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Abstract

In this paper, we use the formula for the It6—Wiener expansion of the solution of the stochastic
differential equation proven by Krylov and Veretennikov to obtain several results concerning some
properties of this expansion. Our main goal is to study the [td—Wiener expansion of the local time at the fixed
point for the solution of the stochastic differential equation in the multidimensional case (when standard
local time does not exist even for Brownian motion). We show that under some conditions the renormalized
local time exists in the functional space defined by the Ly-norm of the action of some smoothing operator.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Local time of a random process is usually defined as the density of the occupation measure
of the process with respect to Lebesgue measure, or, alternatively, as an additive functional
for Markov processes. But there exists another definition: local time can be defined as a limit
of approximations. This definition allows an interesting modification, which was discovered
to be useful for the self-intersection local time for two-dimensional Brownian motion in L
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(see for example [11]). The limit in L, of the approximations does not exist in this case. But,
if we change these approximations by subtracting their mathematical expectation, the modified
approximations will converge in Lj. This limit is called the renormalized local time. It plays a
significant role in the description of self-intersections for the two-dimensional Brownian motion.
For example, it is known that the asymptotics of the area of the Wiener sausage contains
renormalized local time [7].

In recent years a new approach has been developed that utilizes Gaussian structure of the
process. The general idea is as follows: study Itd—Wiener expansion of the approximations
for local time and find some properties of the expansion members that allow us to study their
convergence. This convergence can be used to obtain the existence of local time defined as a
limit of approximations in some functional space (for example in Watanabe—Sobolev space).
The concept of renormalization appears naturally in this approach, since the first member of
[t6—Wiener expansion is the mathematical expectation. It means that we can study renormalized
local time (understanding renormalization as the subtraction of the mathematical expectation)
using this approach with minimal additional effort. This idea was used successfully in many
papers. Imkeller, Perez-Abreu, Vives [5] proved that it is possible to define the renormalized
self-intersection local time for d-dimensional Brownian motion as an element of Sobolev space,
but only for the case d = 2. Several authors considered different Gaussian processes, with many
results produced for fractional Brownian motion (see [9,2,4]). The general result for a class of
Gaussian processes was presented in our earlier work [12], along with the application to the
self-intersection local time for fractional Brownian motion.

It is well-known that classical local time (at the fixed point) does not exist for Brownian
motion in the dimensions greater than one, and the same is true, generally speaking, for diffusion
processes. However we can still define a “generalized version” of local time. Dorogovtsev and
Bakun [1] found that it is possible to define a generalized local time for multidimensional
Brownian motion. This generalized local time is a limit of the renormalized approximations
in some functional space, where renormalization is the subtraction of several members of
the [t6—Wiener expansion. The functional space has to include the additional “smoothing”
for the kernels of the Ito—Wiener expansion (otherwise their standard L, norm grows to
infinity). Originally the idea, that was proposed by Dorogovtsev, was to extend the well-known
renormalization result for the self-intersection local time for two-dimensional Brownian motion
to another situation.

In this paper we chose to study a more general case in the similar fashion. We have Brownian
motion replaced by the solution of the stochastic differential equation (SDE). We use the known
approach outlined above, and study the [t6—Wiener expansion of the local time for the solution of
SDE, even though the local time in the usual meaning may not exist. The functional space used
in our paper (and in [1]) is relatively simple and may be considered natural, since it is connected
to the well-known second quantization operator I'(A). The choice of this norm is justified by the
fact that it provides an appropriate “smoothing” for the kernels of the It6—Wiener expansion. Our
results may also be seen as some properties of the I[td—Wiener expansion for the solution of SDE,
without mentioning local times.

Our interest in this investigation can be explained more fully by the following. Local time is a
fundamental notion for random processes: if we know something about local time then we have
better understanding of the behaviour of the process. Similarly if we know something about the
[t6—Wiener expansion of a random variable then we can find out more about this random variable.
In our case there may be no actual local time as a random variable but the connection between
the Itdo—Wiener expansion and the geometry of the solution of SDE may still exist. Therefore
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we hope that the existence of a generalized local time can provide more information about the
process. In the future our results may be extended and possibly used to study the existence and
uniqueness of the solution or to describe self-intersections for the solution of SDE. Also it is
interesting to see how the properties of the process change when we replace Brownian motion
by the solution of SDE. This replacement can be viewed as the action of so-called Itd map. The
properties of the [t6—Wiener expansion that we study may be related to some properties of Itd
map.

The main result of this paper is the extension of the result about the existence of generalized
local time from [1] to the solution of SDE. We assume the continuity of the coefficients
of SDE, the condition of uniform strict ellipticity and additionally that these coefficients are
smooth and bounded together with all their derivatives in the space variable. Under these
conditions it turns out to be possible to investigate the behaviour of the [t6—Wiener expansion
of a function of the solution. In particular we prove some estimates for the kernels of the
[t6—Wiener expansion, similar to those existing for the transition density of the process. Then
we consider the functional space similar to the one used in [1] and find a representation
of the norm of the local time approximations, that allows us to prove the existence of
the renormalized local time as an element of this functional space. We use two classical
results: the representation of the Ito—Wiener expansion of the solution of SDE (we call it
Krylov—Veretennikov representation), proven by Veretennikov and Krylov in [14] and Gaussian
estimates for the derivatives of the fundamental solution of parabolic PDE [3]. The second result
is useful since Krylov—Veretennikov representation can be written using the fundamental solution
of parabolic PDE associated with SDE. Note that we consider the local time at a single point for
d-dimensional diffusion process with d > 2 (case d = 1 is formally included but trivial), which
does not exists as a random variable even with renormalization, therefore all known results for
classical local times of diffusion processes are not applicable.

In the next section we introduce some basic definitions and notation. After that we use
two known results: Krylov—Veretennikov representation and the existence of the fundamental
solution of parabolic PDE to find the [to—Wiener expansion of the local time approximations.
The Section 4 is fully devoted to the properties of the fundamental solution of parabolic PDE.
We extend some classical Gaussian estimates in the case when the coefficients of PDE have
uniformly bounded derivatives of any order. These estimates are applicable to the representation
of the It6—Wiener expansion of the local time approximations. In the Section 5 we show some
interesting examples when the coefficients of SDE are not smooth. We show that non-smoothness
leads to the violation of Gaussian estimates for [td—Wiener expansion. In the last section we prove
our main result about the existence of the renormalized local time for the solution of SDE.

2. Definitions and notation
Consider a Cauchy problem for stochastic differential equation
dX[:a(t,X[)dl‘i‘O'(t,X[)th,Xs=x (])

where X; € Rd, a is a measurable bounded d-vector function, o is a measurable bounded d x d-
matrix function and W is a standard Wiener process in R?. Denote b = oo 7. Suppose that b is
strictly uniformly positive definite, i.e.

B>0,VieR xeR yeR: (b(r,x)y, y) > 8|lyl> )

It is known that under given conditions this stochastic equation has a weak solution (see [6]).
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Denote, forany f € C 2(RY),

b of
St f(x)—Zo,ka,x)E(x) 3)

e 5~y 0 f A
[ = Zal(r x)—(x) 5;22(%0,/()(: ) i, )

1 j=1k=1

Let 7 ;,s < t be a set of operators that define the solution of the following Cauchy problem
(which is solved backwards in time):

aiu(s,x) + L5 u(s,x) =0, s<t; ult,x)=f(x) 5)
s

and by the definition Ty ; f (x) = u(s, x). It is well-known that 7 ; f (x) = Ef(X;), where X; is
a solution of (1).

