ < 1 and r ↦→ r2γ aγ

k (r, x, y) is increasing, we have that

I1,1 ≤ cw(t)
∫ Φ(l)/2

0

r2γ aγ

k (r, x, y)r1−2γ

Φ(l)V (l)
dr

≤ cw(t)
Φ(l)2γ aγ

k (Φ(l), x, y)
Φ(l)V (l)

∫ Φ(l)/2

0
r1−2γ dr
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≤ cw(t)aγ

k (Φ(l), x, y)
Φ(l)
V (l)

≤ cw(t)
∫ Φ(l)

Φ(l)/2

aγ

k (r, x, y)
V (Φ−1(r ))

dr ≤ I1,2.

Therefore, we have that |I1| ≤ cI1,2 ≤ cJ γ

k (t, x, y).
Lastly, by Lemma 3.4 and the change of variables, we get

|I2| ≤ c
∫

∞

L/φ(t−1)

aγ

k (r, x, y)
r V (Φ−1(r ))

dr ≤ caγ

k (1/φ(t−1), x, y)
∫

∞

L

1
sV
(
Φ−1(s/φ(t−1))

)ds

≤ c
aγ

k (1/φ(t−1), x, y)
V
(
Φ−1(1/φ(t−1))

) ∫ ∞

L
s−1−d1/α2ds = c

aγ

k (1/φ(t−1), x, y)
V
(
Φ−1(1/φ(t−1))

) .
Therefore, we obtain the upper bound from (4.4).

Case 2. Φ(l)φ(t−1) > 1/(4e2);
In this case, we have

q
(
L/φ(t−1), x, y

)
≤ c

aγ

k (1/φ(t−1), x, y)
φ(t−1)Φ(l)V (l)

.

By Proposition 2.7, Lemma 3.4 and the fact that φ(t−1) ≥ e−1w(t),

|I1| ≤ cw(t)
∫ L/φ(t−1)

0

raγ

k (r, x, y)
Φ(l)V (l)

dr ≤ cw(t)
aγ

k (1/φ(t−1), x, y)
φ(t−1)2γ

∫ L/φ(t−1)

0

r1−2γ

Φ(l)V (l)
dr

≤ cw(t)aγ

k (1/φ(t−1), x, y)
φ(t−1)−2

Φ(l)V (l)
≤ c

aγ

k (1/φ(t−1), x, y)
φ(t−1)Φ(l)V (l)

.

Moreover, by Lemmas 3.4, 2.11, 2.4(ii) and the change of variables,

|I2| ≤ c
∫ b−1(t)

L/φ(t−1)

aγ

k (r, x, y)
V (l)Φ(l)

dr + c
∫

∞

b−1(t)

aγ

k (r, x, y) exp
(
−r H (φ

′
−1(t/r ))

)
V (l)Φ(l)

dr

≤ c
aγ

k (1/φ(t−1), x, y)
φ(t−1)V (l)Φ(l)

[
1 +

∫
∞

1
exp

(
−b−1(t)s H

(
φ

′
−1(t/(b−1(t)s))

))
ds
]

≤ c
aγ

k (1/φ(t−1), x, y)
φ(t−1)V (l)Φ(l)

[
1 +

∫
∞

1
exp(−s)ds

]
≤ c

aγ

k (1/φ(t−1), x, y)
φ(t−1)V (l)Φ(l)

.

In the third inequality, we used the fact that s ↦→ H
(
φ

′
−1(t/(b−1(t)s))

)
is increasing and

b−1(t)H
(
φ

′
−1(t/(b−1(t)))

)
= 1. This proves the upper bound.

On the other hand, by Corollary 2.13 and the definition of HKγ,λ,k
J (Φ,Φ), we obtain

p(t, x, y) ≥ c
aγ

k (1/φ(t−1), x, y)
φ(t−1)V (l)Φ(l)

. □

Proof of Theorem 1.16. If λ = 0, then by using Proposition 2.8 instead of Proposition 2.7,
the proof is essentially the same as the one for Theorem 1.15. Hence, we omit it in here.
Now, assume that λ > 0 and RD = diam(D) < ∞. Let T∗ := 1/(4e2φ(T −1)). Then, by
Proposition 2.8, Lemma 3.4 and the integration by parts,

p(t, x, y) ≍

∫ T∗

0
q(r, x, y)drP(Sr ≥ t) + Φ(δD(x))γΦ(δD(y))γ

∫
∞

T∗

e−λr drP(Sr ≥ t)

≤ q(T∗, x, y)P(ST∗
≥ t)
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+ cw(t)
∫ T∗

0
q(r, x, y)dr + λΦ(δD(x))γΦ(δD(y))γ

∫
∞

T∗

e−λrP(Sr ≥ t)dr

=: q(T∗, x, y)P(ST∗
≥ t) + J1 + J2 ≤ cw(t)Φ(δD(x))γΦ(δD(y))γ + J1 + J2.

By Proposition 2.8 and Lemma 2.3, we obtain

J2 ≤ cΦ(δD(x))γΦ(δD(y))γ
(

w(t)
∫ 1/(4e2φ(t−1))

T∗

re−λr dr +

∫
∞

1/(4e2φ(t−1))
e−λr dr

)
≤ Φ(δD(x))γΦ(δD(y))γ

(
w(t) + exp

(
−c/φ(t−1)

))
≤ cΦ(δD(x))γΦ(δD(y))γ

(
w(t) + φ(t−1)δ2+1)

≤ cw(t)Φ(δD(x))γΦ(δD(y))γ .

In the third inequality, we used the fact that for every δ > 0, e−1/x
≤ δδe−δxδ for all x > 0.

On the other hand, we note that

2
∫ T∗

T∗Φ(l)/(2Φ(RD ))

aγ

1 (r, x, y)
V (Φ−1(r ))

dr ≥

∫ T∗Φ(l)/Φ(RD )

T∗Φ(l)/(2Φ(RD ))

raγ

1 (r, x, y)
V (l)Φ(l)

dr +

∫ T∗

T∗/2

aγ

1 (r, x, y)
V (Φ−1(r ))

dr

≥ c
aγ

1 (Φ(l), x, y)Φ(l)
V (l)

+ cΦ(δD(x))γΦ(δD(y))γ

≥ c
∫ T∗Φ(l)/(2Φ(RD ))

0

raγ

1 (r, x, y)
V (l)Φ(l)

dr + cΦ(δD(x))γΦ(δD(y))γ .

