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Abstract

The goal of this paper is to show that under some assumptions, for a d-dimensional fractional Brownian
motion with Hurst parameter H > 1/2, the density of the solution of the stochastic differential equation

X x
t = x +

d−
i=1

∫ t

0
Vi (X

x
s )dBi

s ,

admits the following asymptotics at small times:

p(t; x, y) =
1

(t H )d
e
−

d2(x,y)
2t2H


N−

i=0

ci (x, y)t2i H
+ O(t2(N+1)H )


.
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1. Introduction

In this paper, we are interested in the study of stochastic differential equations on Rd at small
times:

X x
t = x +

d−
i=1

∫ t

0
Vi (X

x
s )dBi

s (1.1)

where Vi ’s are C∞-bounded vector fields on Rd and B is a d-dimensional fractional Brownian
motion with Hurst parameter H > 1/2. Since H > 1/2, the integrals

 t
0 Vi (X x

s )dBi
s are

understood in the sense of Young’s integration (see [23,24]), and it is known (see e.g. [20])
that an equation like (1.1) has one and only one solution. Throughout our discussion, we make
the following two-part assumption.

Assumption 1.1.

• A1: For every x ∈ Rd , the vectors V1(x), . . . , Vd(x) form a basis of Rd .
• A2: There exist smooth and bounded functions ωl

i j such that

[Vi , V j ] =

d−
l=1

ωl
i j Vl ,

and

ωl
i j = −ω

j
il .

The first assumption means that the vector fields form an elliptic differential system. As a
consequence of the work of Baudoin and Hairer [6], it is known that the law of X t , t > 0,
admits therefore a smooth density p(t; x, y) with respect to Lebesgue measure (also see [21]).
The second assumption is of geometric nature and actually means that the Levi-Civita connection
associated with the Riemannian structure given by the vector fields Vi is

∇X Y =
1
2
[X, Y ].

In a Lie group structure, this is equivalent to the fact that the Lie algebra is of compact type, or
in other words that the adjoint representation is unitary. Our main result is the following:

Theorem 1.2. Under the above assumption, in a neighborhood V of x, the density function
p(t; x, y) of X x

t in (1.1) has the following asymptotic expansion near t = 0:

p(t; x, y) =
1

(t H )d
e
−

d2(x,y)
2t2H


N−

i=0

ci (x, y)t2i H
+ rN+1(t, x, y)t2(N+1)H


, y ∈ V .

Here c0(x, y) > 0 and d(x, y) is the Riemannian distance between x and y determined
by the vector fields V1, . . . , Vd . Moreover, we can chose V such that ci (x, y) are C∞ in
V × V ⊂ Rd

× Rd , and for all multi-indices α and β

sup
t≤t0

sup
(x,y)∈V ×V

|∂αx ∂
β
y ∂

k
t rN+1(t, x, y)| < ∞

for some t0 > 0.
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As a first corollary of the above theorem, we observe that it implies the Varadhan type
asymptotics

lim
t→0

t2H ln p(t; x, y) = −
d2(x, y)

2
.

For H = 1/2, which corresponds to the Brownian motion case, the above theorem admits
numerous proofs. The first proofs were analytic and based on the parametrix method. Such
methods do not apply in the present framework since the Markov property for X x

t is lost whenever
H > 1/2. However, in the seminal works [1,2], Azencott introduced probabilistic methods
to prove the result. These methods introduced by Azencott were then further developed by
Ben Arous and Léandre in [7–9,15], in order to cover the case of hypoelliptic heat kernels.
In this work, we follows Ben Arous’ approach [8], the strategy of which is sketched as
follows.

The first idea is to consider the scaled stochastic differential equation

dXεt = ε

n−
i=1

Vi (X
ε
t )dBi

t , with Xε0 = x0.

We observe that there exist neighborhoods U and V of x0 and a bounded smooth function
F(x, y, z) on U × V × Rd such that:

(1) For any (x, y) ∈ U × V the infimum

inf


F(x, y, z)+
d(x, z)2

2
, z ∈ Rn


= 0

is attained at the unique point y.
(2) For each (x, y) ∈ U × V , there exists a ball centered at y with radius r independent of

x, y such that F(x, y, ·) is a constant outside of the ball.
So, denoting by pε(x0, y) the density of Xε1, by the Fourier inversion formula we have

pε(x0, y)e
−

F(x0,y,y)

ε2 =
1

(2π)d

∫
e−iζ ·ydζ

∫
eiζ ·ze

−
F(x0,y,z)

ε2 pε(x0, z)dz

=
1

(2πε)d

∫
dζE


e

iζ ·(Xε1−y)
ε e

−
F(x0,y,X

ε
1)

ε2


.

Thus, the asymptotics of pt (x0, y) may be understood from the asymptotics when ε → 0 of

Jε(x0, y) = E


e

iζ ·(Xε1−y)
ε e

−
F(x0,y,X

ε
1)

ε2


.

Then, by using the Laplace method on the Wiener space based on the large deviation principle,
we get an expansion in powers of ε of Jε(x0, y) which leads to the expected asymptotics for the
density function.

Finally, let us explain where assumption A2 is needed, which is also a major difference from
the classical case. This assumption essentially means that the derivative of the Itô map is unitary
(see Assumption H, Main theorem, page 278 in [17], for a precise meaning in a Lie group
framework for the Brownian motion case).

It particularly implies that the Riemannian distance is the control distance associated with
the equation that we consider. More precisely, denote by Φ.(x, k) the solution of the ordinary
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differential equation

xt = x +

d−
i=1

∫ t

0
Vi (xs)dki

s

where k is an element from the Cameron–Martin space HH of the underlying fractional
Brownian motion B. Define

D2(x, y) = inf
k∈HH ,Φ1(x,k)=y

‖k‖
2
HH

.

The assumption A2 implies (see Proposition 4.3 for more details)

D2(x, y) = d2(x, y).

Here d(x, y) is the Riemannian distance. When assumption A2 is dropped, it is clear from
the above that one needs to construct a bounded smooth function F(x, y, z) on U × V × Rd

associated with D2(x, y) (instead of d2(x, y) as in the classical case). On the other hand, the
original construction of F in the classical case depends on some smoothness of d2(x, y), which
is not clear for D2(x, y) in our case. This causes a technical difficulty in the present work.

Another reason that we want to work with d(x, y) is that, in this case, our result would be
useful for estimating probability in a small ball of x , the starting point of the process X . Without
assumption A2, one should expect to replace d2(x, y) by D2(x, y) in the result of Theorem 1.2
(assuming that the technical difficulty specified above could be overcome). But in this case we
expect D(x, y) not to induce a metric in Rd in general, and it is not clear to the authors at this
moment whether D(x, y) is comparable to d(x, y) or not.

The rest of this paper is organized as follows. In a preliminary section we recall some known
facts about fractional Brownian motion and equations driven by it. In the second section we show
how the Laplace method may be carried out in the fractional Brownian motion case and finally
in the third section, which is the heart of the present paper, we prove Theorem 1.2. We move the
proofs of some technical lemmas to the Appendix.

Remark 1.3. Under the framework of this present work, the Laplace method can be obtained in
the general hypoelliptic case and without imposing the structure equations on the vector fields
in Assumption 1.1. These two assumptions are imposed only to obtain the correct Riemannian
distance in the kernel expansion.

Remark 1.4. When H > 1/2, to obtain a short-time asymptotic formula for the density of the
solution to Eq. (1.1) but with drift, one needs to work on a version of Laplace method with
fractional powers of ε, which will be very onerous and tedious in computation.

Remark 1.5. When the present work was almost completed, we noticed that a proof for the
Laplace method for stochastic differential equations driven by fractional Brownian motion with
Hurst parameter 1/3 < H < 1/2 became available from Inahama [13] on the mathematics arXiv.

2. Preliminaries

2.1. Stochastic differential equations driven by fractional Brownian motions

We consider the Wiener space of continuous paths

W⊗d
=


C([0, T ],Rd), (Bt )0≤t≤T ,P


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where:

(1) C([0, T ],Rd) is the space of continuous functions [0, T ] → Rd ;
(2) (βt )t≥0 is the coordinate process defined by βt ( f ) = f (t), f ∈ C([0, T ],Rd);
(3) P is the Wiener measure;
(4) (Bt )0≤t≤T is the (P-completed) natural filtration of (βt )0≤t≤T .

A d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1) is a Gaussian
process

Bt = (B1
t , . . . , Bd

t ), t ≥ 0,

where B1, . . . , Bd are d independent centered Gaussian processes with covariance function

R(t, s) =
1
2


s2H

+ t2H
− |t − s|2H


.

It can be shown that such a process admits a continuous version whose paths are Hölder p
continuous, p < H . Throughout this paper, we will always consider the ‘regular’ case, H > 1/2.
In this case the fractional Brownian motion can be constructed on the Wiener space by a Volterra
type representation (see [10]). Namely, under the Wiener measure, the process

Bt =

∫ t

0
K H (t, s)dβs, t ≥ 0 (2.1)

is a fractional Brownian motion with Hurst parameter H , where

K H (t, s) = cH s
1
2 −H

∫ t

s
(u − s)H−

3
2 u H−

1
2 du, t > s

and cH is a suitable constant.
Denote by E the set of step functions on [0, T ]. Let H be the Hilbert space defined as the

closure of E with respect to the scalar product

⟨1[0,t], 1[0,s]⟩H = RH (t, s).