Denote as C;° (R?) a space of infinitely differentiable functions on R? that are bounded
together with all their derivatives. We say that family of functions { f,,, u € U} belong uniformly
to C,;X’(Rd) with constants My, q = (q1,...,qx),qi = 1,...,d ifforall n, g, u € U and
x e RY:

a
T fu(0)] < (6)

0xg, 3an

We are going to investigate properties of X; using theory of Gaussian spaces and Malliavin
calculus. Therefore we need some basic facts, that can be found for example in [15,8]. Let
W, € R4 ¢ € [0, 1]- be a d-dimensional Wiener process (same as before except that we restrict
it to the time interval [0, 1]), gV - o -algebra generated by W. Denote A,[0, 1] = {(#1,...,1,) €
R":0 < # < --+ < t, < 1}. Suppose that random variable & is %W -measurable and lies in
Ly(12), then there exists a unique sequence of functions a,, € L2(A,[0, 1]) (we may suppose
that a,, € L»([0, 1]") by setting a,, equal to zero where it is not defined) indexed by n and

multiindex m = (m], ey mn), m; = 1’ e, d’ SuCh that:
o (d,...d)
=) ) / am (1, - 1) d Wy, (11) .. d Wi, (1)
n=0m=(1,...,1) ¥ 4nl0.1]

This sum consists of orthogonal elements of L;(f2) and defines decomposition of L;({2) into a
direct sum of subspaces. It is called Ito—Wiener expansion or sometimes (when dealing with the
general case of Gaussian spaces) chaos decomposition. On the linear space of random variables
from L, ({2), such that the sum above is finite, we can define the following norm, for all « € R:

d,....d)

o0
IE13e =Y _T+m* > llaml3
n=0

m=(1,..., 1)

where ||, ||2 is the norm of a,, in L2 ([0, 1]"). The completion of this space is denoted D; o and
called Sobolev space (or Watanabe—Sobolev space). Similarly we can define spaces @,(A) using
norm

E15a=Y_ D 1A% a)ml3 (7)
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where A is a “smoothing” linear operator on the space (L ([0, 17))¢ and A®" acts on the
{am,m = (my, ..., m,)} as an element of (L>([0, 11)¢)®". We will define this action precisely
below and only for a certain type of operators, to avoid unnecessary complications.

This norm can be written as

I§15,4 = |7 (A)EL5 o = E(I'(A)E)? ®)
where I'(A) is so-called “second quantization operator”, which can be defined by (see [13])
oo (d,....d)
g =>" / (A®"Q) (11, .o ) A Wi, (11) .. d Wiy, (£).
n=0m=(1,...,1) Y Aal[0.1]

in the case when ||A|| < 1.
In this paper we consider only multiplication operators of form:

(A@)i (1) = Y1 (@i (1), ¢ € (L2(10, 1) ©)
where 1; are measurable functions such that:
sup|¥i(1)| < p < L. (10)
it
Now A®" acts on the {a,;, m = (my, ..., m,)} in the following way

(A" @) (11, o tn) = Yo, (11) Y, () (21 1)
There is an alternative formula for the action of the operator I'(A) with such A:
I'(A)§ = EE(W)) (1)

where W is a d-dimensional Wiener process, defined by

dWi (1) = i (dW; (1) + /1 = 2O Wi ().

W is a d-dimensional Wiener process independent of W and E is the mathematical expectation
over probability space of W. This formula is easy to get from the definition of I"'(A). We also
use the following notation:

(61,862)2,4 = E(I'(A)§11'(A)&2)
for &1, & that are %" -measurable and in L, (£2).

In this article we define local time using a family of approximations as follows. Denote

1
Irr(f) :/0 f(Xpdt

where X, is a solution of (1) and let

llx ]2

fo(x) = 2me)™2e™ 2
be a family of functions approximating &g as & — 0+.
Definition 1. If the limit

lim Ir7(fe(- —x))
e—>0+
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exists in Dy , we call it the local time of the process X; at x in D o. If it exists in $2(A) we call
it the local time of the process X; at x in @2(A).

Denote
n

(N =Ir(H =Y D &n

k=0 |m|=k

= [t ) AW (@) Wi (1)
A,00,1]
is an element of Ito—Wiener expansion of Iy 7 (f) with multiindex m.

Definition 2. If the limit
lim I" .
8_1>%1+ rr(fe(- —x))

exists in Dy o, we call it n-renormalized local time of the process X; at x in Dy 4. If it exists in
®,>(A) we call it n-renormalized local time in $,(A) of the process X; at x.

In this article we do not use the definition with convergence in D, , (since it does not work
for our case), but this definition is widely used in several papers including our previous works
(see [12]). Therefore it is useful to discuss its relation to the convergence in ®,(A). First of all
if |A|| < 1 (we always suppose this) then it is easy to see that ¥, (A) norm is dominated by any
D3 o norm. Moreover if A is a multiplication operator (again we use only this kind of operators)
then we get an additional “smoothing” effect on the kernels of the [t6—Wiener expansion with
a suitable choice of multiplier. In fact this “smoothing” effect is the reason for us to introduce
®>(A) norm. We need it since the kernels of 1t6—Wiener expansion of local time may have
singularities and may not belong to L ([0, 1]") (it happens even for standard Wiener process in
the dimension d > 2, see [1] and example below). This is why our first task is to study these
singularities. We are going to achieve that with some suitable representation of the Ito—Wiener
expansion of I 7(f).

3. Ito—Wiener expansion of solutions of SDE

The purpose of this section is to find a representation of the [t6—Wiener expansion of local
time for X;, which is a solution of (1). We will rewrite this representation using the fundamental
solution G of associated PDE (5), i.e. function G (s, ¢, x, y) defined for s < f and x,y € R,
such that:

1. G is jointly continuous in all variables for s < ¢ and x, y € RY.
2. G is one time differentiable with respect to s and two times differentiable with respect to x
foralls <tandx,y € R and satisfies %G(s, t,x,y)+ L5*G(s,t,x,y) =0.
3. For any bounded continuous function f on R?:
lim i GG, t,x,y) f(ndy = f(x)

s—>1—

and the limit exists uniformly on the compact sets.
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We denote as {a,, (s, t1,...,t,,t,x) : m = (my,...,my),m; = 1,...,d} the kernels of
the 1t6—Wiener expansion of E(f(X,)/S,W), where 0 < s <t) < --- <t <t < 1(s were
fixed as a starting moment of time for our Cauchy problem, now we additionally assume that
s € (0, 1)), f — a bounded measurable function and (X, W) is a weak solution of (1). Denote
as {by (s, t,...,.ty,t,x) :m = (my,...,my),m; = 1,...,d} the kernels of the Itd—Wiener
expansion of [ E(f(X,)/§) )dr. Note that

t t
/ E(f(xr)/&%dr:ls(/ f(X,)dr/ng) as.

due to the well-know fact that E(f(X,)/SfV) = E(f(X,)/StW) a.s. if r < ¢t (it follows from the
definition of weak solution).

Theorem 1. Suppose that b satisfies (2), a and b are both continuous and bounded above by
constant My and satisfy Holder condition with respect to x with constant M| and exponent
0 < 1 forall t, b is uniformly continuous on [0, 1] x R? and o is a measurable function. Then
Sfor any weak solution (X, W) of (1):

e The kernels of Ito—Wiener expansion of E(f(X;)/ S,W ) can be represented as:

(S, 11, e s 1, %) =/dqmm,n,...,tn,r,x,y>f<y>dy (12)
R
where

1,
qm(s,tl,...,tn,t,x,y)=/d G(s.11,x,21)8, 7' G (11, 12, 21, 22)
Rn

ce Srtrlli,j_lizrh1 G(th—1.th, Zn—1, Zn)S;f,'ql;lZ"G(fna t, Zn, )’)dzl ..dzy (13)

and each S;"* is operator defined by (3) which acts on variable z.
e Each q, satisfies the following inequality for 0 < s <t < 1:

llx—yI?
(S 11 oty £ X ] < Cu((t2 — 11) o (¢ — 1)) "2 — 5)" 2 exp™? 29 (14)

where C,,,n =0, 1, ... and y are some positive constants depending only on a and b.
e The kernels of Ito—Wiener expansion of fs "E( f(X) /&W )dr can be represented as:

bi(s,t, ...,y t,x) = fa Fm (S, t, .oyt £, x, y) f(v)dy (15)
R

where

t
rm(s7t17-"7tnat9xay)=f CIm(S,tlw-',tnvr’x,y)dr‘ (16)
1,

n

We are going to prove this theorem using two known theorems from theory of SDE and
PDE. Our starting point is a well-known result proved by Veretennikov and Krylov in [14] (first
appeared in a joint work of Krylov and Zvonkin [16]) that gives an explicit formula for the
[t6—Wiener expansion of some function of X;.