Thus, by the scaling properties of aγ

1 , V and Φ, we get

J1 ≍ w(t)
∫ T∗

T∗Φ(l)/(2Φ(RD ))

aγ

1 (r, x, y)
V (Φ−1(r ))

dr ≍ w(t)
∫ 2Φ(RD )

Φ(l)

aγ

1 (r, x, y)
V (Φ−1(r ))

dr

≥ cw(t)Φ(δD(x))γΦ(δD(y))γ ≥ cJ2.

This proves the upper bound.
On the other hand, by essentially the same proof as the one for Proposition 4.1, we get the

lower bound. We omit the details in here. □

Proof of Theorem 1.18. If λ = 0, then by using Proposition 2.9 instead of Proposition 2.7 and
the fact that φ(t−1) ≍ t−1 for all t ≥ T which follows from Lemma 2.1(i), we get the desired
results. Hence, we assume that λ > 0 and RD = diam(D) < ∞. Let L > 0 be the minimum of
the constants in Propositions 2.9 and 2.10. By the integration by parts, Proposition 2.10 with
k = λ/2 and the argument given in the proof of Theorem 1.16,

p(t, x, y) ≤ c
∫ LT

0
q(r, x, y)drP(Sr ≥ t) + cΦ(δD(x))γΦ(δD(y))γ

∫
∞

LT
e−λr drP(Sr ≥ t)

≤ c
[

1{0<β<1} exp
(
−c1tβ

)
+ 1{β=1} exp

(
−

c1

2
t
)](

q(LT, x, y) +

∫ 2Φ(RD )

Φ(l)

aγ

1 (r, x, y)
V (Φ−1(r ))

dr
)

+ cλΦ(δD(x))γΦ(δD(y))γ
[

1{0<β<1} exp
(
−c1tβ

)
+ 1{β=1} exp

(
−

c1

2
t
)] ∫ Lt

LT
re−λr/2dr

+ cλΦ(δD(x))γΦ(δD(y))γ
∫

∞

Lt
e−λrP(Sr ≥ t)dr

≤ c
[

1{0<β<1} exp
(
−c1tβ

)
+ 1{β=1} exp

(
−

c1

2
t
)] ∫ 2Φ(RD )

Φ(l)

aγ

1 (r, x, y)
V (Φ−1(r ))

dr

+ cλe−λLtΦ(δD(x))γΦ(δD(y))γ .
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This proves the upper bound.
On the other hand, by the proof for Proposition 4.1, we can obtain that

p(t, x, y) ≥ cw(t)
∫ 2Φ(RD )

Φ(l)

aγ

1 (r, x, y)
V (Φ−1(r ))

dr.

Furthermore, by Corollary 2.12 and the fact that φ(t−1)−1
≍ t for all t ≥ T , there exists a

constant L1 > 0 such that

p(t, x, y) ≥ c inf
r∈(0,L1t)

q(r, x, y) ≥ ce−λL1tΦ(δD(x))γΦ(δD(y))γ .

Hence, we get the lower bound. □

4.2. Diffusion case

In this subsection, we provide the proof when q(t, x, y) enjoys the estimate HKγ,λ,k
D (Φ).

Set k(c0, r ) := aγ

k (r, x, y)q(c0, r, x, l;Φ,M) for c0 > 0 and r > 0 where the function M is
determined by the relation (1.12).

Proof of Theorem 1.15. Since we only consider small time t , we can assume that λ = 0. For
every fixed t ∈ (0, ts], by the integration by parts, we have that for L := 1/(4e2),

p(t, x, y) ≃

∫
∞

0
k(c, r )drP(Sr ≥ t)

= k(c, L/φ(t−1)) −

∫ L/φ(t−1)

0
P(Sr ≥ t)dr k(c, r ) +

∫
∞

L/φ(t−1)
P(Sr ≤ t)dr k(c, r )

=: k(c, L/φ(t−1)) − I1 + I2.

Case 1. Φ(l)φ(t−1) ≤ 1/(4e2);
Note that by a similar proof as the one given in Section 4.1, we obtain

I2 ≤ ck
(
c1, 1/(4e2φ(t−1))

)
≤

aγ

k (1/φ(t−1), x, y)
V
(
Φ−1(1/φ(t−1))

) .
Hence, by Proposition 4.1, it remains to get upper bound for I1.

By Lemma 3.3, Proposition 2.7, the change of variables and Lemma 3.2(iii),

|I1| ≤ cw(t)
∫ Φ(l)/2

0

aγ

k (r, x, y)
V (Φ−1(r ))

e−c2M(r,l)dr + cw(t)
∫ L/φ(t−1)

Φ(l)/2

aγ

k (r, x, y)
V (Φ−1(r ))

dr

≤ cw(t)Φ(l)1−2γ

∫ 1/2

0

(Φ(l)s)2γ aγ

1 (Φ(l)s, x, y)
s2γ V (Φ−1(Φ(l)s))

e−c2M(Φ(l)s,l)ds + cJ γ

k (t, x, y)

≤ cw(t)
Φ(l)aγ

1 (Φ(l)/2, x, y)
V (l)

∫ 1/2

0
s−d2/α1−2γ exp

(
−c3s−1/(α2−1))ds + cJ γ

k (t, x, y)

≤ cw(t)aγ

k (Φ(l), x, y)
Φ(l)
V (l)

+ cJ γ

k (t, x, y)

≤ cw(t)
∫ Φ(l)

Φ(l)/2

aγ

k (r, x, y)
V (Φ−1(r ))

dr + cJ γ

k (t, x, y) ≤ cJ γ

k (t, x, y).

Case 2. Φ(l)φ(t−1) > 1/(4e2);
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Define for every a > 0 and r > 0,

g(a, r ) :=
exp

(
−aM(r, l)

)
r1+2γ V (Φ−1(r ))

.

