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Abstract

We consider a class of random walks whose increment distributions depend on the average value of
the process over its most recent N steps. We investigate the speed of the process, and in particular, the
limiting speed as the “history window” N → ∞.
c⃝ 2020 Elsevier B.V. All rights reserved.

MSC: 60F10; 60K35; 60J10

Keywords: Random walk with reinforcement; Cramér’s theorem; Legendre–Fenchel transform

1. Introduction and statement of results

Over the past couple of decades, many papers have been devoted to the study of edge or
vertex reinforced random walks and excited (also known as “cookie”) random walks on Z.
These processes have a simple underlying transition mechanism – such as simple symmetric
random walk – but this mechanism is “reinforced” or “excited” depending on the location of
the random walk and its complete history at that location. For survey papers which include
many references, see [4] and [3].

In this paper, we consider random walks on R with a simpler and very natural mechanism
for reinforcement; namely, the reinforcement is catalyzed by the behavior of the random walk
path over a bounded interval of its history, irrespective of its present location. In fact, we will
define two versions of such a process. To define these processes, let N , l ∈ N, let {P (inc)

i }
l
i=0

be probability measures on R with finite expectations µi =
∫

∞

−∞
x P (inc)

i (dx), and let {ri }
l
i=1 be

a sequence. We make the following assumption.
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Assumption A. The sequence {µi }
l
i=0 of expectations corresponding to the measures

{P (inc)
i }

l
i=0 is strictly increasing, and the sequence {ri }

l
i=1 satisfies

ri < µi < ri+1, i = 1, . . . , l − 1;

µ0 < r1 and rl < µl .

In our notation for the processes, we suppress the dependence on all the above parameters
with the exception of N , which is the only parameter that will vary. One version of the process,
the instantaneous version, will be denoted by {X N ;I

n }
∞

n=0, while the other version, the delayed
version, will be denoted by {X N ;D

n }
∞

n=0. Most of this paper will concern the delayed version,
but we define the instantaneous version first, because this will make it easier to describe the
delayed version. For convenience, we define r0 = −∞ and rl+1 = +∞ for the following
definition.

The instantaneous version {X N ;I
n }

∞

n=0 is defined as follows. Let X N ;I
0 = 0 and let {X N ;I

n }
N
n=1

be distributed like a random walk with increment distribution P (inc)
i0

, for some i0. The
continuation of the process is defined inductively as follows. Let n ≥ N + 1 and let i be
such that the process used the distribution P (inc)

i at time n − 1. The process looks back at its

most recent N steps. If the average value,
X N ;I

n−1−X N ;I
n−1−N

N , of those steps fell in the range [ri , ri+1),
then at time n the process jumps with increment distribution P (inc)

i . However, if the average
value of those steps was strictly less than ri , then at time n the process jumps with increment
distribution P (inc)

i−1 , while if the average value of those steps was larger or equal to ri+1, then at
time n the process jumps with increment distribution P (inc)

i+1 .
The delayed version {X N ;D

n }
∞

n=0 is defined similarly, the only difference being that this
process is required to use any particular jump distribution at least N consecutive times,
thereby insuring that the reinforcement that causes the process to switch from one increment
distribution, say i , to another increment distribution is due to the behavior of the process
while in the i regime. Thus, {X N ;D

n }
N
n=0 is defined identically to {X N ;I

n }
N
n=0, and for each time

n ≥ N + 1, if the jump distribution used at time n − 1 was not used at time n − N , then the
jump distribution used at time n − 1 is automatically used again at time n, while otherwise the
jump distribution at time n is determined as it was for the instantaneous version.

We call each version of the process a random walk reinforced by its recent history. Both
versions are natural models for the fortunes of various economic commodities, such as stocks,
or for the popularity of various social trends, which respond positively to recent success and
negatively to recent failure.

We call N the history window and {ri }
l
i=1 the threshold levels. In Assumption B, we specify

a simple condition to ensure that the processes will almost surely jump an infinite number of
times according to each of the l + 1 increment distributions.

In this paper, we investigate the speeds of these processes. For the delayed version, it is
rather easy to show that the speed exists almost surely and is almost surely constant.

Proposition 1. Let Assumptions A and B (given below) hold. Then the speed

s D(N , r1, . . . , rl) := lim
n→∞

X N ;D
n

n
exists almost surely, is almost surely constant and is independent of the initial state.

The proof of the proposition is embedded in the proof of the main result of this paper,
Theorem 1, and is noted where it occurs. The main result concerns the limiting speed of the
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delayed version as the history window N → ∞. Here is the condition we impose to ensure
that the processes will almost surely jump an infinite number of times according to each of the
l + 1 increment distributions.

Assumption B.

P (inc)
i

(
(−∞, ri )

)
> 0 and P (inc)

i

(
[ri+1, ∞)

)
> 0, for i = 1, . . . , l − 1;

P (inc)
0 ([r1, ∞)) > 0, P (inc)

l ((−∞, rl)) > 0.

(Assumption B is a bit stronger than necessary to ensure that the process will almost surely
jump an infinite number of times according to each of the l + 1 increment distributions, but
we use it so as to simplify the exposition.)

A key technical tool that will be used is Cramér’s large deviations theorem for the empirical
mean of an IID sequence. In order to have this at our disposal, we need to make a two-sided
exponent moment assumption on the increment distributions {P (inc)

i }
l
i=0. Let

MP(inc)
i

(t) =

∫
∞

−∞

et x P (inc)
i (dx)

denote the moment generating function of the distribution P (inc)
i .