The isometry K ∗

H from H to L2([0, T ]) is given by

(K ∗

Hϕ)(s) =

∫ T

s
ϕ(t)

∂K H

∂t
(t, s)dt.

Moreover, for any ϕ ∈ L2([0, T ]) we have∫ T

0
ϕ(s)dBs =

∫ T

0
(K ∗

Hϕ)(s)dβs .

We consider the following stochastic differential equation:

X x
t = x +

∫ t

0
V0(X

x
s )ds +

d−
i=1

∫ t

0
Vi (X

x
s )dBi

s (2.2)

where the Vi ’s are C∞ vector fields on Rd with bounded derivatives to any order and B is the
d-dimensional fractional Brownian motion defined by (2.1). The existence and uniqueness of
solutions for such equations have been widely studied and are known to hold in this framework.
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2.1.1. Pathwise estimates
Let us have 1/2 < λ < H and denote by Cλ(0, T ; Rd) the space of λ-Hölder continuous

functions equipped with the λ-Hölder norm

‖ f ‖λ,T := ‖ f ‖∞ + sup
0≤s<t≤T

| f (t)− f (s)|

(t − s)λ
,

where ‖ f ‖∞ := supt∈[0,T ] | f (t)|.
The following remarks will be useful later.

Remark 2.1.

1. It is clear that if f1, f2 ∈ Cλ, then f1 f2 ∈ Cλ with ‖ f1 f2‖λ,t ≤ ‖ f1‖λ,t‖ f2‖λ,t . Therefore,
polynomials of elements in Cλ are still in Cλ. It is also clear that whenever ϕ is a Lipschitz
function and f ∈ Cλ, we have ϕ( f ) ∈ Cλ.

2. Let f ∈ Cλ(0, T ; Rd) and g : [0, T ] → Mn×d be a matrix-valued function and suppose
g ∈ Cλ. By standard argument (see [16] for instance),∫ .

0
gs d fs ∈ Cλ(0, T ; Rn)

with ∫ .

0
gs d fs


λ,T

≤ C‖g‖λ,T ‖ f ‖λ,T .

In the above, C is a constant only depending on λ and T .

Lemma 2.2 (Hu and Nualart [12]). Consider the stochastic differential equation (1.2), and
assume that E(|X0|

p) < ∞ for all p ≥ 2. If the derivatives of the Vi ’s are bounded and Hölder
continuous of order λ > 1/H − 1, then

E


sup

0≤t≤T
|X t |

p


< ∞

for all p ≥ 2. If furthermore the Vi ’s are bounded and E(exp(λ|X0|
q)) < ∞ for any λ > 0 and

q < 2H, then

E


exp λ


sup

0≤t≤T
|X t |

q


< ∞

for any λ > 0 and q < 2H.

2.2. The Cameron–Martin theorem for fBm

Consider the classical Cameron–Martin space H = {h ∈ Po(Rd) : ‖h‖H < ∞}, where

‖h‖H =

∫ T

0
|ḣs |

2ds

 1
2

.

The Cameron–Martin space for the fractional Brownian motion B is

HH = K H (H ),
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where the map K H : H → HH is given by

(K H h)t =

∫ t

0
K H (t, s)ḣsds, for all h ∈ H .

The inner product on HH is defined by

⟨k1, k2⟩HH = ⟨h1, h2⟩H , ki = K H hi , i = 1, 2.

Hence K H is an isometry between H and HH .

Remark 2.3. It can be shown that when γ ∈ HH , γ is H -Hölder continuous.

The following Cameron–Martin theorem is known (see [10]).

Theorem 2.4 (Cameron–Martin Theorem for fBm). Let Bk
= B + k be the shifted fractional

Brownian motion, where k ∈ HH is a Cameron–Martin path. The law Pk
H of Bk and the law PH

of B are mutually absolutely continuous. Furthermore, the Radon–Nikodym derivative is given
by

dPk
H

dPH
= exp

[
−

∫ T

0
(K ∗

H )
−1(ḣ)sdBs −

1
2
‖k‖

2
HH

]
.

In the above, h = (K H )
−1k and the integral with respect to B is understood as Young’s integral.

2.3. The large deviation principle for fBm

The following large deviation principle for stochastic differential equations driven by
fractional Brownian motion is a special case of Proposition 19.14 in [11] (see also [18]).

Proposition 2.5. Fix λ ∈ (1/2, H). Let Xε be the solution to the following stochastic differential
equations driven by fBm B:

Xεt = x0 +

∫ t

0
V0(Xs)ds +

d−
i=1

ε

∫ t

0
Vi (Xs)dBi

s (2.3)

where the Vi ’s are C∞ vector fields on Rd with bounded derivatives to any order. The process
Xε satisfies a large deviation principle, in λ-Hölder topology, with a good rate function given by

Λ(φ) = inf{Λ̄(γ ) : φ = I (γ )}

where I is the Itô map given by (2.3) with ε being replaced by 1, and Λ̄ is given by

Λ̄(γ ) =

1
2
‖γ ‖

2
HH

if γ ∈ HH ,

+∞ otherwise.

3. The Laplace method

Consider the following stochastic differential equation driven by fractional Brownian motion
on Rd :

Xεt = x0 +

∫ t

0
V0(Xs)ds +

d−
i=1

ε

∫ t

0
Vi (Xs)dBi

s .
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For the convenience of our discussion, in what follows, we write the above equation in the
following form:

Xεt = x + ε

∫ t

0
σ(Xεs )dBs +

∫ t

0
b(ε, Xεs )ds,

where σ is a smooth d ×d matrix and b a smooth function from R+
×Rd to Rd . We also assume

that σ and b have bounded derivatives to any order.
Fix 1/2 < λ < H . Let F and f be two bounded infinitely Fréchet differentiable functionals

on Cλ(0, T ; Rd) with bounded derivatives (as linear operators) to any order. We are interested in
studying the asymptotic behavior of

J (ε) = E


f (Xε) exp{−F(Xε)/ε2
}

, as ε ↓ 0.

For each k ∈ HH , denote by Φ(k) (which is the deterministic Itô map) the solution to the
following deterministic differential equation:

dut = σ(ut )dkt + b(0, ut )dt, with u0 = x . (3.1)

Throughout our discussion we make the following assumptions:

Assumption 3.1.

• H1: F + Λ attains its minimum for a finite number of paths φ1, φ2, . . . , φn on P(Rd).
• H2: For each i ∈ {1, 2, . . . , n}, we have φi = Φ(γi ) and γi is a non-degenerate minimum of

the functional F ◦ Φ + 1/2‖ · ‖
2
HH

, i.e.,

∀k ∈ HH − {0}, d2(F ◦ Φ + 1/2‖ · ‖
2
HH

)(γi )k
2 > 0.

The following theorem is the main result of this section.

Theorem 3.2. Under the assumptions H1 and H2 above, we have

J (ε) = e
−

a
ε2 e−

c
ε


α0 + α1ε + · · · + αN ε

N
+ O(εN+1)


.

Here

a = inf{F + Λ(φ), φ ∈ P(Rd)} = inf{F ◦ Φ(k)+ 1/2|k|
2
HH

, k ∈ HH }

and

c = inf

dF(φi )Yi , i ∈ {1, 2, . . . , n}


,

where Yi is the solution of

dYi (s) = ∂xσ(φi (s))Yi (s)dγi (s)+ ∂εb(0, φi (s))ds + ∂x b(0, φi (s))Yi (s)ds

with Yi (0) = 0.

Lemma 3.3. Let Φ be defined as above; we have

Λ(φ) = inf


1
2
‖k‖

2
HH

, φ = Φ(k), k ∈ HH


.

Moreover, if Λ(φ) < ∞, there exists a unique k ∈ HH such that Φ(k) = φ and Λ(φ) =

1/2‖k‖
2
HH

.
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Proof. The first statement is apparent. For the second statement, we only need to notice that if

φ = Φ(k1) = Φ(k2), k1, k1 ∈ HH ,

then ∫ t

0
σ(φs)d(k1 − k2)s = 0, t ∈ [0, T ],

which implies that k1 = k2, since we assume that columns of σ are linearly independent. The
proof is therefore completed. �

Lemma 3.4. Under assumption H1, we have

a
def
= inf{F + Λ(φ), φ ∈ P(Rd)} = inf


F ◦ Φ(k)+

1
2
‖k‖

2
HH

, k ∈ HH


,

and the minimum is attained for n paths γ1, γ2, . . . , γn ∈ HH such that

Φ(γi ) = φi

and
1
2
‖γi‖

2
HH

= Λ(Φ(γi )).