Then, we see that

dg(a, r )
dr

=
(
−ar∂rM(r, l) − (1 + 2γ ) − r∂r V (Φ−1(r )) · V (Φ−1(r ))−1) exp

(
−aM(r, l)

)
r2+2γ V (Φ−1(r ))

≥
(
ac4M(r, l) − c5

)exp
(
−aM(r, l)

)
r2+2γ V (Φ−1(r ))

,

for some positive constants c4 and c5 independent of a and r . By Lemma 3.2(ii) and (iii), for
each fixed a > 0, there exists a constant δ > 0 such that g(a, r ) is increasing on 0 < r < δΦ(l).
By Lemma 3.3 and the fact that r ↦→ r2γ aγ

k (r, x, y) is increasing on r > 0, we get

|I1| ≤ c
∫ L/φ(t−1)

0
r−1k(c6, r )dr = c

∫ L/φ(t−1)

0
r2γ aγ

k (r, x, y)g(c6, r )dr

≤ cφ(t−1)−(1+2γ )aγ

k (1/φ(t−1), x, y) sup
0<r<φ(t−1)−1

g(c6, r ).

Therefore, if φ(t−1)−1 < δ(c6)Φ(l), then we get

|I1| ≤ caγ

k (1/φ(t−1), x, y)
exp

(
−c7M(1/φ(t−1), l)

)
V
(
Φ−1(1/φ(t−1))

) .

Otherwise, if φ(t−1)−1
≥ δ(c6)Φ(l), then φ(t−1)−1

≍ Φ(l) and hence by Lemma 3.2(iii),

|I1| ≤ cφ(t−1)−(1+2γ )aγ

k (1/φ(t−1), x, y) sup
δ(c6)Φ(l)<r<φ(t−1)−1

g(c6, r )

≤ caγ

k (1/φ(t−1), x, y)
exp

(
−c9M(1/φ(t−1), l)

)
V
(
Φ−1(1/φ(t−1))

) .

Next, by Lemmas 3.3, 2.11 and 2.4(ii), we have

|I2| ≤ c
∫ b−1(t)

L/φ(t−1)
r−1k(c6, r )dr + c

∫
∞

b−1(t)
r−1k(c6, r ) exp

(
−r H (φ

′
−1(t/r ))

)
dr

=: I2,1 + I2,2.

By Lemmas 2.4(ii) and 3.2(iii), we have

I2,1 ≤ caγ

k (1/φ(t−1), x, y)
exp

(
−c10M(1/φ(t−1), l)

)
V
(
Φ−1(1/φ(t−1))

) .

To control the exponential terms in I2,2, we consider the following two functions that
e1(r ) := r H (φ

′
−1(t/r )) and e2(r ) := M(r, l). (cf. [8].) Note that e1 is non-decreasing and

e2 is non-increasing. Moreover, by the definition of the function b, e1(b−1(t)) = 1 for all
t > 0 and e1(∞) = ∞ and by Lemma 3.2(ii) and (iii), e2(Φ(l)) ≍ 1 for all l > 0 and
e2(∞) = 0. Thus, by the intermediate value theorem, there are constants a1 > 0 and a2 > 0
independent of t and l such that for all t, l > 0 with Φ(l)φ(t−1) > 1/(4e2), there exists a
unique r∗

= r∗(t, l) ∈ (b−1(t), a1Φ(l)) such that e1(r∗) = a2e2(r∗). Now, we have

aγ

k (1/φ(t−1), x, y)−1 I2,2
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≤c
∫ r∗

b−1(t)

exp
(
−c6M(r, l)

)
r V (Φ−1(r ))

dr + c
∫

∞

r∗

exp
(
−r H (φ

′
−1(t/r ))

)
r V (Φ−1(r ))

dr =: I2,2,1 + I2,2,2.

By the change of variables and Lemma 3.2(ii) and (iii), we get

I2,2,1 = c
∫ 1

b−1(t)/r∗

exp
(
−c6M(r∗s, l)

)
sV (Φ−1(r∗s))

ds

≤ c
exp

(
−

c6
2 M(r∗, l)

)
V (Φ−1(r∗))

∫ 1

0
s−1−d2/α1 exp

(
−cs−1/(α2−1))ds ≤ c

exp
(
−

c6
2 M(r∗, l)

)
V
(
Φ−1(1/φ(t−1))

) .
Also, by the change of variables, we have

I2,2,2 = c
∫

∞

r∗/b−1(t)

exp
(
−b−1(t)s H

(
φ

′
−1(t/(b−1(t)s))

))
sV (Φ−1(b−1(t)s))

ds

≤ c
exp

(
−e1(r∗)

)
V (Φ−1(b−1(t)))

∫
∞

1
s−1−d1/α2ds ≤ c

exp
(
−a2M(r∗, l)

)
V
(
Φ−1(1/φ(t−1))

) .
To determine the function M(r∗, l), we note that by (1.12), e1(r∗) ≍ e2(r∗) implies that

r∗

r∗ H (φ ′−1(t/r∗))
≍ Φ

(
l

r∗ H (φ ′−1(t/r∗))

)
.

Let s∗
= 1/H (φ

′
−1(t/r∗)). Then, b(s∗)/s∗

= φ′(H−1(1/s∗)) = t/r∗. Therefore, by
Lemma 2.4(ii), the function N (t, l) := a2M(r∗, l) = e1(r∗) = r∗/s∗ is determined by the
relation

1
φ
(
N (t, l)/t

) ≍ b−1
(

t
N (t, l)

)
= s∗

≍ Φ

(
l

N (t, l)

)
.