Theorem 2 ([14]). If o, a are bounded measurable, b = oo’ is uniformly continuous on
[0, 1] x R4 and satisfies (2), then kernels a,, can be represented as

am (s, t, ..., ty, t,x) =Ty 4 S;,{;‘Y}IJZSQ" c ST f (). a7y

my my,
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The condition of uniform continuity for b is a stronger version of an additional restriction in
the original result by Krylov and Veretennikov (as authors suggested themselves). Later we will
show that we can drop this condition for smooth a and b.

Theorem 2 was proved in [14] using repeated application of Itd formula. Another way to
prove this representation is to use second quantization operator I'(A) (or Ornstein—Uhlenbeck
semigroup, i.e take A = e~*I). We will give more information about this approach later, since
we want to use it directly to estimate $>(A)-norm of the renormalized local time rather than
through the representation from Theorem 2.

Theorem 2 can be used to find the [t6—Wiener expansion of fol f(Xy)dt.

Theorem 3. Under conditions of Theorem 2 the kernels
(s, t1, ...ty 1, X)) im=(my,...,mp),m; =1,...,d}

of the Ito—Wiener expansion of f; E(f(Xy) /g,W )dr can be represented as

t
bttty t0) = [ Gttty 0 (18)
In
where a,, (s, t1, ..., ty, 1, x) are the kernels of the It6—Wiener expansion of E(f(Xr)/SXV) asin

formula (17) from Theorem 2.

Proof. The representation of a,, in Theorem 2 provides its joint measurability. Therefore we
only need to prove that the integral with respect to dr can be put inside of the sum in the
[t6—Wiener expansion and inside of the multiple stochastic integral. The first is a consequence of
the following obvious fact: fol VEf%*(X,)dt < 400, as shown in [12] in the proof of Theorem
3.1 and the second is a well-known property of stochastic integral, which holds under the same
condition. The idea here is to estimate the integral using the norm in L;({2). For example
am(s, t1, ..., t,, r, x) is integrable with respect to dr (absolutely in Lebesgue sense) for almost
all 1, ..., t, since

t
/ |1{t"<r}am(s5t]5"-7tnarax)|dr

2

/ ”1 {ta<r} am(s ooty 1, X)|l2dr

/ If(X)l2,0dr —/ VESf(Xpdt < 400

where || - ||2 is the norm in Ly (A,[0, 1]) of a function of 71, ..., #, and || - ||2,0 is the norm in
Ly(§2) = Dyo. O

Our next step is to recall the well-known result from the theory of parabolic partial differential
equations (see for example [10]).

Theorem 4. Suppose that a and b are continuous and bounded above by constant M», satisfy
Holder condition with respect to x with constant My and exponent 0 < 1 for all t and b
satisfies (2). Then there exists unique fundamental solution G for differential operator % + L',
Additionally G is positive and satisfies the following inequalities:

=yl

G(S’ ta X, )’) C(t - S) d/2 eXin 2(1—s)




2462 A. Rudenko / Stochastic Processes and their Applications 122 (2012) 2454-2479

9 o Je=y)?
‘a G(S,I,X,y)‘ < C(I—S)i(d+l)/2exp Y 2=y
Xi

llx=yl)?

9 _
G(s,t,x, y)‘ < C(t —5)~ @22 exp 20

3)6,'1 3)6,'2

with some positive constants C and y depending only on My, 6, M», 6 and d.

As a consequence of this theorem we can represent a solution of Cauchy problem (5) for a
bounded continuous functions f using fundamental solution.

us, x) = / G(s. 1. x. ) f(Ndy
]Rd

It is well-known that this solution is unique in the class of solutions growing not faster than
eBIXI? if the coefficients a and b are bounded. The fundamental solution G is also a kernel for
Ts:.

Using the fundamental solution we can finally rewrite the representations (17) and (18) as a
repeated convolutions of the fundamental solution with itself (under the action of some first order
differential operator).

Proof of Theorem 1. First of all due to Theorem 4 the fundamental solution G exists. This
solution and its first derivative with respect to x are bounded by Gaussian densities. We use
the estimate for derivative of fundamental solution as follows:

_ylyi?
IS G s, 1, x| < d sup o (r, 1) C(t = )~ D2 exp ™7 3T

i,x,r

Since

sup ok (¢, x)| < sup

it,x it,x it,x

d
Z(Uik(tax))2 = sup+/bj;(t, x) </ M
=1

we obtain:

llx—zp 112

G (5, 11+ st £, %, Y)| < (dM)"C" ! / (- )" exp VMY
R n

)P
X (ty — 1)@V 2 exp ™ 2=y

_ ly=zn1?
x (t — t,,)_(d+1)/2 exp V3=my dzy ... dz,

= (dM)"C" ) 2 (1y —11) ... (t — 1)) /2

—d)2 —y =yl
X (t—s) exp © 2=

Since assumptions on a and b in Theorem 1 are stronger than in Theorem 2 we can apply
Theorem 2. It means that we have the representation (17) for a,,. We can replace the action
of semigroup 7y, in it by the convolution using kernel G. We may differentiate with respect to
x in the action of S** under all integrals. The resulting multiple integral exists and can be taken
in any order due to the Gaussian estimate on |S,i’xG(s, t, x, y)| that we already mentioned. This
immediately means that (12) and (13) are proved. To prove (15) and (16) we need to show that
integrating g, first with respect to dr then with respect to f(x)dx is the same as vice versa.
The difficulty here is that g, may have singularity near ¢ = t, (see examples below). But as we
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can see the estimate (14) shows that this singularity is not worse than (¢ — 1) 1/2

integrable with respect to dt and the theorem is proved. [J

» 80 |gm| is

In this section we established that if we want to estimate the kernels of the Ito—Wiener
expansion of the local time for a solution of SDE we can work with the fundamental solution
of associated PDE. Before we proceed to study properties of ¢, and r,, we need to consider an
important example:

Example 1. Suppose thata = 0 and o = I, then X; = W, + x. In this case
gm(S, 1, .. g, 1, X, y) = 1{s<t1<-~<t,,<t}Hm

y ( y_x ) Q)2 (1 — 5y~ @H/2 Iy 1 2=5)

Vi—s

where

Hy(2) = (—1yrel2 2 O e
0Zm, AZm,

are multidimensional Hermite polynomials. This formula can be easily found using (13) and
integration by parts. Also it appeared in several papers dealing with Itd6—Wiener expansions,
usually in a slightly different form (for example it can be found in some recent papers, where it
was used to define local time [1,12]).

Note that in this example g, is unbounded only in the neighbourhood of t = s, x = z and
does not depend on 71, ...,t, (aslongas s < t; < --- < t, < t holds) which is better than in
the estimate (14).

In the following we will improve (14) for the case when a and b belong uniformly to C;° (R9)
and show that in this general situation the behaviour of kernels (or more precisely their singularity
with respect to the variables s,f,¢) is the same as in the example above.

4. Estimates for fundamental solution

In this section we use a modification of a variant of the standard parametrix method (the
method that was used to prove upper bounds for the fundamental solution in [3]) to obtain some
new estimates for the fundamental solution. The key difference between the classical method and
our results is that our new estimates may be applied to ¢g,,. This section contains some technical
details of non-probabilistic nature, so it is worth noting that only the formulations of Theorems 5
and 6, Remark 1, Corollary 1 and related definitions of Q, and Q, , are needed for the rest of
the article.

In the following we suppose that all elements of b and a belong uniformly to C}fo(Rd)
with constants My, q = (q1,...,q4),qi = 1,...,d (as defined by (6)). It is well-known that
under this condition (together with strict ellipticity) we can have a Gaussian-type estimates for
the derivatives of the fundamental solution G. These estimates are formulated in [10] without
specifying constant dependence on coefficients. All the ideas and essentially all the proofs (but
not the exact statement) for the following theorem and associated lemmas are contained in [3].