Assumption C. There exists a t0 > 0 such that MP(inc)
i

(±t0) < ∞, for i = 0, 1, . . . , l.

Let Ii (r ) denote the Legendre–Fenchel transformation for the distribution P (inc)
i , defined by

Ii (r ) = sup
λ∈R

(
λr − log MP(inc)

i
(λ)

)
, r ∈ R. (1.1)

We recall several facts about Ii that we will need and that hold under Assumption C [1].

Ii (r ) < ∞ if and only if either r ≤ µi and P (inc)
i ((−∞, r ]) > 0, or

r > µi and P (inc)
i ([r, ∞)) > 0.

(1.2)

Let x+

i = sup{x ∈ R : Ii (x) < ∞} and x−

i = inf{x ∈ R : Ii (x) < ∞}. Then

Ii (µi ) = 0;

Ii : [µi , x+

i ) → [0, ∞) is continuous and strictly increasing;

Ii : (x−

i , µi ] → [0, ∞) is continuous and strictly decreasing.

(1.3)

And we recall an elementary large deviations result, a version of Cramér’s theorem [1]: if S(i)
n is

the sum of n IID random variables distributed as P (inc)
i , and P (inc)

i satisfies Assumption C, then

lim
n→∞

1
n

log P(
S(i)

n

n
≥ r ) = lim

n→∞

1
n

log P(
S(i)

n

n
> r ) = −Ii (r ), µi ≤ r < x+

i ;

lim
n→∞

1
n

log P(
S(i)

n

n
≤ r ) = lim

n→∞

1
n

log P(
S(i)

n

n
< r ) = −Ii (r ), x−

i < r ≤ µi .

(1.4)

We can now state the main result.
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Theorem 1. Let Assumptions A, B, and C hold. Define

Λ0 = I0(r1);

Λi = Ii (ri+1) +

i∑
k=1

(
Ik(rk) − Ik(rk+1)

)
, 1 ≤ i ≤ l − 1;

Λl = Il(rl) +

l−1∑
k=1

(
Ik(rk) − Ik(rk+1)

)
.

If max0≤i≤l Λi occurs uniquely at i = i0, then the speed s D(N , r1, . . . , rl) of the delayed process
{X N ;D

n }
∞

n=0 satisfies

lim
N→∞

s D(N , r1, . . . , rl) = µi0 .

Remark. It is sometimes convenient to have one formula that holds for all {Λi }
l
i=0. Using

the convention that a summation of the form
∑0

i=1 is equal to 0, and defining rl+1 = rl (for
convenience in defining the process, we had defined rl+1 = ∞), we can write

Λi = Ii (ri+1) +

i∑
k=1

(
Ik(rk) − Ik(rk+1)

)
, 0 ≤ i ≤ l; rl+1 := rl .

Example. The Legendre–Fenchel transformation of the Gaussian distribution N (µ, σ 2) is
given by I (r ) =

(r−µ)2

2σ 2 . Let P (inc)
i ∼ N (µi , σ

2
i ), 0 ≤ i ≤ l. Define rl+1 = rl . If

arg max
i∈{0,...,l}

[ (ri+1 − µi )2

σ 2
i

+

i∑
k=1

(µk − rk)2
− (rk+1 − µk)2

σ 2
k

]
occurs uniquely at i0, then the limiting speed for the one-step delayed version is µi0 .

In the instantaneous version, the passage from one regime, say i , to a neighboring regime,
say i + 1, will frequently be accompanied by a number of short time oscillations between the
two regimes before the process securely ensconces itself in the new regime i + 1. Because of
technical difficulties related to these oscillations, we can only prove a theorem for the limiting
speed of the instantaneous version in the case l = 1.

Theorem 2. Let l = 1 and let Assumptions A, B, and C hold. The speed of the instantaneous
process {X N ;I

n }
∞

n=0 almost surely satisfies

lim
N→∞

lim sup
n→∞

X N ;I
n

n
= lim

N→∞

lim inf
n→∞

X N ;I
n

n
=

{
µ0, if I0(r1) > I1(r1);
µ1, if I1(r1) > I0(r1).

(1.5)

In the instantaneous version, define the N -dimensional differences process {Z N ;I
n }

∞

n=0 by

Z N ;I
n = (X N ;I

n+1 − X N ;I
n , X N ;I

n+2 − X N ;I
n+1, . . . , X N ;I

n+N − X N ;I
n+N−1).

It is easy to see that this is a Markov process. In [5] we studied the speed of the instantaneous
version {X N ;I

n }
∞

n=0 under the assumption that the increment distributions {P (inc)
i }

l
i=0 are all

Bernoulli distributions on {−1, 1}; P (inc)
i ∼ Ber(pi ), so µi = 2pi − 1. Thus, those processes

lived on Z and made only nearest-neighbor jumps. In that version, we were able to calculate
explicitly the invariant measure π N (defined on {−1, 1}

N ) of the differences process {Z N ;I
n }

∞

n=0,
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and this allowed us to obtain an explicit formula for the speed s I (N , r1, . . . , rl). What made
the explicit calculation of the invariant distribution possible was the fact that π N turned out
to be constant on the level sets {z ∈ {−1, 1}

N
:

∑N
i=1 zi = M}, for any M . Even in the

case that the increment distributions {P (inc)
i }

l
i=0 are all supported on a fixed set of size three,

the explicit calculation of the invariant measure of the differences process does not seem
possible in general. Exploiting this explicit formula for the speed s I (N , r (N )