Proof. This is a direct corollary of Lemma 3.3. �

Assumption H2 has a simple interpretation as follows. Let γ be one of the γi ’s above. Define
a bounded self-adjoint operator on H by

d2 F ◦ Φ(γ )(K H h1, K H h2) = (Ah1, h2)H , for h1, h2
∈ H .

Lemma 3.5. The bounded self-adjoint operator A is Hilbert–Schmidt.

Proof. The proof is similar to that in [7] but with slight modification. Thus we only sketch the
proof here. In what follows, k always denotes an element in HH and h = K −1

H k its corresponding
element in H .

For any k1, k2
∈ HH , we have

d2 F ◦ Φ(γ )(K H h1, K H h2) = d2 F ◦ Φ(γ )(k1, k2)

= d2 F(dΦ(γ )k1, dΦ(γ )k2)+ dF(φ)(d2Φ(γ )(k1, k2)).

Let

φ = Φ(γ ) and χ(k) = dΦ(γ )k.

It can be shown (cf. [7]) that

dφt = σ(φt )dγt + b(0, φt )dt, with φ0 = x,

dχt = σ(φt )dkt + ∂xσ(φt )χt dγt + ∂x b(0, φt )χt dt, with χ0 = 0,

and

d2Φ(γ )(k1, k2)(t) =

∫ 1

0
Q(t, s)∂xσ(φs)


χ(k1)sdk2

s + χ(k2)sdk1
s


+

∫ t

0
∂2

xxσ(φs)

χ(k1)s, χ(k

2)s

dγs +

∫ t

0
∂2

xx b(0, φs)

χ(k1)s, χ(k

2)s

ds.
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Here Q(t, s) takes the form

Q(t, s) = ∂xφt (x)∂xφs(x)
−1.

Moreover, we have

χt (k) =

∫ t

0
Q(t, s)σ (φs)dks

=

∫ t

0

∫ t

u
Q(t, s)σ (φs)

∂K H (s, u)

∂s
ds


ḣudu. (3.2)

Set

V (h1, h2)(t) =

∫ t

0
Q(t, s)∂xσ(φs)


χ(K H h1)sd(K H h2)s + χ(K H h2)sd(K H h1)s


=

∫ t

0
Q(t, s)∂xσ(φs)


χ(k1)sdk2

s + χ(k2)sdk1
s


=

∫ t

0

∫ t

u
Q(t, s)∂xσ(φs)

∂K H (s, u)

∂s


χ(k1)sh2

u + χ(k2)sh1
u


dsdu. (3.3)

Define a bounded self-adjoint operator Ã from H to H by

dF(φ)(V (h1, h2)) = ( Ãh1, h2)H .

We conclude that Ã is Hilbert–Schmidt since, by (3.2) and (3.3), it is defined from an L2 kernel.
Therefore, to complete the proof, it suffices to show that A − Ã is Hilbert–Schmidt.By the same
argument as in [7], we only need to show that

‖dΦ(γ )K H h‖∞ = ‖χ(K H h)‖∞ ≤ C‖h‖∞, for all h ∈ H .

Indeed, by an easy application of the Gronwall inequality to the equation for χ , we have

‖dΦ(γ )(K H h)‖∞ ≤ ‖K H h‖∞.

Moreover, since

(K H h)t =

∫ t

0
K H (t, s)ḣsds,

and noting that ∂K H (t, s)/∂s ∈ L1, we have

|K H h|t ≤

∫ t

0
K H (t, s)ḣsds

 =

∫ t

0
hs
∂K H (t, s)

∂s
ds

 ≤ ‖h‖∞

∫ t

0

∂K H (t, s)

∂s

 ds.

The proof is completed. �

From the above lemma, assumption H2 simply means that the smallest eigenvalue of A is
attained and is strictly greater that −1.

3.1. Localization around the minimum

By the large deviation principle, the sample paths that contribute to the asymptotics of J (ε)
lie in the neighborhoods of the minimizers of F + Λ. More precisely:
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Lemma 3.6. For ρ > 0, denote by B(φi , ρ) the open ball (under λ-Hölder topology) centered
at φi with radius ρ. There exist d > a and ε0 > 0 such that for all ε ≤ ε0J (ε)− E


f (XεT )e

−F(XεT )/ε
2
, Xε ∈


1≤i≤n

B(φi , ρ)

 ≤ e−d/ε2
.

Proof. This is a consequence of the large deviation principle. �

Assume that n = 1, i.e., F + Λ attains its minimum on only one path φ. Let

Jρ(ε) = E


f (XεT )e
−F(XεT )/ε

2
, Xε ∈ B(φ, ρ)


.

The above lemma tells us that to study the asymptotic behavior of J (ε) as ε ↓ 0, it is sufficient
to study that of Jρ(ε).

3.2. Stochastic Taylor expansion and Laplace approximation

In this section, we prove an asymptotic expansion for Jρ(ε).
Let φ be the unique path that minimizes F + Λ. There exists a γ ∈ HH such that

φ = Φ(γ ), and Λ(φ) =
1
2
‖γ ‖

2
HH

,

and for all k ∈ HH − {0},

d2


F ◦ Φ +
1
2
‖ ‖

2
HH


(γ )k2 > 0.

Let

χ(k) = dΦ(γ )k and ψ(k, k) = d2Φ(γ )(k, k).

We have

dχt = σ(φt )dkt + ∂xσ(φt )χt dγt + ∂x b(0, φt )χt dt, (3.4)

and

dψt = 2∂xσ(φt )χt dkt + ∂2
xxσ(φt )χ

2
t dγt + ∂xσ(φt )ψt dγt + ∂2

xx b(0, φt )χ
2
t dt

+ ∂x b(0, φt )ψt dt. (3.5)

Here χ0 = φ0 = 0. These formulas will be useful later.
Consider the following stochastic differential equation:

Z εt = x +

∫ t

0
σ(Z εs )(εdBs + dγs)+

∫ t

0
b(ε, Z εs )ds.

It is clear that Z0
= φ. Define Zm,ε

t = ∂m
ε Z εt and consider the Taylor expansion with respect to

ε near ε = 0; we obtain

Z ε = φ +

N−
j=0

g jε
j

j !
+ εN+1 RεN+1,
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where g j = Z j,0. Explicitly, we have

dg1(s) = σ(φs)dBs + ∂xσ(φs)g1(s)dγs + ∂x b(0, φs)g1(s)ds + ∂εb(0, φs)ds.

Like for the Brownian motion case, we have the following estimates, the proof of which is
postponed to the Appendix.

Lemma 3.7. For any t ∈ [0, T ], there exists a constant C > 0 such that for r large enough we
have

P{‖g1‖λ,t ≥ r} ≤ exp

−

Cr2

t2H


P{‖g2‖λ,t ≥ r} ≤ exp


−

Cr

t2H


and on {t ≤ T ε}, where T ε is the first exist time of Z ε from B(φ, ρ), we have

‖εRε1‖λ,t ≤ ρ,

P{‖εRε2‖λ,t ≥ r; t ≤ T ε} ≤ exp

−

Cr2

ρt2H


,

P{‖εRε3‖λ,t ≥ r; t ≤ T ε} ≤ exp

−

Cr

ρt2H


.

Let θ(ε) = F(Z ε). By Taylor expansion of θ(ε) with respect to ε, we obtain

θ(ε) = θ(0)+ εθ ′(0)+ ε2U (ε).

Here

U (ε) =

∫ 1

0
(1 − v)θ ′′(εv)dv, and θ(0) = F(φ).

Lemma 3.8. With the above notation, we have

θ ′(0) = dF(φ)g1 = −

∫ T

0


(K ∗

H )
−1 ˙
(K −1

H γ )


sdBs + dF(φ)Y.

Here Y is the solution of

dYs = ∂xσ(φs)Ysdγs + ∂εb(0, φs)ds + ∂x b(0, φs)Ysds, Y (0) = 0.

Proof. By an easy application of Gronwall’s inequality to (3.4), we have for any k ∈ HH ,

‖dΦ(γ )k‖∞ ≤ C‖k‖∞ (3.6)

for some positive constant C . Therefore, dΦ(γ ) can be extended continuously to an operator on
P(Rd). We have

g1 = dΦ(γ )B + Y.
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On the other hand, since γ is a critical point of F ◦ Φ + 1/2‖ · ‖
2
HH

and noting that ‖k‖HH =

‖K −1
H k‖H , we have

dF(φ)(dΦ(γ )k) = −

∫ T

0

˙
(K −1

H γ )s
˙

(K −1
H k)sds

= −

∫ T

0


(K ∗

H )
−1 ˙
(K −1

H γ )


sdks (3.7)

for all k ∈ HH . The second equation above can be seen as follows. Define

h = K −1
H k.

We have∫ T

0


(K ∗

H )
−1 ˙
(K −1

H γ )


sdks =

∫ T

0


(K ∗

H )
−1 ˙
(K −1

H γ )


s

∫ s

0

∂K H

∂s
(s, u)ḣududs

=

∫ T

0
ḣu

∫ T

u


(K ∗

H )
−1 ˙
(K −1

H γ )


s

∂K H

∂s
(s, u)ds

=

∫ T

0
ḣu

˙
(K −1

H γ )udu

=

∫ T

0

˙
(K −1

H γ )s
˙

(K −1
H k)sds.