Theorem 5. Suppose that a and b are continuous, all elements of a(s,-) and b(s, -) belong
uniformly to Cgo (Rd) with constants M, and b satisfies (2). Then there exists constants y; > 0
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and Cy > 0,k =0, 1, ... depending only on d, § and M, such that for all0 < s <t < 1, non-
negative integers m,l, k and p = (p1, ..., pm) €{1,....,d}", g = (q1,...,q) € {1,...,d}1,
r=0(r1,...,r) {1, ..., d}k:

‘( 0 n d ) < 0 n 0 ) d 0 0 d Gis. 1 )
.. — ... —G(s, 1, x,
0xr, dyr, dxp, Oyr ) 0xp, 9xp,, 9yg, g, Y

lx=y1%

< Cm+[+k(t _ s)—(d+m+l)/2 exp—)’mHJrkm . (19)

Since, to our knowledge, this exact version of the Gaussian estimates for the fundamental
solution of parabolic PDE is not present anywhere, we feel that it is appropriate to provide a
brief version of the proof, even though this proof is mostly the repetition of a slightly modified
version of the parametrix method from [3]. It is also appropriate since ideas used here are also
useful for estimating kernels g;, as we will show later. We proceed with few lemmas to prepare
the proof of Theorem 5.

Denote as R, = R,(C, y) a set of real-valued functions F(s,f,x,y) on {0 < s < 1 <
1} U {x, y € R?)} that satisfy:

llx—y|2
[F(s, 1,2, y)] < C(t — 5)~ @022y =412 exp™ 575

with some positive constants C, y. Define a set Q, = Q,(C, y), where C = (Cyp, C1, ...) and
y = (v, Y1, . - .) are sequences of positive constants, as a set of functions F(s, ¢, x, y) defined
for0 <s <7< 1landx,yeR? suchthat Q, C C°(R?) and:

QM(C7 y) = {F(S,[,x, y)l

Vk,I,m=0,1,...;Vp=(p1,..., pm),¥Yq = (q1,...,q1),
Vr:(rl,...,rk);pi,qi,ri E{l,...,d}:

( d 0 ) ( 0 0 > d a 0 d
+ S + c.. ...—Fe
dxr By Oxp  dyn ) 9xp 0xp,, 9¥gy AT

Rutm+1(Contiks Ym+i+k) }

This definition allows us to write a sequence of estimates in a simple form. For example the
conclusion of Theorem 5 now can be rewritten as follows: G € Qo(C, y), where C and y
depend only on d,5 and M.

The following Lemma 1 is the main tool for obtaining Gaussian estimates. A different version
of this lemma (for more general case but with weaker conclusion) with similar proof is present
in [3] (Lemma 9.1 on p. 94). We only sharpened the statement of the lemma to fit our purposes.

Lemma 1. Suppose that Fy € Qu(Cl, yl), F, e QU(CZ, yz)for u<2,v<2and
t
F3(s,t,x,y) = / / Fi(s,r,x,2)F(r, t, z, y)dzdr
s JRA

then F3 € Quiv_2(C3, v3), where C3 and y?> depend only on C', y', C?, 2, u, v.
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Proof. Directly estimating F; and F> under the integral we obtain F3 € R,4,_>. To deal with
the derivatives of F3 we need a representation of the derivatives of

H(s,t,x,y,r)=/ Fi(s,r,x,2)F2(r, t, z, y)dz.
R4

Since we know that Fi(s,r, x,z)Fa(r, t, z, y) (and all their derivatives with respect to x,y,z)
decrease exponentially to 0 as |z| — +00 we can integrate by parts to show that:

B] d
(— + a2 )Fl(s rx,2)Fa(r, t,z, y)dz
1

3)6,'

d
—H(s, t,x,y,r) = /
ax,-

R4

0
+ [RGBz s, 0)
Rd BZi

Similar formula can be obtained for the derivative with respect to y. Adding these two
representations we get:

ad d ad ad
— + — H(Sﬂt7x7y7r)=f — + — FI(S,V,X,Z)F2(V,I,Z,y)dZ
ax;  0y; dx;  0z;

+/F< (L4 L
S? r’x’
Ra | oz T oy

X Fy(r,t, z, y)dz. 2y

We can see that (again by estimating directly)

(i + i) H(s,t,x,y,r) € Ryjy—2.
0x; dyi
Using induction we can deal with all derivatives of this form.

Unfortunately direct estimate does not work for the derivative with respect to x since a_F 1
belongs to R,4+ and generally speaking it is not integrable with respect to dr if v + 1 > 2.
However we can use the following trick (which was also used in [3]): if r € [’Jré t] we estimate

l‘+5]

F] (s,r,x,z) directly and if r € [s, we estimate representation (20). We obtain that

a_x,-F3 € R,4y—1. The same approach works for the derivative with respect to y. To prove the
estimates for higher derivatives using the same trick we just need to prove an analogue of (20)
for higher derivatives, which is easy to do after applying (20) several times consequently. It is
obvious that constants in all estimates depend only on C l,yl,C 2,y2,u,v. O

The following lemma provides that solution of integral equation found by iteration have
necessary estimates. The ideas leading to the proof of this lemma are present in [3] (pp. 99-101).
Again we are only adapting corresponding results therein to our case.

Lemma 2. Suppose that Fi € Q,(C',yY), F» € Q,(C%, y?), where u < 2,v < 2, Consider
the following integral equation with unknown function H(s, t, x, y), which holds for all 0 < s <
t<1l;x,ye€ RY:

t
H(s,t,x,y) = Fi(s,t,x,y) +/ / Fy(s,r,x,2)H(r, t, z, y)dzdr.
K} R4

Then there is a solution to this equation that belongs to Q,(C3,y3), where C3 and y> depend
onlyon C', y!, C2 y2 u, v.
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Proof. Denote Ky = Fi, and

t
Kiti1(s,t,x,y) =/ /d F(s,r,x,2)Ki(r, t,z, y)dzdr
K R

fori =0, 1,.... The solution to the integral equation can be written as:

H=Y"K @2)

i=0

where the sum converges pointwise to some function in R, (this is a classical result from the
parametrix method, which follows from direct estimates of each K;).
We notice that solution of our integral equation can also be found as

'
H(s,t,x,y) = Fi(s,t,x,y) +/ / Ho(s,r,x,2)F1(r, t, z, y)dzdr
s JRd

where Hy satisfies the same integral equation with F replaced by F». But we already know that
we can find a solution Hy that belongs to Ry, since F, € Ry, v < 2. If we prove that in fact
Hy € Q, it would be enough to finish the proof, since from Lemma 1 we immediately obtain
that H € Q,,.

To show this we notice that Hy satisfies the following equation (the idea is taken from [3]
p-101)

2141 t
Ho(s,t,x,y) = ZK?(s,t,x,y)—i—/ /dKlO(s,rl,x,zl)
s JR

i=0

t
X / [Ho(rl,rz,m,zz)K,O(rz,t,zz,y)dzzdrzdmdrl
Rl
where Kg = F, and

t
K?+l(s,t,x,y)=/ / Fz(s,r,x,z)KiO(r,t,z,y)dzdr.
s JR

Using Lemma 1 we can see that K Z.O € Qu+i(w—2), so we only need to estimate the last integral.
We can choose [ to depend on n, v, such that v+ /(v —2) +n < 0. Then we have KIO € R_, and
consequently the integral can be differentiated n times with respect to x, y, the derivative can be
taken under the integral and the whole integral is a function at least in R,, (since we already know
that Hy € R,), which is enough to complete the proof. [

Proof of Theorem 5. It is well-known that G can be represented as

t
G(s,t,x,y) =Gols, t,x —y,y) +/ /d Go(s,r,x —z,2)H(r, t, z, y)dzdr
K R

where G (s, t, x, y) is a fundamental solution of (5) with the coefficients of the operator L5+*
being “frozen” at point x = y, i.e. we replace L** by

2

d d d 8f
D30 (oo s, D man;

i=1 j=1k=1

l\)l'—‘

L f(x) = Zal (s, y)—(x)+
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The function H is a solution of the integral equation

t
H(s,t,x,y)=F(s,t,x,y) —+—/ / F(s,r,x,z2)H(r, t,z, y)dzdr
s JRd

where
F(Sa t7 X, y) - (Ls,x,y - LS,X)GO(‘L ta-x -y, )’)