Since M(b−1(t), l) ≥ ce1(r∗), we finish the proof for the upper bound.
Now, we prove the lower bound. By Lemma 3.3 and the integration by parts, we have

p(t, x, y) ≥ −c
∫

∞

Nb−1(t)
k(c8, r )drP(Sr ≤ t)

≥ c
∫ Φ(l)/cu

Nb−1(t)
r−1P(Sr ≤ t)k(c8, r )dr − c

∫
∞

Φ(l)/cu

r−1P(Sr ≤ t)k(c9, r )dr

≥ c10

∫
∞

Nb−1(t)
r−1P(Sr ≤ t)k(c8, r )dr − c11

∫
∞

Φ(l)/cu

r−1P(Sr ≤ t)k(c9, r )dr

:= J1 − J2, (4.5)

where N := (e − 2)/(8cue2(e2
− e)). Note that by Lemma 2.4(ii), we have that Nb−1(t) ≤

1/(8e2cuφ(t−1)) ≤ Φ(l)/(2cu). By taking cu large enough, we may assume that N ∈ (0, 1/2).
Then, by Lemmas 2.11 and 2.4(ii),

J1 ≥ caγ

k (1/φ(t−1), x, y)φ(t−1)−2γ

∫
∞

Nb−1(t)

exp
(
−c12r H (φ

′
−1(t/r )) − c8M(r, l)

)
r1+2γ V (Φ−1(r ))

dr.

Let e3(r ) = c12r H (φ
′
−1(t/r )) and e4(r ) = c8M(r, l) for r > 0. By the same argument as in

the proof for the upper bounds, there are constants a3, a4 > 0 independent of t and l such that
for all t, l > 0 with Φ(l)φ(t−1) > 1/(4e2), there exists a unique r∗ = r∗(t, l) ∈ (b−1(t), a3Φ(l))
such that e3(r∗) = a4e4(r∗). Moreover, from the monotonicity,

e3(r ) < a4e4(r ) for r ∈ (b−1(t), r∗) and e3(r ) > a4e4(r ) for r > r∗.
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Therefore, by the change of variables, Lemma 2.4(ii) and the weak scaling properties,

φ(t−1)−2γ

∫
∞

Nb−1(t)

exp
(
−e3(r ) − e4(r )

)
r1+2γ V (Φ−1(r ))

dr =

∫
∞

N

exp
(
−e3(b−1(t)s) − e4(b−1(t)s)

)
s1+2γ V

(
Φ−1(b−1(t)s)

) ds

≥
c

V
(
Φ−1(φ(t−1)−1)

) ∫ r∗/b−1(t)

r∗/(2b−1(t))
s−1−d2/α1−2γ exp

(
−(1 + a4)e4(b−1(t)s)

)
ds

≥
c

V
(
Φ−1(φ(t−1)−1)

) (r∗/b−1(t))−d2/α1−2γ exp
(
−c12e4(r∗)

)
≥ c

exp
(
−2c12e4(r∗)

)
V
(
Φ−1(φ(t−1)−1)

) (r∗/b−1(t))−d2/α1−2γ exp
(c12

a4
e3(r∗)

)
≥ c

exp
(
−2c12e4(r∗)

)
V
(
Φ−1(φ(t−1)−1)

) (r∗/b−1(t))−d2/α1−2γ exp
( c12r∗

a4b−1(t)
e3(b−1(t))

)
≥ c

exp
(
−2c12e4(r∗)

)
V
(
Φ−1(φ(t−1)−1)

) .
In the last inequality, we used the fact that e3(b−1(t)) = c12 and that for every p > 0, there
exists a constant c(p) > 0 such that ex

≥ c(p)x p for all x > 0. It follows that

J1 ≥ c13aγ

k (1/φ(t−1), x, y)
exp

(
−c14e3(r∗)

)
V
(
Φ−1(φ(t−1)−1)

) .
On the other hand, by Lemma 2.11, we have that

J2 ≤ caγ

k (Φ(l), x, y)
∫

∞

Φ(l)

exp
(
−r H (φ

′
−1(t/r ))

)
r V (Φ−1(r ))

dr

≤ caγ

k (1/φ(t−1), x, y)
exp

(
−c15e3(Φ(l))

)
V (l)

.

Since e3(Ar ) ≥ Ae3(r ) for all r > 0 and A ≥ 1, from (4.5), we deduce that there exists a
constant A > 0 such that Φ(l) > Ar∗ implies that

p(t, x, y) ≥ caγ

k (1/φ(t−1), x, y)
exp

(
−c14e3(r∗)

)
V
(
Φ−1(φ(t−1)−1)

) ,
which yields the result. Otherwise, if Φ(l) ≤ Ar∗, then by Lemma 3.2(ii) and (iii),

e3(b−1(t)) = c12 ≥ ce4(Φ(l)) ≥ ce4(r∗) = ca−1
4 e3(r∗) ≥ ca−1

4 (r∗/b−1(t))e3(b−1(t)).

It follows that b−1(t) ≍ r∗ ≍ Φ(l) in this case. Since by Corollary 2.13, we have that

p(t, x, y) ≥ caγ

k (1/φ(t−1), x, y)
1

V
(
Φ−1(φ(t−1)−1)

) ,
we still get the result in this case. □

Proof of Theorems 1.16 and 1.18. Observe that both HKγ,λ,k
J (Φ,Φ) and HKγ,λ,k

D (Φ) give
the same estimates for q(t, x, y) on near diagonal situation, that is, when t ≥ cρ(x, y) for
some constant c > 0. Using this fact, we deduce the result by the same argument given in
Section 4.1. □
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4.3. Mixed type case

In this subsection, we give the proof when q(t, x, y) enjoys the estimate HKγ,λ,k
M (Φ,Ψ ).

Since the ideas for proofs are similar, we only provide the proof of Theorem 1.15. This
completes the proof for Theorems 1.15, 1.16 and 1.18.

Proof of Theorem 1.15. Define for r > 0 and c0 > 0,

m1(r ) := aγ

k (r, x, y)q j (r, x, l;Φ,Ψ ), m2(c0, r ) := aγ

k (r, x, y)qd (c0, r, x, l;Φ,M).

We also define for t > 0 and c0 > 0,

p1(t) :=

∫
∞

0
m1(r )drP(Sr ≥ t), p2(c0, t) :=

∫
∞

0
m2(c0, r )drP(Sr ≥ t).