1 , . . . , r (N )
l ) in the

case of Bernoulli increment distributions, in [5] we proved the equivalent of Theorem 1 for
the instantaneous version. The expressions {Λ}

l
i=0 in the case of these Bernoulli distributions

appear there in explicit form, but their connection to the Legendre–Fenchel transformation is
not mentioned. The delicate borderline cases, when max0≤i≤l ∆i does not occur uniquely were
also resolved, in each case of which the limiting speed was a certain linear combination of the
speeds {µi }

l
i=0. In this paper, we work on exponential scale, via (1.4), so we cannot handle the

borderline cases.
We now turn to the organization of the rest of the paper. Theorem 1 is proved very quickly in

Section 3, but this is only after a number of technical propositions are proved in the rather long
Section 2. As already noted, the proof of Proposition 1 is embedded in the proof of Theorem 1.
The proof of Theorem 2 is given in Section 4.

Here is a rough outline of the idea of the proof of Theorem 1. Let {Y N ;D
m }

∞

m=0 denote the
Markov chain (more specifically, birth and death chain) on {0, . . . , l} that follows the changes
of the increment distribution utilized by the delayed version {X N ;D

n }
∞

n=0 of the random walk
reinforced by its recent history. Thus, Y N ;D

0 = i0, since the process {X N ;D
n }

∞

n=0 starts out using
the increment distribution P (inc)

i0
. If the first time the process {X N ;D

n }
∞

n=0 changes its increment
distribution, it switches from distribution P (inc)

i0
to distribution P (inc)

j ( j = i0 +1 or j = i0 −1),
then Y N ;D

1 = j . In general, Y N ;D
m = k, if after switching increment distribution m times, the

process {X N ;D
n }

∞

n=0 is using the increment distribution P (inc)
k . Propositions 2 and 3, the first two

propositions of Section 2, are the key technical results that are used to prove Proposition 4,
which gives tight exponential estimates as N → ∞ on the transition probabilities of the Markov
chain {Y N ;D

m }
∞

m=0. Since {Y N ;D
m }

∞

m=0 is a birth and death chain, its invariant distribution can be
written down explicitly in terms of its transition probabilities; thus we obtain tight exponential
estimates on the behavior of this invariant measure as N → ∞. Proposition 5 calculates the
exponential order as N → ∞ of the expected number of steps made by {X N ;D

n }
∞

n=0 between
the time it enters a particular increment distribution regime and the time it switches to another
increment distribution regime, while Proposition 6 calculates the expected distance between
its position upon entering a particular increment distribution regime and its position upon
switching to another increment distribution regime. The proof of Theorem 1 in Section 3
follows easily from Propositions 5 and 6 along with the asymptotic behavior of the invariant
measure for the Markov chain {Y N ;D

m }
∞

m=0.

2. A series of propositions

We will use the following notation throughout the paper.

aN ≈ bN means lim
N→∞

1
N

log aN = lim
N→∞

1
N

log bN ;

aN ⪅ bN means lim sup
N→∞

1
N

(
log aN − log bN

)
≤ 0.
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The random walk with increment distribution P (inc)
i will be denoted by {S(i)

n }
∞

n=0. Also, we will
use the notation

S(i)
j,k = S(i)

k − S(i)
j , for 0 ≤ j < k.

In order to reduce the cumbersome notation, we define as follows Z N ,i
n , for n ≥ 1 and

1 ≤ i ≤ l − 1:

Z N ,i
n = 1, if

max
( S(i)

(n−1)N ,nN

N
,

S(i)
(n−1)N+1,nN+1

N
, . . . ,

S(i)
(n−1)N+N−1,nN+N−1

N

)
≥ ri+1 and

min
( S(i)

(n−1)N ,nN

N
,

S(i)
(n−1)N+1,nN+1

N
, . . . ,

S(i)
(n−1)N+N−1,nN+N−1

N

)
≥ ri ;

Z N ,i
n = −1, if

max
( S(i)

(n−1)N ,nN

N
,

S(i)
(n−1)N+1,nN+1

N
, . . . ,

S(i)
(n−1)N+N−1,nN+N−1

N

)
< ri+1 and

min
( S(i)

(n−1)N ,nN

N
,

S(i)
(n−1)N+1,nN+1

N
, . . . ,

S(i)
(n−1)N+N−1,nN+N−1

N

)
< ri ;

Z N ,i
n = −11, if

max
( S(i)

(n−1)N ,nN

N
,

S(i)
(n−1)N+1,nN+1

N
, . . . ,

S(i)
(n−1)N+N−1,nN+N−1

N

)
≥ ri+1 and

min
( S(i)

(n−1)N ,nN

N
,

S(i)
(n−1)N+1,nN+1

N
, . . . ,

S(i)
(n−1)N+N−1,nN+N−1

N

)
< ri ;

Z N ,i
n = 0, otherwise.

(2.1)

Note that {Z N ,i
n }

∞

n=1 are identically distributed, and that each of {Z N ,i
2n }

∞

n=1 and {Z N ,i
2n−1}

∞

n=1 is
an independent sequence.

We begin with two key propositions. These propositions serve as a basis for the rest of
the results in this section. For both of them, we will need the FKG correlation inequality [2]
in the following form. Let {Wi }

M
i=1 be independent real-valued random variables and define

W = (W1, . . . , WM ). Let f, g : RM
→ R. Then

E f (W )g(W ) ≥ E f (W )Eg(W ), if f and g are either both increasing
or both decreasing in each of their M variables;
E f (W )h(W ) ≤ E f (W )Eh(W ), if one of f and g is increasing and the other
one is decreasing in each of its M variables.