From (3.6) and (3.7) we conclude that the path (K ∗

H )
−1 ˙
(K −1

H γ ) has bounded variation and
hence, by passing to limit, we obtain

dF(φ)(dΦ(γ )B) = −

∫ T

0


(K ∗

H )
−1 ˙
(K −1

H γ )


sdBs .

The proof is completed. �

Now, by Theorem 2.4 we have

Jρ(ε) = E


f (Z ε) exp


−

F(Z ε)

ε2



× exp


−

1
ε

∫ T

0


(K ∗

H )
−1(

˙K −1
H γ )


sdBs −

‖γ ‖
2
HH

2ε2


; Z ε ∈ B(φ, ρ)



= E

V (ε); Z ε ∈ B(φ, ρ)


exp

[
−

1

ε2


F(φ)+

1
2
‖γ ‖

2
HH

]
exp

[
−

dF(φ)Y

ε

]
= E


V (ε); Z εB(φ, ρ)


exp


−

a

ε2


exp

[
−

dF(φ)Y

ε

]
.

In the above

V (ε) = f (Z ε)e−U (ε).

To prove the Laplace approximation, it now suffices to estimate E

V (ε); Z ε ∈ B(φ, ρ)


. For

this purpose, we need the following two technical lemmas.
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Lemma 3.9. Let

θ(ε) = F(Z ε) = θ(0)+ εθ ′(0)+ ε2U (ε)

where

U (ε) =

∫ 1

0
(1 − v)θ ′′(εv)dv, and θ(0) = F(φ).

There exist β > 0 and ε0 > 0 such that

sup
0≤ε≤ε0

E


e−(1+β)U (ε)
; t ≤ T ε


< ∞.

Proof. See the Appendix. �

Lemma 3.10. For all m > 0 and p ≥ 2, there exists an ε0 > 0 such that

sup
ε≤ε0

E


sup

t∈[0,1]

|∂m
ε Z εt |

p


< ∞.

Proof. This is a consequence of Lemma 2.2. �

Define V (m)(ε) = ∂m
ε V (ε). By Lemmas 3.9 and 3.10, one can show that

E|V (m)(0)|p < ∞, for all p > 1, m > 0.

Consider the stochastic Taylor expansion for V (ε)

V (ε) =

N−
m=0

εm V (m)(0)
m!

+ εN+1SεN+1

where

SεN+1 =

∫ 1

0

V (N+1)(εv)(1 − v)N

N !
dv.

It can be shown, again by Lemmas 3.9 and 3.10 (cf. [7]), that

sup
0≤ε≤ε0

E

|SεN+1|; Z ε ∈ B(φ, ρ)


< ∞.

Thus we conclude that

E

V (ε); Z ε ∈ B(φ, ρ)


=

N−
m=0

αmε
m

+ O(εN+1).

Moreover, one can show that

αm =
EV (m)(0)

m!
.
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4. Short-time expansion for the transition density

We now arrive at the heart of our study and are interested in obtaining a short-time expansion
for the density function of X t , where

dX t =

d−
i=1

Vi (X t )dBi
t , X0 = x . (4.1)

Here the Vi ’s are C∞ vector fields on Rd with bounded derivatives to any order. Recall
Assumption 1.1; our main result of this paper is the following.

Theorem 4.1. Fix x ∈ Rd . Assume that Assumption 1.1 is satisfied; then in a neighborhood V
of x, the density function p(t; x, y) of X t in (4.1) has the following asymptotic expansion near
t = 0:

p(t; x, y) =
1

(t H )d
e
−

d2(x,y)
2t2H


N−

i=0

ci (x, y)t2i H
+ rN+1(t, x, y)t2nH


, y ∈ V .

Here d(x, y) is the Riemannian distance between x and y determined by V1, . . . , Vd . Moreover,
we can choose V such that ci (x, y) are C∞ in V × V ⊂ Rd

× Rd , and for all multi-indices α
and β,

sup
t≤t0

sup
(x,y)∈V ×V

|∂αx ∂
β
y ∂

k
t rN+1(t, x, y)| < ∞

for some t0 > 0.

Once the Laplace approximation in the previous section is obtained, the proof of the above
theorem is actually quite standard and follows closely the argument given in, for instance, [8].
Thus, for most of the lemmas in what follows, we only outline the proofs, but stress the main
differences from the Brownian motion case.

4.1. Preliminaries in differential geometry

The vector fields V1, V2, . . . , Vd on Rd determine a natural Riemannian metric g = (gi j )

on Rd under which V1(x), V2(x), . . . , Vd(x) form an orthonormal frame at each point x ∈ Rd .
More explicitly, let σ be the d × d matrix formed by

σ(x) = (V1(x), V2(x), . . . , Vd(x)).

Denote by Γ the matrix inverse of σσ ∗. Then the Riemannian metric g is given by

gi j = Γi j , 1 ≤ i, j ≤ d.

Throughout our discussion, we denote by M the Riemannian manifold Rd equipped with the
metric g specified above. The Riemannian distance between any two points x, y on M is denoted
by d(x, y). We recall that

d(x, y) = inf
γ∈C(x,y)

∫ 1

0


gγ (s)(γ ′(s), γ ′(s))ds

where γ ∈ C(x, y) denotes the set of absolutely continuous curves γ : [0, 1] → Rd such that
γ (0) = x, γ (1) = y.
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More analytically, this distance may also be defined as

d(x, y) = sup


f (x)− f (y), f ∈ C∞

b (R
d),

d−
i=1

(Vi f )2 ≤ 1


,

where C∞

b (R
d) denotes the set of smooth and bounded functions on Rd . Since the vector fields

V1, . . . , Vd are Lipschitz, it is well-known that this distance is complete and that the Hopf–Rinow
theorem holds (that is, closed balls are compact).

Due to the second part of Assumption 1.1, the geodesics are easily described. If k : R≥0 → R
is an α-Hölder path with α > 1/2 such that k(0) = 0, we denote by Φ(x, k) the solution of the
ordinary differential equation

xt = x +

d−
i=1

∫ t

0
Vi (xs)dki

s .

Whenever there is no confusion, we always suppress the starting point x and denote it simply by
Φ(k) as before.

Lemma 4.2. Φ(x, k) is a geodesic if and only if k(t) = tu for some u ∈ Rd .

Proof. It is well-known that geodesics c are smooth and are solutions of the equation

∇c′c′
= 0,

where ∇ is the Levi-Civita connection. Therefore, in order for Φ(k) to be a geodesic, we see first
that k needs to be smooth and then that

∇ d∑
i=1

Vi (xs )k̇i
s

d−
i=1

Vi (xs)k̇
i
s = 0.

Now, due to the structure equations

[Vi , V j ] =

d−
l=1

ωl
i j Vl ,

the Christoffel symbols of the connection are given by

Γ l
i j =

1
2


ωl

i j + ω
j
li + ωi

l j


=

1
2
ωl

i j .

So the equation of the geodesics may be rewritten as

d−
l=1

d2kl
s

ds2 Vl(xs)+

d−
i, j,l=1

ωl
i j k̇

i
s k̇ j

s Vl(xs) = 0.

Due to the skew symmetry ωl
i j = −ωl

j i we get

d2kl
s

ds2 = 0,

which leads to the expected result. �

As a consequence of the previous lemma, we then have the following key result:
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Proposition 4.3. Let T > 0. For x, y ∈ Rd ,

inf
k∈HH ,ΦT (x,k)=y

‖k‖
2
HH

=
d2(x, y)

T 2H
.

Proof. In a first step we prove

d2(x, y)

T 2H
≤ inf

k∈HH ,ΦT (x,k)=y
‖k‖

2
HH

.

Let k ∈ HH such that Φ0(k) = x,ΦT (k) = y. Denote by z the solution of the equation

dzt =

d−
i=1

Vi (zt )dki
t , 0 ≤ t ≤ T .

We have therefore

z0 = x, zT = y.

Let now f ∈ C∞

b (R
d) such that

∑d
i=1(Vi f )2 ≤ 1. By the change of variable formula, we get

f (y)− f (x) =

d−
i=1

∫ T

0
Vi f (zt )dki

t .

Since k ∈ HH , we can find h in the Cameron–Martin space of the Brownian motion such that

kt =

∫ t

0
K H (t, s)ḣsds.

Integrating by parts, we have then∫ T

0
Vi f (zt )dki

t =

∫ T

0

∫ T

s

∂K H

∂t
(t, s)Vi f (zt )dt


ḣi

sds.

Therefore from the Cauchy–Schwarz inequality, the isometry between H and HH and the fact
that

∑d
i=1(Vi f )2 ≤ 1, we deduce that

( f (y)− f (x))2 ≤ R(T, T )‖ḣ‖
2
L2([0,1])

= T 2H
‖k‖

2
HH

.

Thus

d2(x, y)

T 2H
≤ inf

k∈HH ,ΦT (x,k)=y
‖k‖

2
HH

.