Then, from the definition, we get

p(t, x, y) ≃ p1(t) + p2(c, t). (4.6)

Case 1. Φ(l)φ(t−1) ≤ 1/(4e2);
By the proof given in Section 4.2, for each fixed c0 > 0, p2(c0, t) ≍ J γ

1 (t, x, y).
On the other hand, since Ψ (l) ≥ Φ(l) for all l > 0, by the proof given in Section 4.1,
p1(t) ≤ c

∫
∞

0 aγ

1 (r, x, y)q j (r, x, l;Φ,Φ)drP(Sr ≥ t) ≤ cJ γ

1 (t, x, y). Therefore, (4.6) yields
the result.

Case 2. Φ(l)φ(t−1) > 1/(4e2);
By the proof given in Section 4.2, we get

p2(c, t) ≃ aγ

k (1/φ(t−1), x, y)
exp

(
−cN (t, ρ(x, y))

)
V
(
Φ−1(1/φ(t−1))

) .

On the other hand, by Lemma 3.4, the integration by parts, Proposition 2.7 and Lemma 2.11,

p1(t) = m1
(
1/(4e2φ(t−1))

)
−

∫ 1/(4e2φ(t−1))

0
P(Sr ≥ t)dr m1(r )

+

∫
∞

1/(4e2φ(t−1))
P(Sr ≤ t)dr m1(r )

≤ c
aγ

k (1/φ(t−1), x, y)
φ(t−1)V (l)Ψ (l)

+ cw(t)
∫ 1/(4e2φ(t−1))

0

r2γ aγ

k (r, x, y)
V (l)Ψ (l)

r1−2γ dr

+ caγ

k (1/φ(t−1), x, y)
∫

∞

1/(4e2φ(t−1))

exp
(
−r H (φ

′
−1(t/r ))

)
V (l)Ψ (l)

dr

≤ c
aγ

k (1/φ(t−1), x, y)
φ(t−1)V (l)Ψ (l)

.

We also have that by Corollary 2.13,

p1(t, x, y) ≥ c
aγ

k (1/φ(t−1), x, y)
φ(t−1)V (l)Ψ (l)

.

Hence, we get the result from (4.6). □
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4.4. Truncated kernel

In this subsection, we give the proof for Theorem 1.19. Throughout this subsection, we
further assume that condition (Trunc.)(t f ) holds.

Proposition 4.2. There are comparison constants independent of x and y such that for all
t ≥ (⌊d2/α1 + 2γ ⌋ ∨ 1/2)t f , it holds that

p(t, x, y) ≃ q(ct, x, y).

Proof. Note that by Lemma 2.1(i), φ(t−1) ≍ t−1 for all t ≥ t f . Thus, by Corollary 2.13,
we obtain the lower bound. Since condition (Trunc.)(t f ) implies condition (Sub.)(1,1), by
Theorem 1.18, there exists a constant a > 0 such that if λ = 0 and aΦ(ρ(x, y)) ≥ t , then
p(t, x, y) ≃ q(ct, x, y). Moreover, if λ > 0, then since D is bounded, by taking a small
enough, we can assume that there is no x, y ∈ D such that aΦ(ρ(x, y)) ≥ t . Hence, it remains
to prove the upper bound when aΦ(ρ(x, y)) < t . Assume that aΦ(ρ(x, y)) < t .

Let r0 and L be the constants in Proposition 2.14 and Lemma 2.15, respectively. Using the
same arguments as in the ones given in the proof of Theorem 1.15,

p(t, x, y) ≍

∫ Lt

0
q(r, x, y)drP(Sr ≥ t) −

∫
∞

Lt
q(r, x, y)drP(Sr ≤ t)

≤ cq(Lt, x, y) + c
∫ Lt

aLΦ(l)/2
r−1q(r, x, y)P(Sr ≥ t)dr.

Case 1. λ = 0;
If aLΦ(l)/2 ≥ r0, then by Lemma 2.15 and the fact that r ↦→ r2γ aγ

k (r, x, y) is increasing,∫ Lt

aLΦ(l)/2
r−1q(r, x, y)P(Sr ≥ t)dr ≤ c

∫ Lt

r0

r2γ aγ

k (r, x, y)
r1+2γ V (Φ−1(r ))

(r
t

)ct
dr

≤ ct2γ aγ

k (t, x, y)Lct
∫ Lt

r0

dr ≤ caγ

k (t, x, y)e−ct
≤ c

aγ

k (t, x, y)
V (Φ−1(t))

≍ q(Lt, x, y).

Otherwise, if aLΦ(l)/2 < r0, then by Proposition 2.14 and Lemma 2.15 and the weak
scaling properties of V and Φ,∫ Lt

aLΦ(l)/2
r−1q(r, x, y)P(Sr ≥ t)dr

≤ c exp
(
−ct log t

) ∫ r0

aLΦ(l)/2

r ⌊t/t f ⌋+2γ aγ

k (r, x, y)
r2γ V (Φ−1(r ))

dr + c
∫ Lt

r0

r2γ aγ

k (r, x, y)
r1+2γ V (Φ−1(r ))

(r
t

)ct
dr

≤ c
aγ

k (t, x, y)
V (Φ−1(t))

(
1 +

∫ r0

aLΦ(l)/2
r ⌊t/t f ⌋−2γ−d2/α1dr

)
≤ c

aγ

k (t, x, y)
V (Φ−1(t))

≍ q(Lt, x, y).

In the last inequality, we used the assumption that t/t f ≥ ⌊d2/α1 + 2γ ⌋.
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Case 2. λ > 0;
If aLΦ(l)/2 ≥ r0, then by Lemma 2.15,∫ Lt

aLΦ(l)/2
r−1q(r, x, y)P(Sr ≥ t)dr ≤ cΦ(δD(x))γΦ(δD(y))γ

∫ Lt

r0

r−1e−λr
(r

t

)ct
dr

≤ cΦ(δD(x))γΦ(δD(y))γ Lct
∫ Lt

r0

dr ≤ cΦ(δD(x))γΦ(δD(y))γ e−ct
≃ q(ct, x, y).