(2.2)

Proposition 2. Let 1 ≤ i ≤ l − 1. Then

P(Z N ,i
1 = 1) ≈ e−N Ii (ri+1)

;

P(Z N ,i
1 = −1) ≈ e−N Ii (ri )

;

P(Z N ,i
1 = −11) ⪅ e−N

(
Ii (ri )+Ii (ri+1)

)
.

(2.3)
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Proof. We will prove the first and third formulas in (2.3); the second one is proved analogously
to the first. By (1.4), we have

P(Z N ,i
1 = 1) ≤ P

(
max

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
≥ ri+1

)
≤

N−1∑
j=0

P(
S(i)

j,N+ j

N
≥ ri+1) ≈ Ne−N Ii (ri+1)

≈ e−N Ii (ri+1).

(2.4)

Also

P(Z N ,i
1 = 1) =

P
(
max

( S(i)
0,N
N

,
S(i)

1,N+1
N

, . . . ,
S(i)

N−1,2N−1
N

)
≥ ri+1

)
×

P
(
min

( S(i)
0,N
N

,
S(i)

1,N+1
N

, . . . ,
S(i)

N−1,2N−1
N

)
≥ ri | max

( S(i)
0,N
N

,
S(i)

1,N+1
N

, . . . ,
S(i)

N−1,2N−1
N

)
≥ ri+1

)
.

(2.5)

By (1.4),

P
(
max

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
≥ ri+1

)
≥ P(

S(i)
0,N

N
≥ ri+1) ≈ e−N Ii (ri+1). (2.6)

The following inequality follows from the FKG correlation inequality (2.2).

P
(
min

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
≥ ri | max

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
≥ ri+1

)
≥

P
(
min

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
≥ ri

)
.

(2.7)

To see that (2.7) follows from (2.2), let x = (x1, . . . , x2N−1) ∈ R2N−1, let si, j =
∑ j

k=i+1 xk ,
for 0 ≤ i < j ≤ 2N − 1, and define

f (x) = 1
min

( s0,N
N ,

s1,N+1
N ,...,

sN−1,2N−1
N

)
≥ri

;

g(x) = 1
max

( s0,N
N ,

s1,N+1
N ,...,

sN−1,2N−1
N

)
≥ri+1

.

Denote the increments of the random walk {S(i)
n }

∞

n=0 by {W (i)
n }

∞

n=1; that is, S(i)
n =

∑n
k=1 W (i)

k . Let
W (i)

= (W (i)
1 , . . . , W (i)

2N−1). Then (2.7) is equivalent to E f (W (i))g(W (i)) ≥ E f (W (i))Eg(W (i)),
and this latter inequality follows from (2.2).

From (2.7) and (1.4) we have

P
(
min

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
≥ ri | max

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
≥ ri+1

)
≥

1 − P
(
min

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
< ri

)
≥ 1 − N P(

S(i)
0,N

N
< ri ) ≈ 1, as N → ∞.

(2.8)

The first formula in (2.3) now follows from (2.4)–(2.8).
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We now turn to the third formula in (2.3). We have

P(Z N ,i
1 = −11) = P

(
max

( S(i)
0,N

N
, . . . ,

S(i)
N−1,2N−1

N

)
≥ ri+1

)
×

P
(
min

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
< ri | max

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
≥ ri+1

)
.

(2.9)

By (1.4),

P
(
max

( S(i)
0,N

N
, . . . ,

S(i)
N−1,2N−1

N

)
≥ ri+1

)
≤ N P(

S(i)
0,N

N
≥ ri+1) ≈ e−N Ii (ri+1). (2.10)

The first inequality below follows from the FKG inequality (2.2) similarly to the way (2.7)
followed from (2.2). Using this and (1.4), we have

P
(
min

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
< ri | max

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
≥ ri+1

)
≤

P
(
min

( S(i)
0,N

N
,

S(i)
1,N+1

N
, . . . ,

S(i)
N−1,2N−1

N

)
< ri

)
≤ N P(

S(i)
0,N

N
≤ ri ) ≈ e−N Ii (ri ).

(2.11)

The third formula in (2.3) follows from (2.9)–(2.11). □

Proposition 3. Let 1 ≤ i ≤ l − 1. Define

τ N ,i
= inf

{
n ≥ 0 :

S(i)
n,N+n

N
̸∈ [ri , ri+1)

}
. (2.12)

Then

P(
S(i)

τ N ,i ,N+τ N ,i

N
< ri ) ≈ e−N

(
Ii (ri )−Ii (ri+1)

)+

;

P(
S(i)

τ N ,i ,N+τ N ,i

N
≥ ri+1) ≈ e−N

(
Ii (ri+1)−Ii (ri )

)+

.