We now prove the converse inequality.
We first assume that y is close enough to x that there exist (y1, . . . , yd) ∈ Rd that satisfy

y = exp


d−

i=1

yi Vi


(x).

Let

ki
t =

 t
0 K H (t, s)K H (T, s)ds

T 2H
yi =

R(t, T )

T 2H
yi .
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In that case, it is easily seen that

Φ(k)(t) = exp


d−

i=1

R(t, T )

T 2H
yi Vi


(x).

In particular,

Φ0(k) = x, Φ1(k) = y.

Moreover,

‖k‖
2
HH

=

d∑
i=1

y2
i

T 2H
=

d2(x, y)

T 2H
.

As a consequence

inf
k∈HH ,ΦT (x,k)=y

‖k‖
2
HH

≤
d2(x, y)

T 2H
.

If y is not close to x , we just have to pick a sequence x0 = x, . . . , xm = y such that

d(xi , xi+1) ≤ ε

and

d(x, y) =

m−1−
i=0

d(xi , xi+1),

where ε is small enough. �

The second key point is the following:

Theorem 4.4. Fix x0 ∈ M. Let F be a C∞ function on M. There exists a neighborhood V of x0
such that if y0 ∈ V is a non-degenerate minimum of

F(y)+
d2(x0, y)

2
,

then there exists a unique k0
∈ HH such that (a)Φ1(x0, k0) = y0, (b)d(x0, y0) = ‖k0

‖HH ,
and (c)k0 is a non-degenerate minimum of the functional: k → F(Φ1(x0, k)) + 1/2‖k‖

2
HH

on
HH .

Proof. The first two statements are clear from Proposition 4.3. We only need to prove (c). To
simplify notation, let

G(k) = F(Φ1(x0, k))+
1
2
‖k‖

2
HH

.

Consider

w(u) = G(k0
+ uk),

and

v(u) = F(Φ1(x0, k0
+ uk))+

1
2

d2(x0,Φ1(x0, k0
+ uk)).
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It is clear that

w(u) ≥ v(u), w(0) = v(0) and w′(0) = v′(0) = 0.

Thus

d2G(k0)(k, k) = w′′(0) ≥ v′′(0) =


F +

1
2

d(x0, ·)
2
′′

(y0)


dΦ1(k
0)k
2
.

When k ∉ Ker(dΦ1(x0, k0)), we certainly have

d2G(k0)(k, k) > 0.

In the case where k ∈ Ker(dΦ1(x0, k0)), it is clear that we can assume that ‖k‖HH = 1. From
Proposition 4.3 we first note that

k0
t = R(t, 1)y0, t ∈ [0, 1]. (4.2)

Since k ∈ Ker(dΦ1(x0, k0)), we can consider a variation ku of k0 such that Φ1(x0, ku) = y0, u ∈

(−ε, ε). Without loss of generality, we may assume that ku takes the form

ku
= k0

+ uk + u2k1

for some k1
∈ HH . In what follows, we show that there exists a neighborhood V of x0 such that

for all y0 ∈ V , we have

d2

du2


u=0

‖ku
‖

2
HH

> 0.

Indeed,

d2

du2


u=0

‖ku
‖

2
HH

= 2‖k‖
2
HH

+ 4⟨k0, k1
⟩HH

= 2‖k‖
2
HH

+ 4k1
1 · y0.

For the second equation above, we used (4.2). On the other hand, since Φ1(x0, ku) = y0 for all
u ∈ (−ε, ε) we have

dΦ1(k
0)k = 0, and d2Φ1(k

0)(k, k)+ 2dΦ1(k
0)(k1) = 0. (4.3)

From Lemma 3.5 we have

|d2Φ1(k
0)(k, k)| ≤ M‖k‖

2
HH

(4.4)

for some constant M > 0. By computation, we know that

dχt = σ(φt )dk1
t + ∂xσ(φt )χt dk0

t (4.5)

where χ = dΦ(k0)(k1) and φ = Φ(k0). In particular, when y0 = x0 the above equation becomes
(since k0

≡ 0 in this case)

dχt = σ(x0)dk1
t .

Therefore when x0 = y0

|χ1| ≥ C1|k
1
1 |, for all k1

∈ HH
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for some constant C1 > 0. It is clear that, by Eq. (4.5) and a continuity argument, we can find a
neighborhood V of x0 such that for all y0 ∈ V we have

|χ1| ≥ C |k1
1 | − δ for all k1

∈ HH (4.6)

for some 0 < δ < 1 and some constant C > 0 depending on V . Now by the second equation in
(4.3), and inequalities (4.4) and (4.6) we have

2(C |k1
1 | − δ) ≤ 2|χ1| = |d2Φ1(k

0)(k, k)| ≤ M‖k‖
2
HH

. (4.7)

Hence in V we have

d2

du2


u=0

‖ku
‖

2
HH

= 2‖k‖
2
HH

+ 4k1
1 · y0

≥ 2‖k‖
2
HH

− 4|k1
1 | |y0|

≥ 2‖k‖
2
HH

−
2|y0|M

C
‖k‖

2
HH

−
4|y0|δ

C
.

Now we only need to choose V even smaller (so that |y0| is small) to guarantee that the above is
non-negative. �

Remark 4.5. In the above lemma, it is clear that we can choose the neighborhood V of x0 such
that for any x ∈ V , if y ∈ V is a non-degenerate minimum of F(y)+ d(x, y)2/2, then the three
properties in the lemma are fulfilled.

4.2. Asymptotics of the density function

Consider

dXεt = ε

d−
i=1

Vi (X
ε
t )dBi

t with Xε0 = x .

Before applying the Laplace approximation to Xεt , we need the following lemma which gives us
the correct functionals F and f .

Lemma 4.6. Let V be as in Remark 4.5. There exists a bounded smooth function F(x, y, z) on
V × V × M such that:

(1) For any (x, y) ∈ V × V the infimum

inf


F(x, y, z)+
d(x, z)2

2
, z ∈ M


= 0

is attained at the unique point y. Moreover, it is a non-degenerate minimum.
(2) For each (x, y) ∈ V × V , there exists a ball centered at y with radius r independent of x, y

such that F(x, y, ·) is a constant outside of the ball.

Proof. See Lemma 3.8 in [8]. �

Let F be as in the above lemma and pε(x, y) the density function of Xε1. By the inversion of
the Fourier transformation we have

pε(x, y)e
−

F(x,y,y)
ε2 =

1
(2π)d

∫
e−iζ ·ydζ

∫
eiζ ·ze

−
F(x,y,z)
ε2 pε(x, z)dz
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=
1

(2πε)d

∫
e−i ζ ·y

ε dζ
∫

ei ζ ·z
ε e

−
F(x,y,z)
ε2 pε(x, z)dz

=
1

(2πε)d

∫
dζEx


e

iζ ·(Xε1−y)
ε e

−
F(x,y,Xε1)

ε2


.

It is clear that by applying Laplace approximation to the expectation in the last equation
above and switching the order of integration (with respect to ζ ) and summation, we obtain an
asymptotic expansion for the density function pε(x, y). On the other hand, we cannot apply the
Laplace method here directly since we need a uniform control in x and y. Also we need to show
that the use of Fourier inversion is legitimate.

To make the above prior computation rigorous, we modify the Laplace method in the previous
section as follows.

First note that by Theorem 4.4, Assumption 3.1 is satisfied. Consider

dZ εt (x, y) =

d−
i=1

Vi

Z εt (x, y)


εdBi

t + dγ i
t (x, y)


, with Z ε0(x, y) = x .

In the above (x, y) ∈ V × V and γ (x, y) is the unique path in HH such that Φ1(x, γ (x, y)) = y
and ‖γ (x, y)‖HH = d(x, y).

Lemma 4.7. Let Z εt (x, y) be the process defined above; then Z εt (x, y) is C∞ in (ε, x, y).
Moreover, there exists an ε0 > 0 such that

sup
ε≤ε0

sup
x,y∈V ×V

n−
j=0

E


sup

t∈[0,1]

‖D j (∂αx ∂
β
y ∂

m
ε Z εt (x, y))‖p

HS


< ∞.

Here m, n are non-negative integers, p ≥ 2 and α ∈ {1, 2, . . . , d}
k, β ∈ {1, 2, . . . , d}

l are
multiple indices.

Proof. The first statement is clear. The second statement is a consequence of Lemma 2.2. �

Now consider the stochastic Taylor expansion for Z ε:

Z εt = φt (x, y)+

N−
j=1

gk
t (x, y)εk

k!
+ RN+1

t (ε, x, y)εN+1. (4.8)

Here

φ(x, y) = Φ(x, γ (x, y)),

and

RN+1
t (ε, x, y) =

∫ 1

0
∂N+1
ε Z εt (x, y)

(1 − v)N

N !
dv.

Let

θ(ε, x, y) = F(x, y, Z ε1(x, y)).

We have

θ(ε, x, y) = θ(0, x, y)+ ε∂εθ(0, x, y)+ ε2U (ε, x, y)
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where

U (ε, x, y) =

∫ 1

0
∂2
ε θ(ε, x, y)(1 − v)dv.