Otherwise, if aLΦ(l)/2 < r0, then by Proposition 2.14 and Lemma 2.15 and the above
calculation,∫ Lt

aLΦ(l)/2
r−1q(r, x, y)P(Sr ≥ t)dr

≤ ce−ct log t
∫ r0

aLΦ(l)/2

r ⌊t/t f ⌋+2γ aγ

k (r, x, y)
r2γ V (Φ−1(r ))

dr + cΦ(δD(x))γΦ(δD(y))γ e−ct

≤ cΦ(δD(x))γΦ(δD(y))γ
(

e−ct log t
∫ r0

aLΦ(l)/2
r ⌊t/t f ⌋−2γ−d2/α1dr + ce−ct

)
≤ cΦ(δD(x))γΦ(δD(y))γ e−ct

≃ q(ct, x, y). □

Proof of Theorem 1.19. By Proposition 4.2 and the second paragraph in its proof, it remains
to consider the case when Φ(l) ≤ t ≤ ⌊d2/α1 +2γ ⌋t f . Then, by using Proposition 2.14 instead
of Proposition 2.7, we get the result by the same argument as in the proof for Theorem 1.15.
We omit in here. □

Proof of Theorems 1.5, 1.6, 1.9 and 1.10. Let Φα(x) := xα . Then, we can check that
(J1) equals HK1/2,λ,1

J (Φα,Φα), (J2) equals HK1/2,0,1
J (Φα,Φα), (J3) equals HK1/2,0,2

J (Φα,Φα),
(J4) equals HK(α−1)/α,λ,1

J (Φα,Φα), (D1) equals HK1/2,λ,1
D (Φα), (D2) equals HK1/2,0,1

D (Φα) and
(D3) equals HK1/2,λ,2

D (Φα) where the underlying function V (x, r ) := rd for all x ∈ D and
r > 0. Hence, we can apply Theorems 1.15, 1.16, 1.18 and 1.19. Combining these results with
Proposition 1.22 and Remark 1.23, we get the result. □
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Appendix A

In this section, we give the sketch of proof of Proposition 1.22. Fix t > 0 and x, y ∈ D
satisfying Φ(ρ(x, y))φ(t−1) ≤ 1/(4e2) and set V (r ) := V (x, r ) and l := ρ(x, y) as before.

Lemma A.1. Fix p ∈ R. For 0 < A < B/2, define

Sp(A, B) :=

∫ B

A

1
r pV (Φ−1(r ))

dr.

Then, the followings are true.
(i) There exists a constant c > 0 independent of A and B such that

Sp(A, B) ≥ c
(

A1−pV (Φ−1(A))−1
+ B1−pV (Φ−1(B))−1).
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(ii) If d1 > α2(1 − p), then Sp(A, B) ≍ A1−pV (Φ−1(A))−1.
(iii) If d2 < α1(1 − p), then Sp(A, B) ≍ B1−pV (Φ−1(B))−1.
(iv) If d1 = d2 = (1 − p)α1 = (1 − p)α2, then Sp(A, B) ≍ log(B/A).

Proof. (i) By the monotonicities and the weak scaling properties of V and Φ,

2Sp(A, B) ≥

∫ 2A

A

1
r pV (Φ−1(r ))

dr +

∫ B

B/2

1
r pV (Φ−1(r ))

dr

≥
A1−p

2pV (Φ−1(2A))
+

B1−p

2V (Φ−1(B))
≥ c

(
A1−pV (Φ−1(A))−1

+ B1−pV (Φ−1(B))−1).
(ii), (iii) See [4, 2.12.16].
(iv) In this case, since the assumptions imply that V (r ) ≍ rd1 and Φ−1(r ) ≍ r1/α1 for all

r > 0, we get Sp(A, B) ≍
∫ B

A r−p−d1/α1dr =
∫ B

A r−1dr = log(B/A). □

Recall that δΦ
∗

(x, y) = Φ(δD(x))Φ(δD(y)). Without loss of generality, by symmetry, we can
assume that δD(x) ≤ δD(y). We first claim that if Φ(l)φ(t−1) ≤ 1/(4e2), then(

φ(t−1)−1
+ Φ(δD(x))

)(
φ(t−1)−1

+ Φ(δD(y))
)

≍ φ(t−1)−2
+ δΦ

∗
(x, y).

Indeed, it is clear that (RH S) ≤ (L H S) and we also have that

(L H S) ≤ φ(t−1)−2
+ δΦ

∗
(x, y) + 2φ(t−1)−1Φ(δD(x) + l)

≤ φ(t−1)−2
+ δΦ

∗
(x, y) + 2φ(t−1)−1(Φ(2δD(x)) + Φ(2l)

)
≤ cφ(t−1)−2

+ δΦ
∗

(x, y) + cΦ(δD(x))2
+ cΦ(l)2

≤ c(RH S).

In the third line, we used the fact that 2ab ≤ a2
+ b2 for a, b ∈ R, the weak scaling properties

of Φ and the assumption that φ(t−1)−1
≥ 4e2Φ(l). Thus, if Φ(l)φ(t−1) ≤ 1/(4e2), then

aγ

1 (1/φ(t−1), x, y) =

(
δΦ
∗

(x, y)(
φ(t−1)−1 + Φ(δD(x))

)(
φ(t−1)−1 + Φ(δD(y))

))γ

≍

(
δΦ
∗

(x, y)
φ(t−1)−2 + δΦ

∗
(x, y)

)γ

≍

(
1 ∧

δΦ
∗

(x, y)
φ(t−1)−2

)γ

≍

(
1 ∧

δΦ
∗

(x, y)γ

φ(t−1)−2γ

)
.

Now, We consider the following three scenarios.
(Sc.1) Φ(δD(x)) ≤ 4Φ(l).
(Sc.2) 4Φ(l) < Φ(δD(x)) and Φ(δD(y)) ≤ 1/(4e2φ(t−1)).
(Sc.3) 4Φ(l) < Φ(δD(x)) and Φ(δD(y)) > 1/(4e2φ(t−1)).
If (Sc.1) is true, then we have

Iγ

1 (t, x, y) ≍ δΦ
∗

(x, y)γ S2γ

(
Φ(l), 1/(2e2φ(t−1))

)
.