According to formula (6) on p. 66 from [3] Go(s,f,x — y,y) € Qp with constants depending
only on d,§ and M, (for our case Gy is a Gaussian density). Using this, it is easy to verify that
F € Q7 with constants depending only on 4,6 and M,. From Lemmas 1 and 2 we obtain that
H € Qg and consequently G € Q¢ with constants depending only on d,8 and M,. [

Now we are going to extend Lemma 1 so that we can estimate g,,.
Denote for non-negative integer n:

Qua(C.y) = :F = Y DIDyFpg:Fpg€ Qun(C.y)
Ipl+lgl<n

where Dy are derivatives with respect to xq; with multiindex ¢ = (q1, ..., gn) and m = |q| is
the number of the derivatives taken. It is obvious that O, , C Oy, but the converse statement is
not true (for n > 0). To prove it we may take Gaussian density multiplied by (r — s)™*/? as an
example
—(d+u)/2 —ap a2

F(s,t,x,y)=(t—ys) (2m) e 2=y
This is obviously an element of Q,. Suppose that the representation from the definition of Q,, ,
is possible and

Fs.t,x, )= Y DiDyFpq(s.t.x,y), Fpg € Qu-n(C,y).
[pl+lgl<n

Integrating with respect to dx we obtain

0 0 0 B
(t — s)—u/2 — / E < + ) ( + > Fpo(s,t,x,y)dx
R dxp, Ay Oxp,  yp i

*1pl<n

where p = (p1, ..., px). Note that the derivatives with respect to x vanish under the integral
and therefore derivatives with respect to y can be represented using the sum of derivatives with
respect to x and y. The function on the right hand side is an integral of the element of R,_,,
which means it does not exceed (t — s)~“ /2 = (t — 5)""/2(t — 5)"/2. This is a contradiction
and it means that the function F in our example does not belong to Q,, .

It turns out that after we replace Q, by Q. , in Lemma 1 we need only that u — n < 2 rather
than # < 2 (and the same for v, m).

Lemma 3. Suppose that Fi € Q,,(C',y"), F» € Qum(C%y?) forn = 0,1,..;,m =
0,1,..;u<n+2;v<m+2and

t
F3(s,t,x,y) = / / Fi(s,r,x,2)F(r, t, z, y)dzdr.
s JRI

Then F3 € Qu+v,2,n+m(C3, v>), where C3 and y3 depend only on C', y', C?, y2, u, v, n, m.
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Proof. We know thatifn = 1:

0
F10+Z< Py A+ 5 Fy)
where F1 o, Ff‘l, Fﬁi € O,—1and u — 1 < 2. Note that (this is a variant of (20))

Jd 0 ,
/ —F] (s,r,x,2)F>2(r, 1,2, y)dz = ——/ Fj (s,r,x,2)Fa(r, 1,2, y)dz
Rd 0Zi 0x; Jrd

d a ,
o a_ F} s Py Ay
+ [ (5 o) Flerno

X Fh(r, t, z, y)dz.

This immediately means that we found a desired representation of F3 inthe casen = 1,m =0
(Lemma 1 is applied here). For the arbitrary n, m we can find the appropriate representation
using iterations of the formula above and its analogue with interchanged variables y and x. [J

If we reduce the highest limit for u, v by 2, we can drop the integral with respect to dr.

Lemma 4. Suppose that F| € Qu,n(Cl,yl), F, e vam(Cz,yz) forn = 0,1,... m =
0,1,..;u<n,v<mand

F3(s,t,x,y;r) = / Fi(s,r,x,2)Fy(r,t,z,y)dz, r €ls,t].
]Rd

Then F3 € Q+4v.ntm (C3, y3) (F3 =0forr & [s,t]), where C3 and y3 depend only on cl, yl,
CZ, yz, u, v, n, m.

Proof. If we prove that F; € Q,, F» € Q, for u,v < 0 provides F3 € Q,,, then we may
proceed like in the proof of Lemma 4. This statement can be verified by repeating the proof of
Lemma 1, since the same approach works here as well. [

Now we are ready to estimate g, .

Theorem 6. Let Ry, ..., R}, be a set of differential operators of orders ry, ..., r, respectively
with measurable coefficients that depend on parameter s € [0, 1]. Suppose that a and b
are continuous, all elements of a(s,-) and b(s,-) and coefficients of R; belong uniformly
to CEO(R‘I) with constants Mg, and b satisfies (2). Then for all 0 < s < t;] < -+ <
t, <t < 1 operator T, R? Ty - R,’{' T;,.:, acting on C}‘;O(Rd), can be represented using
akernel K(s,t1,...,t,,t,x,y)with x,y as kernel variables. This kernel belongs to Q, ,(C, y)
with respect to the variables s,t,x,y. Constants C,y depend only on My, 6, r, d, where
r=ri+---+ry

Proof. We recall that by Theorem 5 we have G € Qg and so its derivative of order k belongs
to Ok k. The kernel K can be written using a repeated convolution of the kernel G of T ; and
its derivatives (the integrals and derivatives exist and can be taken in any order since G € Qo).
To estimate K using Lemma 4 we only need to check that G(s, t, x, y) f (¢, y) € Qo, if f(z,-)
belongs uniformly to C;° (R9). But this can be easily verified, for example:
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0 ad 9 ol
<8_+_) (G(S,f,x,)’)f(t,)’))= <<_+ )G(S,t,x’y)> f(t’y)
Xi ay; 0x; 0y

B
+G(s, t, x, y)a—yf(t, y) € Rp. U
L

Remark 1. Suppose that we have a set of operators L;,i = 0, ..., n each satisfying the same
conditions as L and corresponding 7; s ; for L; defined as T ; for L. Then if we replace T, 1, by
T t; 141 (Ts,1, is replaced by To s, and T, ; — with Ty, 4, ) the statement of Theorem 6 would also
hold. It follows from the proof, since we never used the fact that we have the same coefficients,
but only that the fundamental solutions have the same estimates.

Corollary 1. Suppose that a and b are continuous, the elements of a(s, -) and o (s, -) belong
uniformly to Cgo(Rd) with constants My, and b satisfies (2). Then qu (s, t1, ..., t;, 1, X, ),
where s < t| < .-+ < t, < t, belongs to Q, ,(C,y) with respect to variables s,t, x,y.
Constants C, y depend only on My, 6, n, d.

Proof. This is a direct application of Theorem 6. [J
5. Examples of Ito—Wiener expansion kernels for a non-smooth o

In the previous section we saw that the kernels ¢g;, have the desired behaviour as long as the
elements of o (among other conditions) belong to C° (R?). We want to show that dropping this
requirement may lead to the violation of the inequality provided by the statement g,, € R, from
Corollary 1. This is the main reason to look at the following examples.

Suppose that Eq. (1) has zero drift and o is an orthogonal matrix: ¢ = 0, b = ool = I.
As long as o is measurable such stochastic equation has a weak solution that is also a Wiener
process. In other words we have a probability space where both X, and W; are Wiener processes.
On this probability space we have two essentially different (generally speaking) Gaussian spaces
generated by X and W. In some sense we may say that W generates Gaussian space that is
a nonlinear transformation of Gaussian space generated by X (o-algebra generated by W is
smaller than one generated by X, because we can reverse equation to find W from X). This
transformation is defined by some nonlinear function on Gaussian space that conserves Gaussian
measure. In the case when X is a strong solution this function can be inverted. We are interested
in the behaviour of the It6—Wiener expansion of a function of X; defined by our scheme using
Gaussian space generated by W;.

Let us show a simple example where g, € R, does not hold.