By our choice of Z ε, it is clear that

θ(0, x, y) = F(x, y, φ1(x, y)) = F(x, y, y). (4.9)

Lemma 3.8 gives us

∂εθ(0, x, y) = −

∫ 1

0
(K ∗

H )
−1 ˙
(K −1

H γ (x, y))sdBs . (4.10)

Thus applying the Cameron–Martin theorem for fBm (Theorem 2.4), we have

Ex exp


iζ · (Xε1 − y)

ε
−

F(x, y, Xε1)

ε2


= E


exp


iζ · (Z ε1 − y)

ε
−

F(x, y, Z ε1)

ε2



× exp


−

1
ε

∫ 1

0


(K ∗

H )
−1(

˙K −1
H γ )


sdBs −

‖γ ‖
2
HH

2ε2



= exp

−

a

ε2


Ex

[
exp


iζ · g1

1(x, y)


exp


iζ · V (ε, x, y)− U (ε, x, y)

]
.

In the above

a(x, y) = F(x, y, y)+
d2(x, y)

2
= 0,

and

V (ε, x, y) =
Z ε1(x, y)− y − εg1

1(x, y)

ε
= εR2

1(ε, x, y).

Like in the argument in Section 2, we need to estimate

Ex

[
exp


iζ · g1

1(x, y)


exp


iζ · V (ε, x, y)− U (ε, x, y)

]
.

For this purpose, we need:

Lemma 4.8. There exist C > 0 and ε0 > 0 such that

sup
(x,y)∈V ×V

sup
ε<ε0

Ee−(1+C)U (ε,x,y) < ∞.

Proof. We only sketch the proof. Details can be found in [8] (with minor modifications) and will
not be repeated here.

Fix any 1/2 < λ < H . One can show that for ρ > 0 there exist constants C > 0, b > 0 and
ε0 > 0 such that for all ε < ε0 and all (x, y) ∈ V × V we have

Ex


e−(1+C)U (ε,x,y)

;
Z εt − φt (x, y)


λ,1 ≥ ρ


≤ e

−b
ε2 . (4.11)
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Here ‖ · ‖λ,t is the λ-Hölder norm up to time t . The above estimate is a consequence of the
following application of the large deviation principle to Xε1:

lim sup
ε→0

ε2 log Ex


e
−

F(x,y,Xε1)

ε2 ; ‖Xε − φ(x, y)‖λ,1 ≥ ρ


< −a(x, y) = 0.

On the other hand, applying Lemma 3.9 we have that for each (x, y) ∈ V × V there exists
C > 0 and ε0 > 0 such that

sup
ε<ε0

Ex


e−(1+C)U (ε,x,y)

; ‖Z ε − φ(x, y)‖λ,1 ≤ ρ

< ∞.

Since we have smoothness of Z ε(x, y) (in x and y) and V × V is contained in a compact subset
of M × M , the above estimate leads to

sup
ε<ε0

sup
(x,y)∈V ×V

Ex


e−(1+C)U (ε,x,y)

; ‖Z ε − φ(x, y)‖λ,1 ≤ ρ

< ∞.

Combining this with (4.11), the proof is completed. �

Set

Υ(ε, x, y) = eiζ ·V (ε,x,y)−U (ε,x,y)

and consider its stochastic Taylor expansion:

Υ(ε, x, y, ζ ) =

N−
m=0

∂m
ε Υ(0, x, y, ζ )

εm

m!
+ SN+1(ε, x, y, ζ )εN+1, (4.12)

where

SN+1(ε, x, y, ζ ) =

∫ 1

0
∂N+1
ε Υ(εv, x, y, ζ )

(1 − v)N

N !
dv.

Lemma 4.9. For any non-negative integers k, l,m and n, and multi-indices α ∈ {1, 2, . . . , d}
k

and β ∈ {1, 2, . . . , d}
l , we have:

(1) For all p ≥ 2, there exists ε0 > 0 such that

sup
ε≤ε0

sup
x,y∈V ×V

E
 n−

j=0

sup
t∈[0,1]

‖D j (∂αx ∂
β
y ∂

m
ε iζ · V (ε, x, y))− U (ε, x, y)‖p

HS


< ∞.

(2) There exist C > 0, K > 0 and ε0 > 0 such that

sup
ε≤ε0

sup
x,y∈V ×V

E
 n−

j=0

sup
t∈[0,1]

‖D j (∂αx ∂
β
y ∂

m
ε Υ(ε, x, y, ζ ))‖1+C

HS


< K


‖ζ‖ + 1

m+k+l
.

Moreover, we have

sup
ε≤ε0

sup
x,y∈V ×V

E
 n−

j=0

sup
t∈[0,1]

D j ∂αx ∂βy ∂m
ε


eiζ ·g1

1(x,y)Υ(ε, x, y, ζ )
1+C

HS


< K


‖ζ‖ + 1

m+k+l
.
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Proof. We follow the argument in [8]. Note that

iζ · V (ε, x, y)− U (ε, x, y) = iζ
∫ 1

0
∂2
ε Z εv1 (x, y)(1 − v)dv −

∫ 1

0
∂2
ε θ(εv, x, y)(1 − v)dv.

The estimate in (1) follows directly from Lemma 4.7.
For the second statement, first note that

e−U
∈ Dom(D).

This is seen by an approximating argument and because D is a closed operator. Moreover, we
have

D(e−U ) = −(DU )e−U .

Hence Υ is also in the domain of D.
It is clear that ∂αx ∂

β
y ∂

m
ε Υ is of the form WΥ , where W is a polynomial in ζ of degree

m + |α| + |β| with, as coefficients, derivatives (w.r.t. x, y and ε) of U (ε, x, y) and V (ε, x, y).
Moreover,

D(∂αx ∂
β
y ∂

m
ε Υ) = (DW + iζ · DV − DU )Υ .

The first estimate in (2) now follows immediately from (1) and Lemma 4.8. The last estimate in
(2) then follows from the first one in (2) and Lemma 4.7. This completes the proof. �

With the above lemma, we are now able to obtain an asymptotic expansion for

Ex

[
exp


iζ · g1

1(x, y)


exp


iζ · V (ε, x, y)− U (ε, x, y)

]
.

Define

αm(x, y, ζ ) = Ex

[
exp


iζ · g1

1(x, y)

∂m
ε Υ(0, x, y, ζ )

]
,

and

TN+1(ε, x, y, ζ ) = Ex

[
exp


iζ · g1

1(x, y)

SN+1(ε, x, y, ζ )

]
.

Recall (4.12); we obtain

Ex

[
exp


iζ · g1

1(x, y)


exp


iζ · V (ε, x, y)− U (ε, x, y)

]
= Ex

[
exp


iζ · g1

1(x, y)


Υ(ε, x, y, ζ )

]
=

N−
m=0

αm(x, y, ζ )εm
+ TN+1(ε, x, y, ζ )εN+1.

Remark 4.10. Lemma 4.9 in fact provides the smoothness and boundedness of αm and TN+1.

So far, we have obtained that for all ζ ∈ Rd

Ex exp


iζ · (Xε1 − y)

ε
−

F(x, y, Xε1)

ε2


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= e
−

a(x,y)
ε2

 N−
m=0

αm(x, y, ζ )εm
+ TN+1(ε, x, y, ζ )εN+1



=

N−
m=0

αm(x, y, ζ )εm
+ TN+1(ε, x, y, ζ )εN+1.

To apply the inversion of Fourier transformation, we need integrability of αm and TN+1 in ζ ,
which is provided by the following lemma.

Lemma 4.11. For any non-negative integers p, k and l, and multi-indices α ∈ {1, 2, . . . , d}
k

and β ∈ {1, 2, . . . , d}
l , we have:

(1) There exists K = K p(α, β) > 0 such that

sup
(x,y)∈V ×V

∂αx ∂βy αm(x, y, ζ )
 ≤

K

‖ζ‖2p (‖ζ‖ + 1)m+k+l .

(2) There exist ε0 > 0 and K = K (p, N , α, β,m) > 0 such that

sup
ε<ε0

sup
(x,y)∈V ×V

∂αx ∂βy ∂m
ε TN+1(ε, x, y, ζ )

 ≤
K

‖ζ‖2p (‖ζ‖ + 1)(N+1)+k+l .

Proof. The lemma follows from integration by parts in Malliavin calculus. Indeed, first note that
by Eq. (A.7), the Malliavin matrix of g1 is deterministic, non-degenerate and uniform in x and y.
By Propositions 5.7 and 5.8 in [22] and Lemma 4.7, for any proper test function ψ,G ∈ D|α|,q ,
there exist lαG and r < q such that

E

∂αψ(g1

1)G


= E

ψ(g1

1)lα(G)


and


E|lα(G)|

r  1
r ≤ K


|α|−
j=0

E‖D j G‖
q
HS

 1
q

.

Here K depends on|α|, g1
1 and its Malliavin matrix and K is uniform in x and y.

We apply the above integration by parts formula with

ψ(u) = eiζ ·u and ∂α =


d−

i=1

∂2
ui

p

.