Else if (Sc.2) is true, then we have

Iγ

1 (t, x, y) ≍ S0
(
Φ(l),Φ(δD(x))/2

)
+ Φ(δD(x))γ Sγ

(
Φ(δD(x))/2,Φ(δD(y))

)
+ δΦ

∗
(x, y)γ S2γ

(
Φ(δD(y)), 1/(2e2φ(t−1))

)
.

Otherwise, if (Sc.3) is true, then we get

Fγ

1 (t, x, y) ≍ F0
1 (t, x, y) ≍ S0

(
Φ(l), 1/(2e2φ(t−1))

)
.

Hence, by applying Lemma A.1 with p = 0, γ and 2γ , we obtain the following estimates.
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(a) Suppose that d2/α1 < 1 − 2γ . Then,

Iγ

1 (t, x, y) ≍

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δΦ
∗

(x, y)γ φ(t−1)2γ−1V
(
Φ−1(1/φ(t−1))

)−1
, if (Sc.1) is true;

δΦ
∗

(x, y)γ φ(t−1)2γ−1V
(
Φ−1(1/φ(t−1))

)−1
, if (Sc.2) is true;

φ(t−1)−1V
(
Φ−1(1/φ(t−1))

)−1
, if (Sc.3) is true.

(b) Suppose that α1 = α2, d1 = d2 = (1−2γ )α1 and γ > 0. Then, V (r ) ≍ rd1 ,Φ(r ) ≍ rα1 and

Iγ

1 (t, x, y) ≍

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δΦ
∗

(x, y)γ log
(

1
Φ(l)φ(t−1)

)
, if (Sc.1) is true;

δΦ
∗

(x, y)γ log
(

1
Φ(δD(y))φ(t−1)

)
, if (Sc.2) is true;

φ(t−1)−1V
(
Φ−1(1/φ(t−1))

)−1
, if (Sc.3) is true.

(c) Suppose that 1 − 2γ < d1/α2 ≤ d2/α1 < 1 − γ . Then,

Iγ

1 (t, x, y) ≍

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δΦ
∗

(x, y)γΦ(l)1−2γ V (l)−1, if (Sc.1) is true;

δΦ
∗

(x, y)γΦ(δD(y))1−2γ V (δD(y))−1, if (Sc.2) is true;

φ(t−1)−1V
(
Φ−1(1/φ(t−1))

)−1
, if (Sc.3) is true.

(d) Suppose that α1 = α2, d1 = d2 = (1 − γ )α1 and γ > 0. Then, V (r ) ≍ rd1 ,Φ(r ) ≍ rα1 and

Iγ

1 (t, x, y) ≍

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δΦ
∗

(x, y)γΦ(l)1−2γ V (l)−1, if (Sc.1) is true;

Φ(δD(x))γ log
(

2Φ(δD(y))
Φ(δD(x))

)
, if (Sc.2) is true;

φ(t−1)−1V
(
Φ−1(1/φ(t−1))

)−1
, if (Sc.3) is true.

(e) Suppose that 1 − γ < d1/α2 ≤ d2/α1 < 1. Then,

Iγ

1 (t, x, y) ≍

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δΦ
∗

(x, y)γΦ(l)1−2γ V (l)−1, if (Sc.1) is true;

Φ(δD(x))V (δD(x))−1, if (Sc.2) is true;

φ(t−1)−1V
(
Φ−1(1/φ(t−1))

)−1
, if (Sc.3) is true.

(f) Suppose that d1 = d2 = α1 = α2. Then, V (r ) ≍ rd1 ,Φ(r ) ≍ rα1 and

Iγ

1 (t, x, y) ≍

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δΦ
∗

(x, y)γΦ(l)−2γ , if (Sc.1) is true;

log
(
Φ(δD(x))
Φ(l)

)
, if (Sc.2) is true;

log
(

1
Φ(l)φ(t−1)

)
, if (Sc.3) is true.

(g) Suppose that 1 < d1/α2. Then,

Iγ

1 (t, x, y) ≍

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δΦ
∗

(x, y)γΦ(l)1−2γ V (l)−1, if (Sc.1) is true;

Φ(l)V (l)−1, if (Sc.2) is true;

Φ(l)V (l)−1, if (Sc.3) is true.
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Together with the fact that φ(t−1) ≥ t−1
∫ t

0 e−s/tw(s)ds ≥ e−1w(t), we get the result.

Appendix B. Further examples

Example B.1 (Cf. [6, Example 2.5(ii)]). Let 0 < α ≤ 2, 0 < β < 1 and δ > 0. Then, we
consider the fundamental solution of the following Cauchy problem.

d
dt

∫ t

(t−δ)∨0

[
(t − s)−β

− δ−β
](

u(s, x) − f (x)
)
ds = ∆α/2u(t, x), x ∈ Rd , t > 0,

u(0, x) = f (x), x ∈ Rd . (B.1)

In this case, we see that w(s) = wδ(s) = (s−β
−δ−β)1(0,δ](s) and hence conditions (Ker.) and

(Trunc.)(δ) hold. Moreover, it is well known that for the function Φα(x) = xα , the heat kernel
q(t, x, y) corresponding to the generator ∆α/2 enjoys estimate HK0,0,0

J (Φα,Φα) if 0 < α < 2
and estimate HK0,0,0

D (Φα) if α = 2. By Theorems 1.15 and 1.19, we obtain the global estimates
for the fundamental solution p(t, x, y) of Eq. (B.1).

(i) For every t ∈ (0, δ/2] and x, y ∈ Rd , we have

p(t, x, y)

≃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t−βd/α, if |x − y| ≤ tβ/α and d < α;

t−β log
(

2tβ/α

|x − y|

)
, if |x − y| ≤ tβ/α and d = α;

t−β
|x − y|

α−d , if |x − y| ≤ tβ/α and d > α;

tβ

|x − y|
d+α

, if |x − y| > tβ/α and 0 < α < 2;

t−βd/α exp
(
−c|x − y|

2/(2−β)t−β/(2−β)
)
, if |x − y| > tβ/α and α = 2.