Example 2. Letd = 1 and

1,x >0
—1,x <0

ox) = {

This is well-known example that demonstrates the absence of strong solution.
Since it satisfies the requirements of Theorem 1 we have representation (13) for ¢g,,. Let us
look at g1:

9
q10,11,t,x,y) = /Rp(tl,x - Z)G(z)a—zp(t —t,z—y)dz
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2 . . . . .
where p(t, x) = (2nt)~ /2= I¥I°/2t i5 standard Gaussian density with zero mean and variance
t. Now if we take x = y = 0 we get:

0
q100,11,1,0,0) = / P(tl,z)a(z)a—p(t—n,z)dz
R z

n—t t
_(27”)71/20 _ tl)fl /R lzlp (g’ Z> dz = M1 e

t—1

where M is some negative constant. It is obvious that g; does not belong to R; uniformly on
s <t <t.
For the local time kernel | we have:

! t t—t
rl(O,tl,t,0,0)zM/ s ds = 2M arctg | —
141 s—1 51

which means it is bounded.
Now we can compare this case to the situation when g; € R; holds, which means that we
have

1g1(0,11,1,0,0)| < Cyt7!

and consequently
t
|r1(07 tlv t? 07 O)| < Cllnt—.
1

If 1 — 0+ then the behaviour in our example is better (in the example we have that ry is
bounded, while ln% is not). But if #{ — 7— then the estimate provides faster convergence to 0
than in our example, since:

t t f—h f
In—~——1; arctg ~ [——1
1 I3 3] n

It may seem that the absence of strong solution causes this difference in the behaviour of
the kernels, however this is not the case. In fact the real reason is the non-smoothness of o. To
confirm that we need to consider more complicated example.

Example 3. Letd = 2 and

I, x;1<-—1

V2 V2

2 2

NN R x1 >0
ox) = 2 2

os (ﬂ(xl +1)> sin <7T(x1 +1)>
4 4
) (n(xl +1)> (n(xl +1)> ’
—Ssm| —— CoOS| ——
4 4

We defined o such that o1 1 is a function only of the first variable smooth everywhere except
x1 = 0, —1 and in these points the function itself and its first derivative are continuous, except

x1 € [—1,0].
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the derivative has a positive jump at x; = 0. Note that in this case o satisfies Lipschitz condition
and our X is in fact a strong solution. Let us look at g(1,1) withx =y = 0:

0 0
q1,1(0,11,1,1,0,0) = / p(ti, 21) (01,1(Z1)— +02,1(Zl)_>
R? 0z71,1 0212

x p(th —t,22 — 21)

0 0
X (01,1(22)— + 02,1(22)—) p(t —t, 22)dz1dzo.
0221 0222

We used the following notation for the coordinates: z1 = (z1.1,21,2),22 = (22,1, 22,2). The
function under the integral is a product of the function of z; 1, z2,1 and the function of z; 2, z2,2.
Therefore the integral is the product of two integrals. After opening the brackets the integral
splits into the sum of four integrals. It is easy to check that integrals with exactly one derivative
of the second coordinate are zero, i.e two members of the sum are zero. The integral with two
derivatives with respect to the second coordinate is easy to estimate: the integral with respect
to the first coordinates is bounded by constant multiplied by 7~/ and the integral with respect
to the second coordinates is equal to non-zero constant multiplied by #=3/2. Let us study the
remaining integral:

0
qa,1)(0,11,1,1,0,0) = / p(t1,21,1)01,1 1) ——p(2 — 11, 22,1 — 21,1)01,1(22)
R2 0211

X

P(f—tz,zz,l)dm,ldzz,l/ p(t1,z1.2)
0221 R2

X p(ta —t1, 22,1 —21,0)p(t — 12, 22,1)dz1 2d22,.
The second integral above is equal to non-zero constant multiplied by r~!/2. We want to study
the behaviour of the first integral as 1; — f— (#; is also changing to stay inside interval (¢, t)).

Denote x = z1,1 — 22,1,y = 22,1, /12 —t1 = €1, /t —th = &2 and
ger, e2,x,y) = 011 (x + y)o 1 () p(t — ] — &3, x + y).

The first integral is equal to:

J

0
/ p(t1,z1,1)01,1(z1) ——p2 — 11, 22,1 — 21,1)01,1(22)
R2 9211

X

pt —t,22,1)dz1,1dz2,1
0221

= 51—282—2 /2 gler, &, x, y)p(s%,x)p(e%, y)xydxdy
R

8]_282_2'/ (g(gl’ €2, X, y) - g(€1782a —X, )7) - 8(51782,)% _Y)
[0,+00]?

+g(e1, 82, —x, =) p(el, x) p(e3, y)xydxdy.

We are interested in the behaviour of this integral as (e1, £2) — (0+, 04). We know that the first
derivative of o7 1 is bounded, and its second derivative is unbounded at zero (the first derivative
has a positive jump). We can use it to prove the following statement: for any M > 0 we can find
8> Osuchthatforall0 <x <38,0 <y <8,0<el <t/3,0<e3 <t/3:

g(815829-x7y) _g(EI,SZa —X, )’) _g(glagzaxa _y)+g(815827_-x7 _)’) 2 M-xy
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Indeed o7,1(x) can be represented in the neighbourhood of x = 0 as a double integral of its
second derivative plus a “jump” term of the form a|x|. Taking function f(x, y) = |x + y| itis
easy to check that:

f(x? y) - f(-xv _y) - f(_-xv y) + f(_x1 _)’)
(x,y)—>(0+,0+) Xy
4min(x, y)

= lim 400

(x,y)—(0+,0+) Xy
This is also true for f(x, y) = o1,1(x + y) since multiplying by positive constant and adding a
two times differentiable function changes nothing. Our function g(g1, €2, x, ¥) has an additional
multiplier, but its derivatives with respect to x, y are bounded uniformly on 0 < 8% <t/3,0 <
e% < t/3. Therefore the same statement holds for g as function from x, y uniformly on

0< 8% <t/3,0 < 8% < t/3. Using it we obtain the following estimate:

J> Me(zef/ _p(el. 0)p(e3. y)x’ydxdy
[0.6]

gl _» _

—2sup || ¢ 2822/ p(et, x)p(e3, y)x”ydxdy
ax [0,81x[8,+00]
08| 2 2

— 2sup

€178 / p(e, x)p(e3, y)xy*dxdy
dy [0,8]x[6,400]

—4sup Ig|81_282‘2/ p(ef, x)p(e3, y)xydxdy.
[8.+00]?

The expression on the right hand side converges to M /4 as (g1, €2) — (0+, 0+), which means
J takes values greater than any constant in any neighbourhood of (g1, &2) = (0, 0). As a result
qa,1(0,11,12,¢,0,0) is unbounded as t; — ¢—. This is a contradiction to the statement that
qq,1) belongs to R, uniformly on #1, #,. This contradiction is obviously the consequence of the
non-smoothness of o.

6. Local time as a generalized functional

Note that the kernels of the Itd—Wiener expansion of I} (8x) = limg_o4 I} (f¢), where f;
converges weakly as measures to §,, can be represented by r,,. The estimates from Theorem 6
allow us to see that we can choose a good multiplier ¥ in the definition (9) of the operator A to
get rid of the singularities in r,,, and make || (A®"r),, > finite for all n > 1 (for example we can
take ¥ (t) = %[0 with large enough 0). Therefore the following result seems natural.

Theorem 7. Suppose that a and b are continuous, the elements of a(s,-) and o (s, -) belong
uniformly to Cp° (R?) with constants My, b satisfies (2) and the operator A satisfies (9) and (10).
If we additionally have that:

1
/ (Mo, (Y )" Tt~ dt < +o0 (23)
0
where
M) = sup ]w?(w (24)
L,uels,t

then there exists n-renormalized local time in $>(A) of X; at any point y.
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The existence of n-renormalized local time in ®;(A) means the finiteness of ®,(A)-norm for
I} (8x), which is local time without the first # + 1 members of its [to—Wiener expansion (or
more precisely the existence of the corresponding limit of the local time approximations, see
Definition 2).

Unfortunately we cannot prove that $,(A) norm is finite directly using Gaussian estimates
from Theorem 6, since it includes controlling the dependence of the ||[(A®"r),,|» on n and
consequently finding the behaviour of all constants in our estimates as n — +o00. But the
complicated nature of these estimates does not allow us to do that. Therefore we take a different
approach and estimate the norm in ®,(A) as a whole instead of estimating each member of
the corresponding series separately (which includes using (8) together with (11) instead of
its alternative (7)). To achieve this we develop a representation of ®,(A) norm of Ip7(f)
and / ZT( f), assuming that (9) and (10) hold. For this purpose we construct a new stochastic
differential equation, such that the transition density of its solution determines ®;(A) norm of
any functionals of X.