We have

Eeiζ ·g1
1 G
 ≤

K

‖ζ‖2p


2p−
j=0

E

‖D j G‖

q
HS

 1
q

.

Now the lemma follows by Lemma 4.9 and replacing G in the above by

G1 = ∂αx ∂
β
y ∂

m
ε Υ(0, x, y, ζ ),

and

G2 = ∂αx ∂
β
y ∂

m
ε


SN+1(ε, x, y, ζ )eiζ ·g1

1

e−iζ ·g1

1 . �
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Now we only need to chose 2p > d + (N + 1)+ k + l in the previous lemma and obtain

pε(x, y)e
−

F(x,y,y)
ε2 =

e
−

a(x,y)
ε2

εd

 N−
m=0

βm(x, y)εm
+ tN+1(ε, x, y)εN+1


.

Here

βm(x, y) =
1

(2π)d

∫
αm(x, y, ζ )dζ,

and

tN+1(ε, x, y) =
1

(2π)d

∫
TN+1(ε, x, y, ζ )dζ.

Notice that βm(x, y, ζ ) is an odd function in ζ when m is odd (cf. [8]). Now by the self-similarity
of the fractional Brownian motion and ε = t H we obtain the desired asymptotic formula for the
density function.

4.3. The on-diagonal asymptotics

As a straightforward corollary of Theorem 4.1, we have the following on-diagonal
asymptotics:

p(t; x, x) =
1

t Hd


a0(x)+ a1(x)t

2H
+ · · · + an(x)t

2nH
+ o(t2nH )


.

In this subsection, we analyze the coefficients an(x) and show how they are related to some
functionals of the underlying fractional Brownian motion.

We first introduce some notation and recall some results that may be found in [3,5,19,11].
If I = (i1, . . . , ik) ∈ {1, . . . , d}

k is a word, we denote by VI the Lie commutator defined by

VI = [Vi1 , [Vi2 , . . . , [Vik−1 , Vik ]] . . .].

The group of permutations of the set {1, . . . , k} is denoted as Sk . If σ ∈ Sk , we denote by e(σ )
the cardinality of the set

{ j ∈ {1, . . . , k − 1}, σ ( j) > σ( j + 1)}.

Finally, for the iterated integrals, defined in Young’s sense, we use the following notation:

(1)

∆k
[0, t] = {(t1, . . . , tk) ∈ [0, t]k, t1 ≤ · · · ≤ tk}.

(2) If I = (i1, . . . , ik) ∈ {1, . . . , d}
k is a word with length k,∫

∆k [0,t]
dB I

=

∫
0≤t1≤···≤tk≤t

dBi1
t1 · · · dBik

tk .

(3) If I = (i1, . . . , ik) ∈ {1, . . . , d}
k is a word with length k,

ΛI (B)t =

−
σ∈Sk

(−1)e(σ )

k2


k − 1
e(σ )

 ∫
0≤t1≤···≤tk≤t

dBσ
−1(i1)

t1 · · · dBσ
−1(ik )

tk , t ≥ 0.



F. Baudoin, C. Ouyang / Stochastic Processes and their Applications 121 (2011) 759–792 785

Theorem 4.12. For f ∈ C∞

b (R
d ,R), x ∈ Rd , and N ≥ 0, when t → 0,

f (X x
t ) = f (x)+

N−
k=1

t2k H
−

I=(i1,...,i2k )

(Vi1 . . . Vi2k f )(x)
∫
∆2k [0,1]

dB I
+ o(t (2N+1)H )

= f


exp

 −
I,|I |≤N

ΛI (B)t VI


x


+ o(t N H )

and

E( f (X x
t )) = f (x)+

N−
k=1

t2k H
−

I=(i1,...,i2k )

(Vi1 . . . Vi2k f )(x)E
∫

∆2k [0,1]

dB I


+ o(t (2N+1)H )

= E


f


exp

 −
I,|I |≤N

ΛI (B)t VI


x


+ o(t N H ).

As a consequence, we obtain the following proposition which may be proved as in [4]
(or [14]).

Proposition 4.13. For N ≥ 1, when t → 0,

p(t; x0, x0) = d N
t (x0)+ O


t H(N+1−d)


,

where d N
t (x0) is the density at 0 of the random variable

∑
I,|I |≤N ΛI (B)t VI (x0).

This proposition may be used to understand the geometric meaning of the coefficients ak(x0)

of the small-time asymptotics

p(t; x, x) =
1

t Hd


a0(x)+ a1(x)t

2H
+ · · · + an(x)t

2nH
+ o(t2nH )


.

For instance, by applying the previous proposition with N = 1, we get

a0(x0) =
1

(2π)
d
2

1
| det(V1(x0), . . . , Vd(x0))|

.

The computation of a1(x) is technically more involved. We wish to apply the previous
proposition with N = 2. For that, we need to understand the law of the random variable

Θt =

d−
i=1

Bi
t Vi (x0)+

1
2

−
1≤i< j≤d

∫ t

0
Bi

sdB j
s − B j

s dBs
i [Vi , V j ](x0).

From the structure equations, we have

Θt =

d−
k=1


Bk

t +
1
2

−
1≤i< j≤d

ωk
i j

∫ t

0
Bi

sdB j
s − B j

s dBi
s


Vk(x0).
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By a simple linear transformation, this is reduced to the problem of the computation of the law
of the Rd -valued random variable

θt =


Bk

t +
1
2

−
1≤i< j≤d

ωk
i j

∫ t

0
Bi

sdB j
s − B j

s dBi
s


1≤k≤d

.

At this time, to the knowledge of the authors, there is no explicit formula for this distribution.
However, the scaling property of fractional Brownian motion and the inverse Fourier transform
formula lead easily to the following expression:

pt (x0, x0) =
1

| det(V1(x0), . . . , Vd(x0))|

1

(2π t2H )d/2


1 − qH (ω)t

2H
+ o(t2H )


,

where qH (ω) is the quadratic form given by

qH (ω) =
1

8(2π)
d
2

∫
Rd

E

ei⟨λ,B1⟩

 −
1≤i< j≤d

⟨ωi j , λ⟩

∫ 1

0
Bi

sdB j
s − B j

s dBi
s

2
 dλ.
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Appendix

In this last section, we give proofs for the technical lemmas that we used before.
Fix 1/2 < λ < H . Let B(φ, ρ) ∈ Cλ(0, T ; Rd) be the ball centered at φ with radius ρ under

the λ-Hölder topology

‖ f ‖λ,T := ‖ f ‖∞ + sup
0≤s<t≤T

| f (t)− f (s)|

(t − s)λ
, for all f ∈ Cλ(0, T ; Rd).

Note that the λ-Hölder topology is a stronger topology than the usual supreme topology.
Recall the two expressions for Z ε:

dZ εt = σ(Z εt )(εdBt + dγt )+ b(ε, Z εt )dt (A.1)

and

Z ε = φ +

N−
j=0

g jε
j

j !
+ εN+1 RεN+1. (A.2)

Here γ ∈ HH , hence γ ∈ I H+1/2
0 (L2) ⊂ C H (0, T ; Rd).
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A.1. Proof of Lemma 3.7

We show, for all t ∈ [0, T ], that there exists a constant C such that for r large enough we have

P{‖g1‖λ,t ≥ r} ≤ exp

−

Cr2

t2H


(A.3)

P{‖g2‖λ,t ≥ r} ≤ exp

−

Cr

t2H


,

and on {t ≤ T ε}, where T ε is the first existence time of Z ε from B(φ, ρ), we have

‖εRε1‖λ,t ≤ ρ (A.4)

P{‖εRε2‖λ,t ≥ r; t ≤ T ε} ≤ exp

−

Cr2

ρ2t2H


P{‖εRε3‖λ,t ≥ r; t ≤ T ε} ≤ exp


−

Cr

ρt2H


.

We first prove the estimates for the gi ’s. Write

σ(Z ε) = σ(φ)+ σx (φ)(Z
ε
− φ)+

1
2
σxx (φ)(Z

ε
− φ)2 + O(ε3) (A.5)

and

b(ε, zε) = b(0, φ)+ bx (0, φ)(Z ε − φ)+
1
2

bxx (0, φ)(Z ε − φ)2 + O(ε3)

+ bε(0, φ)ε + bεx (0, φ)(Z ε − φ)ε + O(ε3)+
1
2

bεε(0, φ)ε2
+ O(ε3). (A.6)

Substituting into the two expressions for Z ε gives us

dg1(s) = σ(φs)dBs + σx (φs)g1(s)dγs + bx (0, φs)g1(s)ds + bε(0, φs)ds (A.7)

and

dg2(s) = 2σx (φs)g1(s)dBs + σxx (φs)g1(s)
2dγs + σx (φs)g2(s)dγs + bxx (0, φs)g1(s)

2ds

+ bx (0, φs)g2(s)ds + bεε(0, φs)ds + 2bεx (0, φs)g1(s)ds. (A.8)

By (A.7) and Remark 2.1, it is clear that

‖g1‖λ,t ≤ C‖B‖λ,t , t ∈ [0, T ],

where C is a constant depending only on ‖φ‖λ,T , ‖γ ‖λ,T and T . This gives us the first estimate
in (A.3).