(2.13)

Proof. Assume without loss of generality that Ii (ri ) ≥ Ii (ri+1). If Ii (ri ) > Ii (ri+1), then
it suffices to prove the first formula in (2.13) since the two terms on the left hand side of
(2.13) add up to one. If Ii (ri ) = Ii (ri+1), then the proofs of the two formulas in (2.13) are
almost identical. Thus, in this case too we will prove only the first formula. Suppressing the
dependence on N , let

σ
(e)
i = inf

{
2n ≥ 2 : Z N ,i

2n ̸= 0
}
, σ

(o)
i = inf

{
2n − 1 ≥ 1, Z N ,i

2n−1 ̸= 0
}
. (2.14)

Using Proposition 2 and the fact that each of {Z N ,i
2n }

∞

n=1 and {Z N ,i
2n−1}

∞

n=1 is an IID sequence, it
follows that

P(Z N ,i

σ
(∗)
i

= −1) ≈ e−N
(

Ii (ri )−Ii (ri+1)
)
,

P(Z N ,i

σ
(∗)
i

= −11) ⪅ e−N Ii (ri ),

both when σ
(∗)
i = σ

(e)
i and when σ

(∗)
i = σ

(o)
i .

(2.15)
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Now { S(i)
τ N ,i ,N+τ N ,i

N
< ri

}
⊂

{
Z N ,i

σ
(e)
i

∈ {−1, −11}
}

∪
{

Z N ,i

σ
(0)
i

∈ {−1, −11}
}
;

thus, it follows from (2.15) that

P
( S(i)

τ N ,i ,N+τ N ,i

N
< ri

)
⪅ e−N

(
Ii (ri )−Ii (ri+1)

)
. (2.16)

To prove an inequality in the other direction, let aN = P(Z (N ,i)
1 = −1) and bN = P(Z (N ,i)

1 ∈

{1, −11}), where we have suppressed the dependence on i . From Proposition 2,

aN ≈ e−N Ii (ri ), bN ≈ e−N Ii (ri+1). (2.17)

We have for any positive integer M ,{ S(i)
τ N ,i ,N+τ N ,i

N
< ri

}
⊃

(
∩

2M
n=1

{
Z N ,i

n ∈ {0, −1}
})

∩
(
∪

M
n=1{Z N ,i

2n = −1}
)
. (2.18)

Thus,

P(
S(i)

τ N ,i ,N+τ N ,i

N
< ri ) ≥ P(∪M

n=1{Z N ,i
2n = −1})×

P
(
∩

2M
n=1

{
Z N ,i

n ∈ {0, −1}
}⏐⏐ ∪

M
n=1 {Z N ,i

2n = −1}
)
.

(2.19)

Since {Z N ,i
2n }

M
n=1 are IID, it follows that

P(∪M
n=1{Z N ,i

2n = −1}) = 1 − (1 − aN )M . (2.20)

From the definitions, it follows that

{Z N ,i
n ∈ {0, −1}} = ∩

nN−1
m=(n−1)N {

S(i)
m,N+m

N
< ri+1} (2.21)

and

{Z N ,i
2n = −1} =

(
∩

2nN−1
m=(2n−1)N {

S(i)
m,N+m

N
< ri+1}

)
∩

(
∪

2nN−1
m=(2n−1)N {

S(i)
m,N+m

N
< ri }

)
. (2.22)

From (2.21) and (2.22), along with the FKG inequality (2.2), we have

P
(
∩

2M
n=1

{
Z N ,i

n ∈ {0, −1}
}⏐⏐ ∪

M
n=1 {Z N ,i

2n = −1}
)

≥ P
(
∩

2M
n=1

{
Z N ,i

n ∈ {0, −1}
})

. (2.23)

To see this, let x = (x1, . . . , x(2M+1)N−1) ∈ R(2M+1)N−1, let si, j =
∑ j

k=i+1 xk , for 0 ≤ i < j ≤

(2M + 1)N − 1, and define

f (x) = max(1,
[ M∑

n=1

1
max

( sm,N+m
N : m∈{(2n−1)N ,...,2nN−1}

)
<ri+1

×

1
min

( sm,N+m
N : m∈{(2n−1)N ,...,2nN−1}

)
<ri

]
);

g(x) = 1
max

( sm,N+m
N : m∈{1,...,2M N−1}

)
<ri+1

.

Denote the increments of the random walk {S(i)
n }

∞

n=0 by {W (i)
n }

∞

n=1, and let W (i)
= (W (i)

1 , . . . ,

W (i)
(2M+1)N−1). Then (2.23) is equivalent to E f (W (i))g(W (i)) ≥ E f (W (i))Eg(W (i)), and this latter

inequality follows from (2.2).
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Similarly, the FKG inequality (2.2) gives

P
(
∩

2M
n=1

{
Z N ,i

n ∈ {0, −1}
})

≥
(
P(Z N ,i

n ∈ {0, −1})
)2M

= (1 − bN )2M .

Thus,

P
(
∩

2M
n=1

{
Z N ,i

n ∈ {0, −1}
}⏐⏐ ∪

M
n=1 {Z N ,i

2n = −1}
)

≥ (1 − bN )2M . (2.24)

Now choose M = [ 1
bN

]. We consider the two cases Ii (ri ) > Ii (ri+1) and Ii (ri ) = Ii (ri+1)
separately. We first consider the former case. Note that limN→∞

aN
bN

= 0. Since 1−aN ≤ e−aN ,
from (2.20),

P(∪
[ 1

bN
]

n=1 {Z N ,i
2n = −1}) ≥ 1 − e−aN [ 1

bN
]
≥

aN

2bN
, for large N . (2.25)

From (2.24),

lim inf
N→∞

P
(
∩

2[ 1
bN

]

n=1

{
Z N ,i

n ∈ {0, −1}
}⏐⏐ ∪

[ 1
bN

]

n=1 {Z N ,i
2n = −1}

)
≥ e−2. (2.26)

From (2.17), (2.19), (2.25) and (2.26), we conclude that

P
( S(i)