Consider a stochastic differential equation for a stochastic process Y; in R??:

dY, = a(t, Y,)dt + & (t, Y,)dW, (25)
where W, is a Wiener process in R3¢ and

at,x) = (a(t, xYH, a@, x*)

sax) = (CEFD 0 Y (@m0 Ay ()

’ 0 ot,x% ) \0 Ay () AP (@))
forany r > 0 and x! € RY, x? € R?, x = (x!, x?) with 4;(z) and A,(z) are diagonal matrices
that depend on z € [—1, 1]¢ as follows

A1 = V1 — @)% M (@)ii = zi.

Let ¥, = (¥, Y,z), where Y! and Y? are the projections on the subspaces spanned by the
first d coordinates and the other d coordinates respectively. It is obvious that ¥;' and ¥} are the
solutions of the original Eq. (1) with two different Wiener processes. We also note that:

b(t,x) = &(t, x)5 1 (1, x)

(o, x"Ha T, x" o(t, x) A (W @) o T (¢, x1)
o, xH (@)D T, 1D o, xPoT (1, x?)

is uniformly positive definite, or more precisely:
(B(t, 002, 1) > (1= BHSIAI°

where § is constant from (2) and 8 is constant from (10). We can use Y; to estimate $,(A) norm
for the functional I} (f) due to the following lemma.

Lemma 5. If Yy = (X, Xo) and Eq. (1) has a unique strong solution X, then for any operator
A satisfying (9) and (10) and any bounded functionals F = F(X), G = G(X) of the process X
we have:

(F(X), G(X))2.a = EF(Y)G(Y?).
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Proof. This equality is a direct consequence of the formula (11) since the pair X (W!) and
X (Wz) have the same distribution as Y! and Y2, where both W! and W2 has the same definition
as W from (11): with W being the same in both cases and w being independent with each other
and W. Indeed the Eq. (25) is actually two equations of the same form as (1) with two different
Wiener processes, that have the same distribution, as the pair (Wl, Wz). O

Denote
2d 2d 3d
LY () = Za,(r x)—(x)+ ZZZ@N 0t X))
i=1 j=1k=

and let G[(s, t,x,y) ~for s < t be a fundamental solution of the following partial differential
equation %u(r, x)4Lu(t, x) = 0 solved backwards in time, which is also the probability density
with respect to variable y of the strong solution Y; of the stochastic differential Eq. (25) with
Yy =x.

We can write $,(A) norm for I/, (f) using G and g, from Krylov—Veretennikov
representation.

Lemma 6. Suppose that a and b are continuous, the elements of a(s,-) and o (s, -) belong

uniformly to Cgo(Rd), b is uniformly continuous on [0, 1] x RY and Yy = (x,x),x € R4,
Then for any operator A satisfying (9) and (10) and bounded continuous functions f, g we have:

1 1
Uir D tir@ia= [ [ [ Kaoitx st 70N f0Ddsdiay o)

where, if s <t (caset < s is symmetrical),

Kn(s, 1, x, 1, y%) = f GO, s, (x,x), ¥, u)G(s, t,u, y?)du
Rd

n
Y [ Oy a
k=0 |m|=k [0.5]

n
X (0,11, tns 1, X, ¥2) ]—[ Ya (t)dt ... dty. (27)
i=1

Proof. Using Theorem 1 we can write:

n 1
Hh=trH-3 2 [ /0 (s, v, W)dsf (y)dy

k=0 |m|=k YR

where
%_m(s9 y! W) = / qm(()? tlv MR tnv S, xs Y)dW(tl) . 'dW(tﬂ)
A,[0,5]

where &, is well-defined and the integral with respect to f (y)dy can be taken after the stochastic
integral due to the estimate from Corollary 1.
Lemma 5 allows us to find:

1l
(Ifr(f),lfT(g))z,A=/0 fo Ef(Y)g(¥ )dsdt
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n 1 1
—ZZf / / / E&yu(s,y', W
k=0 |mi=k /R* JR? Jo JO

X Em(t, 2, WHdsdtf (yHg(yHdy'dy*.

Now, since:

E%_m(& yls Wl)gm(h y27 W2) = / qm(os tl, R tn9 Sa -xv yl)qm
A,10,min(s,t)]

n
< (0,11, oot £, 5, ) [ [ W, () - dty
i=1

we only have to find Ef (Y Sl)g(Ytz) using that the fundamental solution G(s,t,x,-) is a
probability density of (Y'(¢), Y2(r)) under the condition (Y'(s), Y2(s)) = x:

Ef(Yhe(r}

_ /R 60,5, @0, 0L GG, 1, 00 w0, 0,7 FO g0 dvdudy'dy?.

But since Y! and Y? are the solutions of two unrelated equations with two different Wiener
processes such that increments of one Wiener process are independent together with the
increments of the other on non-intersecting intervals, we also have that

/ G(s,t, ', u), (v, y)dv = G(s, 1, u, y).
]Rd

And this completes the proof of the lemma. [

Gaussian estimates for G and gm provide that kernel K,, is bounded by Gaussian density.
But if we integrate this estimate with respect to dsdr we get an unbounded function for d > 1.
Therefore it does not allow us to define renormalized local time in @, (A). However renormalized
local time in @, (A) was already defined in [1] and we can improve our estimates to define it for
our case.

We want to control “renormalized” G, when s or ¢ is close to 0 by including an additional
dependence of constants in the estimate on . To achieve this we need to find a specific
representation of G to deal with both renormalization and the dependence on 1. Fortunately
this can be done by deriving a Taylor’s expansion of G with respect to a multiplicator of /2.

Denote by Gq the fundamental solution G if v is replaced by Jq¥ for g € [0, 1].

Theorem 8. Suppose that a and b are continuous, the elements of a(s,-) and o (s, -) belong
uniformly to C;° (R?) with constants M p» b satisfies (2) and the operator A satisfies (9) and (10).
Thenforall0 <s <t <1, x = (xl,xz),y = (yl,yz);xl,xz,y],y2 eRiand N=0,1,...:

N
G(s,t,x,y) = Z Z /A [0]]qm(s,ﬁ,...,tn,t,xl,yl)qm

n=0 |m|=n

n
2 .2 2
X (S, 8, e sty 1, X7,y )| |¢mi(ti)dt1---dtn
i=1

1
+f Gy (s, 1,0, (N + (1 —g)Ndg (28)
0
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where q,, are the kernels of Krylov—Veretennikov representation given by (13),
G;V+1(s, t,x,y) = f
A

X Gq(IN, IN+1, 2N, ZN+1)

~ . ~
/ Gq(satlsvaI)RlZle(t11t29Z19Z2)'°'
N+1[0~1] R2d(N+1)

RIN+1:ZN+1

X Gg(INt1, 1, ZN+1, )21 ... dzyprdty ... diy g (29)
for N =0,1,...and

d
R = 3"y S se.
i=1

Additionally Gflv“ € Q0,2(N+1)(é, y) with C = (Ms,,(vf))N—HC where My () is given
by (24) and constants C, y depend only on N, B, 8, M), d. In particular

llx=y[2

G (st %, )| < CoM, (P )N T — )™ 2m) e 770 20 (30)

Proof. Notice that our conditions provide that we can apply Theorems 5 and 6 to the operator
L4, which is the operator L for y replaced by /q¥. So G4, g and G(’iV+1 (s, t, x, y) are well-
defined and possess Gaussian estimates with constants that do not depend on ¢ and ¥ if
is fixed (due to Theorem 6: Gév +l e Q0,2(N+1))- Moreover if we use Theorem 6 to estimate

G (’]V +1 (s, t, x, y), such that at first we estimate the integral with respect to dz; . ..dzy+1 without

including the multiplication factors wiz that come from operator R"% and then estimate integrals
with respect to dt; ...dty+1, we obtain additional dependence on M; ;(v), in particular we can
prove inequality (30).