Similarly, by (A.8) and Remark 2.1 together with the estimate that we just obtained for g1, we
have

‖g2‖λ,t ≤ C(1 + ‖g1‖λ,t + ‖g1‖
2
λ,t + ‖g1‖λ,t‖B‖λ,t )

≤ C‖B‖
2
λ,t .

Here C is also a constant, depending only on ‖φ‖λ,T , ‖γ ‖λ,T and T . Hence we have proved
(A.3).
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In what follows, we prove (A.4). To lighten our notation, in the discussion that follows, we
suppress the superscript ε in Rεi whenever there is no confusion.

Since we work in B(φ, ρ), the first inequality in (A.4) is apparent. We therefore only need to
concentrate on the last two inequalities.

First we use a similar idea to deduce the equations satisfied by Ri , i = 1, 2, 3. For this
purpose, define µ1, µ2 and ν1, ν2 by

σ(Z ε) = σ(φ)+ µ1ε

= σ(φ)+ σx (φ)(Z
ε
− φ)+ µ2ε

2 (A.9)

and

b(ε, Z ε) = b(0, φ)+ ν1ε

= b(0, φ)+ bx (0, φ)(Z ε − φ)+ bε(0, φ)ε + ν2ε
2. (A.10)

It is clear that the µi ’s (resp. νi ’s), i = 1, 2 are of the form ψ
µ
i (εR1)(R1)

i (resp. ψνi (εR1)(R1)
i ),

where the ψi ’s are some functions of bounded derivatives determined by σ and b. Hence in
B(φ, ρ), µ1, ν1 are functions of R1 with bounded derivatives, and there exists a constant C ,
depending only on the derivatives of σ and b, such that

‖µ1‖λ,t , ‖ν1‖λ,t ≤ C(1 + ‖R1‖λ,t ) and ‖µ2‖λ,t , ‖ν2‖λ,t ≤ C(1 + ‖R1‖λ,t )
2. (A.11)

Eqs. (A.2), (A.1), (A.9) and (A.10) give us

dR1(s) = σ(Z εs )dBs + µ1dγs + ν1ds (A.12)

dR2(s) = 2µ1dBs + 2µ2dγs + σx (φ)R2dγt + bx (0, φs)R2ds + 2ν2ds.

Since we work with in B(φ, ρ), we have

‖Z ε‖λ,t ≤ ‖φ‖λ,t + ρ

and hence∫ t

0
σ(Z εs )dBs


λ,t
< C‖B‖λ,t

for some constant C depending only on ρ, φ and the derivatives of σ . By standard Picard
iteration, we conclude that

‖R1‖λ,t < C‖B‖λ,t (1 + ‖γ ‖λ,t ), in B(φ, ρ) (A.13)

for some constant C uniformly bounded in ε.
The equation for R2 is

dR2(s)− σx (φ)R2dγs − bx (0, φs)R2ds = 2µ1dBs + 2µ2dγs + 2ν2ds. (A.14)

Recall that µ1 is of the form ψ1(εR1)R1, and in B(φ, ρ),

‖εR1‖λ,t < ρ.

We obtainε ∫ t

0
µ1dBs


λ,t

=

∫ t

0
ψ
µ
1 (εR1)(εR1)dBs


λ,t
< ρ2C‖B‖λ,t
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for some constant C uniformly bounded in ε. Similarly,ε ∫ t

0
µ2dγs + ε

∫ t

0
ν2ds


α

=

∫ t

0
ψ
µ
2 (εR1)(εR2

1)dγs +

∫ t

0
ψν2 (εR1)(εR2

1)ds


λ,t

≤ ρ2C‖R1‖λ,t (1 + ‖γ ‖λ,t )

≤ ρ2C‖B‖λ,t (1 + ‖γ ‖λ,t )

for some constant C uniformly bounded in ε. Hence by multiplying by a factor

exp

−

∫
σx (φ)dγ −

∫
bx (0, φ)du


on both sides of (A.14) and integrating from 0 to t , we conclude that

P{‖εR2‖λ,t ≥ r; t ≤ T ε} ≤ exp

−

Cr2

ρ2t2H


.

This gives us the desired estimate for εR2. A similar argument also gives us

P{‖R2‖λ,t ≥ r; t ≤ T ε} ≤ exp

−

Cr

ρt2H


.

Continuing this type of argument, the equation for R3 is given by

dR3(s)− σx (φ)R3dγs − bε(0, φ)R3ds

= σ(φ)R2dBs + µ2dBs + µ3dγs +
1
2
σxx (φ)R1 R2dγs

+
1
4

bxx (0, φ)R1 R2ds + ν3ds + bε,x (0, φ)R2ds.

By (A.11) and (A.13) we conclude that in B(φ, ρ) we have for all 0 < ε ≤ ρε ∫ t

0
σ(φ)R2 + µ2dBs


λ,t
< ρC‖B‖

2
λ,t ,

and similar estimates for the rest of the terms on the right hand side of the equation for R3. Hence

P{‖εR3‖λ,t ≥ r; t ≤ T ε} ≤ exp

−

Cr

ρt2H


.

Therefore, we have proved (A.4).

A.2. Proof of Lemma 3.9

For the convenience of quick reference, we re-state the lemma here.

Lemma A.1. Let

θ(ε) = F(Z ε) = θ(0)+ εθ ′(0)+ ε2U (ε)

where U (ε) =
 1

0 (1 − v)θ ′′(εv)dv. There exist β > 0 and ε0 > 0 such that

sup
0≤ε≤ε0

E


e−(1+β)U (ε)
; Z ε ∈ B(φ, ρ)


< ∞.
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Observe that

(Z ε − φ)2 = ε2g2
1 +

1
2
ε3g1 R2 +

1
2
ε3 R1 R2.

Thus, if we write

U (ε) =
1
2
θ ′′(0)+ εR(ε)

then

|R(ε)| ≤ C(|R3| + |g1| |R2| + |R2| |R1| + |R3
1 |). (A.15)

Together with the fact that |εR1| ≤ ρ, this gives

|εR(ε)| ≤ C(|εR3| + |g1| |εR2| + ρ|R2| + ρ|R2
1 |).

Hence, from the estimates in Lemma 3.7, we conclude that for each α > 0, there exists ρ(α)
such that for all ε ≤ ρ ≤ ρ(α), we have

sup
0≤ε≤ρ

E


e(1+α)|εR(ε)|
; t ≤ T ε


< ∞.

Therefore, proving Lemma 3.9 is reduced to proving the following:

Lemma A.2. There exists a β > 0 such that

E exp

−(1 + β)

[
1
2
θ ′′(0)

]
< ∞.

Proof. We follow the proof in [7]. Since

U (0) =
1
2
θ ′′(0) =

1
2

[
dF(θ)g2 + d2 F(θ)g2

1

]
,

it is clear that to prove the above lemma, it suffices to prove that for sufficiently large r we have

P

−

1
2

[
dF(φ)g2 + d2 F(φ)g2

1

]
≥ r


≤ e−Cr , with C > 1. (A.16)

Set

Y ε = (εg1, ε
2g2)

with

dY εs = εσ̄ (s, Y ε)dBs + b̄(ε, s, Y ε)ds, Y ε0 = 0.

Here σ̄ and b̄ are determined by (A.7) and (A.8). Define A ⊂ C([0, T ],R2d) by

A = {ψ = (ψ1, ψ2) ∈ C([0, T ],Rd
× Rd) : dF(φ)ψ2 + d2 F(φ)ψ2

1 ≤ −2}.

We have

P{Y ε ∈ A} = P

−

1
2

[
dF(φ)g2 + d2 F(φ)g2

1

]
≥

1

ε2


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and by the large deviation principle for Y ε,

lim sup
ε→0

ε2 log P{Y ε ∈ A} ≤ −Λ∗(A).

Here Λ∗ is a good rate function of Y ε. It is clear that to prove inequality (A.16) it suffices to
prove that Λ∗(A) > 1.

Recall that

Λ∗(A) = inf


1
2
|k|

2
HH

;Φ∗(k) ∈ A


where u = Φ∗(k) is the solution to the ordinary differential equation

dus = σ̄ (s, us)dks + b̄(0, s, us)ds, with u0 = 0.

It is easy to see from (3.4), (3.5), (A.7) and (A.8) that we have explicitly

u = (dΦ(γ )k, d2Φ(γ )k2).

By our assumption H2 and the explanation after it, there exists ν ∈ (0, 1) such that for all
k ∈ HH − {0} we have

d2 F ◦ Φ(γ )k2 > (−1 + ν)|k|
2
HH

,

or

|k|
2
HH

> −
1

1 − ν
(d2 F ◦ Φ(γ )k2) = −

1
1 − ν

(d2 F(φ)(dΦ(γ )k)+ dF(φ)(d2Φ(γ )k2)).

Therefore, if Φ∗(k) ∈ A, we have

1
2
|k|HH >

1
1 − ν

> 1,

which implies Λ∗(A) > 1 and completes the proof. �
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