τ N ,i ,N+τ N ,i

N
< ri

)
⪆ e−N

(
Ii (ri )−Ii (ri+1)

)
. (2.27)

Now consider the case Ii (ri ) = Ii (ri+1). Then similar to (2.25), we have

P(∪
[ 1

bN
]

n=1 {Z N ,i
2n = −1}) ≥ 1 − e−aN [ 1

bN
]
≥ min(c,

aN

2bN
), for some c > 0. (2.28)

Then from (2.17), (2.19), (2.28) (2.26) and the fact that aN ≈ bN , we obtain (2.27). The first
formula in (2.13) follows from (2.16) and (2.27). □

Recall the process {Y N ;D
m }

∞

m=0 defined at the end of Section 1; it denotes the Markov
processes that follows the changes of the increment distribution utilized by the delayed version
{X N ;D

n }
∞

n=0 of the random walk reinforced by its recent history. We denote the transitions for
{Y N ;D

m }
∞

m=0 by

pN ;D
i, j = P(Y N ;D

m+1 = j |Y N ;D
m = i), i, j ∈ {0, . . . , l}, j = i ± 1.

Using Proposition 3, the following estimates on these transition probabilities are almost
immediate.

Proposition 4.

pN ;D
i,i+1 ≈ e−N

(
Ii (ri+1)−Ii (ri )

)+

; i ∈ {1, . . . , l − 1};

pN ;D
i,i−1 ≈ e−N

(
Ii (ri )−Ii (ri+1)

)+

; i ∈ {1, . . . , l − 1};

pN ;D
0,1 = pN ;D

l,l−1 = 1.

(2.29)

Proof. The third line in (2.29) follows by definition. Noting that

pN ;D
i,i+1 = P(

S(i)
τ N ,i ,N+τ N ,i

N
≥ ri+1), pN ;D

i,i−1 = P(
S(i)

τ N ,i ,N+τ N ,i

N
< ri ),

the first two lines of (2.29) follow from Proposition 3. □
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Denote the invariant distribution of the Markov chain {Y N ;D
m }

∞

m=0 on {0, . . . , l} by νN ;D .
The Markov chain {Y N ;D

m }
∞

m=0 is a birth and death process, thus reversible, so its invariant
distribution can be calculated explicitly, via the detailed balance equations: νN ;D(i)pN ;D

i,i+1 =

νN ;D(i + 1)pN ;D
i+1,i , i = 0, . . . , l − 1. As is well-known, one has

ΠN νN ,D(0) = 1;

ΠN νN ,D(k) =

k∏
i=1

pN ;D
i−1,i

pN ;D
i,i−1

, k = 1, . . . , l,

where ΠN = 1 +

l∑
k=1

k∏
i=1

pN ;D
i−1,i

pN ;D
i,i−1

.

(2.30)

Recall the definition of τ N ,i , 1 ≤ i ≤ l − 1, from (2.12). Define

τ N ,0
= inf

{
n ≥ 0 :

S(0)
n,N+n

N
≥ r1

}
; τ N ,l

= inf
{
n ≥ 0 :

S(l)
n,N+n

N
< rl

}
.

Anytime the delayed version of the random walk reinforced by its recent history switches to
regime i , the number of steps during which it will operate in this regime before switching to a
different regime is distributed as τ N ,i

+ N , and the distance between its position upon entering
regime i and its position upon switching to another regime is distributed as S(i)

τ N ,i +N
. The next

two propositions calculate the expected values of these two distributions.

Proposition 5.

Eτ N ,i
≈ eN min

(
Ii (ri ), Ii (ri+1)

)
, 1 ≤ i ≤ l − 1;

Eτ N ,l,l
≈ eN Il (rl )

; Eτ N ,0
≈ eN I0(r1).

(2.31)

Proof. Let 1 ≤ i ≤ l − 1. Using the notation from the proof of Proposition 3, for any positive
integer L , we have

{τ N ,i
≥ 2L N } = {Z N ,i

n = 0, for all n = 1, . . . , 2L} =

{σ
(e)
i > 2L , σ

(o)
i > 2L − 1}.

(2.32)

Since σ
(e)
i and σ

(o)
i + 1 have the same distribution, it follows that

P(τ N ,i
≥ 2L N ) ≤ P(σ (e)

i > 2L), L ≥ 1. (2.33)

We have
∞∑

L=0

P(τ N ,i
≥ 2L N ) ≥

∞∑
m=0

(
m

2N
+ 1)P(τ N ,i

= m) = 1 +
1

2N
Eτ N ,i . (2.34)

From the definition of σ
(e)
i along with Proposition 2, σ

(e)
i is distributed according to a geometric

distribution with parameter p ≈ e−N min
(

Ii (ri ), Ii (ri+1)
)
; thus, Eσ

(e)
i ≈ eN min

(
Ii (ri ), Ii (ri+1)

)
.

Consequently,
∞∑

L=0

P(σ (e)
i > 2L) ≤

∞∑
L=1

P(σ (e)
i ≥ L) = Eσ

(e)
i ≈ eN min

(
Ii (ri ), Ii (ri+1)

)
. (2.35)
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From (2.33)–(2.35), we obtain

Eτ N ,i ⪅ eN min
(

Ii (ri ), Ii (ri+1)
)
. (2.36)

From Proposition 2 and the definition of σ
(e)
i and σ

(o)
i , we have for any ϵ > 0 and sufficiently

large N ,

P(σ (e)
i > 2L , σ

(o)
i > 2L − 1) = P(Z N ,i

n = 0, for n = 1, . . . , 2L) ≥

1 − 2L P(Z N ,i
1 ̸= 0) ≥ 1 − 2LeϵN−N min

(
Ii (ri ), Ii (ri+1)

)
.