(ii) Fix any t ∈ [δ/2, ∞) and x, y ∈ Rd . Let nt = ⌊t/δ⌋ + 1. Then, we have

p(t, x, y)

≃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
|x − y|

αt−1
+ (ntδ − t)nt

]
t−nt |x − y|

αnt −d ,

if |x − y|
α

≤ t and δ/2 ≤ t < ⌊(d − α)/α⌋δ;

t−d/α
+ (ntδ − t)nt t−nt |x − y|

αnt −d ,

if d/α /∈ N, |x − y|
α

≤ t and ⌊(d − α)/α⌋δ ≤ t < ⌊d/α⌋δ;

t−d/α
+ (

dδ

αt
− 1)d/α log

(
2t

|x − y|
α

)
,

if d/α ∈ N, |x − y|
α

≤ t and (d − α)δ/α ≤ t < dδ/α;

t−d/α, if |x − y|
α

≤ t and ⌊d/α⌋δ ≤ t;

t
|x − y|

d+α
, if |x − y|

α > t and 0 < α < 2,

t−d/α exp
(
−c|x − y|

2t−1
)
, if |x − y|

α > t and α = 2.

In particular, for every t > 0 and x ∈ Rd , p(t, x, x) < ∞ if and only if t ≥ ⌊d/α⌋δ. □
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Recall that in Example 1.7, we obtain the global two-sided estimates on the fundamental
solution pβ(t, x, y) of the following time fractional equation:

d
dt

∫ t

0
w(t − s)

(
u(t, x) − f (x)

)
ds = ∆α/2u(t, x), x ∈ D, t > 0,

u(0, x) = f (x), x ∈ D, u(t, x) = 0, x ∈ Rd
\ D, t > 0, (B.2)

with w(s) = s−β/Γ (1 − β).

Example B.2. Let 0 < α ≤ 2, d ≥ 1 and D ⊂ Rd be a bounded C1,1 open set. We further
assume that if α = 2, then d ≥ 2 and D is connected. Let ptem(t, x, y) be the fundamental
solution of (B.2) with

w(s) =

∫
∞

s

β

Γ (1 − β)
e−θy

y1+β
dy, (0 < β < 1, θ > 0).

The corresponding subordinator is called a tempered stable subordinator in the literature. (See,
e.g. [27, Section 3].) By Theorems 1.15 and 1.18, we obtain the global two-sided estimates on
ptem(t, x, y).

6.2.1. Small time estimates. For all t ∈ (0, 2] and x, y ∈ D, ptem(t, x, y) ≃ pβ(t, x, y).

6.2.2. Large time estimates. For all t ∈ [2, ∞) and x, y ∈ D, there are constants c1, c2, c3, c4 >

0 and L1 ≥ L2 > 0 such that

ptem(t, x, y) ≥ c1e−L1tδD(x)α/2δD(y)α/2
+ c2 exp

(
−2θ t

) (
1 ∧

δD(x)δD(y)
|x − y|

2

)α/2

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
|x − y| ∨

(
δD(x) ∧ δD(y)

))α−d

, if d < α;(
1 + log+

(
δD(x) ∧ δD(y)

|x − y|

))
, if d = α;

|x − y|
α−d , if d > α,

and

ptem(t, x, y) ≤ c3e−L2tδD(x)α/2δD(y)α/2
+ c4 exp

(
−

θ

2
t
) (

1 ∧
δD(x)δD(y)
|x − y|

2

)α/2

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
|x − y| ∨

(
δD(x) ∧ δD(y)

))α−d

, if d < α;(
1 + log+

(
δD(x) ∧ δD(y)

|x − y|

))
, if d = α;

|x − y|
α−d , if d > α. □

Following [12], for a function f on Rd , we define for 1 < α < 2 and r > 0,

Mα
f := sup

x∈Rd

∫
|y−x |<r

| f (y)|
|x − y|

d+1−α
dy.

Then, a function f on Rd is said to belong to the Kato class Kα−1 if limr→0+ Mα
f (r ) = 0.

Example B.3. Let 1 < α < 2, d ≥ 1 and D ⊂ Rd be a bounded C1,1 open set. In [12],
the authors studied the stability of Dirichlet heat kernel estimates under gradient perturbation.
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More precisely, for every b ∈ Kα−1, an operator
(
∆α/2

+ b · ∇
)
|D enjoys the estimates

HK1/2,λb,1
J (Φα,Φα) for some constant λb > 0.

Let p per (t, x, y) be the fundamental solution of (B.2) replacing the operator ∆α/2 with
∆α/2

+b·∇ for some b ∈ Kα−1 and w(s) = s−β/Γ (1−β) (0 < β < 1). Then, since the operators
∆α/2

+ b · ∇ and ∆α/2 admit the same form of heat kernel estimates HK1/2,λ,1
J (Φα,Φα) (with

possibly different λ), we see that p per (t, x, y) ≃ pβ(t, x, y) for all t ∈ (0, ∞) and x, y ∈ D.

Example B.4. Let 0 < α′ < 2, d ≥ 2 and D ⊂ Rd be a bounded connected C1,1 open
set. Let pmix (t, x, y) be the fundamental solution of (B.2) replacing the operator ∆α/2 with
∆ + ∆α′/2 and w(s) = s−β/Γ (1 − β) (0 < β < 1). According to [11, Theorem 1.3], the heat
kernel corresponding to the operator ∆ + ∆α′/2 enjoys the estimate HK1/2,λ′,1

M (Φ2 ∧ Φα′ ,Φα′ )
for some λ′ > 0. Hence, by Theorems 1.15 and 1.16, the fundamental solution pmix (t, x, y)
admits the same estimates as pβ(t, x, y) with α = 2, unless t ∈ (0, 2] and |x − y| > tβ/2. For
those values of t and x, y ∈ D, by Theorem 1.15(ii)(c), we get

pmix (t, x, y)

≃

(
1 ∧

δD(x)
tβ/2

)(
1 ∧

δD(y)
tβ/2

)(
tβ

|x − y|
d+α′

+ t−βd/2 exp
(

−c|x − y|
2/(2−β)/tβ/(2−β)

))
.
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