Hence to prove the theorem we only need to show that for ¢ € (0, 1) there exists derivative

d* - X
ggF Gals 1.3.9) = KIGy(s. 1,x.)

which is continuous for g € [0, 1]. Then formula (28) is just the Taylor expansion of Gq with
the residue in the integral form, since
Go(s, t,x,y) = G(s, t,x', yHG(s, 1, x%, y?)

and consequently for k = 1, 2, ... (we can pass to the limit ¢ — 0+ under the integral in (29)
due to the estimate from Theorem 6)

G(s.1,x,y) =/ Gm(s, 11y ooty t, x1yh)

210,1]
n
X g (s 11, oot 1,553 [ [ ¥, )y <y
i=1
We notice that
Ttx _ 7tXx t,
L;" =Ly" +qR™

which allows us to derive a well-known identity (with ¢ R"* as “perturbation”):

t
Gq+5(5,t,xv )’) = Gq(s,t,x, y) +8/ /]‘gZd Gq+8(5,r,X, Z)Rr’ZGq(ratv Za y)dzd"
s
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Due to Remark 1 after Theorem 6 the integral in the right hand side taken only with respect to
dz (and all its derivatives with respect to x, y) has Gaussian bound that does not depend on r,q
and ¢. Therefore the whole integral is bounded for ¢, g + ¢ € [0, 1] and we can pass to the
limit in ¢ and g + € under the integral. Using these properties and the formula above we obtain
that Gq is continuous for ¢ € [0, 1]. Furthermore we have that the integral is continuous for
q,q + ¢ € [0, 1] and consequently Gq is differentiable with the derivative

t
G;(S*t’x’y) 2/ /21Gq(S,ll,X,Zl)R“’Zle(ll,I,Zl,)’)d21dl1
s JR

which is also continuous for g € [0, 1]. Repeating this procedure for higher derivatives with
induction and iteration of the “perturbation” formula above is enough to prove the theorem. [

Remark 2. Note that this theorem actually allow us to prove Krylov—Veretennikov
representation for our case. Let £ and 1 be two random variables measurable with respect to
our Wiener process W (defined for ¢ € [0, 1]) and let their I[to—Wiener expansions be given by
two sets of kernels afn and a,) respectively. Then, by the definition of I'(A), we have:

+00
E(T(AET (A =Y > /A . Ha,i(rl,...,t,,)

n=0 |m|=n
Xah(ty, ..., t)Wm (t1) ... Y (t)dty ...dty

and on the other hand, if £ = f(X;) and n = g(X;):
E(I'(AET(A)n) = E(fF(YHe(Y})
_ /R GO, 1. (r. x), 1 ) F D)y dy?

where X; and Y; are the solutions of the respective equations with Xo = Y(} = YO2 = x. We
know that G can be represented using (28) and therefore we can use the same approach as in the
theorem above (having v replaced by some ,/g) to show that functions g, are connected to
the Ito—Wiener expansion kernels a,, as in Theorem 1. This allows us to drop the condition of
uniform continuity for » in Lemma 6 and consequently in Theorem 7. Of course our conditions on
the coefficients here are much more strict than in the original result by Krylov and Veretennikov.

Now we are ready to prove our main result concerning the existence of local time in the space
P2(A).

Proof of Theorem 7. From Lemma 6 we know that the kernel K,, that describes the norm in
®>(A) is given by (27). Using Theorem 8 we replace G by its representation (28). We obtain
two sums with g, which are the same with different signs since the integral of g, (0,
f, ..., 1, S, x,u) multiplied by G(s, 1, u, y2) with respect to du is g, (0,11, ..., 1, t, X, y2)
(it follows from (13), the definition of ¢,,). We have for s < 7:

Kn(s’tyxv y15 yz)

1
= [, [ 657105 e 0T Gls. o 300+ 01 = )" dgd
R4 JO
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Using Gaussian estimates for GZ“(O, s, (x,x), (yl, u)) and G(s,t,u, yz) (from Theorems 5
and 8) we find that for s < ¢:

Iyt =x2 | Iy2—x|?
|Ku(s, 1, x,y', ¥y < C(Mo s ()™ (15) ™42 @) de v s+ )

The condition (23) provides that
1 1 1 pt
f f |Kn(s,t,x, y', y)dsdt < C / f (Mos (W) (t5)~ " dsdt
0 JoO 0 Jo

1
e / (Mo, (p))"™*'s1~ds < +o0
0

and consequently

1 1
/ / Kn(s,t,x,y', yP)dsdt
0 0

is bounded and continuous function of x,y!,y%.

It means that if f and g converge weakly as measures to 6-measure at some point x then the
limit of the (I} (f), I} (g))2, exists and finite, i.e. the limit of /}',.(f) exists and local time
exists in &,(A). O

Note that in fact we can prove that the kernel

1 1
/ / Kn(sstv-xy yl,yz)dsdt
0 Jo

is continuously differentiable / times (with arbitrary but fixed /) if we suppose that the appropriate
condition on My () holds (more strict version of (23), that depends on [). Therefore we can
show the existence of another version of local time, where §-measure is replaced by a generalized
function of order I from the space $*(R?). Similar result for Wiener process was proven in [1].

References

[11 A.A. Dorogovtsev, V.V. Bakun, Random mappings and a generalized additive functional of a wiener process,
Theory of Probability and its Applications 48 (2003).
[2] M. Eddahbi, R. Lacayo, J.L. Sole, J. Vives, C.A. Tudor, Renormalization of the local time for the d-dimensional
fractional brownian motion with n parameters, Nagoya Math. J. 186 (2007) 173-191.
[3] S. Eidelman, Izdatelstvo Nauka, Moskva, 1964, (in Russian).
[4] Y. Hu, D. Nualart, Regularity of renormalized self-intersection local time for fractional brownian motion, A Journal
of Communications in Information and Systems (CIS) 7 (2007) 21-30.
[5] P. Imkeller, V. Perez-Abreu, J. Vives, Chaos expansions of double intersection local time of brownian motion in r
and renormalization, Stoch. Proc. Appl. 56 (1995) 1-34.
[6] N. Krylov, Some estimates of the probability density of a stochastic integral, Mathematics of the USSR-Izvestiya 8
(1974) 233-254.
[71 J.F. Le Gall, Wiener sausage and self-intersection local times, Journal of Functional Analysis 88 (1990) 299-341.
[8] P. Malliavin, Stochastic Analysis, Springer, 1997.
[9] D. Nualart, S. Ortiz-Latorre, Intersection local time for two independent fractional brownian motions, Journal of
Theoretical Probability 20 (2007) 759-767.
[10] E.O. Porper, S.D. Eidel’man, Two-sided estimates of fundamental solutions of second-order parabolic equations,
and some applications, Russian Mathematical Surveys 39 (1984) 119-178.
[11] J.Rosen, A renormalized local time for multiple intersections of planar brownian motion, Seminaire de Probabilities
XX 20 (1986) 515-531.

d



A. Rudenko / Stochastic Processes and their Applications 122 (2012) 2454-2479 2479

[12] A. Rudenko, Local time for gaussian processes as an element of sobolev space, Commun. stoch. anal. 3 (2009)
223-247.

[13] B. Simon, The P(¢); Euclidean (Quantum) Field Theory, Princeton University Press, 1974.

[14] A.Y. Veretennikov, N.V. Krylov, On explicit formulas for solutions of stochastic equations, Math. USSR-Sb. 29
(1976) 239-256.

[15] S. Watanabe, Lectures on Stochastic Differential Equations and Malliavin Calculus, Springer, 1984.

[16] A.Zvonkin, N. Krylov, About strong solutions of stochastic differential equations (in russian), in: Proceedings of
the School-Seminar on the Theory of Random Processes, Druskininkai, November 25-30, 1974. Part II, Vilnius,
1975, pp. 9-88.



	Some properties of the Itô--Wiener expansion of the solution of a stochastic differential equation and local times
	Introduction
	Definitions and notation
	Itô--Wiener expansion of solutions of SDE
	Estimates for fundamental solution
	Examples of Itô--Wiener expansion kernels for a non-smooth  σ
	Local time as a generalized functional
	References