(2.37)

Letting L N ,ϵ = [e−2ϵN+N min
(

Ii (ri ), Ii (ri+1)
)
], it follows from (2.32) and (2.37) that limN→∞

P(τ N ,i
≥ 2L N ,ϵ N ) = 1. Since ϵ > 0 is arbitrary, it follows that

Eτ N ,i ⪆ eN min
(

Ii (ri ), Ii (ri+1)
)
. (2.38)

The first formula in (2.31) follows from (2.36) and (2.38).
The statements of Propositions 2 and 3 involve certain two-sided hitting times related to a

random walk with increment distribution P (inc)
i , with 1 ≤ i ≤ l − 1. Similar one-sided results

could have been written down for i = 0 and i = l. We refrained from including them in order
not to incur the necessity of additional notation and an additional analogous proof. The second
formula in (2.31) is proved similarly to the first formula using the corresponding one-sided
hitting times. □

Proposition 6.

E S(i)
τ N ,i +N

= µi (Eτ N ,i
+ N ), 0 ≤ i ≤ l. (2.39)

Proof. Let {W (i)
n }

∞

n=1 be IID random variables distributed according to P (inc)
i and consider

the filtration Fn = σ
(

W (i)
1 , . . . , W (i)

n

)
, n ≥ 1. We can write S(i)

n =
∑n

j=1 W (i)
j . Now

Mn+N := S(i)
n+N −(n+N )µi , n ≥ 0, is a martingale with respect to {Fn+N }

∞

n=0. Note that N+τ N ,i

is a stopping time with respect to {Fn+N }
∞

n=0. So by Doob’s optional sampling theorem,

E S(τ N ,i +N )∧L − µi E((τ N ,i
+ N ) ∧ L) = 0, L ≥ 0.

Letting L → ∞ and using (2.31), we obtain (2.39). □

3. Proof of Theorem 1

Recall that νN ,D denotes the invariant distribution of the process {Y N ;D
m }

∞

m=0. By the ergodic
theorem, as m → ∞ the asymptotic proportion of switches of the process {Y N ;D

m }
∞

m=0 for the
delayed process to the regime i is νN ,D(i). As noted before Proposition 5, anytime the delayed
version of the random walk reinforced by its recent history switches to regime i , the number
of steps during which it will operate in this regime before switching to a different regime is
distributed as τ N ,i

+ N , and the distance between its position upon entering regime i and its
position upon switching to another regime is distributed as S(i)

τ N ,i +N
. Also, this random number

of steps and this random distance are independent of the random number of steps the process
spent and the random distance it attained in any regime in the past before the present entrance
into regime i . From these observations, it is standard to deduce that the speed s D(N , r1, . . . , rl),
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defined in Proposition 1, exists almost surely and is almost surely given by the constant

s D(N , r1, . . . , rl) =

∑l
i=0 νN ,D(i)E S(i)

τ N ,i +N∑l
i=0 νN ,D(i)

(
Eτ N ,i + N

) . (3.1)

This proves Proposition 1.
By Propositions 5 and 6,

E S(i)
τ N ,i +N

≈ µi e
N min

(
Ii (ri ),Ii (ri+1)

)
, for 1 ≤ i ≤ l − 1;

E S(0)
τ N ,0+N

≈ µ0eN I0(r1), E S(l)
τ N ,l+N

≈ µleN Il (rl ).
(3.2)

From (2.30) and Proposition 4, we have

νN ;D(0) ≈
1
ΠN

;

νN ;D(1) ≈
1
ΠN

eN
(

I1(r1)−I1(r2)
)+

;

νN ;D(i) ≈
1
ΠN

eN
(

I1(r1)−I1(r2)
)+ i∏

k=2

e
N

((
Ik (rk )−Ik (rk+1)

)+

−

(
Ik−1(rk )−Ik−1(rk−1)

)+
)
,

1 ≤ i ≤ l − 1;

νN ;D(l) ≈
1
ΠN

eN
(

I1(r1)−I1(r2)
)+ l−1∏

k=2

e
N

((
Ik (rk )−Ik (rk+1)

)+

−

(
Ik−1(rk )−Ik−1(rk−1)

)+
)
×

e−N
(

Il−1(rl )−Il−1(rl−1)
)+

.

(3.3)

Noting that
(
Ik(rk) − Ik(rk+1)

)+
−

(
Ik(rk+1) − Ik(rk)

)+
= Ik(rk) − Ik(rk+1) and recalling the

definition of {Λi }
l
i=0 in the statement of Theorem 1, it follows from (3.2) and (3.3) that

νN ,D(i)E S(i)
τ N ,i +N

≈
1
ΠN

µi eNΛi , 0 ≤ i ≤ l. (3.4)

Substituting (3.4) into (3.1), recalling from Proposition 6 that
E S(i)

τ N ,i +N
Eτ N ,i +N

≈ µi , and letting
N → ∞ proves the theorem. □

4. Proof of Theorem 2

For the proof of Theorem 2, we need the following lemma.

Lemma 1. Let {Zn}
∞

n=1 be IID random variables satisfying E Z1 = µ and let Sn =
∑n

i=1 Z i .
Then for every r < µ,

P(
Sn

n
≥ r, n = 1, 2, . . .) > 0.

Proof. By the strong law of large numbers, limn→∞
Sn
n = µ a.s. Thus, for every r < µ, there

exists an Nr such that P( Sn
n ≥ r, n > Nr ) > 0. Clearly, P( Sn

n ≥ r, n = 1, . . . , Nr ) > 0. By
the FKG inequality (2.2), we have

P(
Sn

n
≥ r, n > Nr |

Sn

n
≥ r, n = 1, . . . , Nr ) ≥ P(

Sn

n
≥ r, n > Nr ).
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Thus,

P(
Sn

n
≥ r, n = 1, 2, . . .) =

P(
Sn

n
≥ r, n = 1, . . . , Nr )P(

Sn

n
≥ r, n > Nr |

Sn

n
≥ r, n = 1, . . . , Nr ) > 0. □

We now turn to the proof of the theorem.

Proof of Theorem 2. Without loss of generality, assume that I0(r1) < I1(r1). Since clearly
lim supn→∞

X N ;I
n
n ≤ µ1 a.s., what we need to prove is that

lim
N→∞

lim inf
n→∞

X N ;I
n

n
= µ1. (4.1)

Define

c := P(
S(1)

n

n
≥ r1, n = 1, 2, . . .) > 0, (4.2)

where the positivity of c follows from Lemma 1. Without loss of generality, we will start the
instantaneous process {X N ;I

n }
∞

n=0 in the P (inc)
0 -mode. The process will eventually switch to the

P (inc)
1 -mode, then switch back to the P (inc)

0 , etc.
Let T N ,1

m , m ≥ 1, denote the number of steps the instantaneous process spends in the P (inc)
1 -

mode during its mth session in that mode, and let T N ,0
m , m ≥ 1, denote the number of steps

the instantaneous process spends in the P (inc)
0 -mode during its mth session in that mode.

Clearly T N ,0
m , for any m ≥ 1, is stochastically dominated by τ N ,0, where τ N ,0 is as in (2.12).

(There is equality in distribution for m = 1.)
The event that for all j = 1, . . . , N , the average value of the first j steps of a P (inc)

1 -
random walk is greater than or equal to r1 has probability greater than or equal to c. Thus,
with probability greater than or equal to c, the instantaneous process will spend at least N
steps in the P (inc)

1 -mode during any session in that mode. It follows then that T N ,1
m , for any

m ≥ 1, stochastically dominates (N + τ N ,1)Ber(c), where τ N ,1 is as in (2.12), Ber(c) denotes
a Bernoulli random variable with probability c of being equal to 1 and probability 1 − c of
being equal to 0, and τ N ,1 and Ber(c) are independent. We note that there are two reasons
that T N ,1

m stochastically dominates (N + τ N ,1)Ber(c). One is that the probability of the event
described above is greater than c. The other is that τ N ,1, the number of steps the delayed process
remains in the P (inc)

1 -mode after its first N steps in that mode, is stochastically dominated
by the random variable T N ,1

m − N when this latter random variable is conditioned on the
event described above. The reason for this latter domination is that whereas the first N steps
of the delayed process have the distribution {S(i)

j }
N
j=1, the first N steps of the instantaneous

process conditioned on the event described above has the distribution {S(i)
j }

N
j=1, conditioned

on {
S(1)

j
j ≥ r1, j = 1, 2, . . . , N }, and by the FKG inequality (2.2), the distribution {S(i)

j }
N
j=1,

conditioned on {
S(1)

j
j ≥ r1, j = 1, 2, . . . , N } dominates the distribution {S(i)

j }
N
j=1.

The fraction of steps that the instantaneous process spends in the P (inc)
1 -mode after m

sessions in each mode is given by∑m
k=1 T N ,1

k∑m
k=1(T N ,1

k + T N ,0
k )

. (4.3)



R.G. Pinsky / Stochastic Processes and their Applications 130 (2020) 4793–4807 4807

By the above noted stochastic domination, we can define on one and the same space {T N ,1
k }

∞

k=1
and {T N ,0

k }
∞

k=1 along with {τ
N ,i
k }

∞

k=1, i = 0, 1, and {Ber(c)k}
∞

k=1, where these last three sequences
are mutually independent IID sequences distributed respectively as τ N ,i , i = 0, 1, and Ber(c),
such that ∑m

k=1 T N ,1
k∑m

k=1(T N ,1
k + T N ,0

k )
≥

∑m
k=1(N + τ

N ,1
k )Ber(c)k∑m

k=1(N + τ
N ,1
k )Ber(c)k + τ

N ,0
k

a.s. (4.4)

By the strong law of large numbers,

lim
m→∞

∑m
k=1(N + τ

N ,1
k )Ber(c)k∑m

k=1(N + τ
N ,1
k )Ber(c)k + τ

N ,0
k

=
c(N + Eτ N ,1)

c(N + Eτ N ,1) + Eτ N ,0 a.s. (4.5)

By Proposition 5 (with l = 1) and the assumption that I0(r1) < I1(r1), it follows that
limN→∞

Eτ N ,1

Eτ N ,0 = ∞. Using this with (4.4) and (4.5), we conclude that the asymptotic fraction
of steps that the instantaneous process spends in the P (inc)

1 -mode satisfies

lim
N→∞

lim inf
m→∞

∑m
k=1 T N ,1

k∑m
k=1(T N ,1

k + T N ,0
k )

= 1 a.s.

From this we conclude that (4.1) holds. □
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